Journal of Integer Sequences, Vol. 11 (2008), Article 08.5.1

On Prime-Detecting Sequences From Apéry's Recurrence Formulae for $\zeta(3)$ and $\zeta(2)$

Carsten Elsner
Fachhochschule für die Wirtschaft
University of Applied Sciences
Freundallee 15
D-30173 Hannover
Germany
carsten.elsner@fhdw.de

Abstract

We consider the linear three-term recurrence formula $$
X_{n}=\left(34(n-1)^{3}+51(n-1)^{2}+27(n-1)+5\right) X_{n-1}-(n-1)^{6} X_{n-2} \quad(n \geq 2)
$$

corresponding to Apéry's non-regular continued fraction for $\zeta(3)$. It is shown that integer sequences $\left(X_{n}\right)_{n \geq 0}$ with $5 X_{0} \neq X_{1}$ satisfying the above relation are primedetecting, i.e., $X_{n} \not \equiv 0(\bmod n)$ if and only if n is a prime not dividing $\left|5 X_{0}-X_{1}\right|$. Similar results are given for integer sequences satisfying the recurrence formula

$$
X_{n}=\left(11(x-1)^{2}+11(x-1)+3\right) X_{n-1}+(n-1)^{4} X_{n-2} \quad(n \geq 2)
$$

corresponding to Apéry's non-regular continued fraction for $\zeta(2)$ and for sequences related to $\log 2$.

1 Introduction

In 1979, R. Apéry [1] proved the irrationality of $\zeta(3)=\sum_{n=1}^{\infty} 1 / n^{3}$. The jumping-off point of his proof is a recurrence formula,

$$
\begin{equation*}
(n+1)^{3} X_{n+1}-\left(34 n^{3}+51 n^{2}+27 n+5\right) X_{n}+n^{3} X_{n-1}=0 \tag{1}
\end{equation*}
$$

which is satisfied by $X_{n}=a_{n}$ and $X_{n}=b_{n}$ with

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}, \quad b_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} c_{n, k} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n, k}=\sum_{m=1}^{n} \frac{1}{m^{3}}+\sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}} \quad(1 \leq k \leq n) \tag{3}
\end{equation*}
$$

One basic fact for the irrationality proof of $\zeta(3)$ is the following inequality:

$$
0 \neq \zeta(3)-\frac{b_{n}}{a_{n}}=O\left((1+\sqrt{2})^{-8 n}\right)
$$

When n increases, b_{n} / a_{n} converges rapidly to $\zeta(3)$ so that one can conclude the irrationality of $\zeta(3)$. From (1), Apéry's continued fraction expansion of $\zeta(3)$ can be derived, namely

$$
\begin{equation*}
\zeta(3)=\frac{6}{5-\frac{1^{6}}{117-\frac{2^{6}}{535-\quad} \quad \ddots} \quad-\frac{n^{6}}{34 n^{3}+51 n^{2}+27 n+5-\cdots}} \tag{4}
\end{equation*}
$$

(see [4]). F. Beukers [2] proved the congruence

$$
a_{((p-1) / 2)} \equiv \gamma_{p}(\bmod p)
$$

for all odd primes p, where the integers γ_{n} are given by the following series expansion of an infinite product:

$$
\sum_{n=1}^{\infty} \gamma_{n} q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{4}\left(1-q^{4 n}\right)^{4}
$$

Note that $\left(b_{n}\right)_{n \geq 0}$ is a sequence of rationals. For the concept of prime-detecting sequences introduced below we shall need integer sequences. Therefore, we define

$$
\begin{equation*}
q_{0}=1, \quad q_{n}=(n!)^{3} a_{n} \quad(n \geq 1), \quad p_{0}=0, \quad p_{n}=(n!)^{3} b_{n} \quad(n \geq 1) \tag{5}
\end{equation*}
$$

so that the p_{n} are integers. It can be shown that both sequences, $\left(q_{n}\right)_{n \geq 0}$ and $\left(p_{n}\right)_{n \geq 0}$, satisfy the recurrence formula

$$
\begin{equation*}
X_{n}=T(n) X_{n-1}-U(n) X_{n-2} \quad(n \geq 2) \tag{6}
\end{equation*}
$$

where $T(n)=34(n-1)^{3}+51(n-1)^{2}+27(n-1)+5$ and $U(n)=(n-1)^{6}$. This requires some technical computations. Alternatively, for $X_{n}=q_{n}$ one can verify (6) by application of the Zeilberger algorithm [6, Chapter 7, Algorithm 7.1] using a computer. The same algorithm
works for $X_{n}=a_{n}$ and (1) ([6, p. 101-102]), but not for p_{n} and b_{n}, respectively. We also have

$$
\frac{p_{n}}{q_{n}}=\frac{b_{n}}{a_{n}} \longrightarrow \zeta(3)
$$

as n tends to infinity. Finally, computing $p_{1}=6$ and $q_{1}=5$ from (2) and (3), the continued fraction (4) follows from the formula (1) in $[7, \S \S 1,2]$.

We let \mathbb{P} denote the set of prime numbers. There are several possibilities for suitable functions and sequences to detect primes. We give a short summary of various primedetecting methods in the concluding section 4 of this paper. Of course, Wilson's theorem plays a significant role.

