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Abstract

We interpret walks in the first quadrant with steps {(1, 1), (1, 0), (−1, 0), (−1,−1)}
as a generalization of Dyck words with two sets of letters. Using this language, we give a
formal expression for the number of walks using the steps above, beginning and ending
at the origin. We give an explicit formula for a restricted class of such words using a
correspondence between such words and Dyck paths. This explicit formula is exactly
the same as that for the degree of the polynomial satisfied by the square of the area of
cyclic n-gons conjectured by Robbins, although the connection is a mystery. Finally
we remark on another combinatorial problem in which the same formula appears and
argue for the existence of a bijection.

1 Introduction

Ever since Gessel conjectured his formula for the number of walks using the steps

{(1, 1), (1, 0), (−1, 0), (−1,−1)}

(which we will call Gessel steps) starting and ending at the origin in 2n steps constrained to
lie in the first quadrant, there has been much interest in studying lattice walks in the quarter
plane. There have been conjectures for lattice walks with Gessel steps terminating at other
points [1], as well as conjectures for the number of walks ending at the origin with other
sets of steps, most of which have been proven [2]. In a remarkable tour de force, Gessel’s
original conjecture has been finally proven using computer algebra techniques [3]. Even so,

1

mailto:arvind.ayyer@cea.fr


it is important to consider walks on the quarter plane from a human point of view because
newer approaches tend to open up interesting mathematical avenues.

In this article, we count a considerably restricted number of walks with Gessel steps
starting and ending at the origin by rephrasing the problem using words with an alphabet
consisting of four letters — 1, 2, 1̄ and 2̄ — which obey certain conditions. We first show
that the restatement of Gessel’s conjecture in this context can be interpreted using Dyck
paths. This gives a formal solution to the conjecture. Unfortunately, the solution is so
formal as to be even computationally intractable!1 We give a closed-form expression for the
restricted problem and hope a generalization of this method will give a better understanding
of Gessel’s conjecture. Admittedly this result is a long way from a solution of the problem,
but one hopes that this technique can be generalized to obtain a complete proof of Gessel’s
conjecture.

In Section 2 we start with the preliminaries by defining the alphabet and stating the main
theorem. In Section 3, we make the connection to Dyck paths and give a formal expression
for the number of walks beginning and ending at the origin using Gessel steps. Section 4
contains the proof which involves summations of hypergeometric type. In principle, such
sums can be tackled by computer packages, but a certain amount of manipulation is needed
before they are summable. Lastly, we comment on related problems in Section 5.

2 Gessel Alphabet

To rephrase the problem in the notation of formal languages, we need some definitions.

Definition 1. The Gessel alphabet consists of a set of letters S = {1, 2, . . . } with an order
< (1 < 2 < . . . ) along with their complements which we denote S̄ = {1̄, 2̄, . . . }. The order
on the complement set is irrelevant.

Definition 2. Let S = [n]. Denote by Nα(w) the number of occurrences of the letter α ∈ S∪S̄
in the word w. (For example, N2(22̄) = N2̄(22̄) = 1, N1(22̄) = 0.) Then a Gessel word is a
word such that every prefix w of the word satisfies

k
∑

i=1

(

Nn+1−i(w) − Nn+1−i(w)
)

≥ 0

for each k ∈ [1, n].

In words, this means that in each prefix, n has to occur more often than n̄, the number
of occurrences of n and n-1 must be at least equal to the number of occurrences of their
barred counterparts and so on. For example, 21̄ is a valid Gessel word but 12̄ is not.

Definition 3. A complete Gessel word is a Gessel word w where Ni(w) = Nī(w) for all
letters i ∈ S. In other words, the number of times the letter i appears equals the number of
times ī appears for each i ∈ [n].

1Computing the nth term in the sequence involves 2n sums of binomial coefficients.
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As an example, for n = 3 both 32̄211̄3̄ and 121̄2̄1 are Gessel words but 213̄232̄1̄ is not
because the prefix consisting of three letters fails the criterion in Definition 2. Among the
other two, the first one is a complete Gessel word.

Remark 1. The number G(d)(n) of d dimensional lattice walks in the first 2d-ant with steps

{(1, . . . , 1), (1, . . . , 1, 0), · · · , (1, 0, . . . , 0),

(−1, . . . ,−1), (−1, . . . ,−1, 0), · · · , (−1, 0, . . . , 0)},
(1)

starting at the origin and returning in 2n steps is the same as the number of complete Gessel
words of length 2n in d letters.

