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Abstract

For the sequence defined by a(n) = a(n − 1) + gcd(n, a(n − 1)) with a(1) = 7 we
prove that a(n) − a(n − 1) takes on only 1’s and primes, making this recurrence a
rare “naturally occurring” generator of primes. Toward a generalization of this result
to an arbitrary initial condition, we also study the limiting behavior of a(n)/n and a
transience property of the evolution.

1 Introduction

Since antiquity it has been intuited that the distribution of primes among the natural num-
bers is in many ways random. For this reason, functions that reliably generate primes have
been revered for their apparent traction on the set of primes.

Ribenboim [11, p. 179] provides three classes into which certain prime-generating func-
tions fall:

(a) f(n) is the nth prime pn.

(b) f(n) is always prime, and f(n) 6= f(m) for n 6= m.

(c) The set of positive values of f is equal to the set of prime numbers.

Known functions in these classes are generally infeasible to compute in practice. For example,
both Gandhi’s formula
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[4], where Pn = p1p2 · · · pn, and Willans’ formula
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[13] satisfy condition (a) but are essentially versions of the sieve of Eratosthenes [5, 6].
Gandhi’s formula depends on properties of the Möbius function µ(d), while Willans’ formula
is built on Wilson’s theorem. Jones [7] provided another formula for pn using Wilson’s
theorem.

Functions satisfying (b) are interesting from a theoretical point of view, although all
known members of this class are not practical generators of primes. The first example was
provided by Mills [10], who proved the existence of a real number A such that ⌊A3n

⌋ is prime
for n ≥ 1. The only known way of finding an approximation to a suitable A is by working
backward from known large primes. Several relatives of Mills’ function can be constructed
similarly [2].

The peculiar condition (c) is tailored to a class of multivariate polynomials constructed
by Matiyasevich [9] and Jones et al. [8] with this property. These results are implementations
of primality tests in the language of polynomials and thus also cannot be used to generate
primes in practice.

It is evidently quite rare for a prime-generating function to not have been expressly
engineered for this purpose. One might wonder whether there exists a nontrivial prime-
generating function that is “naturally occurring” in the sense that it was not constructed to
generate primes but simply discovered to do so.

Euler’s polynomial n2 − n + 41 of 1772 is presumably an example; it is prime for 1 ≤
n ≤ 40. Of course, in general there is no known simple characterization of those n for which
n2 − n + 41 is prime. So, let us revise the question: Is there a naturally occurring function
that always generates primes?

The subject of this paper is such a function. It is recursively defined and produces a
prime at each step, although the primes are not distinct as required by condition (b).

The recurrence was discovered in 2003 at the NKS Summer School1, at which I was a
participant. Primary interest at the Summer School is in systems with simple definitions
that exhibit complex behavior. In a live computer experiment led by Stephen Wolfram, we
searched for complex behavior in a class of nested recurrence equations. A group led by
Matt Frank followed up with additional experiments, somewhat simplifying the structure of
the equations and introducing different components. One of the recurrences they considered
is

a(n) = a(n − 1) + gcd(n, a(n − 1)). (1)

They observed that with the initial condition a(1) = 7, for example, the sequence of differ-
ences a(n)−a(n−1) = gcd(n, a(n−1)) (sequence A132199) appears chaotic [3]. When they

1 The NKS Summer School (http://www.wolframscience.com/summerschool) is a three-week program
in which participants conduct original research informed by A New Kind of Science [14].
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presented this result, it was realized that, additionally, this difference sequence seems to be
composed entirely of 1’s and primes:

1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 47, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 3, 1, 1, 7, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 467, 3,

1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

While the recurrence certainly has something to do with factorization (due to the gcd),
it was not clear why a(n)−a(n−1) should never be composite. The conjecture was recorded
for the initial condition a(1) = 8 in sequence A084663.

The main result of the current paper is that, for small initial conditions, a(n)− a(n− 1)
is always 1 or prime. The proof is elementary; our most useful tool is the fact that gcd(n,m)
divides the linear combination rn + sm for all integers r and s.

At this point the reader may object that the 1’s produced by a(n)− a(n− 1) contradict
the previous claim that the recurrence always generates primes. However, there is some
local structure to a(n), given by the lemma in §3, and the length of a sequence of 1’s can
be determined at the outset. This provides a shortcut to simply skip over this part of the
evolution directly to the next nontrivial gcd. By doing this, one produces the following
sequence of primes (sequence A137613).

