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Abstract

The Stern sequence s(n) is defined by s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n + 1) =
s(n) + s(n + 1). Stern showed in 1858 that gcd(s(n), s(n + 1)) = 1, and that every

positive rational number a
b occurs exactly once in the form s(n)

s(n+1) for some n ≥ 1. We

show that in a strong sense, the average value of these fractions is 3
2 . We also show

that for d ≥ 2, the pair (s(n), s(n+1)) is uniformly distributed among all feasible pairs
of congruence classes modulo d. More precise results are presented for d = 2 and 3.

1 Introduction and History

In 1858, M. A. Stern [18] defined the diatomic array, an unjustly neglected mathematical
construction. It is a Pascal triangle with memory: each row is created by inserting the sums
of pairs of consecutive elements into the previous row.

a b

a a + b b

a 2a + b a + b a + 2b b

a 3a + b 2a + b 3a + 2b a + b 2a + 3b a + 2b a + 3b b

...

(1)

When (a, b) = (0, 1), it is easy to see that each row of the diatomic array repeats as the
first half of the next row down. The resulting infinite Stern sequence can also be defined
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recursively by:

s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n + 1) = s(n) + s(n + 1). (2)

Taking (a, b) = (1, 1) in (1), we obtain blocks of (s(n)) for 2r ≤ n ≤ 2r+1. Although s(2r) = 1
is repeated at the ends, each pair (s(n), s(n+1)) appears below exactly once as a consecutive
pair in a row:

(r = 0) 1 1

(r = 1) 1 2 1

(r = 2) 1 3 2 3 1

(r = 3) 1 4 3 5 2 5 3 4 1

...

(3)

Mirror symmetry (or an easy induction) implies that for 0 ≤ k ≤ 2r, we have

s(2r + k) = s(2r+1 − k). (4)

In his original paper, Stern proved that for all n,

gcd(s(n), s(n + 1)) = 1; (5)

moreover, for every pair of positive relatively prime integers (a, b), there is a unique n so
that s(n) = a and s(n+1) = b. Stern’s discovery predates Cantor’s proof of the countability
of Q by fifteen years. This property of the Stern sequence has been recently made explicit
and discussed [4] by Calkin and Wilf. Another enumeration of the positive rationals involves
the Stern-Brocot array, which also predates Cantor; see Graham, Knuth and Patashnik [8,
pp. 116–123, 305–306]. This was used by Minkowski [14] in defining his ?-function. The
Stern sequence and Stern-Brocot array make brief appearances [6, pp. 156,426] in Dickson’s
History. Apparently, de Rham [5] was the first to consider the sequence (s(n)) per se,
attributing the term “Stern sequence” to Bachmann [2, p. 143], who had only considered
the array. The Stern sequence has recently arisen as well in the discussion of 2-regular
sequences by Allouche and Shallit [1] and the Tower of Hanoi graph [10] by Hinz, Klavžar,
Milutinović, Parisse, and Petr. Some other Stern identities and a large bibliography relating
to the Stern sequence are given [19] by Urbiha. A further discussion of the Stern sequence
will be found in [16].

Let

t(n) =
s(n)

s(n + 1)
. (6)

Here are blocks of (t(n)), for 2r ≤ n < 2r+1 for small r:

(r = 0) 1
1

(r = 1) 1
2

2
1

(r = 2) 1
3

3
2

2
3

3
1

(r = 3) 1
4

4
3

3
5

5
2

2
5

5
3

3
4

4
1

...

(7)
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In Section 3, we shall show that

N−1
∑

n=0

t(n) =
3N

2
+O(log2 N), (8)

so the “average” element in the Stern enumeration of Q+ is 3
2
.

For a fixed integer d ≥ 2, let

Sd(n) := (s(n) mod d, s(n + 1) mod d) (9)

and let
Sd = {(i mod d, j mod d) : gcd(i, j, d) = 1}. (10)

It follows from (5) that Sd(n) ∈ Sd for all n. In Section 4, we shall show that for each d, the
sequence (Sd(n)) is uniformly distributed on Sd, so the “probability” that s(n) ≡ i (mod d)
can be explicitly computed. More precisely, let

T (N ; d, i) = |{n : 0 ≤ n < N & s(n) ≡ i mod d}| . (11)

Then there exists τd < 1 so that

T (N ; d, i) = rd,iN +O(N τd), (12)

where

rd,i =
1

d
·
∏

p |i,p | d

p

p + 1
·
∏

p ∤ i,p | d

p2

p2 − 1
. (13)

In particular, the probability that s(n) is a multiple of d is I(d)−1, where

I(d) = d
∏

p | d

p + 1

p
∈ N. (14)

