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Abstract

Hardy was surprised by Ramanujan’s remark about a London taxi numbered 1729:
“it is a very interesting number, it is the smallest number expressible as a sum of
two cubes in two different ways”. In memory of this story, this number is now called
Taxicab(2) = 1729 = 93 + 103 = 13 + 123, Taxicab(n) being the smallest number
expressible in n ways as a sum of two cubes. We can generalize the problem by
also allowing differences of cubes: Cabtaxi(n) is the smallest number expressible in
n ways as a sum or difference of two cubes. For example, Cabtaxi(2) = 91 = 33 +
43 = 63 − 53. Results were only known up to Taxicab(6) and Cabtaxi(9). This paper
presents a history of the two problems since Fermat, Frenicle and Viète, and gives
new upper bounds for Taxicab(7) to Taxicab(19), and for Cabtaxi(10) to Cabtaxi(30).
Decompositions are explicitly given up to Taxicab(12) and Cabtaxi(20).

1 A Fermat problem solved by Frenicle

Our story starts 350 years ago, with letters exchanged between France and England during
the reign of Louis XIV and the protectorate of Oliver Cromwell. On August 15th 1657, from
Castres (in the south of France), Pierre de Fermat sent to Kenelm Digby some mathematical
problems. Translated into English, two of them were:

1. Find two cube numbers of which the sum is equal to two other cube numbers.

2. Find two cube numbers of which the sum is a cube.
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These two statements can be written algebraically as follows:

x3 + y3 = z3 + w3 (1)

x3 + y3 = z3. (2)

Fermat asked Digby, who was living in Paris at that time, to pass the problems on to William
Brouncker, John Wallis, and Bernard Frenicle de Bessy, defying them to find solutions.
Frenicle succeeded in finding several numerical solutions to (1), as announced in October
1657 in a letter sent by Brouncker to Wallis. The first solutions by Frenicle are:

1729 = 93 + 103 = 13 + 123

4104 = 93 + 153 = 23 + 163

. . .

Figure 1: Colbert presenting the founding members of the Académie Royale des Sciences to Louis XIV, in
1666. Bernard Frenicle de Bessy (Paris circa 1605 – Paris 1675), one of the founding members, is probably
among the people on the left. [Painting by Henri Testelin, Musée du Château de Versailles, MV 2074].

Figure 2: The two smallest of Frenicle’s solutions found in 1657,
as published in Wallis’s Commercium Epistolicum, Epistola X, Oxford, 1693.
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Brouncker added that Frenicle said nothing about equation (2). Slightly later, in February
1658, Frenicle sent numerous other solutions of (1) to Digby without any explanation of the
method used. Fermat himself worked on numbers which are sums of two cubes in more than
two ways. Intelligently reusing Viète’s formulae for solving x3 = y3 + z3 + w3, he proved in
his famous comments on Diophantus that it is possible to construct a number expressible as
a sum of two cubes in n different ways, for any n, but his method generates huge numbers.
We know now that Fermat’s method essentially uses the addition law on an elliptic curve.
See also Theorem 412 of Hardy & Wright, using Fermat’s method [20, pp. 333–334 & 339] .

It was unknown at the time whether equation (2) was soluble; we recognize Fermat’s
famous last theorem xn + yn = zn, when n = 3. This particular case was said to be
impossible by Fermat in a letter sent to Digby in April 1658, and proved impossible more
than one century later by Euler, in 1770. The general case for any n was also said to
be impossible by Fermat in his famous note written in the margin of the Arithmetica by
Diophantus, and proved impossible by Andrew Wiles in 1993–1994. For more details on the
Fermat /Frenicle/Digby/Brouncker/Wallis letters, see [1], [12, pp. 551–552], [31, 39, 40, 43].

We will now focus our paper on equation (1). Euler worked on it [16], but the first to
have worded it exactly as the problem of the “smallest” solution, which is the true Taxicab
problem, seems to have been Edward B. Escott. It was published in 1897 in L’Intermédiaire
des Mathématiciens [13]:

Quel est le plus petit nombre entier qui soit, de deux façons différentes, la somme
de deux cubes? [In English: What is the smallest integer which is, in two different
ways, the sum of two cubes?]

