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Abstract

The sequence starts with a(1) = 1; to extend it one writes the sequence so far
as XY k, where X and Y are strings of integers, Y is nonempty and k is as large as
possible: then the next term is k. The sequence begins 1, 1, 2, 1, 1, 2, 2, 2, 3, 1,
1, 2, 1, 1, 2, 2, 2, 3, 2, . . . A 4 appears for the first time at position 220, but a 5
does not appear until about position 1010

23
. The main result of the paper is a proof

that the sequence is unbounded. We also present results from extensive numerical
investigations of the sequence and of certain derived sequences, culminating with a
heuristic argument that t (for t = 5, 6, . . .) appears for the first time at about position

1All correspondence should be directed to this author.
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2 ↑ (2 ↑ (3 ↑ (4 ↑ (5 ↑ . . . ↑ ((t− 2) ↑ (t− 1)))))), where ↑ denotes exponentiation. The
final section discusses generalizations.

1 Introduction

This paper introduces an integer sequence A = a(1), a(2), a(3), . . . with some remarkable
properties. Define the curling number C(U) of a string U = u(1), u(2), . . . , u(n) over some
alphabet Ω to be the largest integer k ≥ 1 such that

U = X Y Y · · ·Y
︸ ︷︷ ︸

k copies

= XY k , (1)

where X and Y are strings over Ω and Y is nonempty. Our sequence is defined by

a(1) = 1, a(n+ 1) = C(a(1), . . . , a(n)) for n ≥ 1 . (2)

Then a(2) = C(1) = 1, since we can only take X to be the empty string ǫ, Y = 1 and
k = 1; a(3) = C(1, 1) = 2, by taking X = ǫ, Y = 1, k = 2; a(4) = C(1, 1, 2) = 1, by taking
X = 1, 1, Y = 2, k = 1 (as this example shows, there may be more than one choice for Y );
and so on. The first 220 terms of A are shown in Tables 1 and 2.

To avoid any possible confusion, for example with the “Say What You See” sequence
studied in [3], we emphasize that the curling number does not depend on the decimal repre-
sentation of its arguments. For example, if U = (8, 9, 10, 11, 11, 11), C(U) = 3.

1 1 2

1 1 2 2 2 3

1 1 2
1 1 2 2 2 3 2

1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2

1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 3 2

Table 1: The first 98 terms of the sequence. In the notation to be introduced in Section
2, the five underlined strings are the glue strings S

(1)
1 , S

(1)
2 , . . . , S

(1)
5 and the five bold-face

strings are T
(1)
2 , T

(1)
3 , . . . , T

(1)
6 .
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1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2
1 1 2
1 1 2 2 2 3
1 1 2
1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 3 2 2 2 3 2 2 2 3 3

2 2 2 3 2 2 2 3 2 2 2 3 3 3 3 4

Table 2: Terms 99 through 220 of the sequence, up to the point where the first 4 appears
(S

(1)
6 is underlined, T

(1)
7 is shown in bold-face).

In Section 2 we describe the recursive structure of the sequence, in particular explaining
the block structure visible in Tables 1 and 2. The proof that this structure is valid is
postponed to Section 3, where we give the main results of the paper, Theorems 3.1 and 3.2.
Corollary 3.4 shows that the sequence is unbounded.

In Section 4 we give empirical estimates for the lengths of the blocks in the recursive
structure, culminating in the estimate that t ≥ 5 appears in the sequence for the first time
at about position

22
34

·
·
·
t−1

, (3)

a tower of height t − 1. These estimates are based on examination of the first two million
terms of the sequence A and of the higher-order sequences A(2), A(3) and A(4) introduced in
Section 2.

The final section is devoted to comments and generalizations. §5.1 discusses a certain
plausible “Finiteness Conjecture” that arises from studying curling numbers. §5.2 discusses
sequences that are obtained when the “curling number transform” (defined below) is applied
to certain well-known sequences. Finally, §5.3 briefly mentions some generalizations of our
sequence, including a broad class of extensions suggested by J. Taylor [9].

Although the sequence A grows very slowly, there are certainly familiar sequences with an
even slower growth rate, such as the inverse Ackermann function [1], the Davenport-Schinzel
sequences [7], or the inverse to Harvey Friedman’s sequence [4]. Nevertheless, we think the
combination of slow growth, an unusual definition, and a remarkable recursive structure
makes the sequence noteworthy.
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The sequence was invented by one of us (D.C.G.) while composing problems for the Dutch
magazine Pythagoras. It now appears as sequence A90822 in [8].