Proposition 1. For all integers $n \in \mathbb{N} \backslash\{4\}$ we have

$$
(n-1)!\not \equiv 0(\bmod n) \quad \Longleftrightarrow \quad n \in \mathbb{P} .
$$

Proof. For any prime n we know by Wilson's criterion that $(n-1)!\equiv-1(\bmod n)$. So it remains to prove $(n-1)!\equiv 0(\bmod n)$ for any $n=a b \neq 1,4$ with integers $1<a, b<n$.

Case 1: $a=b \geq 3$.
Since $n=a^{2}$ and $\operatorname{lcm}\left(2, a, 2 a, a^{2}\right)=\operatorname{lcm}\left(2, a^{2}\right)$, we have

$$
\operatorname{lcm}(1, \ldots, a-1, a+1, \ldots, 2 a-1,2 a+1, \ldots, n)=\operatorname{lcm}(1, \ldots, n)
$$

and so

$$
\operatorname{lcm}(1, \ldots, n) \left\lvert\,(1 \cdots(a-1)(a+1) \cdots(2 a-1)(2 a+1) \cdots n)=\frac{n!}{2 a^{2}}=\frac{(n-1)!}{2} .\right.
$$

Case 2: $1<a<b$.
Since $n=a b=\operatorname{lcm}(a, b, a b)$, we have

$$
\operatorname{lcm}(1, \ldots, a-1, a+1, \ldots, b-1, b+1, \ldots, n)=\operatorname{lcm}(1, \ldots, n)
$$

Hence

$$
\operatorname{lcm}(1, \ldots, n) \left\lvert\,(1 \cdots(a-1)(a+1) \cdots(b-1)(b+1) \cdots n)=\frac{n!}{a b}=(n-1)!\right.
$$

In any case, we get $\operatorname{lcm}(1, \ldots, n) \mid(n-1)$!, in particular $(n-1)!\equiv 0(\bmod n)$, which completes the proof of Proposition 1.

In the sequel we consider sequences of integers and contrive a prime-detecting concept. For that purpose we define: A sequence $\left(x_{n}\right)_{n \geq 0}$ of integers is said to be prime-detecting if the equivalence $x_{n} \not \equiv 0(\bmod n) \Longleftrightarrow n \in \mathbb{P}$ holds for all but finitely many positive integers n. Proposition 1 can be applied to detect primes in a form parallel to the results below based on Apéry's recurrences. Thus we get a very simple primality criterion using a first order recurrence with polynomial coefficients.

Proposition 2. Let a be a positive integer. We let p_{1}, \ldots, p_{s} denote the prime divisors of a. Let

$$
\begin{gathered}
T(x)=x-1, r_{n}=\frac{1}{n} \\
d_{1}=a, d_{n}=T(n) d_{n-1} \quad(n \geq 2) .
\end{gathered}
$$

Then for all integers $n \in \mathbb{N} \backslash\{4\}$ we have

$$
d_{n} \not \equiv 0(\bmod n) \quad \Longleftrightarrow \quad n \in \mathbb{P} \backslash\left\{p_{1}, \ldots, p_{s}\right\}
$$

and for $p \in \mathbb{P}$

$$
d_{p} \equiv-a(\bmod p)
$$

Moreover,

$$
d_{n}=n!r_{n} a
$$

and, consequently,

$$
\lim _{n \rightarrow \infty} \frac{d_{n}}{n!r_{n}}=a
$$

It is also possible to detect primes by integer solutions of Apéry-type recurrences. In the case of Apéry's recurrence relation (1), we have explicit formulae for X_{n} involving combinatorial sums. From the arithmetical properties of binomial coefficients (see Eqs. (22)-(25) in Section 2) we can deduce the prime-detecting property of the sequences $\left(X_{n}\right)_{n \geq 0}$. The same can be done for sequences satisfying linear recurrence relations connected with $\bar{\zeta}(2)$ and $\log 2$. For our results we do not need continued fraction expansions of $\zeta(3), \zeta(2)$, and $\log 2$. However, we state them because they are closely related to the linear recurrence formulae.

Theorem 3. Let a, b be positive integers such that $5 a \neq b$. Let p_{1}, \ldots, p_{s} denote the prime divisors of $|5 a-b|$. Let

$$
\begin{gathered}
T(x)=34(x-1)^{3}+51(x-1)^{2}+27(x-1)+5, \quad U(x)=(x-1)^{6} \\
d_{0}=a, \quad d_{1}=b, \quad d_{n}=T(n) d_{n-1}-U(n) d_{n-2} \quad(n \geq 2)
\end{gathered}
$$

Then for all integers $n \in \mathbb{N}$ we have

$$
\begin{equation*}
d_{n} \not \equiv 0(\bmod n) \quad \Longleftrightarrow \quad n \in \mathbb{P} \backslash\left\{p_{1}, \ldots, p_{s}\right\} \tag{7}
\end{equation*}
$$

and for $p \in \mathbb{P}$

$$
d_{p} \equiv 5 a-b(\bmod p)
$$

Moreover,

$$
\begin{equation*}
d_{n}=n!^{3} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(a+\frac{b-5 a}{6} c_{n, k}\right) \quad(n \geq 0) \tag{8}
\end{equation*}
$$

where $c_{n, k}$ is defined in Eq. (3), and

$$
\lim _{n \rightarrow \infty} \frac{d_{n}}{n!^{3} a_{n}}=a+\frac{b-5 a}{6} \zeta(3)
$$