In Section 5, we present more specific information for the cases d = 2 and 3. It is an easy
induction that s(n) is even if and only if n is a multiple of 3, so that τ2 = 0. We show that
τ3 = 1

2
and give an explicit formula for T (2r; 3, 0), as well as a recursive description of those

n for which 3 | s(n). We also prove that, for all N ≥ 1, T (N ; 3, 1)− T (N ; 3, 2) ∈ {0, 1, 2, 3}.
It will be proved in [16] that

T (2r; 4, 0) = T (2r; 5, 0), T (2r; 6, 0) = T (2r; 9, 0) = T (2r; 11, 0); (15)

we conjecture that T (2r; 22, 0) = T (2r; 27, 0). (The latter is true for r ≤ 19.) These exhaust
the possibilities for T (2r; N1, 0) = T (2r; N2, 0) with Ni ≤ 128. Note that I(4) = I(5) = 6,
I(6) = I(8) = I(9) = I(11) = 12 and I(22) = I(27) = 36. However, T (2r; 8, 0) 6= T (2r; 6, 0),
so there is more than just asymptotics at work.
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2 Basic facts about the Stern sequence

We formalize the definition of the diatomic array. Define Z(r, k) = Z(r, k; a, b) recursively
for r ≥ 0 and 0 ≤ k ≤ 2r by:

Z(0, 0) = a, Z(0, 1) = b;

Z(r + 1, 2k) = Z(r, k), Z(r + 1, 2k + 1) = Z(r, k) + Z(r, k + 1).
(16)

The following lemma follows from (2), (16) and a simple induction.

Lemma 1. For 0 ≤ k ≤ 2r, we have

Z(r, k; 0, 1) = s(k). (17)

Lemma 1 leads directly to a general formula for the diatomic array.

Theorem 2. For 0 ≤ k ≤ 2r, we have

Z(r, k; a, b) = s(2r − k)a + s(k)b. (18)

Proof. Clearly, Z(r, k; a, b) is linear in (a, b) and it also satisfies a mirror symmetry

Z(r, k; a, b) = Z(r, 2r − k; b, a) (19)

for 0 ≤ k ≤ 2r, c.f. (4). Thus,

Z(r, k; a, b) = aZ(r, k; 1, 0) + bZ(r, k; 0, 1) = aZ(r, 2r − k; 0, 1) + bZ(r, k; 0, 1). (20)

The result then follows from Lemma 1.

The diatomic array contains a self-similarity: any two consecutive entries in any row
determine the corresponding portion of the succeeding rows. More precisely, we have a
relation whose simple inductive proof is omitted, and which immediately leads to the iterated
generalization of (2).

Lemma 3. If 0 ≤ k ≤ 2r and 0 ≤ k0 ≤ 2r0 − 1, then

Z(r + r0, 2
rk0 + k; a, b) = Z(r, k; Z(r0, k0; a, b), Z(r0, k0 + 1; a, b)). (21)

Corollary 4. If n ≥ 0 and 0 ≤ k ≤ 2r, then

s(2rn + k) = s(2r − k)s(n) + s(k)s(n + 1). (22)

Proof. Take (a, b, k0, r0) = (0, 1, n, ⌈log2(n + 1)⌉) in Lemma 3, so that k0 < 2r0 , and then
apply Theorem 2.

4



We turn now to t(n). Clearly, t(2n) < 1 ≤ t(2n + 1) for all n; after a little algebra, (2)
implies

t(2n) =
1

1 +
1

t(n)

, t(2n + 1) = 1 + t(n). (23)

The mirror symmetry (4) yields two other formulas which are evident in (7):

t(2r + k)t(2r+1 − k − 1) = 1, (24)

for 0 ≤ k ≤ 2r − 1, which follows from

t(2r+1 − k − 1) =
s(2r+1 − k − 1)

s(2r+1 − k)
=

s(2r + k + 1)

s(2r + k)
=

1

t(2r + k)
; (25)

and
t(2r + 2ℓ) + t(2r+1 − 2ℓ− 2) = 1, (26)

for r ≥ 1 and 0 ≤ 2ℓ ≤ 2r − 2, which follows from

s(2r + 2ℓ)

s(2r + 2ℓ + 1)
+

s(2r+1 − 2ℓ− 2)

s(2r+1 − 2ℓ− 1)
=

s(2r + 2ℓ)

s(2r + 2ℓ + 1)
+

s(2r + 2ℓ + 2)

s(2r + 2ℓ + 1)
, (27)

since s(2m) + s(2m + 2) = s(2m + 1).
Although we will not use it directly here, we mention a simple closed formula for t(n),

