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Abstract

We define six binary relations on the power set of an n-element set and describe

their basic structure and interrelationships. An auxiliary relation is noted that will

assist in determining the cardinalities of each. We also indicate an eighth relation that

may be of interest. We conclude the second section by computing several quantities

related to walks in the graph of the sixth relation. In the third section we turn our

attention to the basic structure and cardinalities of the auxiliary relation noted in

section two and several additional relations. We also compute seven sums associated

with these relations and indicate connections four relations have with Wieder’s conjoint

and disjoint k-combinations.

1 Introduction

Combinatorial interest has generally focused on the enumeration of various types of relations
or associated structures such as topologies and graphs. In this paper we will be interested
in the generally more tractable problem of defining and enumerating several binary relations
on the power set of an n-element set and computing various quantities associated with them.
We will conclude by indicating connections four relations have with Wieder’s conjoint and
disjoint k-combinations. The motivation here is to suggest some ways in which sets of k-
subsets of some set may be studied under the rubric of asymmetric k-ary relations on the
same. To the author’s knowledge, the results of this paper or related results do not appear
in the existing literature, except when so noted.
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2 The six initial relations

2.1 Definitions and structure

Let P (A) be the power set of an n-element set A1. Then B = P (A) × P (A) is just the
Cartesian product of P (A) with itself and the following binary relations on P (A) are, of
course, just subsets of B:

R0 = {(x, y) : x, y ∈ P (A), x ⊆ y ∨ y ⊆ x},

R1 = {(x, y) : x, y ∈ P (A), x ⊂ y ∨ y ⊂ x},

R2 = {(x, y) : x, y ∈ P (A), x ≺ y ∨ y ≺ x},

R3 = {(x, y) : x, y ∈ P (A), x ⊆ y},

R4 = {(x, y) : x, y ∈ P (A), x ⊂ y}, and

R5 = {(x, y) : x, y ∈ P (A), x ≺ y}.

Note that x ≺ y denotes that x ⊂ y and |y| − |x| = 1 [2]. As R3 has been defined to be a
partial order relation on P (A), this just means that R5 is the corresponding covering relation
[2]. R4 is the corresponding strict order [2]. Also, observe that B is a reflexive, symmetric,
and transitive relation on P (A) and so is an equivalence relation on the same.

R0 R1 R2 R3 R4 R5

reflexive yes no no yes no no
irreflexive no yes yes no yes yes
symmetric yes yes yes no no no
asymmetric no no no no yes yes
antisymmetric no no no yes yes yes
transitive no no no yes yes no
intransitive no no yes no no yes

Table 1: Basic properties of R0 – R5

Tables 1, 2, and 3 list some basic information with regard to R0 – R5. While entries
=,⊆, and ⊇ in Table 3 are easily enough understood, we explain an entry of ∩ as follows.
Given a row relation Rr and a column relation Rc in Table 3, an entry of ∩ indicates that,
while Rr 6⊆ Rc and Rc 6⊆ Rr, we still have that Rr ∩Rc 6= ∅.

Examples. With A = {1, 2}, P (A) = {∅, {1} , {2} , {1, 2}}, and

R4 = {(∅, {1}), (∅, {2}), (∅, {1, 2}), ({1} , {1, 2}), ({2} , {1, 2})},

R5 = {(∅, {1}), (∅, {2}), ({1} , {1, 2}), ({2} , {1, 2})}.

