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Abstract

We consider the linear three-term recurrence formula

Xn = (34(n − 1)3 + 51(n − 1)2 + 27(n − 1) + 5)Xn−1 − (n − 1)6Xn−2 (n ≥ 2)

corresponding to Apéry’s non-regular continued fraction for ζ(3). It is shown that
integer sequences (Xn)n≥0 with 5X0 6= X1 satisfying the above relation are prime-
detecting, i.e., Xn 6≡ 0 (modn) if and only if n is a prime not dividing |5X0 − X1|.
Similar results are given for integer sequences satisfying the recurrence formula

Xn = (11(x − 1)2 + 11(x − 1) + 3)Xn−1 + (n − 1)4Xn−2 (n ≥ 2)

corresponding to Apéry’s non-regular continued fraction for ζ(2) and for sequences
related to log 2.

1 Introduction

In 1979, R. Apéry [1] proved the irrationality of ζ(3) =
∑∞

n=1 1/n3. The jumping-off point
of his proof is a recurrence formula,

(n + 1)3Xn+1 − (34n3 + 51n2 + 27n + 5)Xn + n3Xn−1 = 0, (1)
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which is satisfied by Xn = an and Xn = bn with

an =
n
∑

k=0

(

n

k

)2(
n + k

k

)2

, bn =
n
∑

k=0

(

n

k

)2(
n + k

k

)2

cn,k, (2)

where

cn,k =
n
∑

m=1

1

m3
+

k
∑

m=1

(−1)m−1

2m3

(

n

m

)(

n + m

m

) (1 ≤ k ≤ n). (3)

One basic fact for the irrationality proof of ζ(3) is the following inequality:

0 6= ζ(3) − bn

an

= O
(

(1 +
√

2)
−8n )

.

When n increases, bn/an converges rapidly to ζ(3) so that one can conclude the irrationality
of ζ(3). From (1), Apéry’s continued fraction expansion of ζ(3) can be derived, namely

ζ(3) =
6

5 − 16

117 − 26

535 − ... − n6

34n3 + 51n2 + 27n + 5 − · · ·

(4)

(see [4]). F. Beukers [2] proved the congruence

a((p−1)/2) ≡ γp (mod p)

for all odd primes p, where the integers γn are given by the following series expansion of an
infinite product:

∞
∑

n=1

γnq
n = q

∞
∏

n=1

(1 − q2n)
4
(1 − q4n)

4
.

Note that (bn)n≥0 is a sequence of rationals. For the concept of prime-detecting sequences
introduced below we shall need integer sequences. Therefore, we define

q0 = 1, qn = (n!)3an (n ≥ 1), p0 = 0, pn = (n!)3bn (n ≥ 1), (5)

so that the pn are integers. It can be shown that both sequences, (qn)n≥0 and (pn)n≥0, satisfy
the recurrence formula

Xn = T (n)Xn−1 − U(n)Xn−2 (n ≥ 2), (6)

where T (n) = 34(n − 1)3 + 51(n − 1)2 + 27(n − 1) + 5 and U(n) = (n − 1)6. This requires
some technical computations. Alternatively, for Xn = qn one can verify (6) by application of
the Zeilberger algorithm [6, Chapter 7, Algorithm 7.1] using a computer. The same algorithm
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works for Xn = an and (1) ([6, p. 101-102]), but not for pn and bn, respectively. We also
have

pn

qn

=
bn

an

−→ ζ(3)

as n tends to infinity. Finally, computing p1 = 6 and q1 = 5 from (2) and (3), the continued
fraction (4) follows from the formula (1) in [7, §§1, 2].

We let P denote the set of prime numbers. There are several possibilities for suitable
functions and sequences to detect primes. We give a short summary of various prime-
detecting methods in the concluding section 4 of this paper. Of course, Wilson’s theorem
plays a significant role.

Proposition 1. For all integers n ∈ N \ {4} we have

(n − 1)! 6≡ 0 (mod n) ⇐⇒ n ∈ P.

Proof. For any prime n we know by Wilson’s criterion that (n − 1)! ≡ −1 (mod n). So it
remains to prove (n − 1)! ≡ 0 (mod n) for any n = ab 6= 1, 4 with integers 1 < a, b < n.

