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Abstract

In this paper we give a unified asymptotic formula for the partial gcd-sum function.
We also study the mean-square of the error in the asymptotic formula.

1 Introduction

Pillai [6] first defined the ged-sum (Pillai’s function) by the relation

g(n) == 3 ged(j,m). 0
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where ged(a,b) denotes the greatest common divisor of a and b. This is Sequence A018804
in Sloane’s Online Encyclopedia of Integer Sequences. Pillai [6] proved that

=ny L

dln

where ¢(n) is Euler’s function. This fact was proved again by Broughan [2]. He also obtained
the asymptotic formula of the partial sum function

=> g(n)n~

n<x

for any a € R, which was further improved in Bordelles [1] (the case a = 0) and Broughan
[3] (the general case) respectively.
The estimate of G, (z) is closely related to the well-known Dirichlet divisor problem. For

any z > 0, define

Zd ) —z(logz + 2y — 1),

n<z
where d(n) denotes the Dirichlet divisor function and v is Euler’s constant. Dirichlet first
proved that A(z) = O(z'/?). The exponent 1/2 was improved by many authors. The latest
result reads

A(z) < 2131416 (g 1) 26947/8320, 2)
due to Huxley [4]. It is conjectured that
A(z) = O(a'*+), (3)
which is supported by the classical mean square result
/ : A*(z)de = 3/2) 2L T2 L O(T log T) (4)
| 672¢(3)

proved by Tong [7].
In the sequel of this paper, 6 denotes the number defined by

= inf{a| A(r) < 2°}. (5)

Broughan [3] proved that
(1) If « <146, then

o) — 7 %log x 2 1 ]d(®)

o) =G mre * T 7 e )
O )

(2) If 1460 < a < 2, then

r? % log x 2 Rt
@—ax@f+@—ax@>@7 )

Golz) =

2—a  ((2)
+0(1); (7)
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(3) If a = 2, then

(4) If > 2, then
27041 2—a 1 (2
Gal) =52 + = (27——2 - ))

(2—a)((2)  (2—a)((2) —a (2
CQ(Oé —1) pOHl-ate
+ —C(Oé) + O( ). (9)

In this paper we first give a unified asymptotic formula of G, (z). Before stating our
result, we introduce the following definitions:

2—al 2—a 1 /2
X Ogl’+ X <2,7_ _C())’ 1fOz7é2,

T i MR AR 0
ogx_(((2)+ 27)log:c, if =2,
20(2)  \¢*2) <2
and
(0, if g <0;
o(8) i ﬁ/ooo A(m)i_’g_ldx, if0< B <1; (1)
2y —1 +/ A(x)r2dz, if B=1;
L), it 5> 1.
We then have
Theorem 1. Suppose a € R is fized. Then
Go(z) = My (z) + C() + Oty (12)
where
0, if a <1,
cla—1)/¢(a), if 1<a<2;
— c(1 2C%(2) — ¢(2)¢"(2 2~('(2 ,
Ol = ), KGO _24Q)
\ %, if o> 2.

Remark 1. Theorem 1 slightly improves Broughan’s result in the case 1 +60 < o < 2.
Define the error term E,(z) by

E.(z) := Gu(x) — My(z) — C(a).

For this error term, we have the following mean square results.
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Theorem 2. For any fivred o € R, we have the asymptotic formula
T
/ 2072 F2 (2)dr = CLT3/? + O(T/*9), (13)
1

where

Cy = # SR Y2, ho(n) = 3 plm)d(ym 2

Corollary 1. If a < 7/4, then

g 2 3Cy 7/2—2a 13/4—2a+e
1 Oé

For the upper bound of E,(x), we propose the following conjecture.
Conjecture. The estimate
Ea(IL’) < 3:5/4—04-1-5

holds for any o € R.

Throughout this paper, € denotes an arbitrary small positive number which does not
need to be the same at each occurrence. When the summation conditions of a sum are
complicated, we write the conditions separately like SC(X).

2 Proof of Theorem 1

In this section we prove Theorem 1. First we prove the following

Lemma 2.1. Suppose 3 € R\ {0} and define Dg(x) := > __d(n)n=?. Then we have

' Plogz  atP 1
Do) =5~ *1-5 (27_ 1—ﬂ>
+ ¢(B) + 27 PA(z) + O(z77) for B #1 (15)
and )
Di(a) = 222 4 2yloga +e(1) + Alw)a~ + O™, (16)

where ¢(3) is defined in (1.10).



