Integer Sequences Avoiding Prime Pairwise Sums

Yong-Gao Chen ${ }^{1}$
Department of Mathematics Nanjing Normal University
Nanjing 210097
P. R. CHINA
ygchen@njnu.edu.cn

Abstract

The following result is proved: If $A \subseteq\{1,2, \ldots, n\}$ is the subset of largest cardinality such that the sum of no two (distinct) elements of A is prime, then $|A|=\lfloor(n+1) / 2\rfloor$ and all the elements of A have the same parity. The following open question is posed: what is the largest cardinality of $A \subseteq\{1,2, \ldots, n\}$ such that the sum of no two (distinct) elements of A is prime and A contains elements of both parities?

1 Introduction

Some combinatorial problems have the following structure: find subsets $A \subseteq\{1,2, \ldots, n\}$ such that the sum of no two (distinct) elements of A belongs to T, where T is a given set. We say that such a A is a T-sumset-free set. In this note we deal with the case $T=P$, the set of all primes. There appear to be no previous papers on this topic.

We try to determine all prime-sumset-free subsets of $\{1,2, \ldots, n\}$ with the largest cardinality. Let the largest cardinality be U_{n}. It is clear that the set of all even (odd) integers in $\{1,2, \ldots, n\}$ is a prime-sumset-free set. So $U_{n} \geq\lfloor(n+1) / 2\rfloor$. If $n+1$ is prime, then by considering a and $n+1-a$ we have $U_{n} \leq\lfloor(n+1) / 2\rfloor$. Thus $U_{n}=\lfloor(n+1) / 2\rfloor$ if $n+1$ is prime. By employing results about the distribution of primes we prove

Theorem 1. For all $n \geq 1$ we have $U_{n}=\left\lfloor\frac{1}{2}(n+1)\right\rfloor$. Furthermore, if $A \subseteq\{1,2, \ldots, n\}$ is a prime-sumset-free set with $|A|=U_{n}$, then all elements of A have the same parity.

[^0]A prime-sumset-free subset A of $\{1,2, \ldots, n\}$ is called an extremal prime-sumset-free subset of $\{1,2, \ldots, n\}$ if $A \cup\{a\}$ is not a prime-sumset-free subset for any $a \in\{1,2, \ldots, n\} \backslash$ A. Let $P F_{k}(n)(k=1,2, \ldots)$ be the sequence of cardinalities of all extremal prime-sumset-free subsets of $\{1,2, \ldots, n\}$ with $P F_{1}(n)>P F_{2}(n)>\ldots$. By the theorem we have $P F_{1}(n)=U_{n}=\lfloor(n+1) / 2\rfloor$. We pose the following open question:

Question 2. What are the values of $P F_{k}(n)$? In particular, What is the value of $P F_{2}(n)$?
Question 3. Determine all extremal prime-sumset-free subsets A with $|A|=P F_{2}(n)$.

2 Proof of the Theorem

Although the proof of the second part implies the first part, we give a proof of the first part by induction and the application of Bertrand's postulate here. It is easy to see that the conclusion is true for $n=1$. Now we assume that the conclusion is true for $n<k(k \geq 2)$. By the Bertrand's postulate (see [1]) there exists a prime p with $k<p<2 k$. Assume that $A \subseteq\{1,2, \ldots, n\}$ is prime-sumset-free. For $p-k \leq a \leq k$ we have $|\{a, p-a\} \cap A| \leq 1$. So

$$
|A \cap[p-k, k]| \leq \frac{1}{2}(2 k-p+1)
$$

By the induction hypothesis we have

$$
|A \cap[1, p-k-1]| \leq \frac{1}{2}(p-k)
$$

Hence

$$
|A \cap[1, k]| \leq \frac{1}{2}(2 k-p+1)+\frac{1}{2}(p-k)=\frac{1}{2}(k+1) .
$$

This implies that $U_{k} \leq[(k+1) / 2]$. By the remark before the theorem we have $U_{k} \geq$ $\lfloor(k+1) / 2\rfloor$. So $U_{k}=\lfloor(k+1) / 2\rfloor$. This completes the proof of the first part.

To prove the second part of Theorem 1, we need a lemma.
Lemma 4. For any real number $x \geq 8$ we have

$$
\pi(\sqrt{2} x)-\pi(x) \geq 1
$$

In particular, if m, n are positive integers with $m>\sqrt{2} n$ and $n \geq 8$, then there exists at least one prime p with $m>p>n$.

Proof. By direct calculation we know that Lemma 4 is true for $8 \leq x \leq 25$. If $x>25$, by Nagura [2] (see also [3, Lemma 4]) we have

$$
\pi(\sqrt{2} x)-\pi(x) \geq \pi\left(\frac{6}{5} x\right)-\pi(x) \geq 1
$$

This completes the proof of Lemma 4.