Starting with the complete Gessel word in d letters, one replaces the letter k by the step
(1, . . . , 1, 0, . . . , 0) with k 1’s and the letter k̄ by (1̄, . . . , 1̄, 0, . . . , 0) with k 1̄’s to obtain the
bijection. The condition of being a Gessel word is the same as that of the walk being in the
first 2d-ant. None of these sequences seem to be present in [4] for dimensions higher than
two and it would be interesting to see if they are holonomic. Furthermore, none of these
higher dimensional sequences seem to have the property of small factors which is present for
the Gessel case.

G(2)(n) is conjectured by Gessel to be given by the closed form expression

16n (5/6)n(1/2)n

(2)n(5/3)n

, (2)

where
(a)n = a(a + 1) . . . (a + n − 1) (3)

is the Pochhammer symbol or rising factorial. This is the sequence A135404. For the
remainder of the paper, we implicitly assume d = 2 and omit the superscripts in defining
various constrained Gessel numbers.

We express the number of walks of length 2n as a number triangle based on the number
of times 2 and 2̄ appear increasing from left to right.

1
1 1

2 7 2
5 37 38 5

14 177 390 187 14

(4)

One immediately notices that the leftmost and rightmost entries are the Catalan numbers.
This is because the number of complete Gessel words with N2(w) = 0 (N1(w) = 0) in a word
w of length 2n is in immediate bijection with the number of Dyck paths ending at (2n, 0)
because N1(x) > N1̄(x) (N2(x) > N2̄(x)) for each prefix x of the word w.

What is more interesting, and the main result of the paper is the next-to-rightmost
sequence beginning 1, 7, 38, 187. Strangely enough, this sequence is already present in the
OEIS as A000531. It turns out to be exactly the one conjectured by Dave Robbins [5] to
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be the degree of the polynomial satisfied by 16K2, where K is the area of a cyclic n-gon
and proved in [6, 7]. As far as we know, this result is a coincidence without any satisfactory
explanation. For a recent review of the subject, see [8]. This is also related to Simon Norton’s
conjecture on the same page in the OEIS. We comment on this in Section 5.

Theorem 1. The number of complete Gessel words G1(n) in two letters with n − 1 2’s and
2̄’s, and one 1 and 1̄, is given by

G1(n) =
(2n + 1)

2

(

2n

n

)

− 22n−1. (5)

The proof uses the idea that the number of Gessel words with n2 2’s and 2̄’s and n1 1
and 1̄’s can be calculated using a bijection with Dyck paths. The answer can be written as
a sum of products of expressions counting the number of Dyck paths between two different
heights. The summation can be done explicitly when n1 = 1.

3 Complete Gessel words and Dyck paths

We consider Dyck paths to be paths using steps {(1, 1), (1,−1)} starting at the origin, staying
on or above the x-axis and ending on the x-axis. In this section we exhibit a bijection between
complete Gessel words (the counting of which is stated by the conjecture of Gessel) and a
set of restricted Dyck paths which will be useful in the proof of Theorem 1.

Definition 4. Let P = (P1, . . . , Pm) be a nondecreasing list of positive integers and H =
(H1, . . . , Hm) be a list of nonnegative integers of the same length. We define a (P,H)-Dyck
path to be a Dyck path of length ≥ Pm which satisfies the constraint that between positions
Pi and Pi+1 (both inclusive), the ordinate of the path is greater than or equal to Hi for
i = 1, . . . ,m − 1.

Notice that this forces the ordinates of the path at positions Pi to be greater than or
equal to the height max{Hi−1, Hi}.

We now associate lists P and H with every complete Gessel word w in two letters, using
the following algorithm.

1. Construct the list S of length 2n1 of letters 1 or 1̄ as they occur in the word.

2. From the list S, construct the list T by replacing 1 by 1 and 1̄ by −1.

3. Construct the list P̃ whose elements are positions of the letter Si in w. Similarly,
construct the elements of the list P as P̃i − i.

