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Abstract

We explore the effect of different values of the shift parameter s on the behavior of
the family of meta-Fibonacci sequences defined by the k-term recursion

k—1

Tsp(n) == ZTsyk(n—i— s—Tsp(n—i—1)), n>s+k k>2
i=0

with the s + k initial conditions T ;(n) =1 for 1 < n < s+ k. We show that for any
odd k£ > 3 and non-negative integer s the values in the sequence T j(n) and Tp ;(n) are
essentially the same. The only differences in these sequences are that each power of k
occurs precisely k + s times in 7 ,(n) and k times in T (n). For even k the frequency
of k" in Ty ;(n) depends upon r. We conjecture that for k even the effect of the shift
parameter s is analogous to that for k odd, in the sense that the only differences in the
sequences T ;(n) and Tp ,(n) occur in the frequencies of the powers of k; specifically,
each power of k appears to occur precisely s more times in T ;(n) than it does in
To,k(n).

1 Introduction

In this paper, unless otherwise indicated all values are integers. For s > 0 and £ > 2 consider
the generalized Conolly meta-Fibonacci (self-referencing) recursion defined in [2]:

k—1
Tor(n) =Y Tupln—i—s—Ty(n—i—1)), n>s+k (1.1)

=0
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For given values of the parameters s and k& the behavior of the sequence defined by (1.1)
is highly sensitive to the choice of the initial conditions. Some initial conditions lead to
sequences with identifiable and regular (though potentially very complex) patterns, while
others generate highly chaotic sequences or even cause the sequence Ty x(n) eventually to
fail to be defined; that is, for some value of n the argument of one of the terms on the right
hand side of T x(n) becomes negative. See [2] for additional details.

In the special case s = 1, and with the initial conditions 7} ;(1) := 1 and T} (i) == — 1,
2 < i < k + 1, the resulting sequence behaves in a very simple manner [7]. In particular,
it is monotone and its consecutive terms increase by either 0 or 1, so it hits every positive
integer. Following Ruskey [9] we term such a sequence “slowly growing”.

In [5] and [6] Ruskey and his colleagues derive a beautiful combinatorial interpretation
in terms of k-ary trees for each of the sequences generated by (1.1) with & > 2, s > 0 and
the initial conditions T} (i) := 1 for 1 < i < s+ 1 and T, (s + i) := ¢, 2 < i < k. Using
these initial conditions, which are a natural analogue for general s to the ones in [7] for
s = 1, they show that for every k > 2 all these sequences are slowly growing. Even further,
from their combinatorial interpretation it is immediate that for fixed k& the sequences T x(n)
and T ,(n) are essentially the same: the only differences in these sequences occur in the
frequencies with which the powers of k occur. In particular, each power of k£ occurs precisely
one more time in the sequence T4 x(n) than it does in Ty, (n). See Table 1 for examples of
this for k = 3,4,5 and s = 0,1, 2.

The shift parameter is known to have this benign type of effect on other families of slowing
growing sequences that are generated by a meta-Fibonacci recursion similar to the one for
Tsk(n). See, for example, [1]. The focus of this paper is to show that the shift parameter s
can have such a modest effect even when the behavior of the sequence is considerably more
complicated.

We demonstrate this by showing it to be the case for the family of sequences generated
by (1.1) but this time with a very different set of initial conditions, namely, T x(n) = 1 for
1 < n < s+ k. These sequences are introduced in [2], but only the special case s = 0 is
analyzed in detail. They are not monotone and display considerably more complex behavior
than that of the slowly growing sequences discussed in [5] and [6]. See Figures 1, 2 and 3. In
[2] the structure of these sequences is completely described for s = 0 and k& odd. In particular
it is shown that the terms of the sequence Ty x(n) that are equal to k" for any non-negative
integer r necessarily appear as a block of k consecutive terms. Table 2 illustrates this for
k =3 and s = 0; note the three consecutive occurrences of the values 3, 9, 27 and 81.

In this paper we extend the analysis in [2] by allowing arbitrary positive integer values
for s. Specifically we prove that for any odd k > 3 and any non-negative integer s the values
in the sequence Ty x(n) and Ty x(n) are essentially the same. The only differences in these
sequences are that each power of k occurs precisely k + s times in T x(n) and k times in
Tox(n). Tables 2, 3 and 4 following illustrate this for k = 3 and s = 0,1 and 2.
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Figure 1: First 160 terms of 7} 3(n) with initial values (1,1,1)

120

100

60

T173(’I’L)

40

20

0 20 40 60 80 100 120 140 160

Figure 2: First 160 terms of 7} 3(n) with initial values (1,1,1,1)
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Figure 3: First 160 terms of 75 3(n) with initial values (1,1,1,1,1)

The proof of this simply stated and intuitively intriguing result is highly technical and
makes extensive use of the approaches and results in [2]. It relies upon a series of nested
induction arguments that are essentially the same for any odd k. As such, we proceed slowly
and in stages, initially providing the details for the special case k = 3, where they are easier
to follow. In Section 2 we establish the base case s = 1, namely, the result holds for the pair
of sequences Tp 3(n) and T} 3(n). We complete the induction for the case k = 3 and general
s in Section 3. In Section 4 we sketch the induction argument for general odd k.

In Section 5 we conclude with some brief observations about the situation for k even.
Based upon substantial empirical evidence it appears that our result also holds for this case.
However, unlike the situation for k& odd, there is no starting point for an induction argument
similar to the one we use below since to date nothing has been proved about the sequences
Tox(n) for k even (but see [2] for some conjectures).



Table 1: First 75 terms of T, x(n), s = 0,1,2, k = 3,4, 5, initial conditions
Tep(i)=1,1<i<s+1land Tyx(s+i)=1,2<i<k.