and hence for s(n). Stern had already proved that if 2r ≤ n < 2r+1, then the sum of
the denominators in the continued fraction representation of t(n) is r + 1; this is clear
from (23). Lehmer [11] gave an exact formulation, of which the following is a variation.
Suppose n is odd and [n]2, the binary representation of n, consists of a block of a1 1’s,
followed by a2 0’s, a3 1’s, etc, ending with a2v 0’s and a2v+1 1’s, with aj ≥ 1. (That is,
n = 2a1+···+a2v+1 − 2a2+···+a2v+1 ± · · · ± 2a2v+1 − 1.) Then

t(n) =
s(n)

s(n + 1)
=

p

q
= a2v+1 +

1

a2v +
1

· · ·+
1

a1

. (28)

Conversely, if p
q

> 1 and (28) gives its presentation as a simple continued fraction with an

odd number of denominators, then the unique n with t(n) = p
q

has the binary representation

described above. (If n is even or p
q

< 1, apply (24) first.)

The Stern-Brocot array is named after the clockmaker Achille Brocot, who used it [3]
in 1861 as the basis of a gear table; see also Hayes [9]. This array caught the attention of
several French number theorists, and is discussed [12] by Lucas. It is formed by applying
the diatomic rule to numerators and denominators simultaneously:

(r = 0) 0
1

1
0

(r = 1) 0
1

1
1

1
0

(r = 2) 0
1

1
2

1
1

2
1

1
0

(r = 3) 0
1

1
3

1
2

2
3

1
1

3
2

2
1

3
1

1
0

...

(29)
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This array is not quite the same as (7). If a
b

and c
d

are consecutive in the r-th row, then
they repeat in the (r + 1)-st row, separated by a+c

b+d
. It is easy to see that the elements of the

r-th row are s(k)
s(2r−k)

, 0 ≤ k ≤ 2r. It is also easy to show that the elements of each row are
increasing, and moreover, that they share a property with the Farey sequence.

Lemma 5. For 0 ≤ k ≤ 2r − 2,

s(k + 1)

s(2r − k − 1)
− s(k)

s(2r − k)
=

1

s(2r − k)s(2r − k − 1)
. (30)

That is,

s(k + 1)s(2r − k)− s(k)s(2r − k − 1) = 1. (31)

This lemma has a simple proof by induction, which can be found in Lucas [12, p.467],
and Graham, Knuth and Patashnik [8, p.117].

The “new” entries in the (r + 1)-st row of (29) are a permutation of the r-th row of (7).
The easiest way to express the connection (see [16]) for rationals p

q
> 1 is that if 0 < k < 2r

is odd, then

p

q
=

s(2r + k)

s(2r − k)
=

s(
←−−−
2r + k)

s(
←−−−
2r + k + 1)

, (32)

where ←−n denotes the integer so that [n]2 and [←−n ]2 are the reverse of each other. If p
q

< 1,

then apply mirror symmetry to the instance of (32) which holds for q
p
.

The Minkowski ?-function can be defined using the first half of the rows of (29). For odd
ℓ, 0 ≤ ℓ ≤ 2r,

?

(

s(ℓ)

s(2r+1 − ℓ)

)

=
ℓ

2r
. (33)

This gives a strictly increasing map from Q∩ [0, 1] to the dyadic rationals in [0, 1], which ex-
tends to a continuous strictly increasing map from [0, 1] to itself, taking quadratic irrationals
to non-dyadic rationals.

Finally, suppose N is a positive integer, written as

N = 2r1 + 2r2 + · · ·+ 2rv , r1 > r2 > · · · > rv. (34)

We shall define
N0 = 0; Nj = 2r1 + · · ·+ 2rj for j = 1, . . . , v. (35)

Further, for 1 ≤ j ≤ v, let Mj = 2−rjNj+1, so that

Nj = Nj−1 + 2rj = 2rj(Mj + 1) = 2rj−1Mj−1. (36)

and, for a < b ∈ Z, let
[a, b) := {k ∈ Z : a ≤ k < b}. (37)

Our proofs will rely on the observation that

[0, N) =
v−1
⋃

j=0

[Nj, Nj+1) =
v
⋃

j=1

[2rjMj, 2
rj(Mj + 1)), (38)
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where the above unions are disjoint, so that, formally,

N−1
∑

n=0

=
v−1
∑

j=0

Nj+1−1
∑

n=Nj

=
v
∑

j=1

2rj (Mj+1)−1
∑

n=2rj Mj

. (39)