1For convenience we may assume that A = {1, 2, 3, . . . , n}.
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R0 R1 R2 R3 R4 R5

reflexive closure R0 R3

reflexive reduction R1 R4

symmetric closure R0 R1 R2

symmetric reduction R3 R4 R5

transitive closure R4

transitive reduction R5

Table 2: Closures and reductions of R0 – R5

R0 R1 R2 R3 R4 R5

R0 = ⊇ ⊇ ⊇ ⊇ ⊇
R1 ⊆ = ⊇ ∩ ⊇ ⊇
R2 ⊆ ⊆ = ∩ ∩ ⊇
R3 ⊆ ∩ ∩ = ⊇ ⊇
R4 ⊆ ⊆ ∩ ⊆ = ⊇
R5 ⊆ ⊆ ⊆ ⊆ ⊆ =

Table 3: Inclusion and intersection relationships, R0 – R5

Define the partial order relation

E = {(p, q) : p, q ∈ {R0, R1, . . . , R5} , p ⊆ q}

so that G may be defined to be the (directed) graph of the covering relation corresponding
to E. Then most of the information in Tables 1, 2, and 3 is illustrated in Figure 1. Observe
that we have labelled the edges of G in the diagram to indicate the closure and reduction
relationships that obtain between the vertices of this graph, i.e., R0, R1 etc. For example,
an edge labelled s and directed from vertex u to vertex v indicates that u is the symmetric
reduction of v (and v the symmetric closure of u); we can also deduce from this that v is
a symmetric relation. Similar observations hold for the other two edge labels. Finally, note
that if a walk exists from u to v, then u ⊆ v. However, if there is neither a walk from u to
v nor a walk from v to u, then, while u 6⊆ v and v 6⊆ u, it is still the case that u ∩ v 6= ∅.

R0

R3

s
>>||||||||

R1

r

``BBBBBBBB

R4

r

``BBBBBBBB

s
>>||||||||

R2

``BBBBBBBB

R5

t

``BBBBBBBB

s
>>||||||||

Figure 1: Hasse diagram of G

3



2.2 The cardinalities of R0 – R5

In determining the cardinalities of R0 – R5 it will be useful to recall [1] that

|P (A)| = 2n. (1)

To see this, consider that in enumerating a subset of A, i.e., an element of P (A), we decide
on a case by case basis which elements of A to include in the subset. As there are 2 outcomes
possible for each of the elements of A – include in the subset or exclude from the subset –
and n elements of A, there are 2n subsets of A altogether.

Now recall that the (x, y) ∈ R3 are such that x ⊆ y. It is not hard to see that enumerating
each subset of each subset of A will enumerate the elements of R3. We may do so by deciding
on a case by case basis which elements of A to

1. include in both x and y,

2. exclude from both x and y, or

3. exclude from x and include in y.

As there are 3 outcomes possible for each of the n elements of A, we see that

|R3| = 3n. (2)

The cardinalities of R0, R1, and R4 are determined as follows. Let R−1
i denote the inverse

relation of Ri [3]. Then, define

R11 = {(x, y) : x, y ∈ P (A), x = y} = {(x, x) : x ∈ P (A)}.

It should be clear that R11 ⊂ R3. Moreover, it is obvious that

|R11| = 2n. (3)

It then follows that
|R0| = 2 · 3n − 2n, (4)

as, by definition, R0 = R3 ∪R−1
3 , and R11 should only be counted once in this union.

Similarly, we see that
|R4| = 3n − 2n, (5)

as, by definition, R4 = R3 \R11.
Furthermore,

|R1| = 2 · (3n − 2n), (6)

as, by definition, R1 = R4 ∪R−1
4 .

Recall that for each (x, y) ∈ R5, we have that x ⊂ y and |y| − |x| = 1. This suggests the
following enumeration of this relation. First, select one of the n elements of A to add to x
(to get y). Then x is constructed from the remaining elements of A, and this can be done
in 2n−1 ways. As y is now completely determined, we have that

|R5| = n · 2n−1. (7)
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It is then easy to see that
|R2| = n · 2n, (8)

as, by definition, R2 = R5 ∪R−1
5 .

Before concluding here we note one additional relation that may be of interest:

R6 = R4 \R5.

R6 is an irreflexive, asymmetric, antisymmetric, and transitive relation and so a strict order.
We also note that this relation is a proper subset of R0, R1, R3, and R4. Finally, that

|R6| = 3n − 2n − n · 2n−1 (9)

is easily deduced from Eqns. (5) and (7).