Several authors responded [25] to Escott, stating that Frenicle had found 1729 a long
time before. A more complete answer was given by C. Moreau [26], listing all the solutions
less than 100,000. C. E. Britton [7] listed all the solutions less than 5,000,000. These two
lists are given in the Appendix, figures A1a and A1b.

2 Why is 1729 called a “Taxicab” number?

The problem about the number 1729 is now often called the “Taxicab problem”, e.g., [18,
p. 212], [22, 37, 44], in view of an anecdote, often mentioned in mathematical books, involving
the Indian mathematician Srinivasa Ramanujan (1887–1920) and the British mathematician
Godfrey Harold Hardy (1877–1947). Here is the story as related by Hardy and given, for
example, in [19, p. xxxv]:

I remember once [probably in 1919] going to see him [Ramanujan] when he was
lying ill in Putney [in the south-west of London]. I had ridden in taxicab No.
1729, and remarked that the number seemed to me rather a dull one, and that I
hoped it was not an unfavourable omen. “No,” he replied, “it is a very interesting
number; it is the smallest number expressible as a sum of two cubes in two
different ways.”
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As Euler did, Ramanujan worked on parametric solutions of (1). For example, even if a
similar formula had been previously found by Werebrusow [45], Ramanujan found [2, p. 107],
[29, p. 387] the very nice condition

If m2 + mn + n2 = 3a2b, then (m + ab2)3 + (bn + a)3 = (bm + a)3 + (n + ab2)3. (3)

This equation gives only a small proportion of the solutions. However, with m = 3, n =
0, a = 1, and b = 3, the equation yields 123 + 13 = 103 + 93 = 1729.

Figure 3. Equations handwritten by Ramanujan in two different notebooks:
[29, p. 225] (left panel), and [30, p. 341] (right panel).

Euler had published the complete parametric solution in rationals of (1), but as Hardy
and Wright [20, p. 200] pointed out, “The problem of finding all integral solutions is more
difficult”. In 1998, Ajai Choudhry published an interesting paper [11] on the parametric
solution in integers of (1).

3 Notation used in this paper

In this paper, Taxicab(n) denotes the smallest integer that can be written in n ways as a
sum of two cubes of positive integers. Example:

Taxicab(2) = 1729 = 123 + 13 = 103 + 93.

Fermat proved that Taxicab(n) exists for any n.
We let T (n, k) denote the kth smallest primitive solution that can be written in n ways

as a sum of two cubes of positive integers, so that

Taxicab(n) = T (n, 1) (4)

Examples:

T (2, 1) = 1729 = Taxicab(2), T (2, 2) = 4104.

When Taxicab(n) is unknown, however, we let T ′(n, k) denote the kth smallest known
primitive solution (at the time of the article) written in n ways as a sum of two cubes of
positive integers, and T ′(n, 1) is an upper bound of Taxicab(n):

Taxicab(n) ≤ T ′(n, 1) (5)
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We let Cabtaxi(n) denote the smallest integer that can be written in n ways as a sum of
two cubes of positive or negative integers. Example:

Cabtaxi(2) = 91 = 33 + 43 = 63
− 53.

We let C(n, k) denote the kth smallest primitive solution that can be written in n ways
as a sum of two cubes of positive or negative integers.

Cabtaxi(n) = C(n, 1) (6)

When Cabtaxi(n) is unknown, however, we let C ′(n, k) denote the kth smallest known
primitive solution written in n ways as a sum of two cubes of positive or negative integers.
C ′(n, 1) is an upper bound of Cabtaxi(n):

Cabtaxi(n) ≤ C ′(n, 1). (7)

4 1902–2002: from Taxicab(3) to Taxicab(6)

After having asked the question above on Taxicab(2), Escott asked about Taxicab(3) in 1902
[15]. Find the smallest solution of the equation:

u3 + v3 = w3 + x3 = y3 + z3. (8)

Figure 4. History of Taxicab numbers.
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The Euler and Werebrusow [46] parametric solutions of (1) and (8) do not help us find
the smallest solution. In 1908 André Gérardin [17] suggested that the solution was probably

175959000 = 703 + 5603 = 1983 + 5523 = 3153 + 5253.

An important observation for our study and our future “splitting factors” is that Gérardin’s
solution is equal to 353 ∗ T (2, 2). Two out of its three sums come from the second solution
4104 found by Frenicle as

70 = 2 ∗ 35, 560 = 16 ∗ 35,

315 = 9 ∗ 35, 525 = 15 ∗ 35.