k=3 k=4 k=5
n/s 0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 I 1
2 2 1 1 2 1 1 2 1 1
3 3 2 1 3 2 1 3 2 1
4 3 3 2 4 3 2 4 3 2
5 4 3 3 4 4 3 5 4 3
6 5 3 3 5 4 4 5 5 4
7 6 4 3 6 4 4 6 5 5
8 6 5 3 7 5 4 7 5 5
9 7 6 4 8 6 4 8 6 5
10 8 6 5 8 7 5 9 7 5
11 9 7 6 9 8 6 10 8 6
12 9 8 6 10 8 7 10 9 7
13 9 9 7 11 9 8 11 10 8
14 10 9 8 12 10 8 12 10 9
15 11 9 9 12 11 9 13 11 10
16 12 9 9 13 12 10 14 12 10
17 12 10 9 14 12 11 15 13 11
18 13 11 9 15 13 12 15 14 12
19 14 12 9 16 14 12 16 15 13
20 15 12 10 16 15 13 17 15 14
21 15 13 11 16 16 14 18 16 15
22 16 14 12 17 16 15 19 17 15
23 17 15 12 18 16 16 20 18 16
24 18 15 13 19 16 16 20 19 17
25 18 16 14 20 17 16 21 20 18
26 18 17 15 20 18 16 22 20 19
27 19 18 15 21 19 16 23 21 20
28 20 18 16 22 20 17 24 22 20
29 21 18 17 23 20 18 25 23 21
30 21 19 18 24 21 19 25 24 22
31 22 20 18 24 22 20 25 25 23
32 23 21 18 25 23 20 26 25 24
33 24 21 19 26 24 21 27 25 25
34 24 22 20 27 24 22 28 25 25
35 25 23 21 28 25 23 29 26 25
36 26 24 21 28 26 24 30 27 25
37 27 24 22 29 27 24 30 28 25
38 27 25 23 30 28 25 31 29 26
39 27 26 24 31 28 26 32 30 27
40 27 27 24 32 29 27 33 30 28
41 28 27 25 32 30 28 34 31 29
42 29 27 26 32 31 28 35 32 30
43 30 27 27 33 32 29 35 33 30
44 30 27 27 34 32 30 36 34 31
45 31 28 27 35 32 31 37 35 32
46 32 29 27 36 33 32 38 35 33
47 33 30 27 36 34 32 39 36 34
48 33 30 27 37 35 32 40 37 35
49 34 31 28 38 36 33 40 38 35
50 35 32 29 39 36 34 41 39 36
51 36 33 30 40 37 35 42 40 37
52 36 33 30 40 38 36 43 40 38
53 36 34 31 41 39 36 44 41 39
54 37 35 32 42 40 37 45 42 40
55 38 36 33 43 40 38 45 43 40
56 39 36 33 44 41 39 46 44 41
57 39 36 34 44 42 40 47 45 42
58 40 37 35 45 43 40 48 45 43
59 41 38 36 46 44 41 49 46 44
60 42 39 36 47 44 42 50 47 45
61 42 39 36 48 45 43 50 48 45
62 43 40 37 48 46 44 50 49 46
63 44 41 38 48 47 44 51 50 47
64 45 42 39 49 48 45 52 50 48
65 45 42 39 50 48 46 53 50 49
66 45 43 40 51 48 47 54 51 50
67 46 44 41 52 49 48 55 52 50
68 47 45 42 52 50 48 55 53 50
69 48 45 42 53 51 48 56 54 51
70 48 45 43 54 52 49 57 55 52
71 49 46 44 55 52 50 58 55 53
72 50 47 45 56 53 51 59 56 54
73 51 48 45 56 54 52 60 57 55
74 51 48 45 57 55 52 60 58 55
75 52 49 46 58 56 53 61 59 56




Table 2: First 160 terms of T} 3(n) with initial values (1,1, 1)

n n n n
T 7 T 7 T 7 T 7
Tn +0) I T T Y 27 27 T(n¥30) 59 49 T(n +120) 81 31
T(n + 2) 1 3 T(n+42) 29 29 T(n+82) 59 51  T(n+122) 81 83
T(n + 4) 3 3 T(n+44) 31 29 T(n+84) 61 53 T(n+124) 83 85
T(n + 6) 5 5 T(n+46) 33 31 T(n+86) 61 55 T(n+4126) 83 87
T(n +8) 7 5 T(n+48) 35 31 T(n+88) 63 57 T(n+4+128) 85 89
T(n+10) 7 7 T(n+50) 37 33 T(n+90) 63 57 T(n+4130) 85 91
T(n+12) 9 9  T(n+52) 39 33 T(n+92) 65 59 T(n+132) 87 93
Tn+14) 9 11 T(n+54) 41 35 T(n+94) 67 59 T(n+134) 87 95
T(n+16) 11 13 T(n+56) 43 35 T(n+ 96) 67 61 T(n+136) 89 97
T(n+18) 11 15 T(n+58) 43 37  T(n+98) 69 63 T(n+4138) 89 99
T(n+20) 13 17 T(n+60) 45 39 T(n+100) 69 63 T(n+140) 91 101
T(n+22) 13 17 T(n+62) 45 39 T(n+102) 71 65 T(n+4142) 91 103
T(n+24) 15 19 T(n+64) 47 41 T(n+104) 73 65 T(n+144) 93 105
T(n+26) 17 19 T(n+66) 49 41  T(n+106) 73 67 T(n+146) 93 107
T(n+28) 17 21 T(n-+68) 49 43 T(n+108) 75 69 T(n+148) 95 109
T(n+30) 19 23 T(n+70) 51 45 T(n+110) 75 71 T(n+4150) 95 111
T(n+32) 19 23 T(n+72) 51 45 T(n+112) 77 73 T(n+152) 97 113
T(n+34) 21 25 T(n+74) 53 47 T(n+114) 77 75 T(n+154) 97 113
T(n+36) 23 25 T(n+76) 55 47 T(n+116) 79 77 T(n+156) 99 115
T(n+38) 25 27 T(n+78) 55 49 T(n+118) 79 79 T(n+158) 101 115

Table 3: First 160 terms of T} 3(n) with initial values (1,1,1,1)