3 The Stern-Average Rational

We begin by looking at the sum of t(n) along the rows of (7). Let

A(r) =
2r+1−1
∑

n=2r

t(n) and Ã(r) =
2r−1
∑

n=0

t(n) =
r−1
∑

i=0

A(i). (40)

Lemma 6. For r ≥ 0,

A(r) =
3

2
· 2r − 1

2
and Ã(r) =

3

2
· 2r − r + 3

2
. (41)

Proof. First note that A(0) = t(1) = 1
1

= 3
2
− 1

2
. Now observe that for r ≥ 0,

A(r + 1) =
2r+1−1
∑

j=0

t(2r+1 + j) =
2r−1
∑

k=0

t(2r+1 + 2k) +
2r−1
∑

k=0

t(2r+1 + 2k + 1). (42)

Using (26) and (23), we can simplify this summation:

2r−1
∑

k=0

t(2r+1 + 2k) =
1

2

(

2r−1
∑

k=0

t(2r+1 + 2k) + t(2r+2 − 2k − 2)

)

= 2r−1, (43)

and
2r−1
∑

k=0

t(2r+1 + 2k + 1) =
2r−1
∑

k=0

(

1 + t(2r + k)
)

= 2r + A(r). (44)

Thus, A(r + 1) = 2r−1 + 2r + A(r), and the formula for A(r) is established by induction.
This also immediately implies the formula for Ã(r).

Lemma 7. If m is even, then

Ã(r) ≤
2r−1
∑

k=0

t(2rm + k) < A(r). (45)

Proof. For fixed (k, r), let

Φk,r(x) =
s(2r − k)x + s(k)

s(2r − (k + 1))x + s(k + 1)
. (46)
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Then it follows from (31) that

Φ′
k,r(x) =

s(k + 1)s(2r − k)− s(k)s(2r − k − 1)

(s(2r − (k + 1))x + s(k + 1))2
> 0. (47)

Using (22), we see that

t(2rm + k) =
s(2rm + k)

s(2rm + k + 1)
=

s(2r − k)s(m) + s(k)s(m + 1)

s(2r − k − 1)s(m) + s(k + 1)s(m + 1)

= Φk,r

(

s(m)

s(m + 1)

)

= Φk,r(t(m)).

(48)

Since m is even, 0 ≤ t(m) < 1; monotonicity then implies that

t(k) = Φk,r(0) ≤ t(2rm + k) < Φr,k(1) = t(2r + k). (49)

Summing (49) on k from 0 to 2r − 1 gives (45).

We use these estimates to establish (8).

Theorem 8. If 2r ≤ N < 2r+1, then

3N

2
− r2 + 7r + 6

4
≤

N−1
∑

n=0

t(n) <
3N

2
− 1

2
. (50)

Proof. Recalling (39), we apply Lemma 7 for each j, with r = rj and m = Mj, so that

3

2
· 2rj − rj + 3

2
≤

Nj−1
∑

n=Nj−1

t(n) <
3

2
· 2rj − 1

2
. (51)

After summing on j, we find that

3N

2
− r1 + · · ·+ rv + 3v

2
≤

N−1
∑

n=0

t(n) <
3N

2
− v

2
. (52)

To obtain (50), note that
∑

rj + 3v ≤ r(r+1)
2

+ 3r + 3 = r2+7r+6
2

.

Corollary 9.
N−1
∑

n=0

t(n) =
3N

2
+O

(

log2 N
)

. (53)

Since t(2r − 1) = r
1
, the true error term is at least O(log N). Numerical computations

using Mathematica suggest that log2 N can be replaced by log N log log N . It also seems
that, at least for small fixed positive integers t,

αt := lim
N→∞

1

N

N−1
∑

n=0

s(n)

s(n + t)
(54)

exists. We have seen that α1 = 3
2
, and if they exist, the evidence suggests that α2 ≈ 1.262,

α3 ≈ 1.643 and α4 ≈ 1.161. We are unable to present an explanation for these specific
numerical values.
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4 Stern Pairs, mod d

We fix d ≥ 2 with prime factorization d =
∏

peℓ

ℓ , eℓ ≥ 1, and recall the definitions of Sd and
Sd(n) from (9) and (10). Let

Nd = |Sd| , (55)

and for 0 ≤ i < d, let

Nd(i) = |{j mod d : (i mod d, j mod d) ∈ Sd}| . (56)

We now give two lemmas whose proofs rely on the Chinese Remainder Theorem.

Lemma 10. The map Sd : N→ Sd is surjective.

Proof. Suppose α = (i, j) ∈ Sd with 0 ≤ i, j ≤ d− 1. We shall show that there exists w ∈ N
so that gcd(i, j +wd) = 1. Consequently, there exists n with s(n) = i and s(n+1) = j +wd,
so that Sd(n) = α.