But 1983 + 5523 is not a multiple of 353 and can be considered as a “new” decomposition.
The true Taxicab(3) was discovered more than 50 years after Escott’s question, and exactly
300 years after Frenicle’s discovery of Taxicab(2). Using an EDSAC machine, John Leech
found, and published in 1957 [21], the five smallest 3-way solutions, the smallest of these five
being

Taxicab(3) = 87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143.

His results indicated that Gérardin’s solution was not Taxicab(3), but T (3, 4) = the fourth
smallest primitive 3-way solution.

E. Rosenstiel, J. A. Dardis & C. R. Rosenstiel found Taxicab(4) = 6963472309248, and
first announced it in 1989 [27]. They gave more detailed results in [36], along with the next
three smallest 4-way solutions.

Until now, David W. Wilson was considered to have been the first to have discovered,
in 1997, Taxicab(5) = 48988659276962496, see [47], [3, p. 391], [18, p. 212]. But, as kindly
communicated to me by Duncan Moore, this number had been previously found three years
earlier in 1994 by John A. Dardis, one of the co-discoverers of Taxicab(4), and published in
the February 1995 “Numbers count” column of Personal Computer World [28]. After Dardis
in 1994 and Wilson in 1997, this same number was again found independently by Daniel J.
Bernstein [3] in 1998. Bill Butler also confirmed [8] this number in 2006, while computing
the fifteen 5-way solutions < 1.024 ∗ 1021.

From 1997 to 2002, the best known upper bound of Taxicab(6) was a 6-way solution
found by David W. Wilson. In July 2002, Randall L. Rathbun found [32] a better upper
bound of Taxicab(6), 2.42∗1022, adding: “I don’t believe that this is the lowest value sum for
6 positive cube pairs of equal value”. But it seems today that it probably is the lowest value!
Calude, Calude & Dinneen claimed in 2003 [9] that this upper bound is the true Taxicab(6)
with probability greater than 99%, and further claimed that results in 2005 [10] gave a
probability greater than 99.8%, but these claims are not accepted by many mathematicians.
And the computations done by Bill Butler proved that Taxicab(6) > 1.024 ∗ 1021.

5 Splitting factors

We have remarked that Gérardin’s solution was equal to 353 ∗ T (2, 2). It is important
to note that T ′(6, 1) is equal to 793∗Taxicab(5), as computed by Rathbun. Among the 6
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decompositions, only one (underlined in Fig. 4) is a “new” decomposition: the others are
793 multiples of the 5 decompositions of Taxicab(5).

Rathbun also remarked that other multiples of Taxicab(5) are able to produce 6-way
solutions: 1273, 1393 and 7273. I add that they are not the only multiples of Taxicab(5)
producing 6-way solutions. The next one is 46223, which indicates again, as for Gérardin’s
solution, that non-prime numbers do not have to be skipped as we might initially assume:
79, 127, 139 and 727 were primes, but 4622 = 2 ∗ 2311 is not prime.

If N is an n-way sum of two cubes, and if k3N is an (n + 1)-way sum of two

cubes, then k is called a “splitting factor” of N . This means that this k factor
“splits” k3N into a new (n+ 1)th-way sum of two cubes, the n other sums being directly the
k3 multiples of the already known n ways of N . It was called the “magnification technique”
by David W. Wilson.

It is possible that other known 5-way solutions, if they have small splitting factors,
may produce smaller 6-way solutions than Rathbun’s upper bound. Using the list of 5-way
solutions computed by Bill Butler [8], I have computed their splitting factors (Appendix,
figure A3). These splitting factors give the smallest known 6-way solutions < 1026 (Appendix,
figure A4): the first one remains 793∗Taxicab(5), which means that it is impossible to do
best with this method. We will use this Taxicab(5) number as a basis for our search of upper
bounds of Taxicab(n), for larger n.

The method used to find all our decompositions of N into a sum of two cubes is as follows.
We first factorize N , then build a list of all its possible pair of factors (r, s) solving N = rs,

with r < s. Because any sum of two cubes can be written as

N = rs = x3 + y3 = (x + y)(x2
− xy + y2), (9)

any possible sum of two cubes is an integer solution of the system (10) for one of the possible
pairs (r, s):

x + y = r, x2
− xy + y2 = s. (10)

We search for integer solutions of this system by solving the resulting quadratic equation.
Of course, most of the pairs (r, s) do not give an integer solution (x, y).

