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Abstract

We define a certain class of polynomials denoted by Pn,m,p(x), and give the com-
binatorial meaning of the coefficients. Chebyshev polynomials are special cases of
Pn,m,p(x). We first show that Pn,m,p(x) can be expressed in terms of Pn,0,p(x). From
this we derive that Pn,2,2(x) can be obtained in terms of trigonometric functions, from
which we obtain some of its important properties. Some questions about orthogonality
are also addressed. Furthermore, it is shown that Pn,2,2(x) fulfills the same three-
term recurrence as the Chebyshev polynomials. We also obtain some other recurrences
for Pn,m,p(x) and its coefficients. Finally, we derive a formula for the coefficients of
Chebyshev polynomials of the second kind.

1 Introduction

In the paper [1] I proved the following result:

Theorem 1. If a finite set X consists of n blocks of size p and an additional block of size

m then, for n ≥ 0, k ≥ 0, the number f(n, k,m, p) of (n + k)-subsets of X intersecting each

block of size p is

f(n, k,m, p) =
n

∑

i=0

(−1)i

(

n

i

)(

np + m − ip

n + k

)

.

I also proved the following relations for the function f [1]:

f(n, k,m, p) =
m

∑

i=0

(

m

i

)

f(n, k − i, 0, p), (1)
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f(n, k,m, p) =
t

∑

i=0

(−1)i

(

t

i

)

f(n, k + t,m + t − i, p), (2)

f(n, k,m, p) =

p
∑

i=1

(

p

i

)

f(n − 1, k − i + 1,m, p), (3)

f(n, k,m, p) =
n

∑

i=0

i
∑

j=0

(

n

i

)(

i

j

)

f(n − j, k − i + j,m, p − 1). (4)

Furthermore, I showed that (−1)kf(n, k, 0, 2) is the coefficient of the Chebyshev polyno-
mial Un+k(x) by xn−k, and that (−1)kf(n, k, 1, 2) is the coefficient of the Chebyshev poly-
nomial Tn+k−1(x) by xn−k+1.

Definition 2. We define the set of coefficients

{c(n, k,m, p) : n = m,m + 1, . . . ; k = 0, 1, . . . , n}

such that

c(n, k,m, p) = (−1)
n−k

2 f

(

n + k − 2m

2
,
n − k

2
,m, p

)

,

if n and k are of the same parity, and c(n, k,m, p) = 0 otherwise. The polynomials Pn,m,p(x)
are defined to be

Pn,m,p(x) =
n

∑

k=0

c(n, k,m, p)xk.

Example 3. The Chebyshev polynomials are particular cases of Pn,m,p(x), obtained for
m = 1, p = 2 and m = 0, p = 2, that is,

Un(x) = Pn,0,2(x), Tn(x) = Pn,1,2(x).

The polynomial Pn,2,2(x) is the closest to the Chebyshev polynomials, and will be denoted
simply by Pn(x).

In the next table we state the first few values of Pn(x).

x2

2x3 − 2x
4x4 − 5x2 + 1

8x5 − 12x3 + 4x
16x6 − 28x4 + 13x − 1

32x7 − 64x5 + 38x3 − 6x.

Among coefficients of the above polynomials the following sequences from [2] appear:
A024623, A049611, A055585, A001844, A035597.

Triangles of coefficients for Pn,m,2(x), ( m = 2, 3, 4, 5, 6) are given in A136388, A136389,
A136390, A136397, and A136398, respectively.
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2 Reduction to the case m = 0.

We shall first prove an analog of the formula (1) for polynomials.

Theorem 4. The following equation is fulfilled:

Pn,m,p(x) =
m

∑

i=0

(−1)i

(

m

i

)

xm−iPn−m−i,0,p(x).

Proof. The following equation holds:

Pn,m,p(x) =
n

∑

k=0

(−1)
n−k

2 f

(

n + k − 2m

2
,
n − k

2
,m, p

)

xk.

Using (1) one obtains

Pn,m,p(x) =
n

∑

k=0

m
∑

i=0

(−1)
n−k

2

(

m

i

)

f (r, s, 0, p) xk.

where

r =
n + k − 2m

2
, s =

n − k

2
− i.