Relation Cardinality Sequence Sequence Sequence
R0 2 · 3n − 2n A027649(n) A090888(n, 3)
R1 2 · (3n − 2n) A056182(n)
R2 n · 2n A036289(n)
R3 3n A000244(n) A090888(n, 2) A112626(n, 0)
R4 3n − 2n A001047(n) A090888(n, 1) A112626(n, 1)
R5 n · 2n−1 A001787(n) A090802(n, 1)
R6 3n − 2n − n · 2n−1 A066810(n) A112626(n, 2)

Table 4: The cardinalities of R0 – R6

Table 4 lists the cardinalities of R0 – R6 with references to the corresponding integer
sequences in Sloane’s Encyclopedia [5].

2.3 Walks and lengths of walks in the graph of R5

Let H be the (directed) graph of R5 and recall that P (A) is the power set of an n-element
set A. Also, let C(n, k) denote the binomial coefficient, i.e., the number of ways to select k
elements from an n-element set.

We begin by counting the number of k-length walks w(n, k) in H [3]. As the vertices of
H are just elements of P (A), a little thought shows that a k-length walk in H begins at some
x ∈ P (A) and adds k elements of A not in x to x, where the order of addition is important.
We may enumerate such a walk by first selecting the k elements to add to x. There are
C(n, k) ways to do this. This then leaves 2n−k ways to construct x. Once constructed, we
then just need to decide which of the k! ways we will add the k selected elements in. Hence

w(n, k) = k! · C(n, k) · 2n−k. (10)

The total number of walks W (n) in H is then just given by

W (n) =
∑

0≤k≤n

w(n, k) =
∑

0≤k≤n

k! · C(n, k) · 2n−k. (11)
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Figure 2: Hasse diagram of H with A = {1, 2, 3}

Now let l(n, k) denote the total length of all k-length walks in H. It is not hard to see
that

l(n, k) =
k

k!
· w(n, k) = k · C(n, k) · 2n−k (12)

as in computing l(n, k) we are interested in determining only that in fact a k-length walk
exists in H and accounting for the length of this walk, and this is easily accomplished by
dividing w(n, k) by k! and then, of course, just multiplying the result by k. The total length
of all walks L(n) in H is then just given by

L(n) =
∑

0≤k≤n

l(n, k) =
∑

0≤k≤n

k · C(n, k) · 2n−k. (13)

w(n, k) is given by A090802(n, k) in Sloane’s Encyclopedia [5], while W (n) is given by
A010842(n). There is no sequence listed that gives l(n, k). However, L(n) is given by
A027471(n+ 1).

We conclude this section by observing that the number of 1-length walks in H is just
1! · C(n, 1) · 2n−1 = n · 2n−1. It should be clear that the enumeration of these walks is
fundamentally equivalent to the enumeration of R5 given above (7).

3 The additional relations

3.1 Definitions and structure

As before, let P (A) be the power set of an n-element set A. Here we will be chiefly interested
in five pairwise disjoint relations on P (A) whose union we define to be R35. It should be
clear that the cardinality of R35 is easily computed as the sum of the cardinalities of these
five relations. Moreover, we will be able to easily define and determine the cardinalities of
the 25 − 7 = 25 remaining possible unions of the relations (the empty union is excluded, of
course). So we define

R7 = {(x, y) : x, y ∈ P (A), x ⊂ y ∧ x ∩ y = ∅}, and
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R10 = {(x, y) : x, y ∈ P (A), x ⊂ y ∧ x ∩ y 6= ∅},

and recall that

R11 = {(x, y) : x, y ∈ P (A), x = y}.

Then we let R8 be an asymmetric binary relation on P (A) whose (x, y) are such that x 6⊆ y
and y 6⊆ x and x∩ y = ∅. Similarly, we define R9 be an asymmetric binary relation on P (A)
whose (x, y) are such that x 6⊆ y and y 6⊆ x and x∩y 6= ∅. It should be clear that R7 and R10

are also asymmetric relations. We also observe that R7 - R10 are irreflexive and vacuously
antisymmetric, while R11 is reflexive, vacuously symmetric, and antisymmetric.

