

A Generalized Recurrence for Bell Numbers

Michael Z. Spivey Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington 98416-1043 USA mspivey@ups.edu

Abstract

We show that the two most well-known expressions for Bell numbers, $\varpi_n = \sum_{k=0}^n {n \\ k}$ and $\varpi_{n+1} = \sum_{k=0}^n {n \\ k} \varpi_k$, are both special cases of a third expression for the Bell numbers, and we give a combinatorial proof of the latter.

1 Introduction

In previous work [2] we derived formulas that have as special cases expressions for the sums $\sum_{j=0}^{n} j^{m} {n \choose j}$ and $\sum_{j=0}^{n} j^{m} {n \choose j}$, where ${n \choose j}$ is a binomial coefficient (A007318) and ${n \choose j}$ is a Stirling cycle number (or Stirling number of the first kind, A008275). However, our approach does not work for the corresponding sum $\sum_{j=0}^{n} j^{m} {n \choose j}$ involving Stirling subset numbers ${n \choose j}$ (or Stirling numbers of the second kind, A008277). By modifying our approach, though, we realized that $\sum_{j=0}^{n} j^{m} {n \choose j}$ can be expressed as a linear combination of Bell numbers (A000110). After some algebraic manipulation we found ourselves with a new expression for the Bell number ϖ_{m+n} , one that generalizes the two most common expressions for Bell numbers. The purpose of this short note is to give a simple combinatorial proof of that generalization.

2 Main Result

The Bell number ϖ_m is the number of ways to partition a set of *m* objects. For example, $\varpi_3 = 5$ because there are five ways to partition the set $\{1, 2, 3\}$:

 $\{1,2,3\}; \ \{1,2\} \cup \{3\}; \ \{1,3\} \cup \{2\}; \ \{2,3\} \cup \{1\}; \ \{1\} \cup \{2\} \cup \{3\}.$

There is no known simple closed-form expression for ϖ_m . The two most well-known expressions for the Bell numbers are the following [1, pp. 373, 566]:

$$\varpi_m = \sum_{j=0}^m \left\{ m \atop j \right\} \tag{1}$$

and

$$\varpi_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \varpi_k.$$
⁽²⁾

The following generalizes both (1) and (2):

$$\varpi_{n+m} = \sum_{k=0}^{n} \sum_{j=0}^{m} j^{n-k} {m \choose j} {n \choose k} \varpi_k.$$
(3)

(We take 0^0 to be 1.) Equations (1) and (2) are the special cases n = 0 and m = 1, respectively.

Proof. Given a set of m objects and a set of n objects, one can count the number of ways to partition these m + n objects in the following manner. Partition the set of size m into exactly j subsets; there are $\binom{m}{j}$ ways to do this. Choose k of the objects from the set of size n to be partitioned into new subsets, and distribute the remaining n - k objects among the j subsets formed from the set of size m. There are $\binom{n}{k}$ ways to choose the k objects, ϖ_k ways to partition them into new subsets, and j^{n-k} ways to distribute the remaining n - k objects, ϖ_k objects among the j subsets. Thus there are $j^{n-k} \binom{m}{j} \binom{n}{k} \varpi_k$ partitions if the set of size m is partitioned into j subsets and k objects from the set of size n are chosen to form new subsets. Summing over all possible values of j and k yields all ways to partition the m + n objects.

References

- Ronald L. Graham, Donald E. Knuth, Oren Patashnik, *Concrete Mathematics*, 2nd ed., Addison-Wesley, 1994.
- [2] Michael Z. Spivey, Combinatorial sums and finite differences, *Discrete Math.* 307 (2007), 3130–3146.

2000 Mathematics Subject Classification: Primary 11B73.

Keywords: Bell number, Stirling number.

Received January 11 2008; revised version received May 27 2008. Published in *Journal of Integer Sequences*, June 23 2008.

Return to Journal of Integer Sequences home page.