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Abstract

The following result is proved: If A ⊆ {1, 2, . . . , n} is the subset of largest cardinal-
ity such that the sum of no two (distinct) elements of A is prime, then |A| = ⌊(n+1)/2⌋
and all the elements of A have the same parity. The following open question is posed:
what is the largest cardinality of A ⊆ {1, 2, . . . , n} such that the sum of no two
(distinct) elements of A is prime and A contains elements of both parities?

1 Introduction

Some combinatorial problems have the following structure: find subsets A ⊆ {1, 2, . . . , n}
such that the sum of no two (distinct) elements of A belongs to T , where T is a given set.
We say that such a A is a T -sumset-free set. In this note we deal with the case T = P , the
set of all primes. There appear to be no previous papers on this topic.

We try to determine all prime-sumset-free subsets of {1, 2, . . . , n} with the largest car-
dinality. Let the largest cardinality be Un. It is clear that the set of all even (odd) integers
in {1, 2, . . . , n} is a prime-sumset-free set. So Un ≥ ⌊(n + 1)/2⌋. If n + 1 is prime, then by
considering a and n + 1 − a we have Un ≤ ⌊(n + 1)/2⌋. Thus Un = ⌊(n + 1)/2⌋ if n + 1 is
prime. By employing results about the distribution of primes we prove

Theorem 1. For all n ≥ 1 we have Un = ⌊1

2
(n + 1)⌋. Furthermore, if A ⊆ {1, 2, . . . , n} is

a prime-sumset-free set with |A| = Un, then all elements of A have the same parity.
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A prime-sumset-free subset A of {1, 2, . . . , n} is called an extremal prime-sumset-free

subset of {1, 2, . . . , n} if A∪{a} is not a prime-sumset-free subset for any a ∈ {1, 2, . . . , n}\
A. Let PFk(n) (k = 1, 2, . . .) be the sequence of cardinalities of all extremal prime-
sumset-free subsets of {1, 2, . . . , n} with PF1(n) > PF2(n) > . . .. By the theorem we
have PF1(n) = Un = ⌊(n + 1)/2⌋. We pose the following open question:

Question 2. What are the values of PFk(n)? In particular, What is the value of PF2(n)?

Question 3. Determine all extremal prime-sumset-free subsets A with |A| = PF2(n).

2 Proof of the Theorem

Although the proof of the second part implies the first part, we give a proof of the first part
by induction and the application of Bertrand’s postulate here. It is easy to see that the
conclusion is true for n = 1. Now we assume that the conclusion is true for n < k(k ≥ 2).
By the Bertrand’s postulate (see [1]) there exists a prime p with k < p < 2k. Assume that
A ⊆ {1, 2, . . . , n} is prime-sumset-free. For p− k ≤ a ≤ k we have |{a, p− a} ∩A| ≤ 1. So

|A ∩ [p − k, k]| ≤ 1

2
(2k − p + 1).

By the induction hypothesis we have

|A ∩ [1, p − k − 1]| ≤ 1

2
(p − k).

Hence

|A ∩ [1, k]| ≤ 1

2
(2k − p + 1) +

1

2
(p − k) =

1

2
(k + 1).

This implies that Uk ≤ [(k + 1)/2]. By the remark before the theorem we have Uk ≥
⌊(k + 1)/2⌋. So Uk = ⌊(k + 1)/2⌋. This completes the proof of the first part.

To prove the second part of Theorem 1, we need a lemma.

Lemma 4. For any real number x ≥ 8 we have

π(
√

2x) − π(x) ≥ 1.

In particular, if m, n are positive integers with m >
√

2n and n ≥ 8, then there exists at

least one prime p with m > p > n.

Proof. By direct calculation we know that Lemma 4 is true for 8 ≤ x ≤ 25. If x > 25, by
Nagura [2] (see also [3, Lemma 4] ) we have

π(
√

2x) − π(x) ≥ π
(6

5
x
)

− π(x) ≥ 1.