R. Apéry [1] also proved the irrationality of $\zeta(2)$ using

$$
\begin{equation*}
a_{n}^{\prime}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}, \quad b_{n}^{\prime}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} c_{n, k}^{\prime} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n, k}^{\prime}=2 \sum_{m=1}^{n} \frac{(-1)^{m-1}}{m^{2}}+\sum_{m=1}^{k} \frac{(-1)^{n+m-1}}{m^{2}\binom{n}{m}\binom{n+m}{m}} \quad(1 \leq k \leq n) \tag{10}
\end{equation*}
$$

Both $X_{n}=a_{n}^{\prime}$ and $X_{n}=b_{n}^{\prime}$ satisfy the recurrence formula

$$
\begin{equation*}
(n+1)^{2} X_{n+1}-\left(11 n^{2}+11 n+3\right) X_{n}-n^{2} X_{n-1}=0 \tag{11}
\end{equation*}
$$

Here, we have

$$
\zeta(2)=\frac{5}{3+\frac{1^{4}}{25+\frac{2^{4}}{69+} \quad \ddots}+\frac{n^{4}}{11 n^{2}+11 n+3+\cdots}} .
$$

Using the coefficient polynomials of the recurrence formula (11), we get
Theorem 4. Let a, b be positive integers such that $3 a \neq b$. Let p_{1}, \ldots, p_{s} denote the prime divisors of $|3 a-b|$. Let

$$
\begin{aligned}
& T(x)=11(x-1)^{2}+11(x-1)+3, \quad U(x)=(x-1)^{4} \\
& d_{0}=a, \quad d_{1}=b, \quad d_{n}=T(n) d_{n-1}+U(n) d_{n-2} \quad(n \geq 2)
\end{aligned}
$$

Then for all integers $n \in \mathbb{N}$ we have

$$
d_{n} \not \equiv 0(\bmod n) \quad \Longleftrightarrow \quad n \in \mathbb{P} \backslash\left\{p_{1}, \ldots, p_{s}\right\},
$$

and for $p \in \mathbb{P}$

$$
d_{p} \equiv b-3 a(\bmod p)
$$

Moreover,

$$
d_{n}=n!^{2} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}\left(a+\frac{b-3 a}{5} c_{n, k}^{\prime}\right) \quad(n \geq 0)
$$

where $c_{n, k}^{\prime}$ is defined in (10), and

$$
\lim _{n \rightarrow \infty} \frac{d_{n}}{n!^{2} a_{n}^{\prime}}=a+\frac{b-3 a}{5} \zeta(2)
$$

Theorems 3 and 4 are based on recurrence relations given by Apéry in [1]. Now we consider the recurrence formula

$$
\begin{equation*}
(n+1) X_{n+1}-3(2 n+1) X_{n}+n X_{n-1}=0 \tag{12}
\end{equation*}
$$

which is satisfied by $X_{n}=a_{n}^{\prime \prime}$ and $X_{n}=b_{n}^{\prime \prime}$ with

$$
\begin{equation*}
a_{n}^{\prime \prime}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}, \quad b_{n}^{\prime \prime}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} c_{k}, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{k}=\sum_{m=1}^{k} \frac{(-1)^{m-1}}{m} \quad(1 \leq k \leq n) \tag{14}
\end{equation*}
$$

We prove this result in Section 2 below. From (12) we have the continued fraction expansion

$$
\log 2=\frac{2}{3-\frac{1^{2}}{9-\frac{2^{2}}{15-\quad} \quad \ddots \quad-\frac{n^{2}}{3(2 n+1)-\cdots}}} .
$$

Theorem 5. Let a, b be positive integers such that $3 a \neq b$. Let p_{1}, \ldots, p_{s} denote the prime divisors of $|3 a-b|$. Let

$$
\begin{gathered}
T(x)=3(2 x-1), \quad U(x)=(x-1)^{2} \\
d_{0}=a, \quad d_{1}=b, \quad d_{n}=T(n) d_{n-1}-U(n) d_{n-2} \quad(n \geq 2) .
\end{gathered}
$$

Then for all integers $n \in \mathbb{N} \backslash\{4\}$ we have

$$
d_{n} \not \equiv 0(\bmod n) \quad \Longleftrightarrow \quad n \in \mathbb{P} \backslash\left\{p_{1}, \ldots, p_{s}\right\}
$$

and for $p \in \mathbb{P}$

$$
d_{p} \equiv 3 a-b \quad(\bmod p)
$$

Moreover,

$$
d_{n}=n!\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}\left(a+\frac{b-3 a}{2} c_{k}\right)
$$

where c_{k} is defined in Eq. (14), and

$$
\lim _{n \rightarrow \infty} \frac{d_{n}}{n!a_{n}^{\prime \prime}}=a+\frac{b-3 a}{2} \log 2
$$

Remark: For $n=4$ one has $d_{4}=2670 b-306 a$, which is not divisible by 4 if and only if $a \not \equiv b(\bmod 2)$.