Write i =
∏

ℓ q
fℓ

ℓ , fℓ ≥ 1, with qℓ prime. If qℓ | j, then qℓ ∤ d. There exists w ≥ 0 so that

w ≡ d−1 (mod q
fℓ

ℓ ) if qℓ | j and w ≡ 0 (mod q
fℓ

ℓ ) if qℓ ∤ j. Then j + wd 6≡ 0 (mod q
fℓ

ℓ ) for
all ℓ, so no prime dividing i divides j + wd, as desired.

Lemma 11. For 0 ≤ i ≤ d− 1,

Nd = d2
∏

ℓ

p2
ℓ − 1

p2
ℓ

and Nd(i) = d
∏

pℓ | i

pℓ − 1

pℓ

. (57)

Proof. To compute Nd, we use the Chinese Remainder Theorem by counting the choices for
(i mod peℓ

ℓ , j mod peℓ

ℓ ) for each ℓ. Missing are those (i, j) in which pℓ divides both i and j,
and so the total number of classes is (peℓ

ℓ − peℓ−1
ℓ )2 for each ℓ.

Now fix i. If pℓ | i, then (i, j) ∈ Sd if and only if pℓ ∤ j; if pℓ ∤ i, then there is no restriction
on j. Thus, there are either peℓ

ℓ − peℓ−1
ℓ or peℓ

ℓ choices for j, respectively.

Suppose α = (i, j) ∈ Sd; let L(α) := (i, i+ j) and R(α) = (i+ j, j), where i+ j is reduced
mod d if necessary. Then L(α), R(α) ∈ Sd and the following lemma is immediate.

Lemma 12. For all n, we have Sd(2n) = L(Sd(n)) and Sd(2n + 1) = R(Sd(n)).

We now define the directed graph Gd as follows. The vertices of Gd are the elements of
Sd. The edges of Gd consist of (α,L(α)) and (α,R(α)) where α ∈ Sd. Iterating, we see that
Lk(α) = (i, i + kj) and Rk(α) = (i + kj, j), so that Ld = Rd = id, and L−1 = Ld−1 and
R−1 = Rd−1. Thus, if (α, β) is an edge of Gd, then there is a walk of length d− 1 from β to
α.

Each vertex of Gd has out-degree two; since (L−1(α), α) and (R−1(α), α) are edges, each
vertex has in-degree two as well. Let Md = [mα(d)β(d)] = [mαβ] denote the adjacency matrix
for Gd: Md is the Nd ×Nd 0-1 matrix so that mαL(α) = mαR(α) = 1, with other entries equal
to 0. For a positive integer r, write

M r
d = [m

(r)
αβ]; (58)
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then m
(r)
αβ is the number of walks of length r from α to β. Finally, for γ ∈ Sd, and integers

U1 < U2, let
B(γ; U1, U2) = |{m : U1 ≤ m < U2 & Sd(m) = γ}| (59)

The following is essentially equivalent to Lemma 3.

Lemma 13. Suppose α = Sd(m), β ∈ Sd and r ≥ 1. Then B(β; 2rm, 2r(m + 1)) = m
(r)
αβ is

equal to the number of walks of length r in Gd from α to β.

Proof. The walks of length 1 starting from α are (α,L(α)) and (α,R(α)); these may be
interpreted as (Sd(n), Sd(2n)) and (Sd(n), Sd(2n + 1)). The rest is an easy induction.

Lemma 14. For sufficiently large N , m
(N)
αβ > 0 for all α, β.

Proof. Let α0 = (0, 1) = Sd(0). Note that L(α0) = α0, hence if there is a walk of length w

from α0 to γ, then there are such walks of every length ≥ w. By Lemma 10, for each α ∈ Sd,
there exists nα so that Sd(nα) = α. Choose r sufficiently large that nα < 2r for all α. Then
by Lemma 13, for every γ, there is a walk of length r from α0 to γ, and so there is a walk
of length (d− 1)r from γ to α0. Thus, for any α, β ∈ Sd, there is at least one walk of length
dr from α to β via α0.