5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3, 7, 1889, 3, 3779, 3, 7559, 3, 13,

15131, 3, 53, 3, 7, 30323, 3, 60647, 3, 5, 3, 101, 3, 121403, 3, 242807, 3, 5, 3, 19, 7, 5, 3, 47, 3, 37, 5, 3, 17,

3, 199, 53, 3, 29, 3, 486041, 3, 7, 421, 23, 3, 972533, 3, 577, 7, 1945649, 3, 163, 7, 3891467, 3, 5, 3, 127, 443,

3, 31, 7783541, 3, 7, 15567089, 3, 19, 29, 3, 5323, 7, 5, 3, 31139561, 3, 41, 3, 5, 3, 62279171, 3, 7, 83, 3, 19,

29, 3, 1103, 3, 5, 3, 13, 7, 124559609, 3, 107, 3, 911, 3, 249120239, 3, 11, 3, 7, 61, 37, 179, 3, 31, 19051, 7,

3793, 23, 3, 5, 3, 6257, 3, 43, 11, 3, 13, 5, 3, 739, 37, 5, 3, 498270791, 3, 19, 11, 3, 41, 3, 5, 3, 996541661, 3,

7, 37, 5, 3, 67, 1993083437, 3, 5, 3, 83, 3, 5, 3, 73, 157, 7, 5, 3, 13, 3986167223, 3, 7, 73, 5, 3, 7, 37, 7, 11, 3,

13, 17, 3, . . .

It certainly seems to be the case that larger and larger primes appear fairly frequently.
Unfortunately, these primes do not come for free: If we compute terms of the sequence
without the aforementioned shortcut, then a prime p appears only after p−3

2
consecutive 1’s,

and indeed the primality of p is being established essentially by trial division. As we will
see, the shortcut is much better, but it requires an external primality test, and in general
it requires finding the smallest prime divisor of an integer ∆. So although it is naturally
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n ∆(n) g(n) a(n) a(n)/n
1 7 7
2 5 1 8 4
3 5 1 9 3
4 5 1 10 2.5
5 5 5 15 3
6 9 3 18 3
7 11 1 19 2.71429
8 11 1 20 2.5
9 11 1 21 2.33333

10 11 1 22 2.2
11 11 11 33 3
12 21 3 36 3
13 23 1 37 2.84615
14 23 1 38 2.71429
15 23 1 39 2.6
16 23 1 40 2.5
17 23 1 41 2.41176
18 23 1 42 2.33333
19 23 1 43 2.26316
20 23 1 44 2.2
21 23 1 45 2.14286
22 23 1 46 2.09091
23 23 23 69 3
24 45 3 72 3
25 47 1 73 2.92
26 47 1 74 2.84615
27 47 1 75 2.77778
28 47 1 76 2.71429
29 47 1 77 2.65517
30 47 1 78 2.6
31 47 1 79 2.54839
32 47 1 80 2.5

n ∆(n) g(n) a(n) a(n)/n
33 47 1 81 2.45455
34 47 1 82 2.41176
35 47 1 83 2.37143
36 47 1 84 2.33333
37 47 1 85 2.2973
38 47 1 86 2.26316
39 47 1 87 2.23077
40 47 1 88 2.2
41 47 1 89 2.17073
42 47 1 90 2.14286
43 47 1 91 2.11628
44 47 1 92 2.09091
45 47 1 93 2.06667
46 47 1 94 2.04348
47 47 47 141 3
48 93 3 144 3
49 95 1 145 2.95918
50 95 5 150 3
51 99 3 153 3
52 101 1 154 2.96154
53 101 1 155 2.92453
54 101 1 156 2.88889

...
...

...
...

...
99 101 1 201 2.0303

100 101 1 202 2.02
101 101 101 303 3
102 201 3 306 3
103 203 1 307 2.98058
104 203 1 308 2.96154
105 203 7 315 3
106 209 1 316 2.98113

Table 1: The first few terms for a(1) = 7.

occurring, the recurrence, like its artificial counterparts, is not a magical generator of large
primes.

We mention that Benoit Cloitre [1] has considered variants of Eq. (1) and has discovered
several interesting results. A striking parallel to the main result of this paper is that if

b(n) = b(n − 1) + lcm(n, b(n − 1))

with b(1) = 1, then b(n)/b(n−1)−1 (sequence A135506) is either 1 or prime for each n ≥ 2.