R35 is a reflexive, antisymmetric, and transitive relation, and so a partial order. Let Q
be the quotient set [4] B/ ≡, i.e., an equivalence relation on B, where

(a, b) ≡ (c, d) ⇔ (a = d) ∧ (b = c)

for all (a, b), (c, d) ∈ B. Then R35 may also be thought of as a set of equivalence class
representatives of Q. Furthermore, we note that

R3 = R7 ∪R10 ∪R11, and

R4 = R7 ∪R10.

Examples. With A = {1, 2}, P (A) = {∅, {1} , {2} , {1, 2}}, and

R7 = {(∅, {1}), (∅, {2}), (∅, {1, 2})},

R8 = either {({1} , {2})} or {({2} , {1})},

R9 = ∅,

R10 = {({1} , {1, 2}), ({2} , {1, 2})},

R11 = {(∅, ∅), ({1} , {1}), ({2} , {2}), ({1, 2} , {1, 2})}.

3.2 The cardinalities of R7 – R11 and their possible unions

The Stirling numbers of the second kind S(n, k) count the number of ways to partition an
n-element set into k non-empty subsets, or, parts. They satisfy the recurrence

S(n+ 1, k + 1) = S(n, k) + (k + 1) · S(n, k + 1). (14)

It is also the case that
S(n, 1) = S(n, n) = 1, (15)

as there is clearly just 1 way to partition an n-element set into either 1 part or n parts.
We assume S(i, j) = 0 when i < j .
The main approach we will take in determining the cardinalities of R7 – R11 will be to

form two partitions of the n-element set A and then assign one part of each to x and one
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or two of each to y for all the (x, y) of R7 - R11. For one of these partitions, it will be the
case that |x ∪ y| = |A|; for the other, |x ∪ y| < |A|. In other words, we will enumerate the
elements of R7 - R11 based upon which of these results will obtain.

We begin with R7. Observe that for the (x, y) ∈ R7 it is the case that x = ∅ and x 6= y.
So we may enumerate R7 by fixing x = ∅, and then partitioning A into either 1 or 2 parts
and assigning one part to y. There are clearly 1 = S(n, 1) ways to accomplish the 1-part
enumeration and C(2, 1) · S(n, 2) = 2 · S(n, 2) ways to accomplish the 2-part enumeration.
With k = 1 in Eqn. (14), it then follows that

|R7| = S(n+ 1, 2). (16)

With regard to the (x, y) ∈ R8, we partition A into either 2 or 3 parts and assign one
part to x and another to y. It is easy to see that there are S(n, 2) ways to accomplish the
2-part enumeration, as we can only assign the parts in 1 way. The 3-part enumeration may
be accomplished in C(3, 2) ·S(n, 3) = 3 ·S(n, 3) ways, as we select 2 of the 3 parts and assign
one to x and the other to y. With k = 2 in Eqn. (14), we then see that

|R8| = S(n+ 1, 3). (17)

With regard to the (x, y) ∈ R9, we partition A into either 3 or 4 parts and assign one part
to x, another to y, and another to their intersection. There are C(3, 2) · S(n, 3) = 3 · S(n, 3)
ways to accomplish the 3-part enumeration, as selecting 2 of the 3 parts and assigning one
to x and the other to y leaves only 1 way to assign the remaining part to x ∩ y. The 4-part
enumeration may be accomplished in C(4, 2) ·C(2, 1) ·S(n, 4) = 12 ·S(n, 4) ways, as we first
select 2 of the 4 parts and assign one to x and the other to y, and then select 1 of the 2
remaining parts to assign to x ∩ y. With k = 3 in Eqn. (14), we then have that

|R9| = 3 · S(n+ 1, 4). (18)