4. Finally, each element of the list H is given by

Hi = max
{

−

i
∑

k=1

Tk, 0
}

. (6)
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As an example, consider the Gessel word w = 21̄212̄2̄, which is the only complete Gessel
word of length six with 1̄ at position two at 1 at position four. For this word, S = (1̄, 1), T =
(−1, 1), P̃ = (2, 4), P = (1, 2) and H = (1, 0). There is exactly one such ((1, 2), (1, 0))-Dyck
path of length four, namely (ր,ր,ց,ց).

Clearly, P and P̃ determine each other. However, S and H do not. In particular, H is
the zero list if S is a valid Dyck word in the letters 1 and 1̄. However, if we fix S, then we
can associate (P,H)-Dyck paths and Gessel words, in a bijective way.

Lemma 2. Fix the list S of length 2n1 in letters 1 and 1̄ beforehand. Complete Gessel words
of length 2(n1 + n2) in two letters with the positions of the letters in S given by the list
P̃ are in bijection with (P,H)-Dyck paths of length 2n2 where the pairs of lists (P,H) are
constructed by the algorithm described above.

Proof. Starting with the complete Gessel word, one replaces each occurrence of the letter 2
by the step (1, 1) and that of 2̄ by the step (1,−1). The constraint defining the (P,H)-Dyck
path is simply another way of expressing the inequality in Definition 2.

One could generalize this bijection to include paths not ending on the x-axis and Gessel
words which are not complete, but this is sufficient for our purposes.

One of the main tools in the proof of Theorem 1 is an expression for the number of
Dyck paths between two different heights, which can be readily obtained from the reflection
principle [9].

Lemma 3. The number of Dyck paths ai,j(k) that stay above the x-axis starting at the
position (0, i) and end at position (k, j) is given by

ai,j(k) =



















(

k

(k + i − j)/2

)

−

(

k

(k + i + j)/2 + 1

)

,

if (k + i + j) ≡ 0 (mod 2);

0, if (k + i + j) ≡ 1 (mod 2).

(7)

We now use the bijection in Lemma 2 and the formula in Lemma 3 to write an expression
for the number of complete Gessel words of length 2n for fixed positions of 1, 1̄.

Lemma 4. Let us fix the positions of n1 1, 1̄ by the lists S, P̃ . Calculate the lists T and H by
the algorithm above and let Gn1

(P̃ , S; 2n) denote the number of such complete Gessel words.
Then

Gn1
(P̃ , S; 2n) =

P̃1−1
∑

k1=H1

P̃2−1
∑

k2=H2

· · ·

P̃i−1
∑

ki=Hi

· · ·

P̃2n1
−1

∑

k2n1
=H2n1

a0,k1
(P̃1 − 1) ak2n1

,0(2n − P̃2n1
)

2n1
∏

i=2

aki−1−Hi−1,ki−Hi−1
(P̃i − P̃i−1 − 1).

(8)

Proof. The proof is straightforward, using the bijection of Lemma 2 to rewrite each Gessel
word with the positions of 1, 1̄ given by the lists S, P̃ as a Dyck path with heights at the
points Pi (given by ki) being not less than Hi and then the reflection principle in Lemma 3
to count the number of paths between position Pi−1 and Pi for each i.
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Corollary 5. For a given configuration of 1, 1̄, replace each +1 in T by an upward Dyck
step and each −1 by a downward Dyck step. If the whole of T forms a legal Dyck path, then
Gn1

(P̃ , S; 2n) = Cn−n1
, the (n − n1)th Catalan number independent of the list P .

Proof. Whenever the above condition is satisfied, Hi = 0 for all i, which means we simply
count the number of Dyck paths of length 2n1 in (8) by definition.

Now we obtain a formula for the number of complete Gessel words with n1 1, 1̄’s using
Lemma 4 and writing down all possibilities for P̃ and S. The number of ways of writing all
possible P̃ ’s is simply

(

2n
2n1

)

because one has to choose 2n1 positions out of 2n positions. For

each P̃ , one has to choose n1 positions for 1 and 1̄ each and therefore the number of such
ways is

(

2n1

n1

)

.
Let us form the set

S =







(P̃ , S)

∣

∣

∣

∣

∣

S is a list of n1 1’s and n1 1̄’s.

P̃ is an increasing list of
2n1 positions between 1 and 2n,







, (9)

whose cardinality is
(

2n

2n1

)(

2n1

n1

)

=
(2n)!