2 Proof of Theorems 3 and 4.

Proof of Theorem 3: First we prove the explicit expression (8) of d_{n}. From p_{n} and q_{n} defined in (5) and their common recurrence formula (6), we see that both $Y_{n}=q_{n}$ and $Y_{n}=p_{n}$ satisfy the recurrence relation

$$
\begin{equation*}
Y_{n}=T(n) Y_{n-1}-U(n) Y_{n-2} \quad(n \geq 2) \tag{15}
\end{equation*}
$$

Obviously, for any real α and $\beta, Y_{n}=\alpha q_{n}+\beta p_{n}$ satisfy the relation (15) too. Now we compute α and β according to initial conditions of the sequence $\left(d_{n}\right)_{n \geq 0}$:

$$
\begin{aligned}
d_{0} & =a=\alpha q_{0}+\beta p_{0}=\alpha, \\
d_{1} & =b=\alpha q_{1}+\beta p_{1}=5 \alpha+6 \beta .
\end{aligned}
$$

Then $d_{n}=\alpha q_{n}+\beta p_{n}$ are solutions of (15). The system of equations has a unique solution: $\alpha=a$ and $\beta=(b-5 a) / 6$. Thus, expressing p_{n}, q_{n} by Eq. (5) and a_{n}, b_{n} by Eq. (2), we have the explicit formula (8) for d_{n}. Dividing this identity by $n!^{3} a_{n}$ and using $b_{n} / a_{n} \rightarrow \zeta(3)$, we find the limit $a+(b-5 a) \zeta(3) / 6$ of the sequence $\left(d_{n} / n!^{3} a_{n}\right)_{n \geq 0}$.

We use the formula (8) for d_{n}. Observing that $n^{3} \mid n!^{3}$ and

$$
\frac{n!^{3}}{m^{3}} \equiv 0(\bmod n) \quad(1 \leq m \leq n-1)
$$

we get

$$
\begin{align*}
& 12 d_{n} \equiv 2(b-5 a) n!^{3} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} c_{n, k}(\bmod n) \\
&= 2(b-5 a) n!^{3} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \sum_{m=1}^{n} \frac{1}{m^{3}} \\
&+2(b-5 a) n!^{3} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}} \\
& \equiv 2(b-5 a) n!^{3} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \frac{1}{n^{3}} \\
&+\frac{(b-5 a) n!^{3}}{\operatorname{lcm}^{3}(1, \ldots, n)} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} \sum_{m=1}^{k} \frac{(-1)^{m-1} l^{3} c^{3}(1, \ldots, n)\binom{n+k}{k}}{m^{3}\binom{n}{m}\binom{n+m}{m}}(\bmod n) . \tag{16}
\end{align*}
$$

It follows from the proof of Proposition 3 in [4] that

$$
\begin{equation*}
\frac{\operatorname{lcm}^{3}(1, \ldots, n)\binom{n+k}{k}}{m^{3}\binom{n}{m}\binom{n+m}{m}} \in \mathbb{N} \quad(1 \leq m \leq k \leq n) \tag{17}
\end{equation*}
$$

Case 1: $n \notin \mathbb{P}$.
There is nothing to show for $n=1$. Moreover, Theorem 3 is also true for $n=4$ and $n=6$, since

$$
\begin{aligned}
d_{4} & =91397560 b-781976 a & \equiv 0(\bmod 4), \\
d_{6} & =1604788039632960 b-13730188564800 a & \equiv 0(\bmod 6) .
\end{aligned}
$$

Now let $n \notin \mathbb{P} \cup\{1,4,6\}$. In particular, we have $n \geq 8$. Then, using

$$
\begin{aligned}
\frac{n!^{3}}{n^{3}} & =(n-1)!\cdot(n-1)!^{2} \\
(n-1)! & \equiv 0(\bmod n) \quad(\text { for } n \neq 4 \text { by Proposition } 1) \\
(n-1)!^{2} & \equiv 0(\bmod 12) \quad(n \geq 4)
\end{aligned}
$$

we can simplify (16) as follows:

$$
12 d_{n} \equiv \frac{(b-5 a) n!^{3}}{\operatorname{lcm}^{3}(1, \ldots, n)} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} \sum_{m=1}^{k} \frac{(-1)^{m-1} \operatorname{lcm}^{3}(1, \ldots, n)\binom{n+k}{k}}{m^{3}\binom{n}{m}\binom{n+m}{m}}(\bmod n)
$$

Thus $d_{n} \equiv 0(\bmod n)$ follows from (17) and

$$
\begin{equation*}
\frac{n!^{3}}{\operatorname{lcm}^{3}(1, \ldots, n)} \equiv 0(\bmod 12 n) \quad(n \notin \mathbb{P}, n \geq 6) \tag{18}
\end{equation*}
$$

For (18) it suffices to prove the two congruences

$$
\begin{align*}
\frac{n!}{\operatorname{lcm}(1, \ldots, n)} & \equiv 0(\bmod 12) \quad(n \geq 6) \tag{19}\\
\frac{n!}{\operatorname{lcm}(1, \ldots, n)} & \equiv 0(\bmod n) \quad(n \notin \mathbb{P}, n \geq 6) \tag{20}
\end{align*}
$$

Both congruences (19) and (20) hold for $n=6,7$ and $n=6$, respectively. In the sequel we assume that $n \geq 8$ and $n \notin \mathbb{P}$. First, we observe for $1 \leq m \leq n$ that

$$
\begin{equation*}
\operatorname{lcm}(1, \ldots, n)|\operatorname{lcm}(1, \ldots, m) \operatorname{lcm}(m+1, \ldots, n)| m!(m+1)(m+2) \ldots n=n! \tag{21}
\end{equation*}
$$

Therefore, it follows from $n \geq 8$ that

$$
\begin{aligned}
& \frac{n!}{\operatorname{lcm}(1, \ldots, 6) \operatorname{lcm}(7,8, \ldots, n)}=\frac{6!\cdot(7 \cdot 8 \cdots n)}{\operatorname{lcm}(1, \ldots, 6) \operatorname{lcm}(7,8, \ldots, n)} \\
= & 12 \cdot \frac{7 \cdot 8 \cdots n}{\operatorname{lcm}(7,8, \ldots, n)} \equiv 0 \quad(\bmod 12),
\end{aligned}
$$

so that (21) implies (19). The congruence (20) is already shown in the proof of Proposition 1 , and therefore one conlusion in (7) of Theorem 3 holds.