Proof. First consider the case 3 < 1. By integration by parts we have

Da(w) = Y d(n)n? = / 184D

0

0<n<lzx
= / t=PdH (t) + / tPdA(t)
0 0

:/ t‘ﬁ(logt+27)dt+t_ﬁA(t)‘:+5/ At P at
0 0

l—ﬁl 1-3 1
_r osr  * (27 — —> + 77 A(x)

1-5 '1-8 1-3
' N ! 17
5 [ A (17)
where
D(t) =) d(n)
and i

H(t) =tlogt + (2y — 1)t.
Note that, from the definition of A(z),
A(x) = —xlogzr — (2y — 1)z

for 0 < 2 < 1, which implies that the integral fol A(t)t~P~1dt is convergent. To treat the
last integral in (2.3) we recall the well-known formula (see Voronoi [8])

T
/ A(x)dr = T/4 4+ O(T3%), (18)
0
which combined with integration by parts gives
3 / AP ldt < 2? (3 <0) (19)
0

and -
3 / AP dt < 2 (3> 0). (20)

Especially, (2.6) shows that the infinite integral [ A(£)t7~'dt converges in the case § > 0.
The assertion of Lemma 2.1 for the case 5 < 1 follows from (2.3), (2.5) and (2.6).

Next consider the case 3 > 1. Since the infinite series > oo, d(n)n" converges to ¢*(3),
we may write

Ds(x) = ¢3(8) = ) _d(n)n™". (21)

n>x



By integration by parts and (2.6) we get

> d(nn = / h t=PdH (t) + / Oot—ﬁdA(t)

n>x

_/ t_’B(logt—i-27)dt+t_BA(t)\g°+ﬁ/ APt

T

1-81 1-8 1
e R (% - m) —o PA@) + 0@ ). (22)

The assertion of Lemma 2.1 for the case 5 > 1 follows from (2.7) and (2.8).
Finally consider the case f = 1. We have

= 1+/1x t1dH(t) +/1w t L dA(t)

=1+ / t(logt + 27y)dt + A(t)t !
1

B log? z

/1 ) A(t)t2dt

+2vlogx + 14+ Alx)r™! — A1) + / At 2dt + O(z™)
1

2 [e.e]
T g2y -1t / A@)t*dt + A(z)z + O(x™),  (23)
1

where we used (2.6) and the fact A(1) = 2 — 2y which follows from the definition of A(z).
This completes the proof of Lemma 2.1. m
Proof of Theorem 1. Broughan [3] proved that

Go(z) =Y p(m)ym™ Y d(n)n'~ (24)

m<z n<z/m

From (2.10), Lemma 2.1 and some easy calculations, we get

Go(z) = My(x) + C(a) + Eu(x), (25)
where
By B pm +0( 1=a log 1), (26)

which is O(zF17%*¢) | completing the proof of Theorem 1.
Remark 2. Voronoi [8] actually proved

T 3/4
/0 A(x)dx = L —|— 27\;_7T2 Z i(g)/z sin(4mV/nT — 7/4) + O(TY*). (27)

Replacing the formula (2.4) in the proof of Lemma 2.1 it is easy to check that logz in the
error term of (2.12) can be removed.



3 Proof of Theorem 2

In order to prove Theorem 2 we need the following well-known Voronoi formula (see, e.g.,
Ivié [5]).

Lemma 3.1. Suppose A > 0 is any fived constant. If 1 < N < x4, then

2174

d
Ax) = n(;/lz cos (477\/713; — %) +O0(f + xl/%EN*l/Q).

™

It suffices to evaluate the integral fTQT 2?2 F2(x)dz. Let
y="T""°
By (2.12) we have
x (x) Z—m - + Z Al + O(log z)

m=y y<m<=<x

=: Fi(z) + Fy(x) + O(log x),
say. For Fy(z), we have A(x/m) < (x/y)"/? < T¢, therefore

Fy(z) < > %‘A (%)‘«T?

y<m<z

For Fi(x), we can take N = y in Lemma 3.1 with a suitable A (e.g., A = (1 +¢)/e), hence
we get