n n n n
T2 T2 T 2 T 7
T +0) I T T(n+40) 25 25 T(n+80) 55 47 T(n+120) 79 77
T(n +2) 1 1 T(n+42) 27 27 T(n+82) 57 49  T(n+122) 79 79
T(n +4) 3 3 T(n+44) 27 27  T(n+84) 59 49  T(n+124) 81 81
T(n + 6) 3 3  T(n+46) 29 29  T(n+86) 59 51  T(n+126) 81 81
T(n +8) 5 5 T(n4+48) 31 29  T(n+88) 61 53 T(n+4128) 83 83
T(n+10) 7 5 T(n+50) 33 31 T(n+90) 61 55 T(n+130) 85 83
T(n+12) 7 7 T(n+452) 35 31  T(n+092) 63 57 T(n-+132) 87 85
T(n+14) 9 9  T(n+54) 37 33 T(n+94) 63 57 T(n+134) 89 85
T(n+16) 9 9 T(n+56) 39 33 T(n+96) 65 59 T(n+136) 91 87
T(n+18) 11 11  T(n+58) 41 35 T(n+98) 67 59 T(n+138) 93 87
T(n+20) 13 11  T(n+60) 43 35 T(n+100) 67 61 T(n+140) 95 89
T(n+22) 15 13 T(n+62) 43 37 T(n+102) 69 63 T(n+142) 97 89
T(n+24) 17 13 T(n+64) 45 39 T(n+104) 69 63 T(n+144) 99 91
T(n+26) 17 15 T(n+66) 45 39 T(n+106) 71 65 T(n+146) 101 91
T(n+28) 19 17 T(n+68) 47 41 T(n4+108) 73 65 T(n-+148) 103 93
T(n+30) 19 17 T(n+70) 49 41  T(n+110) 73 67 T(n+150) 105 93
T(n+32) 21 19 T(n+72) 49 43 T(n+112) 75 69 T(n+152) 107 95
T(n+34) 23 19 T(n+74) 51 45 T(n+114) 75 71  T(n+154) 109 95
T(n+36) 23 21  T(n+76) 51 45 T(n4+116) 77 73 T(n+156) 111 97
T(n+38) 25 23 T(n+78) 53 47 T(n+118) 77 75 T(n+158) 113 97

Table 4: First 160 terms of 75 3(n) with initial values (1,1,1,1,1)

n n n n
T2 T2 T 2 T 7
Tn +0) I T T(n+40) 21 25 T(n+80) 51 45 T(n+120) 77 73
T(n +2) 1 1 T(n+42) 23 25 T(n+82) 53 47 T(n+122) 77 175
T(n + 4) 1 3  T(n+44) 25 27  T(n+84) 55 47 T(n+124) 79 77
T(n +6) 3 3  T(n+46) 27 27 T(n+86) 57 49 T(n+126) 79 79
T(n + 8) 3 3  T(n+48) 27 27  T(n+88) 59 49  T(n+128) 81 81
T(n+10) 5 5 T(n+50) 29 29 T(n+90) 59 51 T(n+130) 81 81
T(n+12) 7 5 T(n+52) 31 29 T(n+92) 61 53 T(n+132) 81 83
T(n+14) 7 7 T(n+54) 33 31 T(n+94) 61 55 T(n+134) 83 85
T(n+16) 9 9 T(n+56) 35 31 T(n+96) 63 57 T(n+136) 83 87
T(n+18) 9 9 T(n+58) 37 33 T(n+98) 63 57 T(n+138) 85 89
T(n+20) 9 11 T(n+60) 39 33 T(n+100) 65 59 T(n+140) 85 91
T(n+22) 11 13 T(n+62) 41 35 T(n+102) 67 59 T(n+142) 87 93
T(n+24) 11 15 T(n+64) 43 35 T(n+104) 67 61 T(n+144) 87 95
T(n+26) 13 17 T(n+66) 43 37 T(n+106) 69 63 T(n+146) 89 97
T(n+28) 13 17 T(n+68) 45 39 T(n+108) 69 63 T(n+148) 89 99
T(n+30) 15 19 T(n+4+70) 45 39 T(n+110) 71 65 T(n+150) 91 101
T(n+32) 17 19 T(n+72) 47 41 T(n+112) 73 65 T(n+152) 91 103
T(n+34) 17 21  T(n+74) 49 41 T(n+114) 73 67 T(n+154) 93 105
T(n+36) 19 23 T(n+76) 49 43 T(n+116) 75 69 T(n+156) 93 107
T(n+38) 19 23 T(n+78) 51 45 T(n+118) 75 71  T(n+158) 95 109




2 The behavior of T} 3(n)

Consider the recursion (1.1) with £ = 3 and s = 0 with initial conditions 7'(1) = T'(2) =
T(3)=1:

Tn)=Tn—=Tn—-1)4+Tn—-1-T(n—-2))+T(n—2—-T(n-23)) (2.1)

For convenience throughout this paper we omit either or both of the subscripts s and
k where this causes no confusion. Following [2] we define U(n) = T'(n — T'(n — 1)), so
Tn)=U(n)+U(n—1)+U(n —2). We determine bounds on U(n).

As in Definition 3.5 in [2], for any g > 0 call the interval (of the domain of the sequence)
[mg,myi1 — 1] the ¢g'" generation of the sequence T'(n), written as gen(g), where m, =
$(3971 +5). See Figure 4. Notice that the value of T'(n) at the endpoints of each generation
are powers of 3.

120
100
80 "l
E\ o .....I-.
< W R
E'o ..II.- .::" ="
40 L Ist generation -
9 s 2nd generation
0 R 3rd generation = 1
0 L 4th generation ‘
0 20 40 60 80 100 120 140 160

Figure 4: Initial portion of generation structure of Tj 3(n)

Lemma 2.1. Let 2 < g, and suppose that n is in the (g—1)"" generation, i.e. n € [my_1,m,—
1] = [(3)39 + 2,(3)37™ + 2]. Then 392 < U(n),U(n — 1),U(n — 2) < 3971, Moreover
U(mg —1)=U(my —2) =U(my, — 3) = 3971

Proof. From Theorem 3.15 in 2] T'(mgy1 — 1) = T'(mys1 —2) = T(myy1 —3) = 3971 But by
definition we have that T'(mg1 —1) = U(mge1 —1)+U(mgy1 —2) +U(mgy1 —3) = T(mgq —
2) = U(mg41—2)+U(mgs1—3)+U(my+1—4). Hence it follows that U(mg1—1) = U(mg1—
4). Similarly we derive from T'(mg4q — 2) = T'(mg41 — 3) that U(myq — 2) = U(myqr — 5).
By Proposition 2.2 in [2] AU(t) = U(t+2) — U(t) € {0,2} for any positive integer ¢. Thus

7



Ulmgsr — 1) 2 Ulmgyr —3) 2 Umger — 5) = Ulmgyr — 2) 2 U(mgey —4) = U(mger — 1).
So U(mgi1 — 1) = U(mgr — 2) = U(mgsy — 3) = 5T (mg1 — 1) = 3%, This completes the
proof of the second part of the statement of the lemma.