With regard to the (x, y) ∈ R10, we partition A into either 2 or 3 parts and assign one
part to x and this part and another part to y. There are C(2, 1) · S(n, 2) = 2 · S(n, 2) ways
to accomplish the 2-part enumeration, as selecting 1 of the 2 parts to assign to x leaves
just 1 part to assign to y (in 1 way). The 3-part enumeration may be accomplished in
C(3, 1) · C(2, 1) · S(n, 3) = 6 · S(n, 3) ways, as we first select 1 of the 3 parts to assign to
x and then combine this with 1 of the 2 remaining parts and assign the result to y. With
k = 2 in Eqn. (14), it then follows that

|R10| = 2 · S(n+ 1, 3). (19)

With regard to the (x, y) ∈ R11, we partition A into either 1 or 2 parts and assign one
part to both x and y. This then leaves (∅, ∅) to be included in R11. There are clearly
1 = S(n, 1) ways to accomplish the 1-part enumeration, C(2, 1) · S(n, 2) = 2 · S(n, 2) ways
to accomplish the 2-part enumeration, and, of course, 1 way to construct (∅, ∅). With k = 1
in Eqn. (14), we then see that

|R11| = S(n+ 1, 2) + 1. (20)
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R12 = R7 ∪R8 R24 = R7 ∪R9 ∪R10

R13 = R7 ∪R9 R25 = R7 ∪R9 ∪R11

R4 = R7 ∪R10 R3 = R7 ∪R10 ∪R11

R14 = R7 ∪R11 R26 = R8 ∪R9 ∪R10

R15 = R8 ∪R9 R27 = R8 ∪R9 ∪R11

R16 = R8 ∪R10 R28 = R8 ∪R10 ∪R11

R17 = R8 ∪R11 R29 = R9 ∪R10 ∪R11

R18 = R9 ∪R10 R30 = R7 ∪R8 ∪R9 ∪R10

R19 = R9 ∪R11 R31 = R7 ∪R8 ∪R9 ∪R11

R20 = R10 ∪R11 R32 = R7 ∪R8 ∪R10 ∪R11

R21 = R7 ∪R8 ∪R9 R33 = R7 ∪R9 ∪R10 ∪R11

R22 = R7 ∪R8 ∪R10 R34 = R8 ∪R9 ∪R10 ∪R11

R23 = R7 ∪R8 ∪R11 R35 = R7 ∪R8 ∪R9 ∪R10 ∪R11

Table 5: Definitions of R3, R4, and R12 - R35

Table 5 lists the definitions of relations R3 and R4, as we understand them here, and R12

- R35. Table 6 lists the cardinalities of R3, R4 and R7 – R35 with references to corresponding
integer sequences in Sloane’s Encyclopedia [5]. Again, as R7 - R11 are defined to be pairwise
disjoint, the cardinalities of R3, R4, and R12 - R35 are easily deduced. For example, |R3| just
equals |R7|+ |R10|+ |R11|.

Before concluding here we note that the cardinalities of R30, R26, R35, and R34 may be
easily computed using binomial and multichoose coefficients. The multichoose coefficient

MC(n, k) [1] counts the number of ways to select k elements from an n-element set where
any given element may be selected multiple times. For example, it is easily seen that

|R30| = C(2n, 2), (21)

as we are effectively selecting 2 distinct elements of the 2n of P (A) and assigning one to x
and the other to y (in some specified manner) for all the (x, y) ∈ R30.

