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Abstract

This paper is devoted to the study of certain unimodal sequences related to binomial

coefficients. Although the paramount purpose is to prove unimodality, in a few cases

we even determine the maxima of the sequences. Our new results generalize some

earlier theorems on unimodality. The proof techniques are quite varied.
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1 Introduction

Let {Hn}∞n=0 denote a binary recurrence sequence defined by the initial values H0 ∈ R and
H1 ∈ R, not both zero, and the recurrence relation

Hn = AHn−1 +BHn−2, (n ≥ 2),

where the coefficients A and B are also real numbers. Moreover, let

hn,k = An−2kBk

(

n− k

k

)(

H1 +
k

n− 2k + 1
AH0

)

, k = 0, . . . ,
⌊n

2

⌋

. (1)

The sequences {Hn}n and {hn,k}k are strongly linked since

Hn+1 = (n mod 2) ·B n+1

2 H0 +

⌊n

2 ⌋
∑

k=0

hn,k, (n ≥ 0).

In what follows, for the natural numbers n and k we denote the floor
⌊

n
k

⌋

by nk.
For instance, if A = B = H1 = 1 and H0 = 0 then the Fibonacci sequence {Fn}∞n=0, and

the well-known Fn+1 =
∑n2

k=0

(

n−k

k

)

identity are obtained.
One of the purposes of this paper is to investigate the unimodality of the sequence

{hn,k}k. A finite sequence of real numbers {ak}mk=0 (m ≥ 1) is unimodal if there exists an
integer l ∈ {0, . . . ,m} such that the subsequence {ak}lk=0 increases, while {ak}mk=l decreases.
If a0 ≤ a1 ≤ · · · ≤ al0−1 < al0 = · · · = al1 > al1+1 ≥ · · · ≥ am then the integers l0, . . . , l1 are
the modes of {ak}mk=0. In case of l0 = l1 we talk about a peak, otherwise the set of modes
is called a plateau. Naturally, these definitions can even be extended to infinite sequences.
For positive sequences, unimodality is implied by strict log-concavity. A sequence {ak}mk=0

is said to be strictly log-concave (SLC for short) if a2l > al−1al+1, 1 ≤ l ≤ m− 1.
Theorems 2.1-2.3 discuss three classes of (1) and generalize most of the earlier results

on unimodality of the sequences related to binomial coefficients. Generally, {hn,k}k is not
unimodal, not even if A and B are positive. For example, let A = B = 1, further H0 = −8,
H1 = 5. Now

h8,k = 5, 27, 27, − 30, − 27, (k = 0, . . . , 4)

is not unimodal.
The first result dealing with unimodality of the elements of the Pascal triangle is due

to Tanny & Zuker [3], who showed that
(

n−k

k

)

(k = 0, . . . , n2) is unimodal. They [4, 5]

also investigated the unimodality of
(

n−αk

k

)

. In this work we also treat certain cases of the

binomial sequence
(

n+αk

βk

)

.

Benoumhani [2] proved the unimodality of the sequence n
n−k

(

n−k

k

)

connected to Lucas

numbers. Recently, Belbachir and Bencherif [1] proved that the sequences 2n−2k
(

n−k

k

)

and

2n−2k n
n−k

(

n−k

k

)

linked to Pell sequence and its companion sequence are unimodal. In all
the aforesaid cases the authors descibe the peaks and the plateaus with two elements, the
elements in which the monotonity changes.
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2 Results

Theorem 2.1. Suppose that A and B are given real numbers with A > 0, moreover H0 = 0
and H1 = 1. Assuming that n ≥ 2, the sequence

hn,k = An−2kBk

(

n− k

k

)

, (k = 0, . . . , n2)

is unimodal if and only if B ≥ 0. In this case the peak k = pn of {hn,k} satisfies

pn ∈
{⌊

n

2

(

1− 1√
4c+ 1

)⌋

,

⌈

n

2

(

1− 1√
4c+ 1

)⌉}

,

and the plateau with two elements may occur at the places pn and pn + 1.

Obviously, hn,k cannot be unimodal with negative B, and trivially unimodal when B = 0.
ConsideringA andB as two natural numbers, a combinatorial interpretation ofAn−2kBk

(

n−k

k

)

is the number of words formed with the letters R, S1, . . . , SA, T1, . . . , TB of length n, begin-
ning vith k consecutive R’s and containing exactly k letters choosing among {T1, . . . , TB}.

A similar theorem to Theorem 2.1 is true for the companion sequence of Hn.

Theorem 2.2. Let A > 0 and B denote real numbers, H0 = 2, H1 = A and let n ≥ 2 be an
integer. The sequence

hn−1,k = An−2kBk n

n− k

(

n− k

k

)

, (k = 0, . . . , n2)

is unimodal if and only if B ≥ 0. The description of peaks and plateaus coincide as we have
in Theorem 2.1.