2 Initial observations

In order to reveal several key features, it is worth recapitulating the experimental process
that led to the discovery of the proof that a(n)− a(n− 1) is always 1 or prime. For brevity,
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let g(n) = a(n) − a(n − 1) = gcd(n, a(n − 1)) so that a(n) = a(n − 1) + g(n). Table 1 lists
the first few values of a(n) and g(n) as well as of the quantities ∆(n) = a(n − 1) − n and
a(n)/n, whose motivation will become clear presently. Additional features of Table 1 not
vital to the main result are discussed in §5.

One observes from the data that g(n) contains long runs of consecutive 1’s. On such a
run, say if g(n) = 1 for n1 < n < n1 + k, we have

a(n) = a(n1) +

n−n1
∑

i=1

g(n1 + i) = a(n1) + (n − n1), (2)

so the difference a(n) − n = a(n1) − n1 is invariant in this range. When the next nontrivial
gcd does occur, we see in Table 1 that it has some relationship to this difference. Indeed, it
appears to divide

∆(n) := a(n − 1) − n = a(n1) − 1 − n1.

For example 3 | 21, 23 | 23, 3 | 45, 47 | 47, etc. This observation is easy to prove and is a
first hint of the shortcut mentioned in §1.

Restricting attention to steps where the gcd is nontrivial, one notices that a(n) = 3n
whenever g(n) 6= 1. This fact is the central ingredient in the proof of the lemma, and it
suggests that a(n)/n may be worthy of study. We pursue this in §4.

Another important observation can be discovered by plotting the values of n for which
g(n) 6= 1, as in Figure 1.

20 40 60 80
j

100

104

106

n j

Figure 1: Logarithmic plot of nj, the jth value of n for which a(n) − a(n − 1) 6= 1, for the
initial condition a(1) = 7. The regularity of the vertical gaps between clusters indicates local
structure in the sequence.

The values of n for which g(n) 6= 1 occur in clusters, each cluster initiated by a large prime
and followed by small primes interspersed with 1’s. The ratio between the index n beginning
one cluster and the index ending the previous cluster is very nearly 2, which causes the
regular vertical spacing seen when plotted logarithmically. With further experimentation
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one discovers the reason for this, namely that when 2n − 1 = p is prime for g(n) 6= 1,
such a “large gap” between nontrivial gcds occurs (demarcating two clusters) and the next
nontrivial gcd is g(p) = p. This suggests looking at the quantity 2n − 1 (which is ∆(n + 1)
when a(n) = 3n), and one guesses that in general the next nontrivial gcd is the smallest
prime divisor of 2n − 1.

3 Recurring structure

We now establish the observations of the previous section, treating the recurrence (1) as a
discrete dynamical system on pairs (n, a(n)) of integers. We no longer assume a(1) = 7; a
general initial condition for the system specifies integer values for n1 and a(n1).

Accordingly, we may broaden the result: In the previous section we observed that
a(n)/n = 3 is a significant recurring event; it turns out that a(n)/n = 2 plays the same
role for other initial conditions (for example, a(3) = 6). The following lemma explains the
relationship between one occurrence of this event and the next, allowing the elimination of
the intervening run of 1’s. We need only know the smallest prime divisor of ∆(n1 + 1).

Lemma 1. Let r ∈ {2, 3} and n1 ≥
3

r−1
. Let a(n1) = rn1, and for n > n1 let

a(n) = a(n − 1) + gcd(n, a(n − 1))

and g(n) = a(n)−a(n−1). Let n2 be the smallest integer greater than n1 such that g(n2) 6= 1.
Let p be the smallest prime divisor of

∆(n1 + 1) = a(n1) − (n1 + 1) = (r − 1)n1 − 1.

Then

(a) n2 = n1 + p−1
r−1

,

(b) g(n2) = p, and

(c) a(n2) = rn2.

Brief remarks on the condition (r − 1)n1 ≥ 3 are in order. Foremost, this condition
guarantees that the prime p exists, since (r−1)n1 −1 ≥ 2. However, we can also interpret it
as a restriction on the initial condition. We stipulate a(n1) = rn1 6= n1 +2 because otherwise
n2 does not exist; note however that among positive integers this excludes only the two initial
conditions a(2) = 4 and a(1) = 3. A third initial condition, a(1) = 2, is eliminated by the
inequality; most of the conclusion holds in this case (since n2 = g(n2) = a(n2)/n2 = 2), but
because (r − 1)n1 − 1 = 0 it is not covered by the following proof.