Notation

If Ω is a set, Ωn denotes the strings of length n from Ω, Ω+ is the set of all nonempty finite
strings from Ω, and Ω∗ is the set of all finite or infinite strings from Ω, including the empty
string ǫ. Strings will usually be denoted by uppercase letters. The elements of a string may
or may not be separated by commas, and a string may or may not be enclosed in parentheses.
A sequence is an infinite string. The length of U ∈ Ω∗ (which may be ∞) will be denoted
by l(U).

Products in Ω∗ represent concatenation: if U ∈ Ω+, V ∈ Ω∗ then UV means U followed
by V . We will usually not concatenate two infinite strings. A string U = u(1), . . . , u(i)
is said to be a substring of V = v(1), . . . , v(j) if there is an r, 0 ≤ r ≤ j − i, such that
u(k) = v(k + r) for k = 1, . . . , i; that is, if the elements of U occur consecutively in V . We
say V contains U to indicate that U is a substring of V . Terms such as prefix, suffix, etc.,
have their usual meanings — see [2] for formal definitions. A sequence U is said to be a
subsequence of a sequence V if U can be obtained by deleting terms from V .

Usually Ω will be either the nonnegative integers N = {0, 1, 2, 3, . . .}, the positive integers
P = {1, 2, 3, . . .}, or the set Pm = {m,m+ 1,m+ 2, . . .} for some integer m ≥ 1.

Given a sequence U = u(1), u(2), . . . ∈ Ω∗, its curling number transform is the sequence
U∗ = u∗(1), u∗(2), . . . ∈ P

∗ given by u∗(1) = 1 and

u∗(i) = C(u(1), . . . , u(i− 1)) for i ≥ 2 . (4)

It is immediate from the definition (2) that our sequence A is equal to its curling number
transform, and in fact is the unique sequence with this property.

2 The recursive structure

We introduce the notation in three stages: informally, more formally and—in Section 3—with
a somewhat different emphasis that will be needed to prove the main theorems.

Informally, the sequence A is built up recursively from “blocks” B
(1)
n that are doubled

at each step and are joined together by “glue” strings S
(1)
n . When the glue strings alone

are concatenated together they form a sequence A(2) which has a similar structure to A: it
is built up recursively from blocks B

(2)
n that are repeated three times at each step and are

joined together by “second-order glue” strings S
(2)
n . When the second-order glue strings are

concatenated together they form a sequence A(3) which in turn has a similar structure, but
now the blocks B

(3)
n are repeated four-fold at each step; and so on. The proof that this

description is correct will be given in the next section.
We now make this description more precise. The following description is correct, and is

the best way to think about the sequence. However, we will not know for certain that it is
correct until the end of Section 3.
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The sequence A is constructed from strings B
(1)
n and S

(1)
n , n ≥ 1, which we call “blocks”

and “glue,” respectively. The initial block isB
(1)
1 = 1; the second block isB

(1)
2 = B

(1)
1 B

(1)
1 S

(1)
1 =

1 1 2, where S
(1)
1 = 2; the third block is

B
(1)
3 = B

(1)
2 B

(1)
2 S

(1)
2

= 1 1 2 1 1 2 2 2 3 ,

where S
(1)
2 = 2 2 3, and so on, the n-th block for n ≥ 2 being

B(1)
n = B

(1)
n−1B

(1)
n−1S

(1)
n−1 , (5)

where S
(1)
n−1 contains no 1’s. Then for all n ≥ 1, A begins with B

(1)
n (and hence A = lim

n→∞

B(1)
n ).

That is, for all n ≥ 2, A begins with two copies of B
(1)
n−1 followed by a “glue” string S

(1)
n−1

that contains no 1’s. S
(1)
n−1 is terminated by the first 1 that follows the initial B

(1)
n−1B

(1)
n−1.

Table 1 shows B
(1)
1 through B

(1)
6 (the first row is B

(1)
2 , the first two rows together form

B
(1)
3 , . . ., and the whole table forms B

(1)
6 ), and Tables 1 and 2 together form B

(1)
7 . The

glue strings S
(1)
1 , S

(1)
2 , . . . , S

(1)
6 are underlined. By iterating (5) we see that B

(1)
n can also be

written as
B(1)

n = B
(1)
n−1B

(1)
n−2 · · ·B

(1)
1 B

(1)
1 S

(1)
1 S

(1)
2 · · ·S

(1)
n−1 . (6)

The terminating string S
(1)
1 S

(1)
2 · · ·S

(1)
n−1 (denoted by T

(1)
n in Section 3) is shown in bold-face

in Tables 1 and 2 for n = 2, . . . , 7.
In Section 4 we state some conjectures about the lengths of the blocks B

