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Abstract

The lower Wythoff sequence a = (a(n)) and upper Wythoff sequence b = (b(n))
are solutions of many complementary equations f(a, b) = 0. Typically, f(a, b) involves
composites such as a(a(n)) and a(b(n)), and each such sequence is treated as a binary
word (e.g., aa and ab). Conversely, each word represents a sequence and, as such, is a
linear combination of a, b, and 1, in which the coefficients of a and b are consecutive
Fibonacci numbers. For example, baba = 3a + 5b − 6.

1 Introduction

An example of a complementary equation is

a(a(n)) = b(n) − 1, (1)

where it is given that the sequences a and b are complementary—that is, they are strictly
increasing sequences of positive integers, and every positive integer is in exactly one of the
sequences. Given the initial value a(1) = 1, equation (1) has as a unique solution the lower
Wythoff sequence, a(n) = ⌊τn⌋ , or equivalently, the upper Wythoff sequence, b(n) = ⌊τ 2n⌋ ,
where τ = (1 +

√
5)/2.

Equation (1) can be abbreviated as aa = b − 1. Here, the concatenation aa (which will
also be written as a2) represents composition, and the reduced notation provides a convenient
way to express complementary equations, such as ab = a+ b, ba = a+ b−1, and b2 = a+2b.
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The Wythoff sequences are solutions of these equations. The main purpose of this article
is to show that every word of the sort suggested by a2, ab, ba, and b2 lends itself to a simple
complementary equation having Wythoff solutions.

Suppose
w = l1l2 · · · lk

is a word on the two-symbol alphabet {a, b}. We shall use w to denote not only the word
but also the sequence (w(n)) defined as w = wk, where

w1(n) = l1(n), w2(n) = w1(l2(n)), . . . , wk(n) = wk−1(lk(n)).

Call k = k(w) the length of w. Let m = m(w) be the number of occurrences of the letter b
in w, and call m the weight of w.

Regarding notation, set braces { } denote fractional parts as well as sets; N denotes the
set of positive integers, and the Fibonacci sequence (Fn) is defined by F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 3.

In the following four lemmas, a and b denote the Wythoff sequences. These symbols
may also be regarded as representing a general pair of complementary sequences defining
a complementary equation; in this case, given the initial value a(1) = 1, a solution of the
equation is the Wythoff solution, but there are, for some of the equations, also other solutions.

Possibly these lemmas all appear in other settings, but proofs are included here for the
sake of completeness.

Lemma 1. a2 = b − 1.

Proof. For every n in N,
0 < (τ − 1){τn} < 1,

so that

−1 = ⌊{τn} − τ{τn}⌋
= ⌊τn − ⌊τn⌋ − τ{τn}⌋
= ⌊τn − τ{τn}⌋ − ⌊τn⌋ ,

so that ⌊τn⌋ = ⌊τn − τ{τn}⌋ + 1. Then using b(n) = ⌊τn⌋ + n,

b(n) = ⌊τn + n − τ{τn}⌋ + 1

=
⌊

τ 2n − τ{τn}
⌋

+ 1

= ⌊τ(τn − {τn}⌋ + 1

= ⌊τ ⌊τn⌋⌋ + 1

= a(a(n)) + 1.

Lemma 2. ab = a + b.
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Proof. Adapting a proof in [5], for every n in N we have

a(b(n)) =
⌊

τ
⌊

τ 2n
⌋⌋

= ⌊τn + τ ⌊τn⌋⌋
= n + ⌊2τn − τn − n + τ ⌊τn⌋⌋
= 2 ⌊τn⌋ + n + ⌊2τn − 2 ⌊τn⌋ − τn − n + τ ⌊τn⌋⌋
= ⌊τn⌋ +

⌊

τ 2n
⌋

+
⌊

2τn − 2 ⌊τn⌋ − τ 2n + τ ⌊τn⌋
⌋

= a(n) + b(n),

because
⌊

2τn − 2 ⌊τn⌋ − τ 2n + τ ⌊τn⌋
⌋

= ⌊(2 − τ){τn}⌋ = 0.