Case 1: a = b ≥ 3 .
Since n = a2 and lcm(2, a, 2a, a2) = lcm(2, a2), we have

lcm (1, . . . , a − 1, a + 1, . . . , 2a − 1, 2a + 1, . . . , n ) = lcm (1, . . . , n ),

and so

lcm (1, . . . , n )
∣

∣

∣

(

1 · · · (a − 1)(a + 1) · · · (2a − 1)(2a + 1) · · ·n
)

=
n!

2a2
=

(n − 1)!

2
.

Case 2: 1 < a < b .
Since n = ab = lcm(a, b, ab), we have

lcm (1, . . . , a − 1, a + 1, . . . , b − 1, b + 1, . . . , n ) = lcm (1, . . . , n ).

Hence

lcm (1, . . . , n )
∣

∣

∣

(

1 · · · (a − 1)(a + 1) · · · (b − 1)(b + 1) · · ·n
)

=
n!

ab
= (n − 1)!.

In any case, we get lcm(1, . . . , n)
∣

∣ (n − 1)!, in particular (n − 1)! ≡ 0 (mod n), which com-
pletes the proof of Proposition 1.

In the sequel we consider sequences of integers and contrive a prime-detecting concept.
For that purpose we define: A sequence (xn)n≥0 of integers is said to be prime-detecting if
the equivalence xn 6≡ 0(mod n) ⇐⇒ n ∈ P holds for all but finitely many positive integers
n. Proposition 1 can be applied to detect primes in a form parallel to the results below
based on Apéry’s recurrences. Thus we get a very simple primality criterion using a first
order recurrence with polynomial coefficients.
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Proposition 2. Let a be a positive integer. We let p1, . . . , ps denote the prime divisors of
a. Let

T (x) = x − 1 , rn =
1

n
,

d1 = a , dn = T (n)dn−1 (n ≥ 2) .

Then for all integers n ∈ N \ {4} we have

dn 6≡ 0 (mod n) ⇐⇒ n ∈ P \ {p1, . . . , ps},

and for p ∈ P

dp ≡ −a (mod p).

Moreover,
dn = n!rna ,

and, consequently,

lim
n→∞

dn

n!rn

= a .

It is also possible to detect primes by integer solutions of Apéry-type recurrences. In the
case of Apéry’s recurrence relation (1), we have explicit formulae for Xn involving combi-
natorial sums. From the arithmetical properties of binomial coefficients (see Eqs. (22)-(25)
in Section 2) we can deduce the prime-detecting property of the sequences (Xn)n≥0. The
same can be done for sequences satisfying linear recurrence relations connected with ζ(2) and
log 2. For our results we do not need continued fraction expansions of ζ(3), ζ(2), and log 2.
However, we state them because they are closely related to the linear recurrence formulae.

Theorem 3. Let a, b be positive integers such that 5a 6= b. Let p1, . . . , ps denote the prime
divisors of |5a − b|. Let

T (x) = 34(x − 1)3 + 51(x − 1)2 + 27(x − 1) + 5, U(x) = (x − 1)6,

d0 = a, d1 = b, dn = T (n)dn−1 − U(n)dn−2 (n ≥ 2).

Then for all integers n ∈ N we have

dn 6≡ 0 (mod n) ⇐⇒ n ∈ P \ {p1, . . . , ps}, (7)

and for p ∈ P

dp ≡ 5a − b (mod p).

Moreover,

dn = n!3
n
∑

k=0

(

n

k

)2(
n + k

k

)2(

a +
b − 5a

6
cn,k

)

(n ≥ 0), (8)

where cn,k is defined in Eq. (3), and

lim
n→∞

dn

n!3an

= a +
b − 5a

6
ζ(3).
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R. Apéry [1] also proved the irrationality of ζ(2) using

a′
n =

n
∑

k=0

(

n

k

)2(
n + k

k

)

, b′n =
n
∑

k=0

(

n

k

)2(
n + k

k

)

c′n,k (9)

where

c′n,k = 2
n
∑

m=1

(−1)m−1

m2
+

k
∑

m=1

(−1)n+m−1

m2

(

n

m

)(

n + m

m

) (1 ≤ k ≤ n). (10)

Both Xn = a′
n and Xn = b′n satisfy the recurrence formula

(n + 1)2Xn+1 − (11n2 + 11n + 3)Xn − n2Xn−1 = 0. (11)

Here, we have

ζ(2) =
5

3 +
14

25 +
24

69 + ... +
n4

11n2 + 11n + 3 + · · ·

.