We need a version of Perron-Frobenius. Observe that Ad = 1
2
Md is doubly stochastic and

the entries of AN
d = 2−NMN

d are positive for sufficiently large N . Thus Ad is irreducible (see
Minc [13, Ch. 1]), so it has a simple eigenvalue of 1, and all its other eigenvalues are inside
the unit disk. It follows that Md has a simple eigenvalue of 2. Let

fd(T ) = T k + ck−1T
k−1 + · · ·+ c0 (60)

be the minimal polynomial of Md. Let ρd < 2 be the maximum modulus of any non-2 root
of fd, and let 1+σd be the maximum multiplicity of any such maximal root. Then for r ≥ 0
and all (α, β),

mr+k
αβ + ck−1m

r+k−1
αβ + · · ·+ c0m

r
αβ = 0. (61)

It follows from the standard theory of linear recurrences that for some constants cαβ,

mr
αβ = cαβ2r + (rσdρr

d) as r →∞. (62)

In particular, limr→∞ Ar
d = Ad0 := [cαβ], and since Ar+1

d = AdA
r
d, it follows that each column

of Ad0 is an eigenvector of Ad, corresponding to λ = 1. Such eigenvectors are constant
vectors and since Ad0 is doubly stochastic, we may conclude that for all (α, β), cαβ = 1

Nd
.

Then there exists cd > 0 so that for r ≥ 0 and all (α, β),

∣

∣

∣

∣

mr
αβ −

2r

Nd

∣

∣

∣

∣

< cdr
σd

d ρr
d. (63)

Computations show that for for small values of d at least, ρd = 1
2

and σd = 0. In any event,
by choosing 2 > ρ̄d > ρd if σd > 0, we can replace rσd

d ρr
d by ρ̄r

d in the upper bound. Putting
this together, we have proved the following theorem.
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Theorem 15. There exist constants cd and ρ̄d < 2 so that if m ∈ N and α ∈ Sd, then for

all r ≥ 0,
∣

∣

∣

∣

B(α; 2rm, 2r(m + 1))− 2r

Nd

∣

∣

∣

∣

< cdρ̄
r
d. (64)

We now use this result on blocks of length 2r to get our main theorem.

Theorem 16. For fixed d ≥ 2, there exists τd < 1 so that, for all α ∈ Sd,

B(α; 0, N) =
N

Nd

+O(N τd). (65)

Proof. By (39), we have

B(α; 0, N) =
v−1
∑

j=0

B(α; Nj, Nj+1) =
v
∑

j=1

B(α; 2rjMj, 2
rj(Mj + 1)). (66)

It follows that
∣

∣

∣

∣

B(α; 0, N)− N

Nd

∣

∣

∣

∣

≤ cd(ρ̄
r1

d + · · ·+ ρ̄rv

d ). (67)

If ρ̄d ≤ 1, the upper bound is O(r1) = O(log N) = O(N ǫ) for any ǫ > 0. If 1 ≤ ρ̄d < 2, the
upper bound is O(ρ̄r1

d ) = O(N τd) for τd = log ρ̄d

log 2
, since N ≤ 2r1+1.

Using the notation (11), we have

T (N ; d, i) =
∑

α=(i,j)∈Sd

B(α; 0, N), (68)

and the following is an immediate consequence of Lemma 11 and Theorem 16.

Corollary 17. Suppose d ≥ 2. Then

T (N ; d, i) = rd,iN +O(N τd), (69)

where, recalling that d =
∏

peℓ

ℓ ,

rd,i =
1

d
·
∏

pℓ|i

pℓ

pℓ + 1
·
∏

pℓ∤i

p2
ℓ

p2
ℓ − 1

. (70)

For example, if p is prime, then f(p, 0) = 1
p+1

and f(p, i) = p
p2−1

when p ∤ i.
In some sense, the model here is a Markov Chain, if we imagine going from m to 2m or

2m + 1 with equal probability, so that the B(β; 2rm, 2r(m + 1))’s represent the distribution
of destinations after r steps. Ken Stolarsky has pointed out that Schmidt [17] provides a
somewhat different application of the limiting theory of Markov Chains in a number theoretic
setting.
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5 Small values of d

It is immediate to see (and to prove) that 2 | s(n) if and only if 3 | n, thus S2(n) cycles
among {(0, 1), (1, 1), (1, 0)} and τ2 = 0. This generalizes to a family of partition sequences.
Suppose d ≥ 2 is fixed, and let b(d; n) denote the number of ways that n can be written in
the form

n =
∑

i≥0

ǫi2
i, ǫi ∈ {0, . . . , d− 1}, (71)

so that b(2; n) = 1. It is shown in [15] that

∞
∑

n=0

s(n)Xn = X

∞
∏

j=0

(

1 + X2j

+ X2j+1
)

. (72)

A standard partition argument shows that

∞
∑

n=0

b(d; n)Xn =
∞
∏

j=0

1−Xd·2j

1−X2j . (73)

Thus, s(n) = b(3; n−1). An examination of the product in (73) modulo 2 shows that b(d; n)
is odd if and only if n ≡ 0, 1 mod d (see [15], Theorems 5.2 and 2.14.)