6 Taxicab(7) and beyond

The first idea is to use several of the existing splitting factors together. When we use n

factors together, we add n new ways. For example, 1273∗Taxicab(5) gives 5 + 1 = 6 way-
solutions, and 1273 ∗7273∗Taxicab(5) gives 5 + 2 = 7 way-solutions. Directly using this idea,
the smallest 7-way solution is 793 ∗ 1273∗Taxicab(5).

The second idea is to check, once a splitting factor is used, if a completely new splitting
factor is possible on the new number. In our case, yes it is! A very pleasant surprise:
793∗Taxicab(5) has a new splitting factor 101, called a “secondary” factor. And because 101
is smaller than 127, we have found a better 7-way solution 793∗1013∗Taxicab(5) smaller than
793 ∗ 1273 ∗ Taxicab(5). It is possible that some other T (5, i) could produce a smaller 7-way
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solution if it has a small secondary factor. This is not the case. For example, using T (5, 6),
the smallest possible 7-way solution is 253 ∗3673 ∗T (5, 6), bigger than 793 ∗1013∗Taxicab(5).

Figure 5. Detailed list of splitting factors of Taxicab(5).

Figure 6. Best upper bounds, for Taxicab(n), n = 7, 8, . . . , 12.

Figure 7. Upper bound of Taxicab(7) and its 7 decompositions
(2 more decompositions are differences of cubes)
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The best upper bounds using this method were computed in November–December 2006,
and are listed in Fig. 6. This search needed some hours on a Pentium IV. They are the
current records for the upper bounds of the Taxicab numbers.

Fig. 7 gives the full decomposition of the new upper bound of Taxicab(7). Its new 7th
decomposition, which is not 101 times one of the 6 decompositions of T ′(6, 1) from Fig. 4,
is underlined.

The other decompositions of upper bounds up to Taxicab(12) are in the detailed lists of
the Appendix. We may continue with the other unused splitting factors of Fig. 5, giving
(without explicitly stating their decompositions):

Taxicab(13) ≤ T ′(13, 1) = 43273
∗ T ′(12, 1) ≃ 5.99 ∗ 1078

Taxicab(14) ≤ T ′(14, 1) = 46223
∗ T ′(13, 1) ≃ 5.91 ∗ 1089

Taxicab(15) ≤ T ′(15, 1) = 75493
∗ T ′(14, 1) ≃ 2.54 ∗ 10101

Taxicab(16) ≤ T ′(16, 1) = 80633
∗ T ′(15, 1) ≃ 1.33 ∗ 10113

Taxicab(17) ≤ T ′(17, 1) = 143093
∗ T ′(16, 1) ≃ 3.91 ∗ 10125

Taxicab(18) ≤ T ′(18, 1) = 162273
∗ T ′(17, 1) ≃ 1.67 ∗ 10138

Taxicab(19) ≤ T ′(19, 1) = 230353
∗ T ′(18, 1) ≃ 2.04 ∗ 10151.

7 Cabtaxi numbers

But why should we be limited to sums of positive cubes? We can generalize the problem,
allowing sums of positive or negative cubes, these are known as Cabtaxi numbers. Their
story starts before that of the Taxicab numbers.

Figure 8. François Viète (Fontenay-le-Comte 1540 – Paris 1603)
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Figure 9. Formula “63 = 33 + 43 + 53” by François Viète, as republished in 1646 [41, p. 75].

On 31 July 1589, the French king Henri III was killed by the monk Jacques Clément
and was succeeded on the throne by Henri IV. In 1591, François Viète, “one of the most
influential men at the court” of Henri IV [42, p. 3] published this very nice formula about
his problem XVIII, fourth book of Zetetica [41, p. 75] [42, p. 146]:

63 = 33 + 43 + 53.

Moving only one term, we can consider that Viète knew Cabtaxi(2):

91 = 33 + 43 = 63
− 53.