Changing the order of summation yields

Pn,m,p(x) =
m

∑

i=0

(

m

i

)

xm−i

n
∑

k=0

(−1)
n−k

2 f (r, s, 0, p) xk−m+i.

Terms in the sum on the right side of the preceding equation produce nonzero coefficients
only in the case 0 ≤ s ≤ r, that is,

m − i ≤ k ≤ n − 2i.

It follows that

Pn,m,p(x) =
m

∑

i=0

(−1)i

(

m

i

)

xm−i

n−2i
∑

k=m−i

(−1)
n−k

2
−if (r, s, 0, p) xk−m+i.

Denoting k − m + i = j we obtain

Pn,m,p(x) =
m

∑

i=0

(−1)i

(

m

i

)

xm−i

n−m−i
∑

j=0

c(n − m − i, j, 0, p)xj,

which means that

Pn,m,p(x) =
m

∑

i=0

(−1)i

(

m

i

)

xm−iPn−m−i,0,p(x).

3



According the the preceding theorem we can express Pn(x) in terms of Chebyshev poly-
nomials of the second kind. Namely, for m = 2, n ≥ 4 we have

Pn(x) = x2Un−2(x) − 2xUn−3(x) + Un−4(x). (5)

This allow us to express Pn(x) in terms of trigonometric functions.

Theorem 5. For each n ≥ 3 we have

Pn(cos θ) = − sin θ sin(n − 1)θ. (6)

Proof. According to (5) and well-known property of Chebyshev polynomials we obtain

sin θPn(cos θ) = cos2 θ sin(n − 1)θ − 2 cos θ sin(n − 2)θ + sin(n − 3)θ.

From the identity
2 cos θ sin(n − 2)θ = sin(n − 1)θ + sin(n − 3)θ

follows

sin θPn(cos θ) = cos2 θ sin(n − 1)θ − sin(n − 1)θ = − sin2 θ sin(n − 1)θ.

Dividing by sin θ 6= 0 we prove the theorem.

Note that this proof is valid for n ≥ 4. The case n = 3 can be checked directly.
In the following theorem we prove that Pn(x) have the same important property con-

cerning zeroes as Chebyshev polynomials do.

Theorem 6. For n ≥ 3, the polynomial Pn(x) has all simple zeroes lying in the segment

[−1, 1].

Proof. Since
Un(1) = n + 1, Un(−1) = (−1)n(n + 1)

the equation (5) implies

Pn(1) = Un−2(1) − 2Un−3(1) + Un−4(1) = n − 1 − 2(n − 2) + n − 3 = 0,

and
Pn(−1) = Un−2(−1) + 2Un−3(−1) + Un−4(−1) =

= (−1)n−2(n − 1) + 2(−1)n−3(n − 2) + (−1)n−4(n − 3) = 0.

Thus, x = −1 and x = 1 are zeroes of Pn(x). The remaining n − 2 zeroes are obtained
from the equation

sin(n − 1)θ = 0,

and they are

xk = cos
kπ

n − 1
, (k = 1, 2, . . . , n − 2).
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We shall now state an immediate consequence of (6) which shows that values of Pn(x), (x ∈
[−1, 1]) lie inside the unit circle.

Corollary 7. For n ≥ 3 and x ∈ [−1, 1] we have

Pn(x)2 + x2 ≤ 1.

Example 8. Dividing Pn(x) by 2n−2 we obtain a polynomial with the leading coefficient
1. Thus, its sup norm on [−1, 1] is ≤ 1

2n−2 , which means that 1
2n−2 Pn(x) has at most 2 times

greater sup norm, comparing with the sup norm of Tn(x), which is minimal.

Taking the derivative in the equation (6) we obtain the following equation for extreme
points of Pn(x) :

(n − 1) tan θ + tan(n − 1)θ = 0.

The values θ = 0, and θ = π obviously satisfied this equation, which implies that end-
points x = −1 and x = 1 are extreme points. The remaining extreme points of P3(x) are
x = arctan

√
2 and x = − arctan

√
2.

3 Orthogonality

In this section we investigate the set {Pn(x) : n = 2, 3, 4, . . .} concerning to the problem of
orthogonality, with respect to some standard Jacobi’s weights.

The first result is for the weight 1√
1−x2

of Chebyshev polynomials of the first kind.