For $n=p \in\{2,3\}$ we have

$$
\begin{aligned}
d_{2} & =117 b-a \\
d_{3} & =52531 b-535 a
\end{aligned}
$$

In the sequel we assume $p \geq 5$ is a prime. We need some arithmetic properties of binomial coefficients:

$$
\begin{align*}
\binom{p}{k} & \not \equiv 0(\bmod p) \Longleftrightarrow k \in\{0, p\} \tag{22}\\
\binom{p+k}{k} & =\frac{(p+1)(p+2) \cdot(p+k)}{1 \cdot 2 \ldots k} \equiv \frac{1 \cdot 2 \ldots k}{1 \cdot 2 \ldots k}(\bmod p) \\
& \equiv 1(\bmod p) \Longleftrightarrow k \in\{0,1,2, \ldots, p-1\}, \tag{23}\\
\binom{2 p}{p} & =\frac{(p+1)(p+2) \ldots(2 p)}{1 \cdot 2 \ldots p}=2 \frac{(p+1)(p+2) \ldots(2 p-1)}{1 \cdot 2 \ldots(p-1)} \\
& \equiv 2 \frac{1 \cdot 2 \ldots(p-1)}{1 \cdot 2 \ldots(p-1)} \equiv 2 \quad(\bmod p), \tag{24}\\
e_{p}\left(\binom{p}{k}\right) & \in\{0,1\} \quad(k \in\{0,1, \ldots, p\}) \tag{25}
\end{align*}
$$

where $e_{p}(m)$ is the exponent of p in the decomposition of m. We denote the first term on the right side of (16) by S_{1} and compute its residue class modulo p using (22) and (24):

$$
\begin{align*}
S_{1} & =2(b-5 a) p!^{3} \sum_{k=0}^{p}\binom{p}{k}^{2}\binom{p+k}{k}^{2} \frac{1}{p^{3}} \\
& =2(b-5 a)(p-1)!^{3} \sum_{k=0}^{p}\binom{p}{k}^{2}\binom{p+k}{k}^{2} \\
& \equiv-2(b-5 a) \sum_{k \in\{0, p\}}\binom{p}{k}^{2}\binom{p+k}{k}^{2}(\bmod p) \\
& \equiv-2(b-5 a)(1+4) \equiv 10(5 a-b) \quad(\bmod p) . \tag{26}
\end{align*}
$$

Next, we treat the second term S_{2} on the right side of (16):

$$
\begin{equation*}
S_{2}=(b-5 a) p!^{3} \sum_{k=0}^{p}\binom{p}{k}^{2}\binom{p+k}{k}^{2} \sum_{m=1}^{k} \frac{(-1)^{m-1}}{m^{3}\binom{p}{m}\binom{p+m}{m}} . \tag{27}
\end{equation*}
$$

It is convenient to compute the sum of the terms with $1 \leq k \leq p-1$ separately. By (22), (23), and (25) we have

$$
\begin{aligned}
e_{p}\left(\binom{p}{k}^{2}\binom{p+k}{k}^{2}\right) & =2 \\
e_{p}\left(m^{3}\binom{p}{m}\binom{p+m}{m}\right) & =1 \quad(1 \leq m \leq k)
\end{aligned}
$$

Hence we get

$$
p!^{3} \sum_{k=1}^{p-1}\binom{p}{k}^{2}\binom{p+k}{k}^{2} \sum_{m=1}^{k} \frac{(-1)^{m-1}}{m^{3}\binom{p}{m}\binom{p+m}{m}} \equiv 0 \quad(\bmod p)
$$

Then the sum in (27) simplifies to

$$
\begin{aligned}
S_{2} & \equiv(b-5 a) p!^{3} \sum_{k \in\{0, p\}}\binom{p}{k}^{2}\binom{p+k}{k}^{2} \sum_{m=1}^{k} \frac{(-1)^{m-1}}{m^{3}\binom{p}{m}\binom{p+m}{m}} \\
& \equiv 4(b-5 a) p!^{3} \sum_{m=1}^{p} \frac{(-1)^{m-1}}{m^{3}\binom{p}{m}\binom{p+m}{m}}(\bmod p) .
\end{aligned}
$$

It follows from Eqs. (22), (23) and (24) that

$$
p!^{3} \sum_{m=1}^{p} \frac{(-1)^{m-1}}{m^{3}\binom{p}{m}\binom{p+m}{m}}=\frac{p!^{3}}{p^{3}\binom{2 p}{p}}+p!^{3} \sum_{m=1}^{p-1} \frac{(-1)^{m-1}}{m^{3}\binom{p}{m}\binom{p+m}{m}} \equiv \frac{p!^{3}}{2 p^{3}} \quad(\bmod p)
$$

which yields

$$
\begin{equation*}
S_{2} \equiv(b-5 a) \frac{4 p!^{3}}{2 p^{3}}=2(b-5 a)(p-1)!^{3} \equiv 2(5 a-b) \quad(\bmod p) \tag{28}
\end{equation*}
$$

The congruences (26) and (28) for S_{1} and S_{2} give

$$
12 d_{p} \equiv S_{1}+S_{2} \equiv 10(5 a-b)+2(5 a-b)=12(5 a-b)(\bmod p) \quad(p \geq 5)
$$

Since $p \geq 5$ we have $d_{p} \equiv 5 a-b(\bmod p)$. This completes the proof.