It remains to prove that for n € [my, mgyy1 —1], 3971 < U(n),U(n—1),U(n—2) < 39. By
the above argument we have U(my — 1) = U(my — 2) = U(my — 3) = (3)T(my — 1) = 3971,
Since AU(t) = U(t + 2) — U(t) € {0,2} for any positive integer ¢ it follows that each
of the subsequences of U(n) defined on the sets {n € gen(g) : n = my, (mod 2)} and
{n € gen(g) : n = my41 (mod 2)} is monotone non-decreasing (since AyU(n) € {0,2} for all
n), and that each of these subsequences for generation g begins with at least 397! and ends
no higher than 39. This concludes the proof. O]

Now consider the recursion (1.1) with £ = 3 and s = 1 (“shift parameter 17), namely,

Let Uy(n) =Ti(n—1-Ti(n—1)), so T1(n) = Uy(n) + Uy(n — 1)+ Uy (n — 2). (Note that our
notation suppresses the parameter k& = 3.) Four initial conditions are required, and these
are Ty (1) = T1(2) = T1(3) = T1(4) = 1. For 2 < g, we define the (g — 1) generation of the
“shifted” sequence T7(n) as the interval n € [m,_1 + g, my + g]. For brevity we sometimes
refer to this interval as the “shifted” (g — 1) generation. The main result is the following:

Theorem 2.2. Let 2 < g. Forn € [my_1 + g, my + gl, the shifted (g — 1) generation, the
following two statements about the values of Ty(n) and Uy(n) hold:
(1) Forn € [my_14+g,m,+g—4], 3971 < Ti(n) < 39 and 392 < Uy(n),Uy(n—1),U;(n—
2) <3971 Forn € [mg+g—3,my+g|, Ti(n) = 39 and Uy (n) = Uy(n—1) = Uy (n—2) = 3971
(2) Forn € img_1+ g,my,+ g —1], Ti(n) = To(n — g). Forn € [my+ g — 2,my + g],
Ti(n) = Ty(n— g — 1),

Note that the second part of (2) follows from (1); we include it for convenience as we’ll
use it directly below. From (1) it follows that the sequence 77 (n) hits powers of 3 exactly 4
times at the end of each generation (recall that the sequence Ty(n) hits powers of 3 exactly
3 times at the end of each generation). From (2) we have that otherwise the sequences are
the same, since for r € [m,_1,m, — 1], To(r) = T1(r + g) (since if r € [m,_1,m, — 1], then
r+g € [mg_1+g,my+ g —1]. Thus we have that the sequences are identical except for the
frequency of the occurrences of the powers of 3. Compare Tables 2 and 3 for an illustration
of this.

Proof. Here we require a nested induction, on both g and n. We begin with the induction
on g, the “outer induction”. For g = 2 we check each of the statements numerically for the
shifted first generation. We begin with (1). Here n € [my_1 + g, my+ g — 4] = [(3)37 + 2 +
9, (3)39 +24g—4] = [9,14]. For n in this interval it follows from the definition of U (n) that
each of Uy(n),Uy(n—1),U;(n — 2) are contained in the set {77(3),71(4),...,71(8)} = {1,3}
so the first part of (1) holds. Further, U;(16) = U;(15) = U;(14) = T1(8) = 3, so this
completes the proof of (1). In a similar way we confirm that (2) holds. Thus the base case
is done.

Suppose both (1) and (2) hold for the 15¢, 2" ... (g—2)" shifted generations with g > 3.
We complete the induction on g by proving that they both hold for the (g — 1) shifted
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generation, which is the interval n € [m,_1+ g, m,+g]. Once again we proceed by induction,
this time on n; this is what we call the “inner induction”.

We begin by confirming that (1) and (2) hold for the initial value of this interval, namely
n = mgy_1 + g. Specifically, we need to confirm that for this value of n, Ti(n) € (3971,
39),U1(n),Ur(n —1),Uy(n — 2) € [3972,397!, and further T1(n) = To(n — g).

Since n = my_;+g¢ is the first term of the (g—1)"" shifted generation, n—1 =m, 1+g—1
is the last term of the (g —2)™ shifted generation. But by the induction assumption on g, (1)
holds for the (g—2)%" shifted generation. Thus, T1(n—1) = 3971 while U;(n—1) = Uy (n—2) =
Ui(n—3) = 3972 Also, Uy(n) = Ti(n—1-Ti(n—1)) = T1(my_14+9—1-39"1) = Ty (my_o+
g—1). Note that m,_+g—1 is the first member of the (g—2)" shifted generation (so it’s not
among the last four terms of the generation). It follows by the induction assumption on g that
Ui(n) = Ty(my—a+g—1) € (3972,39"1). So T1(n) = Uy(n)+ Ui (n—1)4+Us(n—2) € (3971, 39)
and Uy (n),U;(n —1),Uy(n — 2) € [3972,397!]. This confirms (1).

We prove (2) similarly. By the above argument Uy(n) = Ti(my—2 + g — 1) so by the
induction assumption on g for (2) for the (g — 2)™ shifted generation we have U;(n) =
Ti(mg—o+g—1) = Ty(mgy_s). Since n = my_1+g, we have To(n—g—1) = Ty(my_1—1) = 397!
by Theorem 4.3 in [2], so Uy(n—g) = To(n—g—To(n—g—1)) = To(my—1—39"") = To(my—2).
Thus we get Uy(n) = Ty(my—2) = Up(n — g). By Theorem 4.3 in [2] again, To(n — g —2) =
To(mg—1—2) =391 and To(n— g —3) = To(my—1 —3) = 3971, so direct substitution gives us
Un—g—1) =To(n—g—1-To(n—g—2)) = To(my—1—1—39"") = To(my_o—1) = 3972, and
Uo(n—g—2) = To(n—g—2—Ty(n—g—3)) = To(my_1—2—39"") = Ty(m,—2—2) = 3972 Recall
that above we have shown that Uy (n—1) = U;(n—2) = 3972, thus U;(n—1) = Uy(n—g—1) and
Uy(n—2) = Uy(n—g—2). Combining this with U, (n) = Uy(n—g), we have T} (n) = To(n—g).
This concludes the base case for the “inner induction”.

For n in the (g — 1)™ shifted generation with n > m,_; + g, we suppose the theorem
is true for any number in this generation smaller than n, i.e. we suppose for any ¢ &€
[mg—1 4+ g,n — 1] = I(g;n — 1), the following two statements hold:

(1) Fori € [my_1+g,myg+g—4]NI(g;n—1),39 1 <Ty(i) < 3% and 392 < Uy (i), Uy (i —
1),U1(i —2) <3971 Fori € [my+g—3,my+g NI(g;n—1), Ty(i) = 39 and U;(i) =
Ui —1)=U (i —2) =397%

(2) Fori e mg_1+g,my+g—1NI(g;n—1), T1(i) = To(i — g).