(1)
n and of the

glue strings S
(1)
n−1. Assuming these conjectures are correct, l(S

(1)
n−1) is much less than l(B

(1)
n−1),

and consequently l(B
(1)
n ) is roughly twice l(B

(1)
n−1).
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2 2 2 3

2 2 2 3
2 2 2 3 3

2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3 3 3 4

2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3 3 3 4
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3
2 2 2 3
2 2 2 3
2 2 2 3 3 3 3 4 3

Table 3: The first 127 terms of the second-order sequence A(2) (the successive second-order

glue strings S
(2)
1 , S

(2)
2 , S

(2)
3 , S

(2)
4 are underlined; the strings T

(2)
2 , T

(2)
3 , T

(2)
4 , T

(2)
5 are shown in

bold-face).

The above decomposition reduces the study of A to the study of the glue strings S
(1)
n . We

define the “second-order sequence” A(2) = a(2)(1), a(2)(2), a(2)(3), . . . to be the concatenation

S
(1)
1 S

(1)
2 S

(1)
3 · · · ∈ P

∗

2 of the glue strings. It will be shown later that A(2) can also be defined
by

a(2)(1) = 2 ,

a(2)(n+ 1) = C(2)(a(2)(1), a(2)(2), . . . , a(2)(n)) for n ≥ 1 , (7)

where we define
C(m)(U) = max{m, C(U)} (8)

for m ≥ 1. That is, if C(U) = k is less than m it is “promoted” to m (we will say more
about “promotion” at the end of Section 3). Of course C(1) = C.
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The first 127 terms of A(2) are shown in Table 3, and the reader can verify that they may
indeed be obtained by starting with 2 and repeatedly applying the map C(2).

It is remarkable that A(2) has a similar structure to A, only now the blocks are repeated
three times. That is, if we define B

(2)
1 = 2, then for all n ≥ 2, A(2) begins with a block

B(2)
n = B

(2)
n−1B

(2)
n−1B

(2)
n−1S

(2)
n−1 , (9)

consisting of three copies of B
(2)
n−1 followed by a “second-order glue” string S

(2)
n−1 ∈ P

∗

3 that
contains no 1’s or 2’s and is terminated by the first number less than 3 that follows the
initial B

(2)
n−1B

(2)
n−1B

(2)
n−1. Table 3 shows B

(2)
5 (as well as B

(2)
1 through B

(2)
4 ). The glue strings

S
(2)
1 , S

(2)
2 , S

(2)
3 , S

(2)
4 are underlined. B

(2)
n ends with the string S

(2)
1 S

(2)
2 · · ·S

(2)
n−1 (denoted by

T
(2)
n in Section 3); these strings are shown in bold-face in Table 3 for n = 2, . . . , 5.
Again we have a conjectured estimate (see Section 4) for the lengths of the glue, which

implies that l(B
(2)
n ) is roughly three times l(B

(2)
n−1).

This analysis reduces the study of A(2) to the study of the second-order glue strings
S
(2)
n , and these, when concatenated, form the third-order sequence A(3), which in turn has a

similar structure. And so on!

3 The main theorems

In this section we establish our main theorems, which will show that the description of the
sequence given in Section 2 is correct. To do this we must introduce our notation very
carefully. The following definitions (temporarily) supersede those in Section 2. For m ≥ 1,
the mth-order sequence A(m) = a(m)(1), a(m)(2), a(m)(3), . . . ∈ P

∗

m is defined by

a(m)(1) = m,

a(m)(i+ 1) = C(m)(a(m)(1), . . . , a(m)(i)) for i ≥ 1 , (10)

where C(m) is defined in (8). Note that A(1) is our sequence A. Theorem 3.1 will show that
A(m+1) is the concatenation of the glue strings for A(m).

For m ≥ 1, n ≥ 1, the blocks B
(m)
n ∈ P

∗

m and the glue strings S
(m)
n ∈ P

∗

m+1 are defined

recursively, and independently of the A(m). Corollary 3.4 will show that all the strings B
(m)
n ,

S
(m)
n and T

(m)
n (defined below) are in fact finite, but at this point we do not know that, and

the definitions must allow for the possibility that some of these strings may be infinite.
The recursion for the blocks is

B
(m)
1 = m, (11)

and, for n ≥ 1,

B
(m)
n+1 =

{

(B
(m)
n )m+1S

(m)
n , if l(B

(m)
n ) < ∞ ;

B
(m)
n , if l(B

(m)
n ) = ∞ ;