In exactly the same year, 1591, Father Pietro Bongo (“Petrus Bungus” in Latin), canon
of Bergamo, independently published this same formula in Numerorum Mysteria [12, p. 550].
Bongo is also known to have “demonstrated” that the Antichrist was Martin Luther by using
the Hebrew alphabet, the sum of the letters being 666: the number of the Beast. It was
an answer to the German mathematician Michael Stifel (1487–1567) who previously proved,
using the Latin alphabet, that Pope Leo X was the Antichrist. So strange and mystic the
reasoning by some mathematicians at that time . . .

Back to mathematics! Viète and Euler worked on parametric solution in rationals of:

x3 = y3 + z3 + w3. (11)

In 1756, Euler published [16] the same x = 6 solution of Viète and Bongo, and some other
solutions. In 1920 H. W. Richmond published [33] a list of C(2, i) numbers, with a solving
method.

Euler was probably the first to have mentioned some 3-way solutions, his smallest being

873
− 793 = 203 + 543 = 383 + 483.

But the first mention of the true Cabtaxi(3) that I have found was by Escott in 1902 [14]:

728 = 123
− 103 = 93

− 13 = 83 + 63.

Answering Escott’s problem in 1904, Werebrusow published [46], [12, p. 562] this 3-way
formula:

If m2 + mn + n2 = 3a2bc, then
(

(m + n)c + ab2
)3

+
(

−(m + n)b− ac2
)3

= (−mc + ab2)3 + (mb− ac2)3

= (−nc + ab2)3 + (nb− ac2)3. (12)
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Figure 10. History of Cabtaxi numbers.

Werebrusow needed the condition a3 = 1, but his formula is true without this condition.
This 3-way formula (12) reuses his previous 2-way formula (3). No example was given by
Werebrusow, but we can remark that Cabtaxi(3) can be found, applying (m,n, a, b, c) =
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(0, 3, 1, 3, 1). Another observation is that Cabtaxi(3) can be deduced from Cabtaxi(2), using
a splitting factor 2, which adds one new decomposition 93−13. The two other decompositions
of Cabtaxi(2) are 23 multiples of Cabtaxi(2).

Cabtaxi(4), Cabtaxi(5), Cabtaxi(6), Cabtaxi(7) were found by Randall L. Rathbun in the
beginning of the 1990s [18, p. 211], while Cabtaxi(8) was discovered by Daniel J. Bernstein
in 1998 [3].

In the same month, January 2005, there were two nice results on Cabtaxi(9) from two
different people: on the 24th, Jaroslaw Wroblewski found an upper bound of Cabtaxi(9) [22],
and one week later, on the 31st January 2005, Duncan Moore found the true Cabtaxi(9) [23]
Moore’s search also proved that Cabtaxi(10) > 4.6 ∗ 1017.

Just as Taxicab(5) was a strong basis for Taxicab numbers, we observe in Fig. 10 that
Cabtaxi(6) is a strong basis used by bigger Cabtaxi numbers. These interesting relations
were never published, and show the strength of splitting factors:

Cabtaxi(7) = 23
∗ Cabtaxi(6)

Cabtaxi(8) = 233
∗ Cabtaxi(7)

Cabtaxi(9) = (5 ∗ 67)3 ∗ Cabtaxi(7).

Our method is similar to Taxicab numbers, and uses the splitting factors of Cabtaxi(9) given
in Fig. 11a. However, because Jaroslaw Wroblewki’s number C ′(9, 2) = 8.25 ∗ 1017 is close
to C(9, 1) = Cabtaxi(9) = 4.25 ∗ 1017, it is interesting also to analyze its splitting factors, as
shown in Fig. 11b.

The best upper bounds up to C ′(20, 1) using the splitting factors of Cabtaxi(9) were com-
puted in November–December 2006. Three better upper bounds C ′(11, 1), C ′(17, 1), C ′(18, 1)
are possible, coming from C ′(9, 2): they were found later, in February 2007. All these num-
bers are listed in Fig. 12 and are the current records for the upper bounds of the Cabtaxi
numbers.

Fig. 13 gives the full decomposition of the new upper bound of Cabtaxi(10). Its new
10th decomposition, which is not 13 times one of the 9 decompositions of Cabtaxi(9) from
Fig 10, is underlined.
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Figure 11a. Detailed list of splitting factors of Cabtaxi(9) = 424910390480793000.