We need to show the theorem is true for i = n. This time we begin with (2). It’s sufficient
to show Uy (n) = Up(n—g), Ui (n—1) = Uy(n—g—1),Us(n—2) = Up(n—g—2), from which we
conclude that T7(n) = Ty(n—g) by definition. From [2] we have a thorough understanding of
the values of T}, so we deal with U first, working backwards. Since n € [mgy_1+g, mg+g—1],
then n—g € [my_1, m,—1], which is the (¢g—1)" generation (non-shifted). Thus by Theorem
3.15 in [2] and Lemma 2.1 above we have 397! < Ty(n—g) < 39 and 3972 < Uy(n—g), Up(n—
g—1),Up(n—g—2) <3971 Note that Uy(n — g) = To(n —g —To(n—g—1)) € [3972,3971],
by Theorem 3.15 in [2| again, and n — g — To(n — g — 1) € [my_o — 3, my_1 — 1]. Hence
n—g—To(n—g—1)+g—1 € [my_o+g—4,mg_1+9g—2|. For g > 4 this latter interval is in the
union of the (g —2)%" shifted generation and the (g — 3)" shifted generation, so (2) holds for
this interval by the induction assumption on g. For g = 3, [my_o+g9—4,my_1+9—2] = [6, 17],
which equals the union of the intervals [6,8] and [9, 17]. Further, [9,17] is contained in the
first generation where (2) holds by induction. So we need only check the values 6,7 and



8. By Tables 2 and 3 we confirm that T1(6) = Ty(4), T1(7) = To(5), T1(8) = T5(6). Thus
To(n—g—To(n—g—1)) = Ti(n—g—To(n —g—1)+ g —1). And by the induction
assumption on n, (2) holds for i =n—1, so T1(n— 1) = Ty(n — g — 1). In summary, we have
Up(n—g) =To(n—g—To(n—g—1)) =Ti(n—g—To(n—g—1)+g—1) =Ti(n—g—Ti(n—
1)4+g—1) = Uy(n). Similarly, Uy(n—g—1) = To(n—g—1—To(n—g—2)) € [3972,397!] yields
n—g—1-Ty(n—g—2) € [my_o—3, my_1—1] by the same reason above, while the same holds
for To(n—g—1-To(n—g—2)) = T1(n—g—1-Ty(n—g—2)+g—1) and T\ (n—2) = Th(n—g—2).
Direct substitution gives Uy(n —g — 1) =Ti(n—g—1—-Ti(n—2)+g—1) = Uy(n —1).
Further by the same reasoning, we have Uy(n — g — 2) = U;(n — 2). Combining the three
equations above gives Tj(n) = Ty(n — g), which completes the proof of (2).

To prove (1) first notice that the value of Tj(n) is just the value of To(n — g), and
the values of Uy(n),Ui(n — 1),Ui(n — 2) are just the values of Uy(n — g),Up(n — g — 1)
and Up(n — g — 2), where n — g € [my_1,m, — 1] is in the (g — 1)"* generation (non-
shifted). By [2] and Lemma 2.1 we know exactly the range of these values, so (1) follows
immediately. Finally, the value of T (m, + g) is readily computed as follows: by definition
Ty(mg+g) = Ur(my 4+ g) + Ur(mg + g — 1) + Uy (my + g — 2) = 39. By Theorem 4.3 in [2]
again, Ty(my, — 1) = To(my —2) = To(m, —3) = 37, so by the induction assumption on g and
direct substitution we have U;(m,+¢g) =Ti(my+g—1—-T1(my+9—1)) =T1(my+g—1—
To(mg+g—1—g)) =Ti(mg+g—1-39) =T1((3)39 " +149-1-39) =T1((3)39+g—1%) =
T1(mg—1—14g) = 3971, Similarly we have Uy (m,+g—1) = T1(my,+9—2—Ti(my+g—2)) =
Tl(mg+g—2—T0(mg+g—2—g)) :Tl(mg+g—2—39) :T1<mg_1—2+g) = 39_1
and Ui(mg + 9 —2) = Ti(mg + 9 =3 —Ti(mg + g —3)) = Ti(my + g — 3 — To(mg + g —
3—9) = Ti(my+9g—3-—3%) = Ti(my_y — 3+ g) = 39!, Summing these we obtain
Ty(mg + g) = 39 = To(m, — 1). Thus both (1) and (2) are confirmed for 7 (m, + ¢g). This
completes the “inner induction” on n, so the theorem is true for n € [m,_; + g, my, + g|, the
(g — 1)" shifted generation, as required. This completes the outer induction on g and hence
the proof of Theorem 2.2. O

3 The behavior of T, 3(n) for s > 1

Now we consider the behavior of the sequence generated by (1.1) with k& = 3, shift parameter
s > 1 and initial conditions T5(1) = T4(2) = Ts(3) = ... = Ts(s +3) = 1. Let Us(n) =
Ts(n—s—Ts(n—1)), so Ts(n) = Us(n)+Us(n—1) 4+ Us(n—2). (Note that here our notation
omits the subscript £ = 3). Our goal is to generalize Theorem 2.2 as follows:

Theorem 3.1. Let 2 < g. Forn € [my_1 + gs,my + (g + 1)s — 1], the shifted (g — 1)™"
generation, the following two statements hold:

(1) For n € [my_1 + gs,my + gs — 4], 3971 < Ty(n) < 39 and 3972 < Us(n),Us(n —
1),Us(n —2) <3971 Forn € [mg+gs—3,mg+ (g+1)s — 1], Ts(n) = 3% and Us(n) =
Usn—1)=Us(n—2)=39"1. We say (1) holds for the pair (s,g —1).

(2) Forn € [my_1+gs,my+(g+1)s—2|, Ts(n) = Ts_1(n—g). Forn € [my+gs—2,m,+
(g+1)s—1], Ts(n) = Ts_1(n—g —1). Forr € mg_1+g(s—1),my+ (g +1)(s — 1) — 1],
Ts_1(r) =Ts(r +g). We say (2) holds for the triple (s —1,s,9 — 1).
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Proof. Observe that for s = 1 we know that (1) holds for (1, g) for all g by Theorem 2.2, as
does (2) for the triple (s — 1,s,¢9) = (0,1, g) for all g.

For an arbitrary positive integer s greater than 1, we proceed by induction on s. By this
we mean that for all g we assume that (1) holds for all the s pairs (0, g),(1,9),...,(s—1,9)
and that (2) holds for the s — 1 triples (0,1, g),(1,2,9),...,(s—2,s—1, g). Our immediately
preceding observation establishes the base case for the induction argument.