Using the coefficient polynomials of the recurrence formula (11), we get

Theorem 4. Let a, b be positive integers such that 3a 6= b. Let p1, . . . , ps denote the prime
divisors of |3a − b|. Let

T (x) = 11(x − 1)2 + 11(x − 1) + 3, U(x) = (x − 1)4,

d0 = a, d1 = b, dn = T (n)dn−1 + U(n)dn−2 (n ≥ 2).

Then for all integers n ∈ N we have

dn 6≡ 0 (mod n) ⇐⇒ n ∈ P \ {p1, . . . , ps},

and for p ∈ P

dp ≡ b − 3a (mod p).

Moreover,

dn = n!2
n
∑

k=0

(

n

k

)2(
n + k

k

)(

a +
b − 3a

5
c′n,k

)

(n ≥ 0),

where c′n,k is defined in (10), and

lim
n→∞

dn

n!2a′
n

= a +
b − 3a

5
ζ(2).
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Theorems 3 and 4 are based on recurrence relations given by Apéry in [1]. Now we
consider the recurrence formula

(n + 1)Xn+1 − 3(2n + 1)Xn + nXn−1 = 0, (12)

which is satisfied by Xn = a′′
n and Xn = b′′n with

a′′
n =

n
∑

k=0

(

n

k

)(

n + k

k

)

, b′′n =
n
∑

k=0

(

n

k

)(

n + k

k

)

ck, (13)

where

ck =
k
∑

m=1

(−1)m−1

m
(1 ≤ k ≤ n). (14)

We prove this result in Section 2 below. From (12) we have the continued fraction expansion

log 2 =
2

3 − 12

9 − 22

15 − ... − n2

3(2n + 1) − · · ·

.

Theorem 5. Let a, b be positive integers such that 3a 6= b. Let p1, . . . , ps denote the prime
divisors of |3a − b|. Let

T (x) = 3(2x − 1), U(x) = (x − 1)2,

d0 = a, d1 = b, dn = T (n)dn−1 − U(n)dn−2 (n ≥ 2).

Then for all integers n ∈ N \ {4} we have

dn 6≡ 0 (mod n) ⇐⇒ n ∈ P \ {p1, . . . , ps},

and for p ∈ P

dp ≡ 3a − b (mod p).

Moreover,

dn = n!
n
∑

k=0

(

n

k

)(

n + k

k

)(

a +
b − 3a

2
ck

)

,

where ck is defined in Eq. (14), and

lim
n→∞

dn

n!a′′
n

= a +
b − 3a

2
log 2.

Remark: For n = 4 one has d4 = 2670b − 306a, which is not divisible by 4 if and only if
a 6≡ b (mod 2).
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2 Proof of Theorems 3 and 4.

Proof of Theorem 3: First we prove the explicit expression (8) of dn. From pn and qn

defined in (5) and their common recurrence formula (6), we see that both Yn = qn and
Yn = pn satisfy the recurrence relation

Yn = T (n)Yn−1 − U(n)Yn−2 (n ≥ 2). (15)

Obviously, for any real α and β, Yn = αqn + βpn satisfy the relation (15) too. Now we
compute α and β according to initial conditions of the sequence (dn)n≥0:

d0 = a = αq0 + βp0 = α,
d1 = b = αq1 + βp1 = 5α + 6β.

Then dn = αqn + βpn are solutions of (15). The system of equations has a unique solution:
α = a and β = (b− 5a)/6. Thus, expressing pn, qn by Eq. (5) and an, bn by Eq. (2), we have
the explicit formula (8) for dn. Dividing this identity by n!3an and using bn/an → ζ(3), we
find the limit a + (b − 5a)ζ(3)/6 of the sequence (dn/n!3an)n≥0.