Suppose now that d = 3. Write the 8 elements of S3 in lexicographic order:

(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2). (74)

Then in the notation of the last section,

M3 =

























1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 0
0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1
1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0

























. (75)

The minimal polynomial of M3 is

f3(T ) = T 5 − 2T 4 + T 3 − 4T 2 + 4T = T (T − 1)(T − 2)(T − µ)(T − µ̄), (76)

where

µ =
−1 +

√
7i

2
, µ̄ =

−1−
√

7i

2
. (77)

Since the roots of f3 are distinct, we see that for each (α, β) ∈ S3, for r ≥ 1, there exist
constants vαβi so that

m
(r)
αβ = vαβ1 + vαβ2µ

r + vαβ3µ̄
r +

1

8
· 2r =

1

8
· 2r +O(2r/2). (78)
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(As it happens, there are only eight distinct sequences m
(r)
αβ.) Corollary 17 then implies that

T (N ; 3, 0) =
N

4
+O(

√
N),

T (N ; 3, 1) =
3N

8
+O(

√
N), T (N ; 3, 2) =

3N

8
+O(

√
N).

(79)

Since T (N ; 3, 0) + T (N ; 3, 1) + T (N ; 3, 2) = N , we gain complete information from studying
T (N ; 3, 0) and

∆(N) = ∆3(N) := T (N ; 3, 1)− T (N ; 3, 2). (80)

(That is, ∆3(N + 1)−∆3(N) equals 0, 1,−1 when s(N) ≡ 0, 1, 2 mod 3, respectively.)
To study T (N ; 3, 0), we first define the set A3 ⊂ N recursively by:

0, 5, 7 ∈ A3, 0 < n ∈ A3 =⇒ 2n, 8n± 5, 8n± 7 ∈ A3. (81)

Thus,
A3 = {0, 5, 7, 10, 14, 20, 28, 33, 35, 40, 45, 47, 49, 51, 56, 61, 63, . . . }. (82)

Theorem 18. If n ≥ 0, then 3 | s(n) if and only if n ∈ A3.

Proof. It follows recursively from (2) or directly from (22) that

s(2n) = s(n), s(8n± 5) = 2s(n) + 3s(n± 1), s(8n± 7) = s(n) + 3s(n± 1). (83)

Thus, 3 divides s(n) if and only if 3 divides s(2n), s(8n± 5) or s(8n± 7). Since every n > 1
can be written uniquely as 2n′, 8n′ ± 5 or 8n′ ± 7 with 0 ≤ n′ < n, the description of A3 is
complete.

In the late 1970’s, E. W. Dijkstra [7, pp. 215–6, 230–232] studied the Stern sequence
under the name “fusc”, and gave a different description of A3 (p. 232):

Inspired by a recent exercise of Don Knuth I tried to characterize the arguments
n such that 3 | fusc(n). With braces used to denote zero or more instances of
the enclosed, the vertical bar as the BNF ‘or’, and the question mark ‘?’ to
denote either a 0 or a 1, the syntactical representation for such an argument (in
binary) is {0}1{?0{1}0|?1{0}1}?1{0}. I derived this by considering – as a direct
derivation of my program – the finite state automaton that computes fusc (N)
mod 3.

Let
ar = |{n ∈ A3 : 2r ≤ n < 2r+1}| = T (2r+1; 3, 0)− T (2r; 3, 0). (84)

It follows from (82) that

a0 = a1 = 0, a2 = a3 = a4 = 2, a5 = 10. (85)

Lemma 19. For r ≥ 3, (ar) satisfies the recurrence

ar = ar−1 + 4ar−3. (86)
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Proof. This is evidently true for r = 3, 4, 5. If 2r ≤ n < 2r+1 and n = 2n′, then 2r−1 ≤ n′ <

2r, so the even elements of A3 counted in ar come from elements of A3 counted in ar−1. If
2r ≤ n < 2r+1 and n = 8n′ ± 5 or n = 8n′ ± 7, then 2r−3 < n′ < 2r−2 and n′ ∈ A3. Thus the
odd elements of A3 counted in ar come (in fours) from elements of A3 counted in ar−3.

The characteristic polynomial of the recurrence (86) is T 3 − T 2 − 4 (necessarily a factor
of f3(T )), and has roots T = 2, µ and µ̄. The details of the following routine computation
are omitted.

Theorem 20. For r ≥ 0, we have the exact formula

ar =
1

4
· 2r +

(

−7 + 5
√

7i

56

)

µr +

(

−7− 5
√

7i

56

)

µ̄r. (87)

Keeping in mind that s(0) = 0 is not counted in any ar, we find after a further compu-
tation that the error estimate O(

√
N) is best possible for T (N ; 3, 0):

Corollary 21.