(n1)!2(2n − 2n1)!
. (10)

Therefore the number of complete Gessel words with exactly n1 1, 1̄’s is given by

Gn1
(n) =

∑

(P̃ ,S)∈S

Gn1
(P̃ , S; 2n), (11)

and the number of complete Gessel words in 2n letters is

G(n) =
n

∑

n1=0

Gn1
(n). (12)

Showing that G(n) is equal to the expression (2) would be the ultimate (and possibly hope-
less) aim of this line of approach.

We now have all the ingredients necessary to prove Theorem 1 which corresponds to the
special case n1 = 1. Before we go on to the proof, however, we make some observations about
complete Gessel words with exactly one 1 and 1̄. Let di,j be the number of possibilities where
a 1 or a 1̄ is at position i and its counterpart at position j. Then we draw the following
triangle for a specific n,

d1,2n

d1,2n−1 d2,2n

d1,2n−2 d2,2n−1 d3,2n

. . . . . .

d1,2 d2,3 · · · d2n−2,2n−1 d2n−1,2n.

(13)
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For n = 3, the triangle is
2

2 2
2 3 2

2 3 3 2
2 4 3 4 2,

(14)

and for n = 4, the triangle is

5
5 5

5 7 5
5 7 7 5

5 8 7 8 5
5 8 8 8 8 5

5 10 8 10 8 10 5.

(15)

It is clear that if one stacks these triangles on top of one another, one gets a kind of Pascal’s
pyramid, where each layer n fits in the vacancies of the layer n − 1 above it.

Remark 1. We note some properties of these triangles.

1. The sum of the entries in the triangle are precisely what we claim are given by (5).

2. One notices immediately that the extremal columns are Catalan numbers Cn−1. This
follows immediately from Corollary 5 and the fact that a Gessel word cannot begin
with 1̄ or 2̄, or end with a 1 or 2. The entries at even positions in the last row are
2Cn−1. This is clear since if 1̄ and 1 are at positions 2i and 2i + 1 respectively, then
any legal Dyck word in the letters 2 and 2̄ is a Gessel word after this insertion.

3. Every number in the interior of the triangle occurs 4k times for k a positive integer.
Furthermore, they are organized as rhombus-shaped blocks of size four. This turns
out to be true for all n. We will need this fact in the proof later and we state it as
Lemma 6.

4 Proof of Theorem 1

One simply has to analyze all possibilities of occurrences of 1 and 1̄ case by case. Suppose
1 occurs at position i and 1̄ occurs at position j in a word of length 2n and i < j. Then
by Corollary 5, the number of such Gessel words is Cn−1. The number of possibilities of i, j
such that 1 ≤ i < j ≤ 2n is n(2n − 1). Therefore, the number of Gessel words where the 1
occurs before the 1̄ is

(2n − 1)

(

2n − 2

n − 1

)

. (16)
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We now use Lemma 4 to count the number of words where 1̄ occurs at site i before 1 at
site j,

G1([i, j],[1̄, 1]; 2n)

=
i−1
∑

k1=1

j−1
∑

k2=0

a0,k1
(i − 1) ak1−1,k2−1(j − i − 1) ak2,0(2n − j),

(17)

which, using (7) gives

G1([i, j],[1̄, 1]; 2n) =
i−1
∑

k1=1

j−1
∑

k2=0

C
(i−1+k1)/2
(i−1−k1)/2 C

(2n−j+k2)/2
(2n−j−k2)/2

[(

j − i − 1

(j − i − 1 + k1 − k2)/2

)

−

(

j − i − 1

(j − i − 1 + k1 + k2)/2

)]

(18)

where Cm
n is the Catalan triangle number given by (m−n+1)

(m+1)

(

m+n
n

)

for 0 ≤ n ≤ m and is zero
when either m or n are not integers.

We now use the following result to simplify calculations. The proof of this assertion is
easily verified by expanding (18) and noting that the answer is the same when i is replaced
by either 2i or 2i + 1 and similarly for j.

Lemma 6. For 1 ≤ i < j ≤ n − 1,

G1([2i, 2j], [1̄, 1]; 2n) = G1([2i, 2j + 1], [1̄, 1]; 2n)

= G1([2i + 1, 2j], [1̄, 1]; 2n) = G1([2i + 1, 2j + 1], [1̄, 1]; 2n).
(19)

Then the total number of Gessel words with a 1̄ preceding a 1 is given by

2n−1
∑

i=1

2n
∑

j=i+1

G1([i, j], [1̄, 1]; 2n) =4
n−2
∑

i=1

n−1
∑

j=i+1

G1([2i, 2j], [1̄, 1]; 2n)

+
n−1
∑

i=1

G1([2i, 2i + 1], [1̄, 1]; 2n)

= 4(S2 − S3) + S1.