By similar reasoning, we have that

|R26| = C(2n − 1, 2), (22)

as ∅ is excluded from consideration in enumerating the given relation.
It is then also easily seen that

|R35| = MC(2n, 2) (23)

and
|R34| = MC(2n − 1, 2) + 1, (24)

as ∅ only occurs in (∅, ∅) in R34.
Similar results may be deduced for the remaining relations. However, most are not as

pretty as these, so we pass them over here.
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Relation Cardinality Sequence
R7 S(n+ 1, 2) A000225(n)
R8 S(n+ 1, 3) A000392(n+ 1)
R9 3 · S(n+ 1, 4) A032263(n+ 1)
R10 2 · S(n+ 1, 3) A028243(n+ 1)
R11 S(n+ 1, 2) + 1 A000079(n)
R12 S(n+ 1, 3) + S(n+ 1, 2) A003462(n)
R13 3 · S(n+ 1, 4) + S(n+ 1, 2) A134018(n)
R4 2 · S(n+ 1, 3) + S(n+ 1, 2) A001047(n)
R14 S(n+ 2, 2) A000225(n+ 1)
R15 3 · S(n+ 1, 4) + S(n+ 1, 3) A016269(n− 2)
R16 3 · S(n+ 1, 3) A094033(n+ 1)
R17 S(n+ 1, 3) + S(n+ 1, 2) + 1 A007051(n)
R18 3 · S(n+ 1, 4) + 2 · S(n+ 1, 3) A036239(n)
R19 3 · S(n+ 1, 4) + S(n+ 1, 2) + 1 A134019(n)
R20 2 · S(n+ 1, 3) + S(n+ 1, 2) + 1 A083323(n)
R21 3 · S(n+ 1, 4) + S(n+ 1, 3) + S(n+ 1, 2) A133789(n)
R22 S(n+ 2, 3) A000392(n+ 2)
R23 S(n+ 1, 3) + S(n+ 2, 2) A094374(n)
R24 3 · S(n+ 1, 4) + 2 · S(n+ 1, 3) + S(n+ 1, 2) A053154(n)
R25 3 · S(n+ 1, 4) + S(n+ 2, 2) A134045(n)
R3 2 · S(n+ 1, 3) + S(n+ 2, 2) A000244(n)
R26 3 · (S(n+ 1, 4) + S(n+ 1, 3)) A134057(n)
R27 3 · S(n+ 1, 4) + S(n+ 1, 3) + S(n+ 1, 2) + 1 A084869(n)
R28 S(n+ 2, 3) + 1 A134063(n)
R29 3 · S(n+ 1, 4) + 2 · S(n+ 1, 3) + S(n+ 1, 2) + 1 A134064(n)
R30 3 · S(n+ 1, 4) + S(n+ 2, 3) A006516(n)
R31 3 · S(n+ 1, 4) + S(n+ 1, 3) + S(n+ 2, 2) A134165(n)
R32 S(n+ 2, 3) + S(n+ 1, 2) + 1 A053156(n+ 1)
R33 3 · S(n+ 1, 4) + 2 · S(n+ 1, 3) + S(n+ 2, 2) A134168(n)
R34 3 · S(n+ 1, 4) + S(n+ 2, 3) + 1 A134169(n)
R35 3 · S(n+ 1, 4) + S(n+ 2, 3) + S(n+ 1, 2) + 1 A007582(n)

Table 6: The cardinalities of R3, R4, and R7 – R35
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3.3 Seven sums associated with R35

Recall that B is just P (A)×P (A). As |P (A)| = 2n it is then obvious that |B| = 4n. Another
way to see this is that in enumerating the (x, y) ∈ B there are 4 possible outcomes for each
of the elements of A:

1. include in both x and y,

2. exclude from both x and y,

3. exclude from x and include in y, or

4. include in x and exclude from y.

Let x△ y denote the symmetric difference of sets x and y. It is not hard to see, then, that
the sums

S(n) =
∑

(x,y)∈B

|x△ y|,

T (n) =
∑

(x,y)∈B

|x ∩ y|,

U(n) =
∑

(x,y)∈B

|x ∪ y|

may be computed by counting relevant possible outcomes for each of the n decisions made
in the given enumeration. By correcting these sums for double-counting, the values of the
sums

SQ(n) =
∑

(x,y)∈R35

|x△ y|,

TQ(n) =
∑

(x,y)∈R35

|x ∩ y|,

UQ(n) =
∑

(x,y)∈R35

|x ∪ y|

may then be easily deduced. This correction is necessary because R35 effectively results from
removing every (y, x) ∈ B when (x, y) ∈ B and x 6= y. In other words, let

R36 = {(x, y) : x, y ∈ P (A), x 6= y}

and recall that R11 = {(x, y) : x, y ∈ P (A), x = y}. This just means that

R36 = B \R11.