Proof. Let k = n2 − n1. We show that k = p−1
r−1

. Clearly p−1
r−1

is an integer if r = 2; if r = 3

then (r − 1)n1 − 1 is odd, so p−1
r−1

is again an integer.
By Eq. (2), for 1 ≤ i ≤ k we have g(n1 + i) = gcd(n1 + i, rn1−1+ i). Therefore, g(n1 + i)

divides both n1 + i and rn1 − 1 + i, so g(n1 + i) also divides both their difference

(rn1 − 1 + i) − (n1 + i) = (r − 1)n1 − 1
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and the linear combination

r · (n1 + i) − (rn1 − 1 + i) = (r − 1)i + 1.

We use these facts below.
k ≥ p−1

r−1
: Since g(n1 + k) divides (r− 1)n1 − 1 and by assumption g(n1 + k) 6= 1, we have

g(n1 + k) ≥ p. Since g(n1 + k) also divides (r − 1)k + 1, we have

p ≤ g(n1 + k) ≤ (r − 1)k + 1.

k ≤ p−1
r−1

: Now that g(n1 + i) = 1 for 1 ≤ i < p−1
r−1

, we show that i = p−1
r−1

produces a
nontrivial gcd. We have

g(n1 + p−1
r−1

) = gcd
(

n1 + p−1
r−1

, rn1 − 1 + p−1
r−1

)

= gcd

(

((r − 1)n1 − 1) + p

r − 1
,
r · ((r − 1)n1 − 1) + p

r − 1

)

.

By the definition of p, p | ((r − 1)n1 − 1) and p ∤ (r − 1). Thus p divides both arguments of
the gcd, so g(n1 + p−1

r−1
) ≥ p.

Therefore k = p−1
r−1

, and we have shown (a). On the other hand, g(n1 + p−1
r−1

) divides

(r − 1) · p−1
r−1

+ 1 = p, so in fact g(n1 + p−1
r−1

) = p, which is (b). We now have g(n2) = p =
(r − 1)k + 1, so to obtain (c) we compute

a(n2) = a(n2 − 1) + g(n2)

= (rn1 − 1 + k) + ((r − 1)k + 1)

= r(n1 + k)

= rn2.

We immediately obtain the following result for a(1) = 7; one simply computes g(2) =
g(3) = 1, and a(3)/3 = 3 so the lemma applies inductively thereafter.

Theorem 1. Let a(1) = 7. For each n ≥ 2, a(n) − a(n − 1) is 1 or prime.

Similar results can be obtained for many other initial conditions, such as a(1) = 4,
a(1) = 8, etc. Indeed, most small initial conditions quickly produce a state in which the
lemma applies.

4 Transience

However, the statement of the theorem is false for general initial conditions. Two examples
of non-prime gcds are g(18) = 9 for a(1) = 532 and g(21) = 21 for a(1) = 801. With
additional experimentation one does however come to suspect that g(n) is eventually 1 or
prime for every initial condition.

Conjecture 1. If n1 ≥ 1 and a(n1) ≥ 1, then there exists an N such that a(n) − a(n − 1)
is 1 or prime for each n > N .
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The conjecture asserts that the states for which the lemma of §3 does not apply are
transient. To prove the conjecture, it would suffice to show that if a(n1) 6= n1 + 2 then
a(N)/N is 1, 2, or 3 for some N : If a(N) = N + 2 or a(N)/N = 1, then g(n) = 1 for
n > N , and if a(N)/N is 2 or 3, then the lemma applies inductively. Thus we should try to
understand the long-term behavior of a(n)/n. We give two propositions in this direction.

Empirical data show that when a(n)/n is large, it tends to decrease. The first proposition
states that a(n)/n can never cross over an integer from below.

Proposition 1. If n1 ≥ 1 and a(n1) ≥ 1, then a(n)/n ≤ ⌈a(n1)/n1⌉ for all n ≥ n1.

Proof. Let r = ⌈a(n1)/n1⌉. We proceed inductively; assume that a(n−1)/(n−1) ≤ r. Then

rn − a(n − 1) ≥ r ≥ 1.

Since g(n) divides the linear combination r · n − a(n − 1), we have

g(n) ≤ rn − a(n − 1);

thus
a(n) = a(n − 1) + g(n) ≤ rn.