This completes the proof of Lemma 4.
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Now we return to prove the second part of Theorem 1.
For n ≤ 8 we can verify Theorem 1 directly. Now we assume that k > 8 and Theorem 1

is true for all n < k. Let A ⊆ {1, 2, . . . , k} be a prime-sumset-free set with |A| = Uk. Let
qk be the largest prime q with q ≤ 2k. By Lemma 4 we have qk >

√
2k. If 8 < k ≤ 20, by

direct verification we have qk − k ≥ 8. If k ≥ 21, then qk − k > (
√

2 − 1)k ≥ 8. For any
qk − k ≤ a ≤ k we have |A ∩ {a, qk − a}| ≤ 1. Hence

|A ∩ [qk − k, k]| ≤ 1

2
(2k − qk + 1).

Since A ∩ [1, qk − k − 1] is a prime-sumset-free set, we have

|A ∩ [1, qk − k − 1]| ≤ Uqk−k−1 =
⌊1

2
(qk − k)

⌋

.

By the assumption |A| = Uk = ⌊(k + 1)/2⌋ we have

⌊1

2
(k + 1)

⌋

= |A| = |A ∩ [1, qk − k − 1]| + |A ∩ [qk − k, k]|

≤
⌊1

2
(qk − k)

⌋

+
1

2
(2k − qk + 1)

=
⌊1

2
(k + 1)

⌋

.

So

|A ∩ [1, qk − k − 1]| =
⌊1

2
(qk − k)

⌋

= Uqk−k−1.

If 2|k, then by the induction hypothesis we have

A ∩ [1, qk − k − 1] = {1, 3, . . . , qk − k − 2} or {2, 4, . . . , qk − k − 1}.

If 2 6 |k, then by the induction hypothesis we have

A ∩ [1, qk − k − 1] = {1, 3, . . . , qk − k − 1}.

Case 1: 2|k and A ∩ [1, qk − k − 1] = {1, 3, . . . , qk − k − 2}.
Let 2m ∈ [qk − k, k]. Then

2m + qk − k

2m
= 1 +

qk − k

2m
> 1 +

√
2k − k

k
=

√
2.

By qk − k ≥ 8 and Lemma 4 there exists at least one prime p with 2m < p < 2m + qk − k.
So 1 ≤ p − 2m ≤ qk − k − 2. Thus p − 2m ∈ A ∩ [1, qk − k − 1]. Hence 2m /∈ A. So

A ⊆ {1, 3, 5, . . . , k − 1}.

Since |A| = Uk = 1

2
k, we have A = {1, 3, 5, . . . , k − 1}.

Case 2: 2|k and A ∩ [1, qk − k − 1] = {2, 4, . . . , qk − k − 1}.
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Let 2m + 1 ∈ [qk − k, k]. Then

2m + 1 + qk − k

2m + 1
= 1 +

qk − k

2m + 1
> 1 +

√
2k − k

k
=

√
2.

By qk−k ≥ 8 and Lemma 4 there exists at least one prime p with 2m+1 < p < 2m+1+qk−k.
So 1 ≤ p− 2m− 1 ≤ qk − k − 1. Thus p− 2m− 1 ∈ A∩ [1, qk − k − 1]. Hence 2m + 1 /∈ A.
So

A ⊆ {2, 4, . . . , k}.
Since |A| = Uk = 1

2
k, we have A = {2, 4, . . . , k}.

Case 3: 2 6 |k. Then

A ∩ [1, qk − k − 1] = {1, 3, . . . , qk − k − 1}.

Let 2m ∈ [qk − k, k]. Then

2m + qk − k

2m
= 1 +

qk − k

2m
> 1 +

√
2k − k

k
=

√
2.

By qk − k ≥ 8 and Lemma 4 there exists at least one prime p with 2m < p < 2m + qk − k.
So 1 ≤ p − 2m ≤ qk − k − 1. Thus p − 2m ∈ A ∩ [1, qk − k − 1]. Hence 2m /∈ A. So

A ⊆ {1, 3, 5, . . . , k − 1}.

Since |A| = Uk = 1

2
(k − 1), we have A = {1, 3, 5, . . . , k − 1}.

This completes the proof.
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