next up previous
Next: About this document ...

Abstract:

In this paper, using the number of spanning trees in some classes of graphs, we prove the identities:

\begin{eqnarray*}
&&F_n=\frac{2^{n-1}}{n}\sqrt{\prod_{k=1}^{n-1}(1-\cos\frac{k\...
...sin^2{\frac{k\pi}{n}})=L_{2n}-2=F_{2n+2}-F_{2n-2}-2,\;\;n\geq 1,
\end{eqnarray*}

where $F_n$ and $L_n$ denote the Fibonacci and Lucas numbers, respectively. Also, we give a new proof for the identity:

\begin{displaymath}F_n=\prod_{k=1}^{\lfloor\frac{n-1}{2}\rfloor}(1+4\sin^2{\frac...
...or\frac{n-1}{2}\rfloor}(1+4\cos^2{\frac{k\pi}{n}}),\;\;n\geq 4.\end{displaymath}





Jeffrey Shallit 2009-11-29