We use the formula (8) for dn. Observing that n3
∣

∣n!3 and

n!3

m3
≡ 0 (mod n) (1 ≤ m ≤ n − 1),

we get

12dn ≡ 2(b − 5a)n!3
n
∑

k=0

(

n

k

)2(
n + k

k

)2

cn,k (mod n)

= 2(b − 5a)n!3
n
∑

k=0

(

n

k

)2(
n + k

k

)2 n
∑

m=1

1

m3

+ 2(b − 5a)n!3
n
∑

k=0

(

n

k

)2(
n + k

k

)2 k
∑

m=1

(−1)m−1

2m3

(

n

m

)(

n + m

m

)

≡ 2(b − 5a)n!3
n
∑

k=0

(

n

k

)2(
n + k

k

)2
1

n3

+
(b − 5a)n!3

lcm3(1, . . . , n)

n
∑

k=0

(

n

k

)2(
n + k

k

) k
∑

m=1

(−1)m−1lcm3(1, . . . , n)

(

n + k

k

)

m3

(

n

m

)(

n + m

m

) (mod n). (16)

It follows from the proof of Proposition 3 in [4] that

lcm3(1, . . . , n)

(

n + k

k

)

m3

(

n

m

)(

n + m

m

) ∈ N (1 ≤ m ≤ k ≤ n). (17)
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Case 1: n 6∈ P .
There is nothing to show for n = 1. Moreover, Theorem 3 is also true for n = 4 and n = 6,
since

d4 = 91397560b − 781976a ≡ 0 (mod 4),
d6 = 1604788039632960b − 13730188564800a ≡ 0 (mod 6).

Now let n 6∈ P ∪ {1, 4, 6}. In particular, we have n ≥ 8. Then, using

n!3

n3
= (n − 1)! · (n − 1)!2,

(n − 1)! ≡ 0 (mod n) (for n 6= 4 by Proposition 1),

(n − 1)!2 ≡ 0 (mod 12) (n ≥ 4),

we can simplify (16) as follows:

12dn ≡ (b − 5a)n!3

lcm3(1, . . . , n)

n
∑

k=0

(

n

k

)2(
n + k

k

) k
∑

m=1

(−1)m−1lcm3(1, . . . , n)

(

n + k

k

)

m3

(

n

m

)(

n + m

m

) (mod n).

Thus dn ≡ 0 (mod n) follows from (17) and

n!3

lcm3(1, . . . , n)
≡ 0 (mod 12n) (n 6∈ P , n ≥ 6). (18)

For (18) it suffices to prove the two congruences

n!

lcm (1, . . . , n)
≡ 0 (mod 12) (n ≥ 6), (19)

n!

lcm (1, . . . , n)
≡ 0 (mod n) (n 6∈ P , n ≥ 6). (20)

Both congruences (19) and (20) hold for n = 6, 7 and n = 6, respectively. In the sequel we
assume that n ≥ 8 and n 6∈ P. First, we observe for 1 ≤ m ≤ n that

lcm (1, . . . , n)
∣

∣

∣
lcm (1, . . . ,m)lcm (m + 1, . . . , n)

∣

∣

∣
m! (m + 1)(m + 2) . . . n = n!. (21)

Therefore, it follows from n ≥ 8 that

n!

lcm (1, . . . , 6)lcm (7, 8, . . . , n)
=

6! · (7 · 8 · · ·n)

lcm (1, . . . , 6)lcm (7, 8, . . . , n)

= 12 · 7 · 8 · · ·n
lcm (7, 8, . . . , n)

≡ 0 (mod 12),

so that (21) implies (19). The congruence (20) is already shown in the proof of Proposition
1, and therefore one conlusion in (7) of Theorem 3 holds.

8



Case 2: n ∈ P .
For n = p ∈ {2, 3} we have

d2 = 117b − a ≡ 5a − b (mod 2),
d3 = 62531b − 535a ≡ 5a − b (mod 3).