Figure 11b. Detailed list of splitting factors of C ′(9, 2) = 825001442051661504.
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Figure 12. Best upper bounds for Cabtaxi(10) to Cabtaxi(20).

Figure 13. Upper bound of Cabtaxi(10) and its 10 decompositions.

The other decompositions of upper bounds up to Cabtaxi(20) are presented in the detailed
lists of the Appendix. We may continue with the other unused splitting factors of Fig. 11a,
giving (without explicitly stating their decompositions):

14



Cabtaxi(21) ≤ C ′(21, 1) = 3493
∗ C ′(20, 1) ≃ 9.14 ∗ 1076

Cabtaxi(22) ≤ C ′(22, 1) = 4363
∗ C ′(21, 1) ≃ 7.57 ∗ 1084

Cabtaxi(23) ≤ C ′(23, 2) = 6613
∗ C ′(22, 1) ≃ 2.19 ∗ 1093

Cabtaxi(24) ≤ C ′(24, 2) = 8593
∗ C ′(23, 1) ≃ 1.39 ∗ 10102

Cabtaxi(25) ≤ C ′(25, 2) = 10093
∗ C ′(24, 1) ≃ 1.42 ∗ 10111

Cabtaxi(26) ≤ C ′(26, 2) = (4367 ∗ 439)3 ∗ C ′(24, 1) ≃ 9.77 ∗ 10120

Cabtaxi(27) ≤ C ′(27, 2) = (4367 ∗ 439)3 ∗ C ′(25, 1) ≃ 1.00 ∗ 10130

and of Fig 11b, giving:

Cabtaxi(21) ≤ C ′(21, 2) = (139 ∗ 283 ∗ 291)3 ∗ C ′(18, 1) ≃ 2.72 ∗ 1077

Cabtaxi(22) ≤ C ′(22, 2) = 3073
∗ C ′(21, 1) ≃ 7.88 ∗ 1084

Cabtaxi(23) ≤ C ′(23, 1) = 3793
∗ C ′(22, 1) ≃ 4.29 ∗ 1092

Cabtaxi(24) ≤ C ′(24, 1) = 4093
∗ C ′(23, 1) ≃ 2.94 ∗ 10100

Cabtaxi(25) ≤ C ′(25, 1) = 10213
∗ C ′(24, 1) ≃ 3.12 ∗ 10109

Cabtaxi(26) ≤ C ′(26, 1) = 11533
∗ C ′(25, 1) ≃ 4.79 ∗ 10118

Cabtaxi(27) ≤ C ′(27, 1) = 16933
∗ C ′(26, 1) ≃ 2.32 ∗ 10128

Cabtaxi(28) ≤ C ′(28, 1) = 18293
∗ C ′(27, 1) ≃ 1.42 ∗ 10138

Cabtaxi(29) ≤ C ′(29, 1) = 23073
∗ C ′(28, 1) ≃ 1.75 ∗ 10148

Cabtaxi(30) ≤ C ′(30, 1) = 55433
∗ C ′(29, 1) ≃ 2.97 ∗ 10159.

8 Unsolved problems

8.1 Are these the true Taxicab and Cabtaxi numbers?

The new upper bounds of Taxicab(7) and Cabtaxi(10) announced in this paper, and detailed
in Fig 7 and 13, may have a chance of being the correct Taxicab and Cabtaxi numbers. But
the probability decreases as n increases, and is close to 0 for Taxicab(19) and Cabtaxi(30).
Who can check if some of these upper bounds are the correct Taxicab and Cabtaxi num-
bers? Or who will find smaller upper bounds? This is a good subject for mathematical
computation.

8.2 Prime versions of Taxicab and Cabtaxi numbers

Our construction with splitting factors generates sums of cubes of non-prime integers: at
least n− 1 decompositions are k3 multiples. What about sums of two cubes of primes? The
2-way solutions using only sums of cubed primes are rare. For what we can call “the prime
version of Taxicab numbers”, the smallest 2-way solutions are

6058655748 = 613 + 18233 = 10493 + 16993 (13a)

6507811154 = 313 + 18673 = 3973 + 18613. (13b)
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For the prime version of Cabtaxi numbers, the smallest 2-way solutions are

62540982 = 3973
− 313 = 18673

− 18613 (14a)

105161238 = 1933 + 4613 = 7093
− 6313. (14b)

The solution (14a) is just a different arrangement of (13b).
But nobody has succeeded yet (as far as we know) in constructing a 3-way solution using

only sums, or sums and differences, of cubed primes. Who will be the first, or who can prove
that it is impossible?