(12)

where S
(m)
n will be constructed from B

(m)
n . If l(B

(m)
n ) = ∞, S

(m)
i = ǫ for i ≥ n. If l(B

(m)
n ) <

∞, consider the sequence s
(m)
n (1), s

(m)
n (2), s

(m)
n (3), . . . ∈ P

∗

m defined by

s(m)
n (1) = C(m)((B(m)

n )m+1) ,

s(m)
n (i+ 1) = C(m)((B(m)

n )m+1s(m)
n (1) · · · s(m)

n (i)) for i ≥ 1 . (13)
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Clearly s
(m)
n (1) ≥ m + 1. If there is an integer i ≥ 1 such that s

(m)
n (i + 1) < m + 1, choose

the smallest such i, and set

S(m)
n = s(m)

n (1), s(m)
n (2), . . . , s(m)

n (i) ∈ P
+
m+1 , (14)

but if no such i exists set

S(m)
n = s(m)

n (1), s(m)
n (2), . . . ∈ P

∗

m+1 . (15)

In the latter case S
(m)
n and B

(m)
n+1 are infinite.

The T
(m)
n are defined as follows. For n ≥ 1, if S

(m)
1 , . . . , S

(m)
n are finite we set

T
(m)
n+1 = S

(m)
1 · · ·S(m)

n ∈ P
+
m+1 , (16)

while if S
(m)
1 , . . . , S

(m)
n−1 are finite but S

(m)
n is infinite, we still use (16) and define

T
(m)
i = T

(m)
n+1 (17)

for i ≥ n + 2. In the latter case all the T
(m)
i for i ≥ n + 1 are infinite. Note that T

(m)
1 is

always undefined.
The lengths of these strings (which may be infinite) are denoted by

β(m)(n) = l(B(m)
n ) , (18)

σ(m)(n) = l(S(m)
n ) , (19)

τ (m)(n) = l(T (m)
n ) . (20)

We also let B(m) = b(m)(1), b(m)(2), b(m)(3), . . . = limn→∞B
(m)
n . This is well defined since

each B
(m)
n starts with B

(m)
n−1.

We will require three lemmas.

Lemma 3.1. For m ≥ 1, if A(m) contains a string U t+1 ∈ P
+
m for some t ≥ m, then U ∈ P

+
t .

Proof. If t = m the claim is trivially true, so we may assume t ≥ m + 1. Suppose, on
the contrary, that U /∈ P

+
t . Then we may write U = GiH for G,H ∈ P

∗

m and some i with
m ≤ i ≤ t−1. Thus A contains GiH GiH . . . GiH (t+1 copies). But the final i is preceded
by t copies of iHG, so the final i must be at least t, by definition of A(m), a contradiction.

Lemma 3.2. For m ≥ 1, n ≥ 2, (a) T
(m)
n is a suffix of B

(m)
n , and (b) this is the only

occurrence of T
(m)
n as a substring of B

(m)
n .

Proof. Fix m ≥ 1. It follows by iterating (12) that

B
(m)
n+1 = (B(m)

n )m(B
(m)
n−1)

m · · · (B
(m)
1 )mB

(m)
1 S

(m)
1 S

(m)
2 · · ·S

(m)
n−1S

(m)
n

= (B(m)
n )m(B

(m)
n−1)

m · · · (B
(m)
1 )mB

(m)
1 T

(m)
n+1 , (21)
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provided all of S
(m)
1 , S

(m)
2 , . . . , S

(m)
n are finite. If S

(m)
1 , S

(m)
2 , . . . , S

(m)
n−1 are finite but S

(m)
n is

infinite, (21) is still true, but

B
(m)
i = B

(m)
n+1, T

(m)
i = T

(m)
n+1 for i ≥ n+ 2 . (22)

Assertion (a) follows at once. To show (b) we use induction on n. The base case, n = 2,

is true because T
(m)
2 = m + 1 and B

(m)
2 = (mm+1,m + 1). If T

(m)
n+1 is infinite and has two

occurrences in B
(m)
n+1, they are both suffixes of B

(m)
n+1, implying that T

(m)
n+1 is a suffix of itself,

and hence is a periodic sequence. But this is impossible: let M0 be the maximal element of
T

(m)
n+1. After sufficiently many terms the curling number given by (13) would produce a term

exceeding M0, a contradiction. On the other hand, suppose that all the S
(m)
n are finite. If

T
(m)
n+1 also occurs in B

(m)
n+1 other than as a suffix, it must be a substring of a block B

(m)
j in

(21), for some j with 2 ≤ j ≤ n, for otherwise it would contain the m at the beginning of

a block. Write B
(m)
j = UT

(m)
n+1V = UT

(m)
j S

(m)
j · · ·S

(m)
n V for some U ∈ P

+
m and V ∈ P

∗

m. But

l(S
(m)
j · · ·S

(m)
n ) > 0, so T

(m)
j occurs as a non-suffix in B

(m)
j , a contradiction to the induction

hypothesis.
Remark. It follows from the above proof that, for any r with 1 ≤ r ≤ m + 1, any finite
substring (B

(m)
n )r in (21) contains exactly r copies of T

(m)
n , each one occurring at the end of

a B
(m)
n . The copies are disjoint.