We need to show that (1) holds for the pair (s, ¢g) and (2) holds for the triple (s —1, s, g).
To do this we imitate the proof of Theorem 2.2, once again applying a double induction on
both g and n (so overall a triple induction!). We begin with the so called “outer induction”
on g.

We first establish the base case for g = 2. From the initial conditions Ty(1) = T4(2) =
Ts(3) = ... = Ts(s + 3) = 1 we have, by direct substitution, Ts(s +4) = Ts(s +5) = ... =
Ts(2s + 6) = 3. Further direct computation yields that for n € [m,_1 + gs,m, + gs — 4] =
[7 4+ 25,12 + 2s] we have Ts(n) € (3,9) and Ug(n),Us(n — 1), Us(n — 2) € [1,3]. And similar
computation shows that for n € [m,+gs—3,m,+(g+1)s—1] = [13+2s, 15+ 3s], Ts(n) =9
and Us(n) = Us(n — 1) = Ug(n — 2) = 3. This confirms (1).

In a similar way we compute the values of T;_;(n—g). Combining these with the values of
Ts(n), we find that (2) is immediate. This concludes the base case for the “outer induction”,
that is, (1) holds for the pair (s,1) and (2) holds for the triple (s — 1, s, 1).

The induction assumption is that (1) holds for the pairs (s,1), (s,2),...,(s,g — 2) and
(2) holds for the triples (s — 1,s,1),(s —1,s,2),...,(s —1,s,9 — 2). We want to show that
(1) holds for the pair (s,g — 1) and (2) holds for the triple (s — 1,s,g — 1).

We proceed by an “inner induction” on n within the (g — 1) shifted generation, which is
the interval n € [m,_; +gs,my+ (g+1)s—1]. First we check the initial value n = m,_; +gs.
Specifically, we confirm that for this value of n, Ty(n) € (3971,39), Uy(n), Us(n—1),Us(n—2) €
(39723971 and further Ty(n) = T,_1(n — g).

Since n = m,_1+gs is the first term of the (g—1)" shifted generation, n—1 = m,_1+gs—1
is the last term of the (g — 2)' shifted generation. By the induction assumption on g, (1)
holds for (s, g —2). Thus Ty(n —1) = 3971, while Uy(n — 1) = Uy(n —2) = Us(n — 3) = 3972,
So Us(n) =Ts(n— s —Ts(n— 1)) = Ts(my—1 + gs — s — 3971) = Ty(my—2 + (g — 1)s). Note
that m, o + (g — 1)s is the first member of the (g — 2)™ shifted generation. Since there are
more than s + 3 terms in the generation and only the last s + 3 terms are powers of 3 it
follows by the induction assumption on g that Us(n) = Ts(my—a+ (g—1)s) € (3972,3971). So
Ts(n) = Us(n)+Us(n—1)+Us(n—2) € (3971,39) and Uy(n), Us(n—1),Us(n—2) € [3972,3971].
This confirms (1).

We prove (2) similarly. By the above argument Ug(n) = Ts(mgy—o + (g — 1)s), so by the
induction assumption on g that (2) holds for (s — 1,s,g — 2) we have Uy(n) = Ts(m,_o +
(9—1)s) =Ts_1(my—2+ (g — 1)(s — 1)). Since n = my_1 + gs, we have Ty_1(n —g — 1) =
Ts1(mg—1 + g(s — 1) — 1) = 397! by the induction assumption on s that (1) holds for
(s—1,9—2). SoUs—1(n—g) =Ts_1(n—g—s5—Ts_1(n—g—1)) = Ts_1(my_1+g(s—1)— (s —
=T 1(mg-14+9s—g—1)) = Ts_1(my_1—3"+(9—1)(s—1)) = Ts_1(my—2+(g—1)(s—1)).
Thus we get Us(n) = Ts_1(my—o+ (g —1)(s — 1)) = Us_1(n — g).

Note that n—g—1 = m,_1+g(s—1)—1is the last term of the (g—2)"" shifted generation
for the parameter (s—1). Hence by the induction assumption on s, Us_1(n—g—1) = Us_1(n—
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g—2)=Us_1(n—g— 3) = 3972, Recall we have shown above that Uy(n—1) = Uy(n—2) = 3972,
Thus Us(n — 1) = Us_1(n — g — 1) and Ug(n — 2) = Us_1(n — g — 2). Combining this with
Us(n) = Us_1(n — g), we have Ty(n) = Ts_1(n — g). This concludes the base case for the
“inner induction”.

For general n in the shifted (g — 1) generation, with n > m, 1 + gs, we suppose the
theorem is true for any number in this generation smaller than n, i.e. we suppose for any
i€ [mg_1+gs,n—1]=1I(s,g;n— 1), the following two statements hold:

(1) For i € [my_1 + gs,my +gs — 4 N I(s,g;n — 1), 3971 < Ty(i) < 39 and 3972 <
Us(i),Us(i — 1), Us(i — 2) < 397 Fori € [my+gs —3,my+ (g+1)s — 1N I(s,g;n— 1),
T,(i) = 39 and U,(i) = Uy(i — 1) = Uy(i — 2) = 3971, We say (1) holds for 1.

(2) Fori € [mg_1+gs,my+(g+1)s—2]N1I(s,g;n—1), Ts(i) = Ts_1(i — g). We say (2)
holds for .

We show now that both (1) and (2) are true for ¢ = n. This time we begin with (2).
Since Ts(n) = Us(n) + Us(n — 1) + Ug(n — 2) it’s sufficient to show Us(n) = Us_1(n —
9),Us(n — 1) = Us_1(n — g — 1), Us(n — 2) = Us_1(n — g — 2), from which we conclude
that Ty(n) = Ts_1(n — g). By the induction assumption on s we have that (1) holds for
(s—1,1),(s—1,2),...,(s—1,g —1). Thus we have a thorough understanding of the values
of T,_1, so we deal with U,_; first, working backwards.