An “easier” question: instead of directly searching for a 3-way solution using 6 cubed
primes, is there another 3-way solution using at least 4 cubed primes, different from this one

68913 = 403 + 173 = 413
− 23 = 893

− 863

(the 4 primes used are 17, 41, 2, 89). See puzzles 90 [34] and 386 [35] of Carlos Rivera.
A supplemental remark: our 3-way problems are unsolved, but are solved for a long time

if only coprime pairs are used instead of primes. Several 3-way and 4-way solutions using
sums of two coprime cubes are known. The smallest 3-way solution was found by Paul Vojta
[18, p. 211] in 1983:

15170835645 = 5173 + 24683 = 7093 + 24563 = 17333 + 21523.

And 3-way, 4-way and 5-way solutions using sums or differences of two coprime cubes are
known. It is easy to find the smallest 3-way solution:

3367 = 153
− 23 = 163

− 93 = 343
− 333.

8.3 Who can construct a 4 × 4 magic square of cubes?

A 3 × 3 magic square of cubes, using 9 distinct cubed integers, has been proved impossible
[18, p. 270], [4, p. 59]: if z3 is the number in the centre cell, then any line going through the
center should have x3 + y3 = 2z3. Euler and Legendre demonstrated that such an equation
is impossible with distinct integers.

But the question of 4×4 magic squares of cubes, using 16 distinct positive cubed integers,
is still open. A breakthrough was made in 2006 by Lee Morgenstern [5] who found a very
nice construction method using Taxicab numbers. If

a3 + b3 = c3 + d3 = u (15)

and e3 + f 3 = g3 + h3 = v, (16)

then the 4× 4 square of cubes in Fig. 14 is semi-magic, its 4 rows and 4 columns having the
same magic sum S = uv.
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Figure 14. Parametric 4× 4 magic square of cubes, Morgenstern’s method.

Using u = Taxicab(2) = 1729 and the second smallest 2-way solution v = T (2, 2) = 4104,
both found by Frenicle, which implies (a, b, c, d, e, f, g, h) = (1, 12, 9, 10, 2, 16, 9, 15), we find
the 4 × 4 semi-magic square of cubes shown in Fig. 15.

Figure 15. 4× 4 semi-magic square of cubes. Magic sum S = 1729 ∗ 4104 = 7, 095, 816.

This is not a full solution of the problem, because this square is only “semi-magic”, in
that the diagonals each have a wrong sum. The diagonals (and the square) would be fully
magic if a third equation is simultaneously true:

(ae)3 + (bf)3 = (cg)3 + (dh)3. (17)

Using 2-way lists kindly provided by Jaroslaw Wroblewski, University of Wroc law, I can say
that there is no solution to the system of 3 equations (15), (16) and (17), with a, b, c, d, e, f, g, h

< 500, 000 or with a, b, c, d < 1, 000, 000 and e, f, g, h < 25, 000. But that does not mean that
the system is impossible. The first person who finds a numerical solution of this system of 3
equations will directly get a 4×4 magic square of cubes! But perhaps somebody will succeed
in constructing a 4 × 4 magic square of cubes using a different method. Or somebody will
prove that the problem is unfortunately impossible.
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10 Appendix

Figure A1a. Smallest 2-way solutions1 listed by Moreau.

Figure A1b. Smallest 3-way solutions listed by Leech.

Figure A2. Splitting factors of Taxicab numbers.

1All these solutions were previously found by Frenicle.
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Figure A3. Splitting factors of the smallest 5-way solutions.

Figure A4. Smallest 6-way solutions derived from 5-way solutions and splitting factors

(other 6-way solutions are possible, if they are not derived from 5-way solutions).
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List 1. Upper bounds of Taxicab(7..12) and decompositions.
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List 2. Upper bounds of Taxicab(10..20) and decompositions.
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List 2 (cont’d). Upper bounds of Taxicab(10..20) and decompositions.
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List 3. Upper bounds of Taxicab(13..19).

List 4. Upper bounds of Taxicab(21..30).
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