0 50 100 150
n

2.5

3

f HnL�n

Figure 2: Plot of a(n)/n for a(1) = 7. Proposition 2 establishes that a(n)/n > 2.

From Eq. (2) in §2 we see that g(n1+i) = 1 for 1 ≤ i < k implies that a(n1+i)/(n1+i) =
(a(n1)+i)/(n1+i), and so a(n)/n is strictly decreasing in this range if a(n1) > n1. Moreover,
if the nontrivial gcds are overall sufficiently few and sufficiently small, then we would expect
a(n)/n → 1 as n gets large; indeed the hyperbolic segments in Figure 2 have the line
a(n)/n = 1 as an asymptote.

However, in practice we rarely see this occurring. Rather, a(n1)/n1 > 2 seems to almost
always imply that a(n)/n > 2 for all n ≥ n1. Why is this the case?
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Suppose the sequence of ratios crosses 2 for some n: a(n)/n > 2 ≥ a(n + 1)/(n + 1).
Then

2 ≥
a(n + 1)

n + 1
=

a(n) + gcd(n + 1, a(n))

n + 1
≥

a(n) + 1

n + 1
,

so a(n) ≤ 2n + 1. Since a(n) > 2n, we are left with a(n) = 2n + 1; and indeed in this case
we have

a(n + 1)

n + 1
=

2n + 1 + gcd(n + 1, 2n + 1)

n + 1
=

2n + 2

n + 1
= 2.

The task at hand, then, is to determine whether a(n) = 2n+1 can happen in practice. That
is, if a(n1) > 2n1 + 1, is there ever an n > n1 such that a(n) = 2n + 1? Working backward,
let a(n) = 2n + 1. We will consider possible values for a(n − 1).

If a(n − 1) = 2n, then

2n + 1 = a(n) = 2n + gcd(n, 2n) = 3n,

so n = 1. The state a(1) = 3 is produced after one step by the initial condition a(0) = 2 but
is a moot case if we restrict to positive initial conditions.

If a(n − 1) < 2n, then a(n − 1) = 2n − j for some j ≥ 1. Then

2n + 1 = a(n) = 2n − j + gcd(n, 2n − j),

so j + 1 = gcd(n, 2n − j) divides 2 · n − (2n − j) = j. This is a contradiction.
Thus for n > 1 the state a(n) = 2n + 1 only occurs as an initial condition, and we have

proved the following.

Proposition 2. If n1 ≥ 1 and a(n1) > 2n1 + 1, then a(n)/n > 2 for all n ≥ n1.

In light of these propositions, the largest obstruction to the conjecture is showing that
a(n)/n cannot remain above 3 indefinitely. Unfortunately, this is a formidable obstruction:

The only distinguishing feature of the values r = 2 and r = 3 in the lemma is the
guarantee that p−1

r−1
is an integer, where p is again the smallest prime divisor of (r− 1)n1 − 1.

If r ≥ 4 is an integer and (r − 1) | (p − 1), then the proof goes through, and indeed it is
possible to find instances of an integer r ≥ 4 persisting for some time; in fact a repetition
can occur even without the conditions of the lemma. Searching in the range 1 ≤ n1 ≤ 104,
4 ≤ r ≤ 20, one finds the example n1 = 7727, r = 7, a(n1) = rn1 = 54089, in which
a(n)/n = 7 reoccurs eleven times (the last at n = 7885).

The evidence suggests that there are arbitrarily long such repetitions of integers r ≥ 4.
With the additional lack of evidence of global structure that might control the number of
these repetitions, it is possible that, when phrased as a parameterized decision problem,
the conjecture becomes undecidable. Perhaps this is not altogether surprising, since the
experience with discrete dynamical systems (not least of all the Collatz 3n + 1 problem) is
frequently one of presumed inability to significantly shortcut computations.

The next best thing we can do, then, is speed up computation of the transient region so
that one may quickly establish the conjecture for specific initial conditions. It is a pleasant
fact that the shortcut of the lemma can be generalized to give the location of the next
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nontrivial gcd without restriction on the initial condition, although naturally we lose some
of the benefits as well.

In general one can interpret the evolution of Eq. (1) as repeatedly computing for various
n and a(n − 1) the minimal k ≥ 1 such that gcd(n + k, a(n − 1) + k) 6= 1, so let us explore
this question in isolation. Let a(n − 1) = n + ∆ (with ∆ ≥ 1); we seek k. (The lemma
determines k for the special cases ∆ = n − 1 and ∆ = 2n − 1.)