Now we return to prove the second part of Theorem 1.
For $n \leq 8$ we can verify Theorem 1 directly. Now we assume that $k>8$ and Theorem 1 is true for all $n<k$. Let $A \subseteq\{1,2, \ldots, k\}$ be a prime-sumset-free set with $|A|=U_{k}$. Let q_{k} be the largest prime q with $q \leq 2 k$. By Lemma 4 we have $q_{k}>\sqrt{2} k$. If $8<k \leq 20$, by direct verification we have $q_{k}-k \geq 8$. If $k \geq 21$, then $q_{k}-k>(\sqrt{2}-1) k \geq 8$. For any $q_{k}-k \leq a \leq k$ we have $\left|A \cap\left\{a, q_{k}-a\right\}\right| \leq 1$. Hence

$$
\left|A \cap\left[q_{k}-k, \quad k\right]\right| \leq \frac{1}{2}\left(2 k-q_{k}+1\right) .
$$

Since $A \cap\left[1, \quad q_{k}-k-1\right]$ is a prime-sumset-free set, we have

$$
\left|A \cap\left[1, \quad q_{k}-k-1\right]\right| \leq U_{q_{k}-k-1}=\left\lfloor\frac{1}{2}\left(q_{k}-k\right)\right\rfloor .
$$

By the assumption $|A|=U_{k}=\lfloor(k+1) / 2\rfloor$ we have

$$
\begin{aligned}
& \left\lfloor\frac{1}{2}(k+1)\right\rfloor=|A|=\left|A \cap\left[1, q_{k}-k-1\right]\right|+\left|A \cap\left[q_{k}-k, \quad k\right]\right| \\
& \leq\left\lfloor\frac{1}{2}\left(q_{k}-k\right)\right\rfloor+\frac{1}{2}\left(2 k-q_{k}+1\right) \\
& =\left\lfloor\frac{1}{2}(k+1)\right\rfloor \text {. }
\end{aligned}
$$

So

$$
\left|A \cap\left[1, \quad q_{k}-k-1\right]\right|=\left\lfloor\frac{1}{2}\left(q_{k}-k\right)\right\rfloor=U_{q_{k}-k-1} .
$$

If $2 \mid k$, then by the induction hypothesis we have

$$
A \cap\left[1, q_{k}-k-1\right]=\left\{1,3, \ldots, q_{k}-k-2\right\} \text { or }\left\{2,4, \ldots, q_{k}-k-1\right\} .
$$

If $2 \nless k$, then by the induction hypothesis we have

$$
A \cap\left[1, \quad q_{k}-k-1\right]=\left\{1,3, \ldots, q_{k}-k-1\right\} .
$$

Case 1: $2 \mid k$ and $A \cap\left[1, q_{k}-k-1\right]=\left\{1,3, \ldots, q_{k}-k-2\right\}$.
Let $2 m \in\left[q_{k}-k, k\right]$. Then

$$
\frac{2 m+q_{k}-k}{2 m}=1+\frac{q_{k}-k}{2 m}>1+\frac{\sqrt{2} k-k}{k}=\sqrt{2} .
$$

By $q_{k}-k \geq 8$ and Lemma 4 there exists at least one prime p with $2 m<p<2 m+q_{k}-k$. So $1 \leq p-2 m \leq q_{k}-k-2$. Thus $p-2 m \in A \cap\left[1, q_{k}-k-1\right]$. Hence $2 m \notin A$. So

$$
A \subseteq\{1,3,5, \ldots, k-1\}
$$

Since $|A|=U_{k}=\frac{1}{2} k$, we have $A=\{1,3,5, \ldots, k-1\}$.
Case 2: $2 \mid k$ and $A \cap\left[1, q_{k}-k-1\right]=\left\{2,4, \ldots, q_{k}-k-1\right\}$.

Let $2 m+1 \in\left[q_{k}-k, k\right]$. Then

$$
\frac{2 m+1+q_{k}-k}{2 m+1}=1+\frac{q_{k}-k}{2 m+1}>1+\frac{\sqrt{2} k-k}{k}=\sqrt{2} .
$$

By $q_{k}-k \geq 8$ and Lemma 4 there exists at least one prime p with $2 m+1<p<2 m+1+q_{k}-k$. So $1 \leq p-2 m-1 \leq q_{k}-k-1$. Thus $p-2 m-1 \in A \cap\left[1, q_{k}-k-1\right]$. Hence $2 m+1 \notin A$. So

$$
A \subseteq\{2,4, \ldots, k\}
$$

Since $|A|=U_{k}=\frac{1}{2} k$, we have $A=\{2,4, \ldots, k\}$.
Case 3: $2 \nless k$. Then

$$
A \cap\left[1, q_{k}-k-1\right]=\left\{1,3, \ldots, q_{k}-k-1\right\} .
$$

Let $2 m \in\left[q_{k}-k, k\right]$. Then

$$
\frac{2 m+q_{k}-k}{2 m}=1+\frac{q_{k}-k}{2 m}>1+\frac{\sqrt{2} k-k}{k}=\sqrt{2} .
$$

By $q_{k}-k \geq 8$ and Lemma 4 there exists at least one prime p with $2 m<p<2 m+q_{k}-k$. So $1 \leq p-2 m \leq q_{k}-k-1$. Thus $p-2 m \in A \cap\left[1, q_{k}-k-1\right]$. Hence $2 m \notin A$. So

$$
A \subseteq\{1,3,5, \ldots, k-1\}
$$

Since $|A|=U_{k}=\frac{1}{2}(k-1)$, we have $A=\{1,3,5, \ldots, k-1\}$.
This completes the proof.

3 Acknowledgements

We would like to thank the referee for his/her helpful comments and S. D. Adhikari for improving English.

References

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Ed., Oxford University Press, 1979.
[2] J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad. 28(1952), 177-181.
[3] Y. -G. Chen, The Analogue of Erdős-Turán Conjecture in \mathbf{Z}_{m}, J. Number Theory 128 (2008), 2573-2581.

2000 Mathematics Subject Classification: Primary 11A41; Secondary 11B75, 05D05. Keywords: primes, sumsets, distribution of primes.

Received April 16 2008; revised version received December 13 2008. Published in Journal of Integer Sequences, December 132008.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Supported by the National Natural Science Foundation of China, Grant No. 10771103.