As in the statement of (2) above, first we consider n € [m,_1 + gs,my + (g + 1)s — 2].
Thenn—g € [my_1+g(s—1),my+(g+1)(s—1)—1], which is the (g—1)" shifted generation
for parameter s — 1. Therefore by (1) for (s — 1,9 — 1) we have 397! < T,_;(n —g) < 3% and
392 <Us1(n—9),Us1(n—g—1),U;_1(n—g—2) <3971, By the definition of U we have
Uiln—9g)=Ts1(n—g—(s—1) =T, y(n—g—1)). But 392 < U,_1(n — g) <39! so
Toin—g—(s—1) =Ty 1(n—g—1)) €[397% 391

Further, by the induction assumption on (1) for (s — 1,9 —3) and (s — 1, g — 2) we have
that n—g—(s—1)—Ts_1(n—g—1) € [my_o+(9—2)(s—1)—3,my_1+¢g(s—1)—1]. But note
that this interval consists of the last three members of the (g — 3)" shifted generation for
parameter s — 1 together with all of the (g — 2)™ shifted generation for parameter s — 1. By
the induction assumption on g it follows that (2) holds for (s—1,s,g—3) and (s—1,s,9—2)
so it holds on this interval. Now let r =n — g — (s —1) — Ts_;(n — g — 1) which is in this
interval. Then we have Ty _1(r) = Ty(r + g — 1).

But by the induction assumption on the parameter n that (2) holds for n — 1 we have
Ti(n—1) =Ts—1(n—g—1). Thus Ts(r+g—1) = Ti(n—g—(s—1)—Ti-1(n—g—1)+g—1) =
Ts(n—g—(s—1)=Ts(n—1)4+g—1). The last term is just Us(n). But Ts_1(r) = Us_1(n—g).
Thus Us_1(n — g) = Us(n).

Similarly, Us_1(n—g—1) =T, 1(n—g—1—(s—1)=T,_1(n—g—2)) € [397%,397"] yields
n—g—1—(s—1)—T,_1(n—g—2) € [mg_o+(9—2)(s—1) —3,my_1+g(s—1) — 1] by the
same reason as above, while the same holds for Ts,_1(n—g—1—(s—1)—=T;_1(n—g—2)) =
Tsn—g—1—(s—1)=Ts1(n—g—2)+g—1) and Ts(n —2) = Ts_1(n — g — 2). Direct
substitution gives Us_1(n —g—1) =Ts(n — 1 — s —Ts(n —2)) = Us(n — 1). Further, by the
same reasoning, we have Us_;(n — g —2) = Us(n —2). Combining the three equations above
we get Ty(n) = Ts_1(n — g).

This proves the initial claim in (2). We conclude the proof of (2) below by directly
computing the value of Ts(m, + (g +1)s — 1), which is the value of T" at the last term in the
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shifted (g — 1) generation for parameter s.

To prove (1) first notice that the value of Ts(n) is just the value of T;_;(n — g), and the
values of Us(n), Us(n — 1), Ug(n — 2) are just the values of Us_1(n — g),Us_1(n — g — 1) and
Us_1(n—g—2), wheren—g € [my_1+g(s—1)+1,m,+(g+1)(s—1) — 1] is in the (g — 1)
shifted generation for parameter s — 1. By the induction assumption on s we know exactly
the range of these values, so (1) follows immediately.

Finally, we compute the value of Ts(m, + (¢ + 1)s — 1) as follows: by definition 7(m, +
(g+1)s—1) =Us(my+(9+1)s—1)+Us(mg+(g+1)s —2) + Us(my+ (g +1)s—3) = 39. By
the induction assumption on s, Ts_1(my+(g+1)(s—1)—1) = Ts_1(my+(g+1)(s—1)—2) =
Ts—1(my+(g+1)(s—1)—3) = 39. So by the induction assumption on g and direct substitution
we have Us(mg+(g+1)s—1) = Ts(my+(g+1)s—1—s—=Ts(my+(g+1)s—2)) = Ts(m,+(g+
Ds—1—s—Ts_1(my+(9+1)(s—1)—1)) = Ts(my+gs—1—39) = Ty(my_1—1+gs) = 3971
Recall above we've shown that Ug(m, + (g + 1)s — 2) = Us(my, + (g + 1)s — 3) = 397! since
my+(g+1)s—2is in the (g—1)™ shifted generation and is not the last term. Summing these
we obtain Ts(mg+(g+1)s—1) =39 = Ty_y(my+(9+1)(s—1)—1) = Ts_1(my+(g+1)s—1—
(g+1)). Thus both (1) and (2) are confirmed for T;(m,+(g+1)s—1). This finishes the proof
of both (1)and (2) for i = n. Thus the theorem is true for n € [my_1 +gs,my+ (g+1)s —1],
the (g — 1)™ shifted generation, thereby completing the “inner induction” on n.

This completes the “outer induction” on g and hence the induction on s. O]

4 The behavior of T ;(n) for s > 1 and odd &

The arguments in Section 2 and Section 3 for the case k£ = 3 rely on several key results
from [2], analogues of which hold for any odd k. Tt follows that we can generalize all of the
preceding, in particular Lemma 2.1 and Theorem 3.1, in a natural way. Because the proofs
would be entirely analogous to (but even more tedious than) the ones given above we limit
ourselves to a statement of these extensions.

Consider the recursion (1.1) with s > 0, odd & > 3, and the initial conditions T x(n) = 1
for 1 <n < s+k. Define Us r(n) = Tsx(n—s—Ts.(n—1)). Once again, as in Definition 5.7
in [2], for any g > 0 call the interval (of the domain of the sequence) [m,, my1 — 1] the g™
generation of the sequence T (n), written as gen(g), where my = 5 (k97 + k% — k — 1).

Lemma 4.1. Let 2 < g, and suppose that n is in the (g — 1) generation. Then k972 <
Usp(n),Us(n — 1),...,Usp(n — k + 1) < k9~Y. Moreover, if n is the last term of the
generation, then Ugy(n) = Usp(n —1) =+ =Ugp(n —k+1) = k971,

Theorem 4.2. Let s > 1 and 2 < g. Forn € [my_1 + gs,my + (g + 1)s — 1], the shifted
(g — 1) generation, the following two statements hold:

(1) If n is one of the last k+ s terms of the generation, then T (n) = k9 and U, (n) =
Usp(n—1) =+ =Ugp(n—k+1) = k971 If n is any other member of the generation, then
k9=' < Typ(n) < k9 and k972 < Usp(n),Usp(n — 1), ..., Usp(n —k +1) < k971