The choice H0 = 0 and H1 = 1 makes the formula (1) as simple as possible. The following
theorem does not fix the initial values, but only the coefficients.

Theorem 2.3. Assume that the initial values H0 and H1 are positive, A = B = 1 and
n ≥ 2. Under these conditions the sequence

hn,k =

(

n− k

k

)(

H1 +
k

n− 2k + 1
H0

)

, (k = 0, . . . , n2)

is also unimodal.

Another direction is to investigate the unimodality of the sequence
(

n+αk

βk

)

, where α and
β ≥ 0 are integers. If either α or β is zero then unimodality is trivial, as well as with
(α, β) = (1, 1). The case (α, β) = (−1, 1) has been treated in [3], while α < −1, β = 1 in [4]
and [5].

The first pair worth considering is (α, β) = (−1, 2), when hn,k =
(

n−k

2k

)

. Note that if

an =
∑n3

k=0

(

n−k

2k

)

then the terms of {an} satisfy the recurrence relation an = an−1+an−2+an−4

with the initial values a0 = a1 = a2 = 1 and a3 = 2 (Sloane: A005251).
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Theorem 2.4. The sequence hn,k =
(

n−k

2k

)

is unimodal (k = 0, . . . , n3).

A more interesting pair is (α, β) = (1, 2). Now F2n+1 =
∑n

k=0

(

n+k

2k

)

(Sloane: A001519).
Note that the sequence an = F2n+1 satisfies an = 3an−1 − an−2 (n ≥ 2).

Theorem 2.5. The sequence hn,k =
(

n+k

2k

)

is unimodal (k = 0, . . . , n). A plateau exists
if and only if n = (F12u+4 − 1)/2 or n = (F12u+8 − 1)/2 with k = (L12u+4 − 7)/10 or
k = (L12u+8 − 7)/10 (u ∈ N), respectively.

For numerical examples, see the following two tables.

u F12u+4 n L12u+4 k
(

n+k

2k

)

=
(

n+k+1
2k+2

)

0 3 1 7 0
(

1
0

)

=
(

2
2

)

1 987 493 2207 220
(

713
440

)

=
(

714
442

)

2 317811 158905 710647 71064
(

229969
142128

)

=
(

229970
142130

)

u F12u+8 n L12u+8 k
(

n+k

2k

)

=
(

n+k+1
2k+2

)

0 21 10 47 4
(

14
8

)

=
(

15
10

)

1 6765 3382 15127 1512
(

4894
3024

)

=
(

4895
3026

)

2 2178309 1089154 4870847 487084
(

1576238
974168

)

=
(

1576239
974170

)

Finally, let us consider the case (1, β). For instance, if β = 3 then the numbers
∑n2

k=0

(

n+k

3k

)

give every third term of the Padovan sequence {pn} determined by pn = pn−2 + pn−3 and
p0 = 1, p1 = p2 = 0 (Sloane: A003522). Theorem 2.6 partially generalizes Theorem 2.5.

Theorem 2.6. The sequence hn,k =
(

n+k

βk

)

is unimodal (2 ≤ β ∈ N, k = 0, . . . , nβ−1).

The strict log-concavity is only utilized in the proof of Theorem 2.6, because it really
simplifies the treatment. In the rest of the cases we start from the definition of unimodality,
which is useful mainly where the peaks and plateaus are also aimed to determined. Finally,
we draft two conjectures on Pascal triangles.

Conjecture 1. Let
(

n

k

)

be a fixed element of the Pascal triangle crossed by a ray. The
sequence of binomial coefficents located along this ray is unimodal.

Conjecture 2. Take a generalized Pascal triangle corresponded to the Tribonacci sequence
given by Tn = Tn−1 + Tn−2 + Tn−3 (n ≥ 3) and T0 = T1 = 0, T2 = 1. This triangle contains
the elements

(

n

k

)

2

=

⌊ k

2⌋
∑

i=m

n!

i! · (k − 2i)! · (n− k + i)!
=

⌊ k

2⌋
∑

i=m

(

n

n− i

)(

n− i

k − 2i

)

with m = max{0 , k − n}. We conjecture that the sequence
(

n−k

k

)

2
is unimodal.
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3 Proofs

Proof of Theorem 2.1. There remains only the case B > 0 to consider. The inequality

An−2kBk

(

n− k

k

)

≤ An−2(k+1)Bk+1

(

n− (k + 1)

k + 1

)

, (k = 0, . . . , n2 − 1)

is equivalent to

0 ≤ (4c+ 1)k2 − (4c+ 1)kn+ cn2 + (2c+ 1)k − (c+ 1)n (2)

with c = B/A2 > 0. Multiplying (2) by 4(4c+ 1) it can be rewritten as

(4c+ 1)(n+ 1)2 + 4c2 ≤ ((4c+ 1)(2k − n) + (2c+ 1))2 . (3)