In the sequel we assume p ≥ 5 is a prime. We need some arithmetic properties of binomial
coefficients:

(

p

k

)

6≡ 0 (mod p) ⇐⇒ k ∈ {0, p}, (22)

(

p + k

k

)

=
(p + 1)(p + 2) · (p + k)

1 · 2 . . . k
≡ 1 · 2 . . . k

1 · 2 . . . k
(mod p)

≡ 1 (mod p) ⇐⇒ k ∈ {0, 1, 2, . . . , p − 1}, (23)

(

2p

p

)

=
(p + 1)(p + 2) . . . (2p)

1 · 2 . . . p
= 2

(p + 1)(p + 2) . . . (2p − 1)

1 · 2 . . . (p − 1)

≡ 2
1 · 2 . . . (p − 1)

1 · 2 . . . (p − 1)
≡ 2 (mod p), (24)

ep

((

p

k

))

∈ {0, 1} (k ∈ {0, 1, . . . , p}), (25)

where ep(m) is the exponent of p in the decomposition of m. We denote the first term on
the right side of (16) by S1 and compute its residue class modulo p using (22) and (24):

S1 = 2(b − 5a)p!3
p
∑

k=0

(

p

k

)2(
p + k

k

)2
1

p3

= 2(b − 5a)(p − 1)!3
p
∑

k=0

(

p

k

)2(
p + k

k

)2

≡ −2(b − 5a)
∑

k∈{0 , p}

(

p

k

)2(
p + k

k

)2

(mod p)

≡ −2(b − 5a)(1 + 4) ≡ 10(5a − b) (mod p). (26)

Next, we treat the second term S2 on the right side of (16):

S2 = (b − 5a)p!3
p
∑

k=0

(

p

k

)2(
p + k

k

)2 k
∑

m=1

(−1)m−1

m3

(

p

m

)(

p + m

m

) . (27)
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It is convenient to compute the sum of the terms with 1 ≤ k ≤ p − 1 separately. By (22),
(23), and (25) we have

ep

(

(

p

k

)2(
p + k

k

)2
)

= 2,

ep

(

m3

(

p

m

)(

p + m

m

))

= 1 (1 ≤ m ≤ k).

Hence we get

p!3
p−1
∑

k=1

(

p

k

)2(
p + k

k

)2 k
∑

m=1

(−1)m−1

m3

(

p

m

)(

p + m

m

) ≡ 0 (mod p).

Then the sum in (27) simplifies to

S2 ≡ (b − 5a)p!3
∑

k∈{0 , p}

(

p

k

)2(
p + k

k

)2 k
∑

m=1

(−1)m−1

m3

(

p

m

)(

p + m

m

)

≡ 4(b − 5a)p!3
p
∑

m=1

(−1)m−1

m3

(

p

m

)(

p + m

m

) (mod p).

It follows from Eqs. (22), (23) and (24) that

p!3
p
∑

m=1

(−1)m−1

m3

(

p

m

)(

p + m

m

) =
p!3

p3

(

2p

p

) + p!3
p−1
∑

m=1

(−1)m−1

m3

(

p

m

)(

p + m

m

) ≡ p!3

2p3
(mod p),

which yields

S2 ≡ (b − 5a)
4p!3

2p3
= 2(b − 5a)(p − 1)!3 ≡ 2(5a − b) (mod p). (28)

The congruences (26) and (28) for S1 and S2 give

12dp ≡ S1 + S2 ≡ 10(5a − b) + 2(5a − b) = 12(5a − b) (mod p) (p ≥ 5).

Since p ≥ 5 we have dp ≡ 5a − b (mod p). This completes the proof. 2

Proof of Theorem 4: Putting

q′0 = 1, q′n = (n!)2a′
n (n ≥ 1), p′0 = 0, p′n = (n!)2b′n (n ≥ 1)
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with a′
n and b′n defined in (9), both sequences, (q′n)n≥0 and (p′n)n≥0, satisfy the recurrence

formula
Xn = T (n)Xn−1 + U(n)Xn−2 (n ≥ 2), (29)

where T (n) = 11(n − 1)2 + 11(n − 1) + 3 and U(n) = (n − 1)4. For any real α and β,
Yn = αq′n + βp′n satisfy the relation (29) too. Again we compute α and β according to the
initial conditions of the sequence (dn)n≥0:

d0 = a = αq′0 + βp′0 = α,
d1 = b = αq′1 + βp′1 = 3α + 5β.

Then dn = αq′n + βp′n are solutions of (29). The system of equations has a unique solution:
α = a and β = (b − 3a)/5. Thus, expressing a′

n and b′n by (9), we get the formula for dn.
The limit of the sequence (dn/n!2a′

n)n≥0 can be computed using the explicit formula of dn

and b′n/a
′
n → ζ(2).

