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Abstract

We evaluate several binomial transforms by using Euler’s transform for power series.
In this way we obtain various binomial identities involving power sums with harmonic
numbers.

1 Introduction and prerequisites

Given a sequence {ay}, its binomial transform {by} is the sequence defined by

n n

by = Z (Z) ar, with inversion a,, = Z (Z) (—1)"*by,

k=0 k=0

or, in the symmetric version

by, = Z (Z) (—1)F*'q,, with inversion a, = Z (Z) (—1)¥1p,

k=0 k=0
(see [7, 12, 14]). The binomial transform is related to the Euler transform of series defined
in the following lemma. Fuler’s transform is used sometimes for improving the convergence
of certain series [1, 8, 12, 13].

Lemma 1. Given a function analytical on the unit disk

Ft) =3 aut", (1)
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then the following representation is true

(Proof can be found in the Appendix.)
If we have a convergent series

we can define the function

F) = ant", Jt| <1 (4)

Then, with ¢ = 1 in (2) we obtain

2 (5 ()7 6

n=0 \ k=0
This formula is a classical version of Euler’s series transformation. Sometimes the new series
converges faster, sometimes not — see the examples in [10].

We shall use Euler’s transform for the evaluation of several interesting binomial trans-
formations, thus obtaining binomial identities of combinatorial and analytical character.
Evaluating a binomial transform is reduced to finding the Taylor coefficients of the function
on the left hand side of (2). In Section 2 we obtain several identities with harmonic numbers.
In Section 3 we prove Dilcher’s formula via Euler’s transform.

This paper is close in spirit to the classical article [7] of Henry Gould.

Remark 2. The representation (2) can be put in a more flexible equivalent form

1 —1>\t f(1 ﬁt)\t) - itn (i (Z) Mk/\"_kakz) 7 (6)

n=0 k=0

where \, i are appropriate parameters.
To show the equivalence of (2) and (6) we first write

((5)- S e

and then apply (2) to the function g(t) = f(5t). This provides
L) S (B0
-t \a1—t) & \=\k)\\) )

Replacing here t by A\t yields (6).



With A =1 and = —1 we have

til ( > Zt”<§() 1)’““ak>, (9)

corresponding to the symmetrical binomaial transform.

Lemma 3. Given a formal power series

= bt (10)
n=0
we have

Z (Z bk> . (11)

n=0

This is a well-known property. To prove it we just need to multiply both sides of (11)
by 1 — ¢ and simplify the right hand side.

2 Identities with harmonic numbers

Proposition 4. The following expansion holds in a neighborhood of zero

log(1 — at) = AT P, 1
g ;(aﬁ +50°8" 7t —a (12)

where o, 3 are appropriate parameters.

Proof. Tt is sufficient to prove (12) when 3 = 1 and then rescale the variable ¢, i.e. we only

need

log(1 — at) = 1 .\ .n

ﬁ ;(owr —a? 4 —i-ﬁoz)t. (13)
This follows immediately from Lemma 3. [

Corollary 5. With o = 1 in (13) we obtain the generating function of the harmonic numbers

Clog(1—1) & 1 1
H,t", H,=1+ =+ +—. 14
- Z t tott - (14)

The next proposition is one of our main results

Proposition 6. For every positive integer n and every two complexr numbers\, i,

i (Z> HN™F b = H (A + )" — (W )" %Z(A T &) -

k=1



Proof. We apply (6) to the function

f(t) = —% = Ht" (16)

On the left hand side we obtain

—1 log(1—#5) _ log(1—(\+p)t)  log(l—\)

= , (17)
=Xt 11— I—(A+p)t I—(A+p)t
which equals, according to Corollary 5 and Proposition 4,
i Hy,(A+ p)"t" — i AMA+ )"+ A—2(>\ )" R s " (18)
n=1 ! n=1 2 n '