(20)

where we have split the sum in three parts, with

S1 =
n−1
∑

i=1

G1([2i, 2i + 1], [1̄, 1]; 2n). (21)

The remainder in (20) we split using (18), and using the variables r = (2i − k1 − 1)/2, s =
(2n − 2j − k2)/2,

n−2
∑

i=1

n−1
∑

j=i+1

G1([2i, 2j], [1̄, 1]; 2n) = S2 − S3 (22)
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where we have extended the upper and lower index of the inner sum, instead of from n− 2j
to n − j, to range from 0 to n − j − 1 for later convenience, as

S2 =
n−2
∑

i=1

n−1
∑

j=i+1

i−1
∑

r=0

n−j−1
∑

s=0

C2i−r−1
r C2n−2j−s

s

(

2j − 2i − 1

2j + s − n − r − 1

)

,

S3 =
n−2
∑

i=1

n−1
∑

j=i+1

i−1
∑

r=0

n−j−1
∑

s=0

C2i−r−1
r C2n−2j−s

s

(

2j − 2i − 1

n − s − r − 1

)

.

(23)

This change of summation index does not matter because S2 − S3 is zero for s = n − j and
s between 0 and n − 2j − 1 inclusive. We now estimate these three sums in turn.

4.1 The sum S2

Replacing r → i − 1 − r and s → n − j − s − 1, substituting k = j − i and rearranging the
variables, we get

S2 =
n−3
∑

r=0

n−r−2
∑

k=1

n−1−k
∑

i=r+1

n−i−k−1
∑

s=0

Ci+r
i−r−1C

n−k−i+s+1
n−k−i−s−1

(

2k − 1

k − s + r − 1

)

. (24)

Now replace k → k − 1, i → i − r − 1 to get

S2 =
n−3
∑

r=0

n−r−3
∑

k=0

n−r−k−3
∑

i=0

n−r−k−i−3
∑

s=0

Ci+2r+1
i Cn−k−i−r+s−1

n−k−i−r−s−3

(

2k + 1

k − s + r

)

. (25)

We now replace the variable r by u = k+r. Notice that the binomial coefficient is independent
of i for which we use the identity

C
∑

i=0

Ci+A
i CB−i

C−i = CA+B+1
C , (26)

which means we are left with

S2 =
n−3
∑

u=0

u
∑

k=0

n−u−3
∑

s=0

Cu+n+s−2k+1
n−u−s−3

(

2k + 1

u − s

)

=
n−3
∑

k=0

n−k−3
∑

u=0

n−u−k−3
∑

s=0

Cu+n+s−k+1
n−u−s−k−3

(

2k + 1

u + 1 − s

)

.

(27)

Let A = n − k − 3, v = u − s and v′ = s − u. Then one easily verifies that

A
∑

u=0

A−u
∑

s=0

=
A

∑

v=0

A/2+v/2
∑

u=v
(s=u−v)

+
A

∑

v′=0

A/2+v′/2
∑

s=v′

(u=s−v′)

−

A/2
∑

s=0
(u=s)

(28)
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The binomial coefficient is independent of u in the first sum and of s in the remaining two
and hence the innermost sum can be done using the identity

n/2
∑

s=v

CB+2s
n−2s =

(

B + n − 1

n − 2v

)

. (29)

This reduces the sum (after a change of variables) to

S2 =
n−3
∑

k=0

k
∑

v=0

(

2k + 3

k − v

)(

2n − 2k − 4

n − k − v − 2

)

−
n−3
∑

k=0

(

2k + 1

k + 1

)(

2n − 2k − 3

n − k − 3

)

(30)

These sums are handled as special cases of the Chu-Vandermonde identity to yield

S2 =
n + 2

4

(

2n

n

)

− 3 · 22n−3, (31)

which appears as sequence A045720 because it is the threefold convolution of the sequence
an =

(

2n+1
n+1

)

.