Proof of Theorem 4: Putting

$$
q_{0}^{\prime}=1, \quad q_{n}^{\prime}=(n!)^{2} a_{n}^{\prime} \quad(n \geq 1), \quad p_{0}^{\prime}=0, \quad p_{n}^{\prime}=(n!)^{2} b_{n}^{\prime} \quad(n \geq 1)
$$

with a_{n}^{\prime} and b_{n}^{\prime} defined in (9), both sequences, $\left(q_{n}^{\prime}\right)_{n \geq 0}$ and $\left(p_{n}^{\prime}\right)_{n \geq 0}$, satisfy the recurrence formula

$$
\begin{equation*}
X_{n}=T(n) X_{n-1}+U(n) X_{n-2} \quad(n \geq 2) \tag{29}
\end{equation*}
$$

where $T(n)=11(n-1)^{2}+11(n-1)+3$ and $U(n)=(n-1)^{4}$. For any real α and β, $Y_{n}=\alpha q_{n}^{\prime}+\beta p_{n}^{\prime}$ satisfy the relation (29) too. Again we compute α and β according to the initial conditions of the sequence $\left(d_{n}\right)_{n \geq 0}$:

$$
\begin{aligned}
& d_{0}=a=\alpha q_{0}^{\prime}+\beta p_{0}^{\prime}=\alpha \\
& d_{1}=b=\alpha q_{1}^{\prime}+\beta p_{1}^{\prime}=3 \alpha+5 \beta
\end{aligned}
$$

Then $d_{n}=\alpha q_{n}^{\prime}+\beta p_{n}^{\prime}$ are solutions of (29). The system of equations has a unique solution: $\alpha=a$ and $\beta=(b-3 a) / 5$. Thus, expressing a_{n}^{\prime} and b_{n}^{\prime} by (9), we get the formula for d_{n}. The limit of the sequence $\left(d_{n} / n!^{2} a_{n}^{\prime}\right)_{n \geq 0}$ can be computed using the explicit formula of d_{n} and $b_{n}^{\prime} / a_{n}^{\prime} \rightarrow \zeta(2)$.

In what follows we use exactly the same arguments as in the proof of Theorem 3. Using the explicit formula for d_{n} we get

$$
\begin{aligned}
& 5 d_{n} \equiv(b-3 a) n!^{2} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} c_{n, k}^{\prime} \quad(\bmod n) \\
& =2(b-3 a) n!^{2} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} \sum_{m=1}^{n} \frac{(-1)^{m-1}}{m^{2}} \\
& +(b-3 a) n!^{2} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} \sum_{m=1}^{k} \frac{(-1)^{n+m-1}}{m^{2}\binom{n}{m}\binom{n+m}{m}} \\
& \equiv 2(b-3 a) n!^{2} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k} \frac{(-1)^{n-1}}{n^{2}} \\
& +\frac{(b-3 a) n!^{2}}{\operatorname{lcm}^{2}(1, \ldots, n)} \sum_{k=0}^{n}\binom{n}{k}^{2} \sum_{m=1}^{k} \frac{(-1)^{n+m-1} \operatorname{lcm}^{2}(1, \ldots, n)\binom{n+k}{k}}{m^{2}\binom{n}{m}\binom{n+m}{m}}(\bmod n) \\
& =: \quad S_{1}+S_{2} .
\end{aligned}
$$

For $n \notin \mathbb{P}$ we proceed as in the proof of Theorem 3. Next, we treat the case $n \in \mathbb{P}$. For $n=p \in\{2,3,5\}$ we have

$$
\begin{array}{rlrl}
d_{2} & = & 25 b+a & \equiv b-3 a(\bmod 2), \\
d_{3} & = & 1741 b+69 a & \equiv b-3 a(\bmod 3), \\
d_{5}=53310076 b+2112972 a & \equiv b-3 a(\bmod 5) .
\end{array}
$$

Now we compute the residue classes of S_{1} and S_{2} modulo p for $n=p \in \mathbb{P} \backslash\{2,3,5\}$. For S_{1}
we get by (22) and (24):

$$
\begin{align*}
S_{1} & =2(b-3 a) p!^{2} \sum_{k=0}^{p}\binom{p}{k}^{2}\binom{p+k}{k} \frac{(-1)^{p-1}}{p^{2}} \\
& =2(b-3 a)(p-1)!^{2} \sum_{k=0}^{p}\binom{p}{k}^{2}\binom{p+k}{k} \\
& \equiv 2(b-3 a) \sum_{k \in\{0, p\}}\binom{p}{k}^{2}\binom{p+k}{k} \\
& \equiv 2(b-3 a)(1+2) \equiv 6(b-3 a)(\bmod p) \tag{30}
\end{align*}
$$