In what follows we use exactly the same arguments as in the proof of Theorem 3. Using
the explicit formula for dn we get

5dn ≡ (b − 3a)n!2
n
∑

k=0

(

n

k

)2(
n + k

k

)

c′n,k (mod n)

= 2(b − 3a)n!2
n
∑

k=0

(

n

k

)2(
n + k

k

) n
∑

m=1

(−1)m−1

m2

+(b − 3a)n!2
n
∑

k=0

(

n

k

)2(
n + k

k

) k
∑

m=1

(−1)n+m−1

m2

(

n

m

)(

n + m

m

)

≡ 2(b − 3a)n!2
n
∑

k=0

(

n

k

)2(
n + k

k

)

(−1)n−1

n2

+
(b − 3a)n!2

lcm2(1, . . . , n)

n
∑

k=0

(

n

k

)2 k
∑

m=1

(−1)n+m−1lcm2(1, . . . , n)

(

n + k

k

)

m2

(

n

m

)(

n + m

m

) (mod n)

=: S1 + S2.

For n 6∈ P we proceed as in the proof of Theorem 3. Next, we treat the case n ∈ P. For
n = p ∈ {2, 3, 5} we have

d2 = 25b + a ≡ b − 3a (mod 2),
d3 = 1741b + 69a ≡ b − 3a (mod 3),
d5 = 53310076b + 2112972a ≡ b − 3a (mod 5).

Now we compute the residue classes of S1 and S2 modulo p for n = p ∈ P \ {2, 3, 5}. For S1

11



we get by (22) and (24):

S1 = 2(b − 3a)p!2
p
∑

k=0

(

p

k

)2(
p + k

k

)

(−1)p−1

p2

= 2(b − 3a)(p − 1)!2
p
∑

k=0

(

p

k

)2(
p + k

k

)

≡ 2(b − 3a)
∑

k∈{0 , p}

(

p

k

)2(
p + k

k

)

≡ 2(b − 3a)(1 + 2) ≡ 6(b − 3a) (mod p). (30)

Before treating S2 we observe for 1 ≤ k ≤ p − 1 that

ep

(

(

p

k

)2(
p + k

k

)

)

= 2,

ep

(

m2

(

p

m

)(

p + m

m

))

= 1 (1 ≤ m ≤ k).

Then we get

S2 ≡ (b − 3a)p!2
∑

k∈{0 , p}

(

p

k

)2(
p + k

k

) k
∑

m=1

(−1)p+m−1

m2

(

p

m

)(

p + m

m

)

≡ 2(b − 3a)p!2
p
∑

m=1

(−1)m

m2

(

p

m

)(

p + m

m

)

≡ (b − 3a)
−2p!2

2p2
= −(b − 3a)(p − 1)!2 ≡ −(b − 3a) (mod p).

This together with Eq. (30) yields

5dp ≡ S1 + S2 ≡ 6(b − 3a) − (b − 3a) = 5(b − 3a) (mod p).

By p ≥ 7 we have dp ≡ b − 3a (mod p). This completes the proof. 2

3 On a linear recurrence sequence for log 2.

In this section we first prove that the sequences (a′′
n)n≥0 and (b′′n)n≥0 satisfy the relation (12).

First, we consider (a′′
n)n≥0. Let

λn,k =

(

n

k

)(

n + k

k

)

, An,k = −(4n + 2)λn,k (0 ≤ k ≤ n),

12



and An,n+1 = An,−1 = 0 for n ≥ 0. Note that
(

n
k

)

= 0 for k < 0 or k > n. Using

λn,k−1

λn,k

=
k2

(n + k)(n − k + 1)
,

λn+1,k

λn,k

=
n + k − 1

n − k + 1
,

λn−1,k

λn,k

=
n − k

n + k
(1 ≤ k ≤ n),

we have

An,k − An,k−1 = (n + 1)λn+1,k − 3(2n + 1)λn,k + nλn−1,k (1 ≤ k ≤ n). (31)

Therefore, we get

0 = An,n+1 − An,−1 =
n+1
∑

k=0

(An,k − An,k−1) = (n + 1)a′′
n+1 − 3(2n + 1)a′′

n + na′′
n−1,

which proves that (a′′
n)n≥0 satisfies (12).