Lemma 3. ba = a + b − 1.

Proof. For every n in N,

b(a(n)) = b(⌊τn⌋) = ⌊τ ⌊τn⌋⌋ + ⌊τn⌋
= a(a(n)) + a(n),

and now Lemma 1 applies.

Lemma 4. b2 = a + 2b.

Proof. Using Lemma 2,

b(b(n)) = a(b(n)) + b(n) = a(n) + b(n) + b(n).

Lemmas 1-4 show the four words w of length 2 as sequences which, as solutions of comple-
mentary equations, are simple linear combinations of a, b, and 1. This result will be extended
to longer words in the next section.

2 Main Theorem on Wythoff sequences

Lemmas 1-4 enable a proof that every word, as a sequence, is a linear combination of a, b,
and 1 in which the coefficients of a and b are consecutive Fibonacci numbers.

Theorem 5. Let w = l1l2 · · · lk with length k ≥ 2 and weight m. Then, as a sequence,

w = Fk+m−2a + Fk+m−1b − c, (2)

where c ≥ 0, invariant of n, is given by

c = Fk+m+1 − w(1).
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Proof. For k = 2, there are four words w, namely a2, ab, ba, b2, and by Lemmas 1-4, the
complementary equation (2) holds for each of these. As an induction hypothesis, assume
for arbitrary k ≥ 2 and every word

w = l1l2 · · · lk (3)

that (2) holds. Let
w′ = l1l2 · · · lklk+1

be an arbitrary word of length k + 1, and let k′ and m′ denote the length and weight of w′.

Case 1. lk+1 = a, so that k′ = k + 1 and m′ = m. We have w′ = wa where w is as in
(3). The induction hypothesis is that

w(υ) = Fk+m−2a(υ) + Fk+m−1b(υ) − c

for every υ in N. Thus for any n in N, we put υ = a(n) :

w′(n) = w(a(n)) = Fk+m−2a(a(n)) + Fk+m−1b(a(n)) − c,

so that

w′ = Fk+m−2a
2 + Fk+m−1ba − c

= Fk+m−2(b − 1) + Fk+m−1(a + b − 1) − c

= Fk+m−1a + Fk+mb − c − Fk+m

= Fk′+m′
−2a + Fk′+m′

−1b − c − Fk+m.

Case 2. lk+1 = b, so that k′ = k + 1, m′ = m + 1 and w′ = wb, and

w′(n) = w(b(n)) = Fk+m−2a(b(n)) + Fk+m−1b(b(n)) − c,

which is

w′ = Fk+m−2ab + Fk+m−1b
2 − c

= Fk+m−2(a + b) + Fk+m−1(a + 2b) − c

= Fk+ma + Fk+m+1b − c

= Fk′+m′
−2a + Fk′+m′

−1b − c.

Thus, (2) is proved, and clearly c is invariant of n. Put n = 1 to find from (2) that

c = −w(1) + a(1)Fk+m−2 + b(1)Fk+m−1

= Fk+m+1 − w(1).

That c ≥ 0 follows inductively from the observations that c ≥ 0 in each of Lemmas 1-4 and
that in both cases above, as we pass from w to w′, the constant c passes to a new constant
c′ ≥ c.
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3 Tables and examples

Table 1. Words of length 2

aa = b − 1 ba = a + b − 1
ab = a + b bb = a + 2b

Sequences in [7] corresponding to the words in Table 1 are A003622, A003623, A035336, and
A101864, respectively.

Table 2. Words of length 3

aaa = a + b − 2 abb = 2a + 3b
aab = a + 2b − 1 bab = 2a + 3b − 1
aba = a + 2b − 2 bba = 2a + 3b − 3
baa = a + 2b − 3 bbb = 3a + 5b

Sequences in [7] corresponding to the words in Table 2 are A134859, A134864, A035337,
A134861, A134862, A134863, A035338, and A134864, respectively.