Before treating S_{2} we observe for $1 \leq k \leq p-1$ that

$$
\begin{aligned}
e_{p}\left(\binom{p}{k}^{2}\binom{p+k}{k}\right) & =2 \\
e_{p}\left(m^{2}\binom{p}{m}\binom{p+m}{m}\right) & =1 \quad(1 \leq m \leq k) .
\end{aligned}
$$

Then we get

$$
\begin{aligned}
S_{2} & \equiv(b-3 a) p!^{2} \sum_{k \in\{0, p\}}\binom{p}{k}^{2}\binom{p+k}{k} \sum_{m=1}^{k} \frac{(-1)^{p+m-1}}{m^{2}\binom{p}{m}\binom{p+m}{m}} \\
& \equiv 2(b-3 a) p!^{2} \sum_{m=1}^{p} \frac{(-1)^{m}}{m^{2}\binom{p}{m}\binom{p+m}{m}} \\
& \equiv(b-3 a) \frac{-2 p!^{2}}{2 p^{2}}=-(b-3 a)(p-1)!^{2} \equiv-(b-3 a) \quad(\bmod p)
\end{aligned}
$$

This together with Eq. (30) yields

$$
5 d_{p} \equiv S_{1}+S_{2} \equiv 6(b-3 a)-(b-3 a)=5(b-3 a) \quad(\bmod p)
$$

By $p \geq 7$ we have $d_{p} \equiv b-3 a(\bmod p)$. This completes the proof.

3 On a linear recurrence sequence for $\log 2$.

In this section we first prove that the sequences $\left(a_{n}^{\prime \prime}\right)_{n \geq 0}$ and $\left(b_{n}^{\prime \prime}\right)_{n \geq 0}$ satisfy the relation (12). First, we consider $\left(a_{n}^{\prime \prime}\right)_{n \geq 0}$. Let

$$
\lambda_{n, k}=\binom{n}{k}\binom{n+k}{k}, A_{n, k}=-(4 n+2) \lambda_{n, k} \quad(0 \leq k \leq n),
$$

and $A_{n, n+1}=A_{n,-1}=0$ for $n \geq 0$. Note that $\binom{n}{k}=0$ for $k<0$ or $k>n$. Using

$$
\frac{\lambda_{n, k-1}}{\lambda_{n, k}}=\frac{k^{2}}{(n+k)(n-k+1)}, \frac{\lambda_{n+1, k}}{\lambda_{n, k}}=\frac{n+k-1}{n-k+1}, \frac{\lambda_{n-1, k}}{\lambda_{n, k}}=\frac{n-k}{n+k} \quad(1 \leq k \leq n),
$$

we have

$$
\begin{equation*}
A_{n, k}-A_{n, k-1}=(n+1) \lambda_{n+1, k}-3(2 n+1) \lambda_{n, k}+n \lambda_{n-1, k} \quad(1 \leq k \leq n) . \tag{31}
\end{equation*}
$$

Therefore, we get

$$
0=A_{n, n+1}-A_{n,-1}=\sum_{k=0}^{n+1}\left(A_{n, k}-A_{n, k-1}\right)=(n+1) a_{n+1}^{\prime \prime}-3(2 n+1) a_{n}^{\prime \prime}+n a_{n-1}^{\prime \prime},
$$

which proves that $\left(a_{n}^{\prime \prime}\right)_{n \geq 0}$ satisfies (12).
Next, we prove that $\left(b_{n}^{\prime \prime}\right)_{n \geq 0}$ satisfies the relation (12). Let

$$
S_{n, k}=(n+1) \lambda_{n+1, k} c_{k}-3(2 n+1) \lambda_{n, k} c_{k}+n \lambda_{n-1, k} c_{k} \quad(1 \leq k \leq n)
$$

$B_{n, k}=A_{n, k} c_{k}$ for $0 \leq k \leq n$, and $B_{n, n+1}=B_{n,-1}=0$ for $n \geq 0$. By (31) we have

$$
\begin{aligned}
B_{n, k}-B_{n, k-1} & =\left(A_{n, k}-A_{n, k-1}\right) c_{k}+A_{n, k-1}\left(c_{k}-c_{k-1}\right) \\
& =S_{n, k}+A_{n, k-1} \frac{(-1)^{k-1}}{k} \quad(1 \leq k \leq n)
\end{aligned}
$$

This yields

$$
\begin{aligned}
0 & =B_{n, n+1}-B_{n,-1}=\sum_{k=0}^{n+1}\left(B_{n, k}-B_{n, k-1}\right) \\
& =\sum_{k=0}^{n+1} S_{n, k}-(4 n+2) \sum_{k=1}^{n+1}\binom{n}{k-1}\binom{n+k-1}{k-1} \frac{(-1)^{k-1}}{k} \\
& =(n+1) b_{n+1}^{\prime \prime}-3(2 n+1) b_{n}^{\prime \prime}+n b_{n-1}^{\prime \prime}-(4 n+2) \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \frac{(-1)^{k}}{k+1} \\
& =(n+1) b_{n+1}^{\prime \prime}-3(2 n+1) b_{n}^{\prime \prime}+n b_{n-1}^{\prime \prime} \quad(n \geq 1),
\end{aligned}
$$

since, by Vandermonde's theorem on the hypergeometric series ${ }_{2} F_{1}(a, b ; c ; x)$,