Next, we prove that (b′′n)n≥0 satisfies the relation (12). Let

Sn,k = (n + 1)λn+1,kck − 3(2n + 1)λn,kck + nλn−1,kck (1 ≤ k ≤ n),

Bn,k = An,kck for 0 ≤ k ≤ n, and Bn,n+1 = Bn,−1 = 0 for n ≥ 0. By (31) we have

Bn,k − Bn,k−1 = (An,k − An,k−1)ck + An,k−1(ck − ck−1)

= Sn,k + An,k−1
(−1)k−1

k
(1 ≤ k ≤ n).

This yields

0 = Bn,n+1 − Bn,−1 =
n+1
∑

k=0

(Bn,k − Bn,k−1)

=
n+1
∑

k=0

Sn,k − (4n + 2)
n+1
∑

k=1

(

n

k − 1

)(

n + k − 1

k − 1

)

(−1)k−1

k

= (n + 1)b′′n+1 − 3(2n + 1)b′′n + nb′′n−1 − (4n + 2)
n
∑

k=0

(

n

k

)(

n + k

k

)

(−1)k

k + 1

= (n + 1)b′′n+1 − 3(2n + 1)b′′n + nb′′n−1 (n ≥ 1),

since, by Vandermonde’s theorem on the hypergeometric series 2F1(a, b; c; x),

n
∑

k=0

(

n

k

)(

n + k

k

)

(−1)k

k + 1
= 2F1

(

n + 1,−n; 2; 1
)

=
(1 − n)n

(2)n

= 0 .

It remains to show that limn→∞ b′′n/a
′′
n = log 2. For this purpose we shall apply a theorem

of O. Toeplitz concerning linear series transformations (cf. [8, p. 10, no. 66], [10]). From
Toeplitz’s result we have

lim
n→∞

(

n

ν

)(

n + ν

ν

)

n
∑

k=0

(

n

k

)(

n + k

k

)

= 0 (ν ≥ 0) ⇐⇒ lim
n→∞

b′′n
a′′

n

= log 2.

13



The limit on the left-hand side follows from the inequality

(

n

ν

)(

n + ν

ν

)

n
∑

k=0

(

n

k

)(

n + k

k

)

≤

(

n

ν

)(

n + ν

ν

)

(

n

ν

)(

n + ν

ν

)

+

(

n

ν + 1

)(

n + ν + 1

ν + 1

) =
1

1 +
(n + ν + 1)(n − ν)

(ν + 1)2

,

in which we choose n > ν. Theorem 5 can be proven in the same way as it was done for
Theorems 3, 4 in Section 2.

4 Concluding remarks.

We complete the above results by a short summary of known prime-detecting methods.
First, by Proposition 1 or Wilson’s theorem, it is clear that (Γ(n))n≥1 is a prime-detecting
sequence formed by the Gamma function.

1. Detecting primes by polynomials. Legendre showed that there is no rational algebraic
function which takes always primes. However, polynomials in many variables with integer
coefficients are known whose positive values are exactly the prime numbers obtained as the
variables run through all nonnegative integers, [9, p. 158]. The background of this result is
given by the fact that the set of primes can be described by diophantine equations.

2. Detecting primes by binomial coefficients. Deutsch [5] has proven the following result for
all integers n ≥ 2:

(

n − 1

k

)

≡ (−1)k (mod n) (0 ≤ k ≤ n − 1) ⇐⇒ n ∈ P.

3. Detecting primes by Dirichlet series. Prime-detecting sequences can be constructed from
Dirichlet series. Let s ≥ 2 be an integer, let (am)m≥1 be a sequence of integers such that
am = O(ms−1−ε) for any ε > 0 as m → ∞. Then the Dirichlet series

∑∞
m=1 am/ms converges.

Assume the weak condition that ap does not vanish for primes p. Then the sequence (xn)n≥1

defined by xn = (n!)s∑n
m=1 am/ms is prime-detecting since for n ∈ N \ {4} we have by

Proposition 1 that

xn = ns

n−1
∑

m=1

an

(

(n − 1)!

m

)s

+ an

(

(n − 1)!
)s

≡ an

(

(n − 1)!
)s ≡

{

(−1)san(mod n), if n ∈ P;
0 (mod n), if n 6∈ P.
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