It is easy to check that (4c+ 1)(2k − n) + (2c+ 1) < 0. Consequently, by (3) we have

k ≤ tn =
(4c+ 1)n− (2c+ 1)−

√

(4c+ 1)(n+ 1)2 + 4c2

2(4c+ 1)
. (4)

Put t⋆n = (n/2)(1− 1/
√
4c+ 1). From −1 < tn − t⋆n < 0 it follows that the peak pn of {hn,k}

is one of ⌊t⋆n⌋ and ⌈t⋆n⌉. When tn is a natural number then {hn,k} possesses a plateau with
two elements at k = pn and k = pn+1. Obviously, plateaus can be identified by the positive
integer solutions x, y of the Pell equation (4c+ 1)(x+ 1)2 + 4c2 = y2.

Remark 3.1. Formula (4) returns with

k ≤ 5n− 3−
√
5n2 + 10n+ 9

10
and k ≤ 4n− 3−

√
8n2 + 16n+ 9

8

in the particular case of Fibonacci and Pell sequences (see [3] and [1]), respectively.

Proof of Theorem 2.2. Suppose that B > 0 and follow the steps of the proof of Theorem
2.1. Thus we can transform hn,k ≤ hn,k+1 into

0 ≤ (4c+ 1)k2 − (4c+ 1)kn+ cn2 + (2c+ 2)k − (c+ 1)n+ 1, (5)

(c = B/A2) and by a suitable multiplication of (5) we have

(4c+ 1)n2 + 4c(c− 2) ≤ ((4c+ 1)(2k − n) + (2c+ 2))2 .

Hence

k ≤ (4c+ 1)n− (2c+ 2)−
√

(4c+ 1)n2 + 4c(c− 2)

2(4c+ 1)
. (6)

Now we find again that pn is ⌊t⋆n⌋ or ⌈t⋆n⌉ with the same t⋆n we had in Theorem 2.1. For
plateaus the diophantine equation (4c+ 1)x2 + 4c(c− 2) = y2 should be investigated.
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Remark 3.2. The inequality (6) provides formulae

k ≤ 5n− 4−
√
5n2 − 4

10
and k ≤ 4n− 5−

√
8n2 − 7

8

in case of Lucas numbers and the companion sequence of Pell numbers (see [2] and [1]),
respectively.

Proof of Theorem 2.3. Now A = B = 1 and the inequality hn,k ≤ hn,k+1 provides

(n− k)(k + 1) (H1(n− 2k + 1) +H0k) ≤
(n− 2k + 1)(n− 2k) (H1(n− 2k − 1) +H0(k + 1)) ,

which is equivalent to 0 ≤ fn(k) =
∑3

i=0 ei(n)k
i, where

e0(n) = n3 + (h− 1)n2 + (h− 2)n,

e1(n) = (h− 7)n2 + (−4h+ 2)n+ (−2h+ 3),

e2(n) = (−5h+ 15)n+ (3h− 1),

e3(n) = 5h− 10,

and h = H0/H1 > 0. The special case h = 2 has essentially been treated by Benoumhani
[2]. Therefore, by the sign of e3(n), we must distinguish two cases.

Firstly, we assume that h > 2, which entails positive leading coefficient in the polynomial
fn(k) of degree three. Since fn(0) = e0(n) > 0 and fn(n/2) = −(hn3+(2h+2)n2+4n)/8 < 0,
it follows that fn(k) possesses exactly one zero in the interval [0;n/2]. Hence hn,k is unimodal.

Now, the assertion 0 < h < 2 implies e3(n) < 0. The reader can easily verify that
fn(0) = n(n2+(h− 1)n+(h− 2)) is positive if n ≥ 2 and fn(n/2) < 0 as it has already been
occurred previously. But the negative leading coefficient e3(n) causes ambiguous structure
for the zeros of fn(k). Therefore a deeper analysis is necessary to clarify the situation.

The polynomial

f ′
n(k) = (15h− 30)k2 + ((−10h+ 30)n+ (6h− 2)) k+

+
(

(h− 7)n2 + (−4h+ 2)n+ (−2h+ 3)
)

has two distinct real zeros because its discriminant

D = 20(2h2 − 3h+ 3)n2 + 40(3h2 − 5h+ 3)n+ 4(39h2 − 111h+ 91)

is positive when 0 < h < 2. Indeed, 2h2 − 3h+ 3 > 0 and the discriminant

D1 = −960(h− 2)2(11h2 − 19h+ 19)

of D takes negative values on the interval ]0, 2[.
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To finish the proof it is sufficient to show that the larger real zero f2 of f ′
n(k) satisfies

n/2 < f2, more exactly

f2 =
(10h− 30)n+ (2− 6h)−

√
D

30h− 60
>

n

2
.