So, when n = m = 2,
∫ 1

−1
[Pn(x)]2√

1−x2
dx = 3

8
π.

Theorem 9. The following equation holds:

∫ 1

−1

Pn(x)Pm(x)√
1 − x2

dx =











π
4
, if m = n > 2;

−π
8
, if |n − m| = 2;

0, otherwise.

Proof. Puting x = cos θ implies

I =

∫ 1

−1

Pn(x)Pm(x)√
1 − x2

dx =

∫ π

0

Pn(cos θ)Pm(cos θ)dθ.

Using (6) we obtain

I =

∫ π

0

sin2 θ sin(n − 1)θ sin(m − 1)θdθ.

Transforming the integrating function we obtain

sin2 θ sin(n − 1)θ sin(m − 1)θ =
1

4
cos(n − m)θ − 1

4
cos(n + m − 2)θ−

−1

8
cos(n − m − 2)θ − 1

8
cos(n − m + 2)θ +

1

8
cos(n + m − 4)θ +

1

8
cos(n + m)θ.
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Taking into account that m,n ≥ 3 we conclude that integrals of the terms on the right side
of the preceding equation are zero if n 6= m and |n−m| 6= 2. If n = m we obtain I = π

4
, and

I = −π
8
, if |n − m| = 2.

Corollary 10. Each subset of the set {Pn(x) : n ≥ 3}, not containing polynomials Pk(x)
and Pm(x) such that |k − m| = 2 and k 6= m is orthogonal.

The next result concerns the weight
√

1 − x2 of Chebyshev polynomials of the second
kind. The result is similar to the result of the preceding theorem.

First of all we have
∫ 1

−1

√
1 − x2Pn(x)Pm(x)dx =

{

5π
32

, if (n,m) = (3, 3);

− π
32

, if (n,m) = (2, 4) or (4, 2).

Theorem 11. For m,n such that (m,n) 6= (2, 4) and (4, 2) we have

∫ 1

−1

√
1 − x2Pn(x)Pm(x)dx =



















3π
16

, if m = n > 3;

−π
8
, if |n − m| = 2;

π
32

, if |n − m| = 4;

0, otherwise.

Proof. In this case we have
∫ 1

−1

√
1 − x2Pn(x)Pm(x)dx =

∫ π

0

sin2 θPn(cos θ)Pm(cos θ)dθ.

We therefore need to calculate the integral
∫ π

0

sin4 θ sin(n − 1)θ sin(m − 1)θdθ.

We have

sin4 θ sin(n − 1)θ sin(m − 1)θ =
3

16
cos(n − m)θ − 3

16
cos(n + m − 2)θ+

+
1

32
cos(n − m − 4)θ +

1

32
cos(n − m + 4)θ − 1

32
cos(n + m − 6)θ − 1

32
cos(n + m + 2)θ−

−1

8
cos(n − m − 2)θ − 1

8
cos(n − m + 2)θ +

1

8
cos(n + m − 4)θ +

1

8
cos(n + m)θ.

The integral of each term on the right side with m 6= n, |m−n| 6= 2, |n−m| 6= 4 is zero.
For these particular values we easily obtain the desired result.

Taking, for instance, the weight (1 − x2)
3

2 in a similar way one obtains

∫ 1

−1

(1 − x2)
3

2 Pn(x)Pm(x)dx =



















7π
64

, if (m,n) = (3, 3);
21π
128

, if (m,n) = (4, 4);

− π
128

, if (m,n) = (4, 2) or (2, 4);

−7π
64

, if (m,n) = (3, 5) or (5, 3).
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For m,n such that (m,n) 6= (2, 4), (4, 2), (3, 5), and (5, 3) we have

∫ 1

−1

(1 − x2)
3

2 Pn(x)Pm(x)dx =































5π
32

, if m = n > 4;

−15π
128

, if |n − m| = 2;
3π
64

, if |n − m| = 4;

− π
128

, if |n − m| = 6;

0, otherwise.

Considering the weight 1 leads to the following result:

Theorem 12. If m and n are of different parity then

∫ 1

−1

Pn(x)Pm(x)dx = 0.

Proof. In this case we need to calculate the integral
∫ π

0

sin3 θ sin(n − 1)θ sin(m − 1)θdθ.