4.2 The sum S3

S3 =
n−2
∑

i=1

n−1
∑

j=i+1

i−1
∑

r=0

n−j−1
∑

s=0

C2i−r−1
r C2n−2j−s

s

(

2j − 2i − 1

n − s − r − 1

)

, (32)

which after replacing i → i − r − 1 and subsequently j → j − r − i − 2 and rearranging
becomes

S3 =
n−3
∑

j=0

n−j−3
∑

i=0

n−j−i−3
∑

s=0

n−j−i−s−3
∑

r=0

C2i+r+1
r Cn−j−r−i+s−1

n−j−i−r−s−3

(

2j + 1

s + j + i + 2

)

. (33)

We now use (26) to do the summation with respect to r and get

S3 =
n−3
∑

j=0

n−j−3
∑

i=0

n−j−i−3
∑

s=0

Cn−j+i+s+1
n−j−i−s−3

(

2j + 1

s + j + i + 2

)

. (34)

Now, replacing s by k = i + s, we get

S3 =
n−3
∑

j=0

n−j−3
∑

k=0

k
∑

i=0

Cn−j+k+1
n−j−k−3

(

2j + 1

k + j + 2

)

=
n−3
∑

j=0

n−j−3
∑

k=0

(k + 1)Cn−j+k+1
n−j−k−3

(

2j + 1

k + j + 2

)

=
n−3
∑

k=0

n−k−3
∑

j=0

(k + 1)Cn−j+k+1
n−j−k−3

(

2j + 1

k + j + 2

)

.

(35)
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We now use the identity

B
∑

j=C

CA−j
B−j

(

2j + 1

j − C

)

=

(

A + B + 2

B − C

)

, (36)

for the inner sum to get

S3 =
n−3
∑

k=0

(k + 1)

(

2n

n − 4 − 2k

)

,

=

(n−4)/2
∑

k=0

(k + 1)

(

2n

n − 4 − 2k

)

,

=
1

2

(n−4)/2
∑

k=0

(2k + 4)

(

2n

n − 4 − 2k

)

−

(n−4)/2
∑

k=0

(

2n

n − 4 − 2k

)

=
n

2

(

2n − 2

n − 4

)

−

(n−4)/2
∑

k=0

(

2n

n − 4 − 2k

)

=
n

2

(

2n − 2

n − 4

)

− 22n−2 +
(2n)!(3n2 + n + 2)

2n!(n + 2)!
.

(37)

4.3 The sum S1

S1 =
n−1
∑

i=1

i
∑

r=1

i
∑

s=1

Ci−1+r
i−r Cn−i+s−1

n−i−s

[(

0

r − s

)

−

(

0

r + s − 1

)]

. (38)

The first term forces r = s and the second term is identically zero because r + s ≥ 2. This
means we are left with

S1 =
n−1
∑

i=1

i
∑

r=1

Ci−1+r
i−r Cn−i+r−1

n−i−r

= (n − 1)Cn−1.

(39)

Thus the total number of Gessel words where a 1̄ occurs before a 1 defined in (20) is
given, using (31),(37) and (39), by

4(S2 − S3) + S1 =
(n3 + 4n2 + 5n + 2)(2n)!

2n!(n + 2)!
− 2(2n−1), (40)

and therefore, the total number of complete Gessel words is

G1(n) = 4(S2 − S3) + S1 + (2n − 1)

(

2n − 2

n − 1

)

=
(2n + 1)

2

(

2n

n

)

− 22n−1, (41)

which is exactly the same expression as (5). �
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5 Remarks

This section is intended to be speculative in nature and consequently, the statements are
unproven as far as we know, though not necessarily very deep. In 2001, Simon Norton made
the following conjecture in A000531.

A conjectured definition: Let 0 < a1 < a2 < · · · < a2n < 1. Then how many ways are there
in which one can add or subtract all the ai to get an odd number. For example, take n = 2.
Then the options are a1 + a2 + a3 + a4 = 1 or 3; one can change the sign of any of the ai’s
and get 1; or −a1 − a2 + a3 + a4 = 1. That’s a total of 7, which is the 2nd number of this

sequence.

We want to connect this conjecture to Theorem 1. Before that, we need some prelimi-
naries. One can represent every equation of the form ±a1 · · ·±a2n = 1 as a 2n-tuple of +,−
symbols. Let us replace every − by a 0 and every + by a 1. Then, one can represent all
possible ways of ordering the +’s and −’s by binary words of length 2n.