At the same time, by Euler’s transform the right hand side is

nf:lt” (Zn: (Z) HnA"—’mk> . (19)

k=1

Comparing coefficients in (18) and (19) we obtain the desired result. O

Corollary 7. Setting A = p = 1 in (15) yields the well-known identity (see, for instance,

[6, 14]):
(Z) Hy, = 2" (Hn - ’; é) . (20)

k=1

Corollary 8. Setting A =1 in (15) reduces it to

n

; <Z)Hkﬂk:Hn(1+U>n_ ((1+u)”1+%+---+%+%). (21)

We shall use this last identity to obtain a representation for the combinatorial sum

> (1) 22)

k=1

by applying the operator (p%)m to both sides in (21). First, however, we need the following
lemma.

Lemma 9. For every positive integer m define the quantities

a(m,n, p) = <u%)m (1+p)" = Xn: <Z) ket (23)

k=0



Then

n

a(m,n, p) = (Z) kLS (m, k) pF(1 4 p)"F. (24)

k=

This is a known identity that can be found, for example, in [6].
From Lemma 9 we obtain another of our main results.

Proposition 10. For every two positive integers m and n,

n n—1
S JHek™u* = a(m,n, p)H, — Z a(m, p, ). (25)
k=1 (k) p=1 n=>r

Proof. Apply (,u%)m to both sides of (21) and note that (,u%)mpfc = kmpuk, O

The sums (22) were recently studied by M. Coffey [3] by using a different method (a
recursive formula) and a representation was given in terms of the hypergeometric function

3 Stirling functions of a negative argument. Dilcher’s
formula

Some time ago Karl Dilcher obtained the nice identity

n 1)kl 1 , , ‘
3] L i R Oy P P

—1 J1j2JIm

as a corollary from a certain multiple series representation [4, Corollary 3]; see also a similar
result in [5]. As this is one binomial transform, it is good to have a direct proof by Euler’s
transform method. Before giving such a proof, however, we want to point out one interesting
interpretation of the sum on the left hand side in (26).

Let S(m,n) be the Stirling numbers of the second kind [9]. Butzer et al. [2] defined
an extension S(a,n) for any complex number a # 0. The functions S(«,n) of the complex
variable a are called Stirling functions of the second kind. The extension is given by the
formula

@n n.Z() Sk, (27)

with S(a,0) = 0. Thus, for m,n > 1,

1 IS () = S (Z) (=D (28)



For the next proposition we shall need the polylogarithmic function [11]

[e.9]

Lin(t) =) 5—:1 (29)

Proposition 11. For any integer m > 1 we have

1
(=)™ 'nlS(=mn) =Y ——— 1<ji<ja< - <jm < (30)
Jij2 " Jm
Proof. The proof is based on the representation
—t tim
Lipl—— =) —— 1<h<j2<- <jm, 31
(1—25) Zﬁh"']m =2 J (31)

—1 —t =
L) =S A 32
1t (1 - t) 2 (82)
with coefficients
1
Anzgf, l<ph<jpp<--<jm<n 33
JijzIm = ! (33)
The assertion now follows from (9). O

In conclusion, many thanks to the referee for a correction and for some interesting com-
ments.

4 Appendix

We prove Euler’s transform representation (2) by using Cauchy’s integral formula, both for
the Taylor coefficients of a holomorphic function and for the function itself. Thus, given a
holomorphic function f asin (1), we have

1 L f(A)
=— ¢ ———=d\ 34
RS A5 VIS W (34)
for an appropriate closed curve L around the origin. Multiplying both sides by (Z) and
summing for k£ we find

> (Z)%Z o ) (% (Z)%) Ty - %fL (1+§>n@dx (35)

k=0
Multiplying this by ¢" (with ¢ small enough) and summing for n we arrive at the desired
representation (2), because

> 1\" 1 1 A
t”(1+—) = = , (36)
HZ:O A 1—t(1+§) 1—tA— &

6




and therefore,

00 n n n B 1 1 f(A) B 1 "
Zt (k O(k)ak> T 1—t2mi L)\_Ld)‘—mf(:). (37)

n=0 1—t
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