As it is easily deduced that

R30 = {(x, y) ∈ R35, x 6= y} = R35 \R11,
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we then have that
1

2
|R36| = |R30|. (25)

Let m be the number of relevant possible outcomes for each decision made in the enu-
meration of B. It is not hard to see that m = 2 for S(n) and SQ(n), as only outcomes 3
and 4 can make a difference with regard to |x △ y| for each of the (x, y) ∈ B. By similar
reasoning, we have m = 1 for T (n) and TQ(n) and m = 3 for U(n) and UQ(n). It is not hard
to see from this, then, that

S(n) = n ·
2

4
· 4n = 2 · n · 4n−1, (26)

T (n) = n ·
1

4
· 4n = n · 4n−1, (27)

U(n) = n ·
3

4
· 4n = 3 · n · 4n−1. (28)

Now with
P (n) =

∑

x∈P (A)

|x| (29)

we may deduce that

P (n) = n ·
1

2
· 2n = n · 2n−1 (30)

by applying the same reasoning used to establish Eqns. (26) – (28). Furthermore, it is
obvious that |x △ x| = 0 and |x ∩ x| = |x ∪ x| = |x| for any given finite set x. It is then
easily seen that ∑

(x,y)∈R11

|x△ y| = 0, (31)

and that with

X(n) =
∑

(x,y)∈R11

|x ∩ y| (32)

=
∑

(x,y)∈R11

|x ∪ y| (33)

we have
X(n) = P (n) = n · 2n−1, (34)

as, again, x = y for all (x, y) ∈ R11. A little thought then shows that

SQ(n) =
1

2
· (S(n)− 0) + 0, (35)

TQ(n) =
1

2
· (T (n)−X(n)) +X(n), (36)

UQ(n) =
1

2
· (U(n)−X(n)) +X(n), (37)
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which upon substitution and simplification yields

SQ(n) = n · 4n−1, (38)

TQ(n) =
1

2
· n · (4n−1 + 2n−1), (39)

UQ(n) =
1

2
· n · (3 · 4n−1 + 2n−1). (40)

Table 7 lists the values of the sums computed here with references to corresponding
sequences in Sloane’s Encyclopedia [5].

Sum Value Sequence
S(n) 2 · n · 4n−1 A002699(n)
T (n) n · 4n−1 A002697(n)
U(n) 3 · n · 4n−1 none
P (n) n · 2n−1 A001787(n)
SQ(n) n · 4n−1 A002697(n)
TQ(n)

1
2
· n · (4n−1 + 2n−1) A082134(n)

UQ(n)
1
2
· n · (3 · 4n−1 + 2n−1) A133224(n)

Table 7: Seven sums associated with R35

3.4 Wieder connections

As before, let P (A) be the power set of an n-element set A. In Wieder’s analysis [6] of
coalition structures, four basic sets of k-subsets of P (A) are defined:

conjoint usual k-combinations,

conjoint strict k-combinations,

disjoint usual k-combinations, and

disjoint strict k-combinations.

Let Cu,k, Cs,k, Du,k, and Ds,k respectively denote these sets and fix k = 2. Cu,2 is just the
set of all 2-subsets {x, y} of P (A); Cs,2 is the subset of Cu,2 for which neither x nor y may
be equal to ∅ or A. Similarly, Du,2 is the set of all 2-subsets {x, y} of P (A) where x∩ y = ∅;
Ds,2 is the subset of Du,2 for which neither x nor y may be equal to ∅. So we have that

Cs,2 ⊂ Cu,2; Ds,2 ⊂ Du,2 ⊂ Cu,2;

Ds,2 ⊂ Cs,2; Du,2 6⊆ Cs,2, Du,2 ∩ Cs,2 6= ∅.