We have

sin3 θ sin(n − 1)θ sin(m − 1)θ = − 1

16
sin(n − m + 3)θ +

1

16
sin(n − m − 3)θ+

+
1

16
sin(n + m + 1)θ − 1

16
sin(n + m − 5)θ +

3

16
sin(n − m + 1)θ−

− 3

16
sin(n − m − 1)θ − 3

16
sin(n + m − 1)θ +

1

16
sin(n + m − 3)θ.

Since m and n are of different parity each function on the right is of the form sin 2kθ, which
implies that its integral equals zero.

4 Some recurrence relations

In this section we prove some recurrence relation for Pn,m,p(x) as well as some recurrence
relations for their coefficients.

Theorem 13. For each integer t ≥ 0 we have

Pn,m,p(x) =
t

∑

i=0

(−1)t−i

(

t

i

)

xiPn+2t−i,m+t−i,p(x).

Proof. Translating (2) into the equation for coefficients we obtain

c(n, k,m, p) =
t

∑

i=0

(−1)i+t

(

t

i

)

c(n + 2t − i, k − i,m + t − i, p).
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Multiplying by xk yields

c(n, k,m, p)xk =
t

∑

i=0

(−1)i+t

(

t

i

)

xic(n + 2t − i, k − i,m + t − i, p)xk−i,

which easily implies the claim of the theorem.

In the case t = 1, m = 1, p = 2 we obtain the following formula, expressing Pn(x) in
terms of Chebyshev polynomials of the first kind:

Pn(x) = xTn−1(x) − Tn−2(x).

From this we easily conclude that Pn(x) satisfies the same three-term recurrence as Cheby-
shev polynomials.

Corollary 14. The polynomials Pn,m,2(x) satisfy the following equation:

Pn,m,2(x) = 2xPn−1,m,2(x) − Pn−2,m,2(x),

with initial conditions

P0,m,2(x) = xm, P1,m,2(x) = 2xm+1 − mxm−1.

Combining equations (1) and (4) we obtain

f(n, k,m, p) =
n

∑

i=0

i
∑

j=0

m
∑

t=0

(

n

i

)(

m

t

)(

i

j

)

f(n − j, k − i + j − t, 0, p − 1).

Translating this equation into an equation for the coefficients, we obtain

c(n, k,m, p) =
ñ

∑

i=0

i
∑

j=0

m
∑

t=0

(

ñ

i

)(

m

t

)(

i

j

)

(−1)i−j+tc(n−m− i− t, k−m+ i−2j + t, 0, p−1),

where ñ = n+k−2m
2

.

Applying the preceding equation several times we obtain the following:

Corollary 15. The coefficients of Pn,m,p(x) can be expressed as functions of coefficients of

Chebyshev polynomials of the second kind.

Converting (3) into the equation for coefficients we obtain

c(n, k,m, p) =

p
∑

i=1

(−1)i−1

(

p

i

)

c(n − i, k + i − 2,m, p).

This equation implies the following:

Corollary 16. The coefficients of Pn,m,p(x) can be expressed in terms of coefficients of the

polynomials Pn′,m,p(x), where n′ < n.
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We shall finish the paper with a formula for coefficients of Chebyshev polynomials of the
second kind. Taking p = 2 in (4) we obtain

f(n, k,m, 2) =
n

∑

i=0

i
∑

j=0

(

n

i

)(

i

j

)

f(n − j, k − i + j,m, 1).

Since f(r, s,m, 1) =
(

m

s

)

we have

f(n, k,m, 2) =
n

∑

i=0

i
∑

j=0

(

n

i

)(

i

j

)(

m

k − i + j

)

.

For m = 0, in the sum on the right side of this equation only terms with k = i − j remains.
We thus obtain

f(n, k, 0, 2) =
n−k
∑

s=0

(

n

s

)(

n − s

k

)

.

Accordingly, the following formula follows.

Corollary 17. For coefficients c(n, k) of Chebyshev polynomial Un(x) hold

c(n, k) = (−1)
n−k

2

k
∑

i=0

(

n+k
2

i

)(n+k
2

− i
n−k

2

)

,

if n i k are of the same parity and c(n, k) = 0 otherwise.
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