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \frac{(-1)^{k}}{k+1}={ }_{2} F_{1}(n+1,-n ; 2 ; 1)=\frac{(1-n)_{n}}{(2)_{n}}=0
$$

It remains to show that $\lim _{n \rightarrow \infty} b_{n}^{\prime \prime} / a_{n}^{\prime \prime}=\log 2$. For this purpose we shall apply a theorem of O. Toeplitz concerning linear series transformations (cf. [8, p. 10, no. 66], [10]). From Toeplitz's result we have

$$
\lim _{n \rightarrow \infty} \frac{\binom{n}{\nu}\binom{n+\nu}{\nu}}{\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}}=0(\nu \geq 0) \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{b_{n}^{\prime \prime}}{a_{n}^{\prime \prime}}=\log 2 .
$$

The limit on the left-hand side follows from the inequality

$$
\frac{\binom{n}{\nu}\binom{n+\nu}{\nu}}{\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}} \leq \frac{\binom{n}{\nu}\binom{n+\nu}{\nu}}{\binom{n}{\nu}\binom{n+\nu}{\nu}+\binom{n}{\nu+1}\binom{n+\nu+1}{\nu+1}}=\frac{1}{1+\frac{(n+\nu+1)(n-\nu)}{(\nu+1)^{2}}}
$$

in which we choose $n>\nu$. Theorem 5 can be proven in the same way as it was done for Theorems 3, 4 in Section 2.

4 Concluding remarks.

We complete the above results by a short summary of known prime-detecting methods. First, by Proposition 1 or Wilson's theorem, it is clear that $(\Gamma(n))_{n \geq 1}$ is a prime-detecting sequence formed by the Gamma function.

1. Detecting primes by polynomials. Legendre showed that there is no rational algebraic function which takes always primes. However, polynomials in many variables with integer coefficients are known whose positive values are exactly the prime numbers obtained as the variables run through all nonnegative integers, [9, p. 158]. The background of this result is given by the fact that the set of primes can be described by diophantine equations.
2. Detecting primes by binomial coefficients. Deutsch [5] has proven the following result for all integers $n \geq 2$:

$$
\binom{n-1}{k} \equiv(-1)^{k}(\bmod n) \quad(0 \leq k \leq n-1) \quad \Longleftrightarrow \quad n \in \mathbb{P}
$$

3. Detecting primes by Dirichlet series. Prime-detecting sequences can be constructed from Dirichlet series. Let $s \geq 2$ be an integer, let $\left(a_{m}\right)_{m \geq 1}$ be a sequence of integers such that $a_{m}=O\left(m^{s-1-\varepsilon}\right)$ for any $\varepsilon>0$ as $m \rightarrow \infty$. Then the Dirichlet series $\sum_{m=1}^{\infty} a_{m} / m^{s}$ converges. Assume the weak condition that a_{p} does not vanish for primes p. Then the sequence $\left(x_{n}\right)_{n>1}$ defined by $x_{n}=(n!)^{s} \sum_{m=1}^{n} a_{m} / m^{s}$ is prime-detecting since for $n \in \mathbb{N} \backslash\{4\}$ we have by Proposition 1 that

$$
\begin{aligned}
x_{n} & =n^{s} \sum_{m=1}^{n-1} a_{n}\left(\frac{(n-1)!}{m}\right)^{s}+a_{n}((n-1)!)^{s} \\
& \equiv a_{n}((n-1)!)^{s} \equiv\left\{\begin{aligned}
(-1)^{s} a_{n}(\bmod n), & \text { if } n \in \mathbb{P} \\
0(\bmod n), & \text { if } n \notin \mathbb{P}
\end{aligned}\right.
\end{aligned}
$$

5 Acknowledgement.

I warmly thank the referee for her/his report that helped to improve the initial version of this article. In particular, it was the referee's idea to include Proposition 2.

References

[1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.
[2] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), 201-210.
[3] F. Beukers, A note on the irrationality of $\zeta(2)$ and $\zeta(3)$, Bull. London Math. Soc. 11 (1979), 268-272.
[4] H. Cohen, Demonstration de l'irrationalité de $\zeta(3)$ (d'après R. Apéry), Séminaire de Théorie des Nombres, Grenoble (1978), VI. 1 - VI. 9.
[5] E. Deutsch, Problem 1494. Math.i Mag. 69, 143.
[6] W. Koepf, Hypergeometric Summation, Vieweg, 1998.
[7] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Company, 1929.
[8] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. 1, 3rd ed., Springer, 1964.
[9] P. Ribenboim, Die Welt der Primzahlen, Springer, 2006.
[10] O. Toeplitz, Über allgemeine lineare Mittelbildungen, Prace mat.-fiz., 22 (1911), 113119.

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11B50, 11A41, 11A55. Keywords: recurrences, sequences mod m, primes, continued fractions.
(Concerned with sequences $\underline{\text { A000040 }}, \underline{A 000045}, \underline{A 000142, ~} \underline{A 001850, ~} \underline{A 003418}, \underline{A 005258}$, and A005259.)

Received July 25 2008; revised version received October 23 2008. Published in Journal of Integer Sequences, November 162008.

Return to Journal of Integer Sequences home page.