Table 3. Words of length 4

aaaa = a + 2b − 4 abba = 3a + 5b − 5
aaab = 2a + 3b − 2 baba = 3a + 5b − 6
aaba = 2a + 3b − 4 bbaa = 3a + 5b − 8
abaa = 2a + 3b − 5 abbb = 5a + 8b
baaa = 2a + 3b babb = 5a + 8b − 1
aabb = 3a + 5b − 1 bbab = 5a + 8b − 3
abab = 3a + 5b − 2 bbba = 5a + 8b − 8
baab = 3a + 5b − 3 bbbb = 8a + 13b

Example 6. ak = Fk−2a + Fk−1b − Fk+1 + 1 for all k in N.

Example 7. bk = F2k−2a + F2k−1b for all k in N.

4 The constant c

The constant c in Theorem 5 is not easily written out in general. However, we can gain
some insights using the following theorem.

Theorem 8. Suppose, as in Theorem 5, that

w = Fk+m−2a + Fk+m−1b − c.
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Then for i ≥ 0,

wa2i = Fk+m+2i−2a + Fk+m+2i−1b − c −
i

∑

h=1

Fk+m+2h (4)

wa2i+1 = Fk+m+2i−1a + Fk+m+2ib − c − Fk+m+2i −
i

∑

h=1

Fk+m+2h (5)

wbi = Fk+m+2i−2a + Fk+m+2i−1b − c. (6)

Proof. Each equation is easily proved by induction on i.

As every word is a concatenation of subwords covered by (4)-(6), it follows that the
constant c in (2) is a sum of Fibonacci numbers, each appearing at most twice, as in (5),
where Fk+m+2i occurs twice.

Corollary 9. Suppose w is a word. In the representation (2), c = 0 if and only if w = bi+1

or w = abi for some i ≥ 1.

Proof. The assertion is clearly true for words of length 1. By Lemmas 1-4, among words of
length 2, we have c = 0 only for w = b2 and w = ab. The remaining cases now follow from
(6).

5 Columns of the Wythoff array

Let W denote the Wythoff array [1, 8, 9], for which the entry in row n, column h, is

W (n, h) = (n − 1)Fh + ⌊nτ⌋Fh+1.

Words w, taken as sequences, have close connections to columns of W.

Theorem 10. Column h of W is given by

wh :=

{

ab(h−1)/2a if h is odd

bh/2a if h is even.

Proof. By Theorem 5, for all h and n in N,

wh(n) = Fh−1a(n) + Fhb(n) − Fh

= Fh−1 ⌊nτ⌋ + Fh(⌊nτ⌋ + n − 1)

= (Fh−1 + Fh) ⌊nτ⌋ + (n − 1)Fh

= (n − 1)Fh + ⌊nτ⌋Fh+1

= W (n, h).

The next theorem tells that the sequences in Corollary 9 are ordered unions of columns of
W.
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Theorem 11. For all h in N,

abh−1 = ordered ∪{w2j−1 : j = h, h + 1, h + 2, ...}

and
bh = ordered ∪{w2j : j = h, h + 1, h + 2, ...}.

Proof of Theorem 11 is left to the reader, who may wish to prove also, regarding all words
not covered by Theorems 10 and 11, that every word a2w′, as a sequence, is a subsequence
of column 1 of W, that every baw′ is a subsequence of column 2, that every abaw′ is a
subsequence of column 3, that every bbaw′ is a subsequence of column 4, and so on.

6 Concluding remarks

Some complementary equations having Wythoff solutions have been presented. Others, such
as ab− ba = 1, can be written easily by inspecting Tables 1-3. Most of these equations have
not only the Wythoff solutions, but also others. For example, the equation ab = a + b has
the sequence (2n − 1) as a solution. One wonders if general solutions can be obtained for
this and other complementary equations, and not only for the initial value a(1) = 1. The
interested reader may wish to consult [1] (especially Chapters 7 and 9) and [2, 3, 4, 5, 6].
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