(2) If n is the last term of the generation, Tsk(n) = Ts—1x(n — g —1). If n is any other
member of the generation, then Tg(n) = Ts—1x(n — g).
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Table 5: First 180 terms of Tj 4(n) with initial values (1,1,1,1)

n n n
T 2 3 T 2 3 T ) 3
T(n +0) I I I T(n + 60) 16 46 49  T(n t 120) 94 91 91
T(n +3) 1 4 4 T(n + 63) 49 46 52 T(n+123) 94 94 94
T(n +6) 4 4 7 T(n + 66) 52 49 55  T(n+ 126) 97 97 94
T(n +9) 7 7 10 T(n+69) 52 52 58  T(n+129) 100 100 97
T(n + 12) 7 10 13 T(n+72) 55 55 58 T(n+132) 103 100 100
T(n+15) 10 13 13  T(n+75) 55 58 61  T(n+135) 106 103 103
T(n+18) 13 16 16  T(n+78) 58 61 61 T(n+138) 106 103 106
T(n+21) 16 16 16  T(n+81) 61 64 64 T(n+141) 109 106 109
T(n+24) 19 19 19  T(n+84) 64 64 64  T(n+144) 109 109 112
T(n+27) 22 19 22  T(n+87) 64 67 67 T(n+147) 112 112 112
T(n+30) 25 22 25  T(n+90) 67 70 67 T(n+150) 112 115 115
T(n+33) 25 25 28  T(n+93) 70 73 70 T(n+153) 115 118 115
T(n+36) 28 28 28  T(n+96) 73 73 73 T(n+156) 118 121 118
T(n+39) 31 31 31  T(n+99) 76 76 76  T(n+159) 121 121 121
T(n+42) 34 31 34 T(n+102) 76 79 79 T(n+162) 124 124 124
T(n+45) 37 34 37 T(n+105) 79 82 79  T(n+165) 124 127 127
T(n+48) 37 34 40 T(n+108) 82 8 82  T(n+168) 127 130 127
T(n+51) 40 37 43 T(n+111) 8 85 82 T(n+171) 130 133 130
T(n+54) 40 40 46  T(n+114) 8 88 85 T(n+174) 133 133 130
T(n+57) 43 43 46 T(n+117) 91 88 8  T(n+177) 136 136 133

n n n

S S T 2 3 T 7 3
T +0) I I T T(n+60) I3 43 46 T(n +120) 85 91 88
T(n +3) 1 1 4 T(n+63) 46 46 49 T(n+123) 88 94 91
T(n + 6) 4 4 4 T(n+66) 49 46 52 T(n+126) 91 94 94
T(n +9) 4 7 7 T(n+69) 52 49 55  T(n+ 129) 94 97 97
T(n + 12) 7 10 7 T(n+72) 52 52 58  T(n+ 132) 94 100 100
T(n+15) 10 13 10  T(n+75) 55 55 58  T(n+135) 97 103 100
T(n+18) 13 13 13  T(n+78) 55 58 61 T(n+138) 100 106 103
T(n+21) 16 16 16  T(n+81) 58. 61 61  T(n+141) 103 106 103
T(n+24) 16 16 16  T(n+ 84) 61 64 64 T(n+144) 106 109 106
T(n+27) 19 19 19  T(n+87) 64 64 64 T(n+147) 109 109 109
T(n+30) 22 19 22  T(n+90) 64 64 67  T(n+150) 112 112 112
T(n+33) 25 22 25  T(n+93) 67 67 70 T(n+153) 112 112 115
T(n+36) 25 25 28  T(n+96) 67 70 73  T(n+156) 115 115 118
T(n+39) 28 28 28  T(n+99) 70 73 73 T(n+159) 115 118 121
T(n+42) 31 31 31 T(n+102) 73 76 76 T(n+162) 118 121 121
T(n+45) 34 31 34 T(n+105) 76 76 79  T(n+165) 121 124 124
T(n+48) 37 34 37 T(n+108) 79 79 82 T(n+168) 124 124 127
T(n+51) 37 34 40 T(n+111) 79 82 85  T(n+171) 127 127 130
T(n+54) 40 37 43  T(n+114) 8 8 85  T(n+174) 127 130 133
T(n+57) 40 40 46 T(n+117) 82 88 8  T(n+177) 130 133 133

Table 7: First 180 terms of 75 4(n) with initial values (1,1,1,1,1,1)

n n n

T 2 3 T 2 3 T 7 3
Tn +0) I I T T(n+60) 40 40 46 T(n + 120) 35 82 88
T(n +3) 1 1 1 T(n+63) 43 43 46 T(n+123) 88 85 91
T(n + 6) 4 4 4 T(n+66) 46 46 49  T(n+ 126) 88 88 94
T(n +9) 4 4 4 T(n+69) 49 46 52 T(n+129) 91 91 94
T(n + 12) 7 7 7 T(n+72) 52 49 55  T(n+132) 94 94 97
T(n+15) 10 7 10  T(n+75) 52 52 58  T(n+ 135) 97 94 100
T(n+18) 13 10 13  T(n+78) 55 55 58  T(n+138) 100 97 103
T(n+21) 13 13 16  T(n+81) 55 58 61  T(n+141) 100 100 106
T(n+24) 16 16 16  T(n+ 84) 58 61 61  T(n+144) 103 103 106
T(n+27) 16 16 16  T(n+87) 61 64 64 T(n+147) 103 106 109
T(n+30) 19 19 19  T(n+90) 64 64 64 T(n+150) 106 109 109
T(n+33) 22 19 22  T(n+93) 64 64 64 T(n+153) 109 112 112
T(n+36) 25 22 25  T(n+96) 67 67 67 T(n+156) 112 112 112
T(n+39) 25 25 28  T(n+99) 70 67 70  T(n+159) 115 115 115
T(n+42) 28 28 28 T(n+102) 73 70 73 T(n+162) 118 115 118
T(n+45) 31 31 31 T(n+105) 73 73 76  T(n+165) 121 118 121
T(n+48) 34 31 34 T(n+108) 76 76 76 T(n+168) 121 121 124
T(n+51) 37 34 37 T(n+111) 79 79 79  T(n+171) 124 124 124
T(n+54) 37 34 40 T(n+114) 82 79 82  T(n+174) 127 127 127
T(n+57) 40 37 43 T(n+117) 85 82 85 T(n+177) 130 127 130
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5 Conjectures for even k

For even k the effect of the shift parameter s on the behavior of the sequences generated
by (1.1) with the initial conditions Tsx(n) = 1 for 1 < n < s+ k appears to be quite
similar. We conjecture that the sequences T x(n) and Tjx(n) are essentially the same, with
the only differences in these sequences occurring in the frequencies with which the powers
of k occur. In particular, in the sequence T ;(n) we conjecture that each value k" occurs
precisely s + k + (r — 1) times. See Tables 5, 6, and 7 for an example of this for £ = 4 and
s=0,1 and 2.

Observe that if the conjectures relating to even k in [2] hold then it should be possible to
prove our present conjectures by following an approach analogous to the one adopted above.
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