To do this it is enough to see that 2− 6h− 5hn <
√
D, which is trivially true when h ≥ 1/3.

Contrary, if h < 1/3, it suffices to confirm

0 < (−h+ 2)n2 + (−4h+ 4)n+ (−8h+ 12). (7)

And (7) is fulfilled since its right hand side has no real zero under the given conditions.

Proof of Theorem 2.4. Starting with
(

n−k

2k

)

≤
(

n−k−1
2k+2

)

, we obtain

0 ≤ f(k) = −23k3 + (23n− 21)k2 + (−9n2 + 12n− 4)k + (n3 − 3n2).

Since f(0) = n2(n − 3) ≥ 0 if n ≥ 3, further f(n/3) = −4n(n + 3)(2n + 3)/27 < 0, it
is sufficient to verify that f(k) is strictly monotone decreasing. And, really, if n ≥ 3 then
f ′(k) 6= 0 implies the required monotonity.

Proof of Theorem 2.5. Assuming hn,k ≤ hn,k+1, it provides

0 ≤ f(k) = −5k2 − 7k + (n2 + n− 2).

Since k = −0.7 is the only solution of f ′(k) = 0, it follows that f(k) is strictly decreasing in
the interval [0;n− 1]. Further, the zeros of the polynomial f(k) are

f1,2 =
7±

√
20n2 + 20n+ 9

−10
, (8)

the smaller f1 is negative, the larger f2 is approximately 0.45n since

f

(

n√
5
− 1

)

· f
(

n√
5

)

= −4

5
(4 +

√
5)n2 − 2

5
(5 + 3

√
5)n < 0

implies n/
√
5 − 1 < f2 < n/

√
5. Thus hn,k is unimodal, and its smallest mode kn = ⌈f2⌉

satisfies
⌊

n/
√
5
⌋

≤ kn ≤
⌈

n/
√
5
⌉

.
Now we inspect the existence of plateaus. By (8), we need to solve the Pell equation

20x2 + 20x+ 9 = y2. It is well known that

y2 − 5(2x+ 1)2 = 4

implies y = L2v and 2x + 1 = F2v. A Fibonacci number with even suffix is odd if and only
if 3 does not divide v. Put v = 3u ± 1. A simple verification shows that L6u±2 ≡ ±7 (
mod 10) depending on the parity of u. Choosing the appropriate cases we obtain f2 as
positive integer.
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Remark 3.3. Another proof can be obtained by introducing the functionGn (x) =
∑

0≤k≤n

(

n+k

2k

)

xk,
for which

Gn (x) =
1

xn
√
x2 + 4x





(

x+
√
x2 + 4x

2

)2n+1

−
(

x−
√
x2 + 4x

2

)2n+1


 .

It suffices to see that

Gn (x) = (x+ 2)Gn−1 (x)−Gn−2 (x) , G0 (x) = 1, G1 (x) = x+ 1.

We deduce that Gn (x) admits n distinct real zeros given by

xk = −2

(

1 + cos
2kπ

2n+ 1

)

, k = 1, 2, . . . , n,

and then the sequence
(

n+k

2k

)

is SLC, which gives unimodality with a peak or a plateau with
two elements.

For m ≥ 3 let denote {αm}m≥−1 and {βm}m≥−1 sequences defined by

{

(α−1, α0, α1, α2) = (−11,−2, 1, 10) and αm = 322αm−2 − αm−4 + 160,
(β−1, β0, β1, β2) = (4, 0, 0, 4) and βm = 322βm−2 − βm−4 + 224.

The integers n for which the sequences
(

n+k

2k

)

, (k = 0, 1, . . . , n) admit a plateau with two
elements {kn, kn + 1} are exactly the integers αs, s ≥ 1 such that kαs

= βs for s ≥ 1.

s n = αs kn = βs

1 1 0

2 10 4

3 493 220

4 3382 1512

5 158905 71064

6 1089154 487084

Proof of Theorem 2.6 We show that hn,k is strictly log-concave, or more precisely

(

n+ k

βk

)2

>

(

n+ k − 1

βk − β

)(

n+ k + 1

βk + β

)

. (9)

Put b = β − 1 ≥ 1. Thus (9) is equivalent to

(n+ k)(n− bk + 1)

(n+ k + 1)(n− bk)
·
β−1
∏

i=0

(

1 +
β

βk − i

)

·
b−1
∏

j=1

(

1 +
b+ 1

n− bk − j

)

> 1.

Since (n+k)(n− bk+1) > (n+k+1)(n− bk) > 0, further the other multipliers are trivially
greater than 1, the statement is proved.
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