Fi(x) = E*(x) + O(T7),

E(z) = 31; 1) S 00 cos (47r\/% - %) |

m<y n<y

where

As a result we get an expression of 2% 1 E,(x):
2 B, (z) = E*(z) + O(T"). (28)
Now we consider the mean square of E*(z). By the elementary formula

1
COSUCOSV = §(COS (u —v) 4 cos (u +v))

we may write

/2 mq ) (Mo ny)d(ngy
wp oty A s~ dondo)

2 mi1,ma<y (m1m2)5/4 n1,n2<y (n1n2)3/4
X cos | 4 mr_ T cos | 4m Mt T
ma 4 meo 4



where
Sy (z) = z!/ QZ p(ma)p(me) d(ny)d(ns)

472

i) = 5 S, i g o (s (- o))
xl/?

A 2 ).

with summation conditions

Sg((l]) =

50(21) Sy, Mo, Ny, No S Y, n1mseo = NoMy,
SC(X2) : my,ma,ny,ng <y, nymy # nomy,

80(23) My, Mo, M1, N2 S Y,

respectively.
We have - -
B(T
/ Si(z)dx = ( 2) / 212 dx,
T 4m T
where

mi mo d nq d N9
B(T) = Zl H(<m1731i()5/4) ((n1712>(3/4).

We evaluate B(T). It is written as

B(T) = Zl p(my) p(ms)d(ny)d(ny) (mymsy) /2

(71171”627127711)3/4
= > Wy,
n<y?
where
Wi g) = 3 plm)d(ym2,
i<y
Let
ho(n) = Y p(m)d(lym™""?, hy(n) =Y d(lym™'/>.
n=mil n=ml
Obviously,

h(n;y) = ho(n), n <y,
|h(n;y)| < ha(n),  |ho(n)| < ha(n),n > 1.

Since hy(n) is a multiplicative function, by using Euler’s product, it is easy to show that

> i)t = (M(s)M(s), s> 1,

8



where M (s) is regular for fts > 1/2. Thus

th < zlog’ .

n<x

From the above estimates we get

= Z h2(n)n=32 + 0O Z h2(n)n =3/

n<y y<n<y?

= Z h2(n)n=32 + 0O <Z h%(n)n3/2>
n=1 n>y

= Z h2(n)n=32 + O(y~"*1log?y). (31)

Next we consider the integral of Sy(z). By the first derivative test we get

ni ng
mi ma2

Noures mzml!

2T )
d T
T < Z (mams) 5/4 (nna)?/

T

<T
2 mmlmmz 3/4

1
<7y 4
/4 3/4 _
pi, MR = /m]
n#m

ds(m)ds(n) 1
Z M3 | n — /m)

<T

n,m<y?

VA= /m|2 § (mn)1/4

dg(m)d3(n) 1
+7T Z n3/4m3/4 |\/__\/M|

n,m<y>

0<\\/ﬁ—\/771|<%(mn)1/4

1
-1
<T ng(n)n +T Z n1/2m1/2 In —m|

n<y? n,m<y?
n#m
< Tlog’ T+T Y din)n ' < Tlog"T, (32)
n<y?

where we used the well-known Hilbert’s inequality and the estimates

Z d3(n) < zlog” m, Z di(n) < xlog®x.

n<x n<x



For the integral of S3(z), by the first derivative test again, we get

WT Vi
<<T23( d(n1)d(n»)

mymg)®/4(ning)?/ (Ji1 )1/4(;?2)1/4

2T )
x)d T
T Z (mams) 5/4 ()1

T

<TY M«ng T. (33)

3 M1Mmoning

From (3.2)-(3.6) we get

2T 27
/ |E*(z)? dx— Zhg _3/2/ 22 dx

T T

+ O(T3/2 21063 T + T'log” T)
2T

h2 3/2/ 1/2d 9] T1+€ ) 34
- Z [ araa o) (34)
From (3.1), (3.7) and Cauchy’s inequality we get
2T 1 & oT
/ 22072 B, (x)2dx = 4—2 n=3/? / o2 dx + O(TP/4+), (35)
T - T

which implies Theorem 2 by a splitting argument.

Remark 3. The referee kindly indicated that the average order of h%(n) is also derived by
Shiu’s theorem. Indeed, since h;(n) < ds(n) < n° we have

Z h2 exp (Z @)

n<z p<zx

T 4 4 1
fogz (Z (5*@*?))

p<z

<

< z(logx).
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