Now recall that R30 = R35 \ R11 is an asymmetric binary relation on P (A). This just
means that either (x, y) or (y, x) is an element of R30 such that x 6= y. So we may map
{x, y} = {y, x} in Cu,2 to whichever of either (x, y) or (y, x) occurs in this relation. Moreover,
it is clear that this mapping is invertible. In other words, there is a one-to-one correspondence
between Cu,2 and R30. Let
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R37 = (P (A)× A) \ {(∅, A), (A,A)}

so that

R38 = R26 \R37.

Then we have that

R38 ⊂ R30; R8 ⊂ R12 ⊂ R30;

R8 ⊂ R38; R12 6⊆ R38, R12 ∩R38 6= ∅.

It is then easily shown that the following one-to-one correspondences also obtain:

Cs,2 ↔ R38,

Du,2 ↔ R12,

Ds,2 ↔ R8.

It is clear that we could extend this analysis to any remaining sets of 2-subsets of P (A)
and corresponding asymmetric binary relations on the same. More generally, we might
consider sets of k-subsets (or even k-multisubsets) on any given well-defined finite set and
corresponding asymmetric k-ary relations. Whatever the merits might be of such investiga-
tions, we leave as an open question here.

4 Acknowledgements

The author would like to thank the anonymous referee whose thoughtful suggestions im-
proved the quality of this paper.

References

[1] Arthur T. Benjamin and Jennifer J. Quinn, Proofs That Really Count: The Art of

Combinatorial Proof, the Mathematical Association of America, 2003.

[2] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order: Second Edition,
Cambridge University Press, 2002.

[3] Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press,
2000.

[4] Eric Schechter, Handbook of Analysis and Its Foundations, Academic Press, 1997.

[5] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, 2008.

[6] Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathe-

matics E-Notes, 8 (2008), 45–52.

14

http://www.research.att.com/~njas/sequences
http://www.math.nthu.edu.tw/~amen/


2000 Mathematics Subject Classification: Primary 04A05; Secondary 05A05, 05A18, 11B73.
Keywords: binary relation, combinatorics, graph, directed graph, set partition.

(Concerned with sequences A000079, A000225, A000244, A000392, A001047, A001787,
A002697, A002699, A003462, A006516, A007051, A007582, A010842, A016269, A027471,
A027649, A028243, A032263, A036239, A036289, A038207, A053154, A053156, A056182,
A066810, A082134, A083323, A084869, A090802, A090888, A094033, A094374, A112626,
A133224, A133789, A134018, A134019, A134045, A134057, A134063, A134064, A134165,
A134168, and A134169.)

Received January 20 2009; revised version received February 1 2009. Published in Journal

of Integer Sequences, February 14 2009. Revised May 18 2010. Additional revision, April 11
2012. Another revision, August 12 2013.

Return to Journal of Integer Sequences home page.

15

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000079
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000225
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000244
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000392
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001047
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001787
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002697
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002699
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A003462
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A006516
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007051
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007582
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A010842
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A016269
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A027471
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A027649
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A028243
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A032263
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A036239
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A036289
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A038207
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A053154
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A053156
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A056182
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A066810
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A082134
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A083323
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A084869
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A090802
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A090888
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A094033
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A094374
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A112626
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A133224
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A133789
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134018
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134019
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134045
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134057
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134063
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134064
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134165
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134168
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A134169
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	The six initial relations
	Definitions and structure
	The cardinalities of R0 – R5
	Walks and lengths of walks in the graph of R5

	The additional relations
	Definitions and structure
	The cardinalities of R7 – R11 and their possible unions
	Seven sums associated with R35
	Wieder connections

	Acknowledgements