T (2r; 3, 0) =
1

4
· 2r +

(

7−
√

7i

56

)

µr +

(

7 +
√

7i

56

)

µ̄r +
1

2
. (88)

To study ∆(N), we first need a somewhat surprising lemma.

Lemma 22. For all N , ∆(2N) = ∆(4N).

Proof. The simplest proof is by induction, and the assertion is trivial for N = 0. There are
eight possible “short” diatomic arrays modulo 3:

s(N) s(N + 1)
s(2N) s(2N + 1) s(2N + 2)
s(4N) s(4N + 1) s(4N + 2) s(4N + 3) s(4N + 4)

=

0 1
0 1 1
0 1 1 2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 2
0 2 2
0 2 2 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0
1 1 0
1 2 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
1 2 1
1 0 2 0 1

1 2
1 0 2
1 1 0 2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 0
2 2 0
2 1 2 2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1
2 0 1
2 2 0 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 2
2 1 2
2 0 1 0 2

(89)

By counting the elements in the rows mod 3 in each case, we see that ∆(2N +2)−∆(2N) =
∆(4N + 4)−∆(4N) is equal to: 1,−1, 2, 0, 1,−2,−1, 0, respectively.

Theorem 23. For all n, ∆(n) ∈ {0, 1, 2, 3}. More specifically,

S3(m) = (0, 1) =⇒ ∆(2m) = 0, ∆(2m + 1) = 0;

S3(m) = (0, 2) =⇒ ∆(2m) = 3, ∆(2m + 1) = 3;

S3(m) = (1, ∗) =⇒ ∆(2m) = 1, ∆(2m + 1) = 2;

S3(m) = (2, ∗) =⇒ ∆(2m) = 2, ∆(2m + 1) = 1.

(90)
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Proof. To prove the theorem, we first observe that it is correct for m ≤ 4. We now assume it
is true for m ≤ 2r and prove it for 2r ≤ m < 2r+1. There are sixteen cases: m can be even or
odd and there are 8 choices for S3(m). As a representative example, suppose S3(m) = (2, 1).
We shall consider the cases m = 2t and m = 2t + 1 separately. The proofs for the other
seven choices of S3(m) are very similar and are omitted.

Suppose first that m = 2t < 2r+1. Then S3(m) = S3(2t) = (2, 1), hence S3(t) = (2, 2).
We have ∆(2m) = 2 by hypothesis, and hence ∆(4m) = 2 by Lemma 22. The eighth array
in (89) shows that s(4t) ≡ 2 mod 3, so that ∆(4m+1) = ∆(4m)−1 = 1, as asserted in (90).

If, on the other hand, m = 2t + 1 < 2r+1 and S3(m) = S3(2t + 1) = (2, 1), then
S3(t) = (1, 1). We now have ∆(2t) = 1 and ∆(2t + 1) = 2 by hypothesis and ∆(4t) = 1 by
Lemma 22. The fourth array in (89) shows that (s(4t), s(4t+1), s(4t+2)) ≡ (1, 0, 2) mod 3.
Thus, it follows that ∆(2m) = ∆(4t + 2) = ∆(4t) + 1 + 0 = 2 and ∆(2m + 1) = ∆(4t + 3) =
∆(4t + 2)− 1 = 1, again as desired.

Since S3(m) is uniformly distributed on S3, (90) shows that ∆(n) takes the values
(0, 1, 2, 3) with limiting probability (1

8
, 3

8
, 3

8
, 1

8
).

We conclude with a few words about the results announced at the end of the first section,
but not proved here. For each (d, i), T (2r; d, i) will satisfy a recurrence whose characteristic
equation is a factor of the minimal polynomial of Sd. It happens that T (2r; 4, 0) = T (2r; 5, 0)
for small values of r and both satisfy the recurrence with characteristic polynomial T 4 −
2T 3 + T 2 − 4 (roots: 2,−1,−τ,−τ̄) so that equality holds for all r. The same applies to
T (2r; 6, 0) = T (2r; 9, 0) = T (2r; 11, 0), with a more complicated recurrence. Results similar
to Lemma 22 and Theorem 23 hold for d = 4, with a similar proof; Antonios Hondroulis has
shown that this is also true for d = 6. No result has been found yet for d = 5, although a
Mathematica check for N ≤ 219 shows that −5 ≤ T (N ; 5, 1)−T (N ; 5, 4) ≤ 11. These topics
will be discussed in greater detail in [16].
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