Clearly gcd(n + k, n + ∆ + k) divides ∆.
Suppose ∆ = p is prime; then we must have gcd(n + k, n + p + k) = p. This is equivalent

to k ≡ −n (mod p). Since k ≥ 1 is minimal, then k = mod1(−n, p), where modj(a, b) is the
unique number x ≡ a (mod b) such that j ≤ x < j + b.

Now consider a general ∆. A prime p divides gcd(n+ i, n+∆+ i) if and only if it divides
both n + i and ∆. Therefore

{ i : gcd(n + i, n + ∆ + i) 6= 1 } =
⋃

p|∆

(−n + p Z).

Calling this set I, we have

k = min { i ∈ I : i ≥ 1 } = min {mod1(−n, p) : p | ∆ }.

Therefore (as we record in slightly more generality) k is the minimum of mod1(−n, p) over
all primes dividing ∆.

Proposition 3. Let n ≥ 0, ∆ ≥ 2, and j be integers. Let k ≥ j be minimal such that
gcd(n + k, n + ∆ + k) 6= 1. Then

k = min {modj(−n, p) : p is a prime dividing ∆ }.

5 Primes

We conclude with several additional observations that can be deduced from the lemma
regarding the prime p that occurs as g(n2) under various conditions.

We return to the large gaps observed in Figure 1. A large gap occurs when (r−1)n1−1 = p
is prime, since then n2 − n1 = p−1

r−1
is maximal. In this case we have n2 = 2p

r−1
, so since n2

is an integer and p > r − 1 we also see that (r − 1)n1 − 1 can only be prime if r is 2 or 3.
Thus large gaps only occur for r ∈ {2, 3}.

Table 1 suggests two interesting facts about the beginning of each cluster of primes after
a large gap:

• p = g(n2) ≡ 5 (mod 6).

• The next nontrivial gcd after p is always g(n2 + 1) = 3.

The reason is that when r = 3, eventually we have a(n) ≡ n (mod 6), with exceptions only
when g(n) ≡ 5 (mod 6) (in which case a(n) ≡ n + 4 (mod 6)). In the range n1 < n < n2 we
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have g(n) = 1, so p = 2n1 − 1 = ∆(n) = a(n − 1) − n ≡ 5 (mod 6) and

g(n2 + 1) = gcd(n2 + 1, a(n2))

= gcd(p + 1, 3p)

= 3.

An analogous result holds for r = 2 and n1 − 1 = p prime: g(n2) = p ≡ 5 (mod 6),
g(n2 + 1) = 1, and g(n2 + 2) = 3.

In fact, this analogy suggests a more general similarity between the two cases r = 2 and
r = 3: An evolution for r = 2 can generally be emulated (and actually computed twice as
quickly) by r′ = 3 under the transformation

n′ = n/2,

a′(n′) = a(n) − n/2

for even n (discarding odd n). One verifies that the conditions and conclusions of the lemma
are preserved; in particular

a′(n′)

n′
= 2 ·

a(n)

n
− 1.

For example, the evolution from initial condition a(4) = 8 is emulated by the evolution from
a′(1) = 7 for n = 2n′ ≥ 6.

One wonders whether g(n) takes on all primes. For r = 3, clearly the case p = 2 never
occurs since 2n1 − 1 is odd. Furthermore, for r = 2, the case p = 2 can only occur once for
a given initial condition: A simple checking of cases shows that n2 is even, so applying the
lemma to n2 we find n2 − 1 is odd (at which point the evolution can be emulated by r′ = 3).

We conjecture that all other primes occur. After ten thousand applications of the shortcut
starting from the initial condition a(1) = 7, the smallest odd prime that has not yet appeared
is 587.

For general initial conditions the results are similar, and one quickly notices that evolu-
tions from different initial conditions frequently converge to the same evolution after some
time, reducing the number that must be considered. For example, a(1) = 4 and a(1) = 7
converge after two steps to a(3) = 9. One can use the shortcut to feasibly track these
evolutions for large values of n and thereby estimate the density of distinct evolutions. In
the range 22 ≤ a(1) ≤ 213 one finds that there are only 203 equivalence classes established
below n = 223, and no two of these classes converge below n = 260. It therefore appears that
disjoint evolutions are quite sparse. Sequence A134162 is the sequence of minimal initial
conditions for these equivalence classes.
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