To state the conjecture precisely, we need a different notion of subword than that existing
in the literature, which is probably best defined recursively.

Definition 5. Suppose the word w is taken from the set S which is ordered. We say that
the motif µ of length k occurs in the word w of length n if there is an increasing sequence of
length k of elements ∈ [n] such that the subword w1 of w formed by taking the letters of w
from this sequence has the same order relation among its letters as do the letters of µ.

We then say that the number of occurrences of µ is zero if no such sequence exists, and
is one more than the number of motifs of the new word formed by removing the letters of
the subword w1 from w.

Let w be such a binary word. Then define n1(w) to be number of occurrences of the
symbol 1 in w, which trivially is the number of occurrences of the motif 1 in w. Also define
n10(w) to be the number of occurrences of the motif 10 in w. For example, n10(1110) =
1 + n10(11) = 1 and n10(0110000) = 1 + n10(01000) = 2 + n10(000) = 2. We now form the
multiset S, where each word w occurs

m(w) =

⌊

n1(w) − n10(w)

2

⌋

+

(42)

times. Note that if m(w) is zero or negative, it never appears. Then, it seems that the
cardinality of S is the same as the conjecture in the sequence. Moreover there is a bijection
from the ± notation to the binary notation. This means that the number of times a binary
word appears in S seems to be the same as the number of positive odd integers in the right
hand side of the equation corresponding to the same binary word which admit solutions. We
give a concrete example in Table 1.

The connection between the two problems is as follows. For each fixed number n1 of +
signs from 2 to 2n, count only those sums in which all possible

(

2n
n1

)

combinations give rise
to that sum and add them up. This number is precisely the same as the number of Gessel
words stated in Theorem 1 in which the 1 precedes the 1̄. The formula for the number of
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± Odd integer Binary n1(w) n10(w) m(w)
word sums word

+ + ++ 1,3 1111 4 0 2
+ + +− 1 1110 3 1 1
+ + −+ 1 1101 3 1 1
+ − ++ 1 1011 3 1 1
− + ++ 1 0111 3 0 1
−− ++ 1 0011 2 0 1

Table 1: All allowed possibilities for n = 2.

such Gessel words is given by (16). If one considers the set of only those ± words for fixed
n1 such that a number strictly smaller than

(

2n
n1

)

contribute, then this set is equinumerous

with the Gessel words stated above in which the 1̄ precedes the 1 and is given by (40). This
leads us to conjecture the presence of a bijection between the multiset S and the number of
complete Gessel words with exactly one 1 and 1̄.

Number of + and Sum=1 Sum=3 Sum=5 Sum=7
and − signs

8+ 1 1 1 1
7+, 1− 8 8 8
6+, 2− 28 28 1
5+, 3− 56 8
4+, 4− 28 1
3+, 5− 8
2+, 6− 1

Table 2: The number of words for a fixed number of + and − signs and fixed sum in the
case n = 4.

For example, there are 6 complete Gessel words for n = 2 where the 1 precedes the 1̄.
From Table 1, one sees that all possible terms contribute when we have either 4+ or 3+, 1−
signs. There are two possibilities for the former (when the sums are 1 and 3) and four for the
latter (when the sum is 1). Similarly, there is only one complete Gessel word for n = 2 where
1̄ precedes 1, which is given by 21̄212̄2̄ and for 2+, 2− signs, there are 6 possible words, but
only one contributes.

For any fixed n1 and any fixed odd integer sum, the number of words which allow this
seem to be of the form

(

2n
k

)

where k varies from 0 to n − 1. We illustrate this via another
concrete example in Table 2. Notice that the only integers appearing in the table are the
binomial coefficients

(

8
k

)

with k = 0, 1, 2 or 3. Another observation is that if one draws lines
of 45◦ starting from the first column in Table 2 and looks at the diagonal columns, one finds
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the pattern,
1 1 1 1 1 1 1

8 8 8 8 8
28 28 28

56

(43)

from which it is clear that each of these diagonal columns in (43) starts with
(

2n
0

)

with
subsequent values of the lower index increasing by 1. The first four columns above correspond
exactly to the Gessel words where 1 precedes 1̄ and the sum of the entries is precisely
(2n − 1)

(

2n−2
n−1

)

with n = 4. This pattern has been observed until n = 6 and we conjecture
that it holds for all n.
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