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Abstract

In this paper, using the number of spanning trees in some classes of graphs, we
prove the identities:
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where Fn and Ln denote the Fibonacci and Lucas numbers, respectively. Also, we give
a new proof for the identity:
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1 Introduction

Let Fn and Ln denote the Fibonacci and Lucas numbers respectively. That is, Fn+2 =
Fn+1 + Fn, for n ≥ 1 with F1 = F2 = 1, and Ln+2 = Ln+1 + Ln, for n ≥ 1 with L1 = 1 and
L2 = 3.
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In this paper, we derive the identities:

Fn =
2n−1

n
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), n ≥ 2, (1)
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) = L2n − 2 = F2n+2 − F2n−2 − 2, n ≥ 1. (2)

To prove identity (1), we apply the number of spanning trees in a special class of graphs
known as circulant graphs. Identity (2) is derived from the number of spanning trees in a
wheel.

Applying the same technique to a graph known as fan gives us a new proof for the
following identity:
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appeared in [6] and its corresponding references.
Also, applying this technique to the path Pn and the cycle Cn gives us a new proof for

the well-known identities:
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2 Techniques and Proofs

For a graph G, a spanning tree in G is a tree which has the same vertex set as G. The number
of spanning trees in a graph (network) G, denoted by t(G), is an important invariant of the
graph (network). It is also an important measure of reliability of a network. In the sequel,
we assume our graphs are loopless but multiple edges are allowed.

A famous and classic result on the study of t(G) is the following theorem, known as the
Matrix-tree Theorem. The Laplacian matrix of a graph G is defined as L(G) = D(G)−A(G),
where D(G) and A(G) are the degree matrix and the adjacency matrix of G, respectively.
Since this theorem is first proved by Kirchhoff [7], L(G) is also known as the Kirchhoff matrix
of the graph G.

Theorem 1. For every connected graph G, t(G) is equal to any cofactor of L(G).

The number of spanning trees of a connected graph G can be expressed in terms of the
eigenvalues of L(G). Since by definition, L(G) is a real symmetric matrix, it therefore has n

non-negative real eigenvalues, where n is the number of vertices of G. Anderson and Morley
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[1, Theorem 1] proved that the multiplicity of 0 as an eigenvalue of L(G) equals the number
of components of G. Therefore, the Laplacian matrix of a connected graph G has 0 as an
eigenvalue with multiplicity one.

Theorem 2. ([5]) Suppose G is a connected graph with n vertices. Let λ1, . . . , λn be the
eigenvalues of L(G), with λn = 0. Then t(G) = 1

n
λ1 · · ·λn−1.

As the first example, we prove identity (4).

Proof of identity (4). Consider the path Pn. It is known that the eigenvalues of the Laplacian
matrix of Pn are 2 − 2 cos kπ

n
(0 ≤ k ≤ n − 1) (see, e.g., [4]). On the other hand, we know

that t(Pn) = 1, therefore by using Theorem (2) we obtain (4). 2

Now, we state some more definitions and theorems.

Definition 3. An n× n matrix C = (cij) is called a circulant matrix if its entries satisfy
cij = c1, j−i+1, where subscripts are reduced modulo n and lie in the set {1, 2, . . . , n}.

Definition 4. Let 1 ≤ s1 < s2 < · · · < sk < n
2
, where n and si (1 ≤ i ≤ k) are positive

integers. An undirected circulant graph Cn(s1, s2, . . . , sk) is a 2k-regular graph with vertex
set V = {0, 1, . . . , n − 1} and edge set E = {{i, i + sj ( mod n)} | i = 0, 1, . . . , n − 1, j =
1, 2, . . . , k}.

The Laplacian matrix of Cn(s1, s2, . . . , sk) is clearly a circulant matrix. By a direct using
of Theorem 4.8 of [12], we obtain the following lemma:

Lemma 5. The nonzero eigenvalues of L(Cn(s1, s2, . . . , sk)) are

2k − ωs1j − · · · − ωskj − ω−s1j − · · · − ω−skj, 1 ≤ j ≤ n − 1,

where ω = e
2πi

n .

With combining Theorem 2 and the lemma above, we obtain the following corollary:

Corollary 6. The number of spanning trees in G = Cn(s1, s2, . . . , sk) is equal to:

t(G) =
1

n

n−1
∏

j=1

(

k
∑

i=1

(2 − 2 cos
2jsiπ

n
)
)

.

Proof of identity (1). Consider the square cycle Cn(1, 2). We can use Corollary 6 to obtain
the number of spanning trees of Cn(1, 2). On the other hand, Kleitman and Golden [8] proved
that t(Cn(1, 2)) = nF 2

n . Now, with a little additional algebraic manipulation, identity (1)
follows. 2

Proof of identity (5). Look at the cycle Cn(1) = Cn. We know that t(Cn) = n, therefore by
applying Corollary 6 to it, (5) follows. 2

Definition 7. The join Wn = Cn

∨

K1 of a cycle Cn and a single vertex is referred to as
a wheel with n spokes. Similarly, the join Fn = Pn

∨

K1 of a path Pn and a single vertex is
called a fan.
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Sedlacek [11] and later Myers [10] showed that t(Wn) = L2n−2 = F2n+2−F2n−2−2, n ≥ 1.
Also, Bibak and Shirdareh Haghighi [2, 3] proved that t(Fn) = F2n, n ≥ 1.

Now, we find the number of spanning trees in Wn and Fn by applying Theorem 2. We
first need to determine the eigenvalues of L(Wn) and L(Fn).

Theorem 8. ([9]) Let G1 and G2 be simple graphs on disjoint sets of r and s vertices,
respectively. If S(G1) = (µ1, . . . , µr) and S(G2) = (ν1, . . . , νs) are the eigenvalues of L(G1)
and L(G2) arranged in nonincreasing order, then the eigenvalues of L(G1

∨

G2) are n = r+s;
µ1 + s, . . . , µr−1 + s; ν1 + r, . . . , νs−1 + r; and 0.

Since the eigenvalues of L(Cn) are 2 − 2 cos 2kπ
n

(0 ≤ k ≤ n − 1) (by Lemma 5), and
the eigenvalues of L(Pn) are 2 − 2 cos kπ

n
(0 ≤ k ≤ n − 1), therefore, by Theorem 8 we can

determine the eigenvalues of L(Wn) and L(Fn).

Theorem 9. The eigenvalues of L(Wn) are n + 1, 0 and 1 + 4 sin2 kπ
n

(1 ≤ k ≤ n − 1), and
the eigenvalues of L(Fn) are n + 1, 0 and 1 + 4 sin2 kπ

2n
(1 ≤ k ≤ n − 1) (or n + 1, 0 and

1 + 4 cos2 kπ
2n

(1 ≤ k ≤ n − 1) ).

Proofs of the identities (2) and (3). By Theorems 2 and 9, the number of spanning trees of
Wn and Fn are, respectively,

t(Wn) =
n−1
∏

k=0

(1 + 4 sin2
kπ

n
), n ≥ 1,

t(Fn) =
n−1
∏

k=1

(1 + 4 sin2
kπ

2n
) =

n−1
∏

k=1

(1 + 4 cos2
kπ

2n
), n ≥ 2.

On the other hand, as we already referred, t(Wn) = L2n − 2 = F2n+2 −F2n−2 − 2, n ≥ 1 and
t(Fn) = F2n, n ≥ 1. Therefore, we obtain (2) and (3). 2
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