Lemma 3.3. For m ≥ 1, n ≥ 2, suppose that k = b(m)(i) ≥ m + 1 with 1 ≤ i ≤ β(m)(n).
Then there exists a Y such that b(m)(1), . . . , b(m)(i − 1) = XY k. Moreover, let Y satisfy

this condition with l(Y) minimal and suppose m ∈ Y . Then Y = B
(m)
j for some j with

1 ≤ j ≤ n− 1.

Proof. We fix m ≥ 1, and will prove the result for all n by induction. The base case n = 2
is immediate, since B

(m)
2 = (mm+1,m + 1). Supposing the result holds for some n ≥ 2, we

will show it holds for n+1. If B
(m)
n is infinite then the result also holds for n+1, by (12), so

we may assume that B
(m)
n is finite. Then B

(m)
n+1 = (B

(m)
n )(m+1)S

(m)
n , by (12). We must show

that the result holds for all positions β(m)(n) < i ≤ β(m)(n+ 1).

If i is a position in (B
(m)
n )m+1, we may write i = rβ(m)(n) + s ≤ (m + 1)β(m)(n), for

1 ≤ r ≤ m, 1 ≤ s ≤ β(m)(n). Then b(m)(i) = b(m)(s) and by induction we know that in the

first B
(m)
n we can write b(m)(1), . . . , b(m)(s− 1) = XY k, and if the minimal Y contains an m

then it equals B
(m)
j for some j with 1 ≤ j ≤ n− 1. Therefore this Y (and no shorter string)

can also be used at position i, and thus the statement holds.
If i = (m+ 1)β(m)(n) + 1 then the part preceding i is (B

(m)
n )m+1, and from (13) we have

k = b(m)(i) = s(m)
n (1) = C(m)((B(m)

n )m+1) ≥ m+ 1 .

So certainly one Y exists with b(m)(1), . . . , b(m)(i − 1) = XY k. We must show that if the

minimal Y satisfying this property contains an m, then this Y = B
(m)
j for some j ≤ n. If Y

contains an m, then it contains T
(m)
n as a substring, since the last m in B

(m)
n+1 occurs before

the T
(m)
n in the last copy of B

(m)
n . Therefore the string Y k contains at least k ≥ m+1 copies

of T
(m)
n . It follows from the Remark below Lemma 3.2 that k = m+ 1 and Y = B

(m)
n .
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If i > (m + 1)β(m)(n) + 1 we see by the definition of S
(m)
n that again a Y exists. If Y

contains an m, then it must properly contain the T
(m)
n in the final copy of B

(m)
n . But in the

last of the k copies of Y the copy of T
(m)
n is followed by an integer larger than m, whereas

in the earlier k− 1 copies it was followed by the first element of B
(m)
n , which is m. This is a

contradiction, and shows that in this case Y cannot contain an m.
Note that, by definition of S

(m)
n−1, the Y k for the first element of S

(m)
n extends further

back (towards the beginning of the sequence) than the start of B
(m)
n , and thus contains an

m. Therefore we see that the situation described in the penultimate paragraph of the above
proof is indeed the case and we may conclude that

s(m)
n (1) = m+ 1 for all m ≥ 1, n ≥ 1 . (23)

At this point we can already see that the concatenation of the glue strings is equal to the
next A sequence:

Theorem 3.1. Suppose m ≥ 1. For all n ≥ 2, T
(m)
n is a prefix of A(m+1), or equals A(m+1)

if T
(m)
n is infinite.

Proof. Again we fix m and use induction on n. For n = 2 the result is trivial. Supposing
the result holds for some n ≥ 2, we will show it holds for n+1. If T

(m)
n is infinite then clearly

the result holds for T
(m)
n+1, so assume that T

(m)
n is finite.

Write (B
(m)
n )m+1 = UT

(m)
n for some U ∈ P+

m . We know that S
(m)
n begins with m + 1 =

s
(m)
n (1) = C(m)(UT

(m)
n ) = C(m+1)(UT

(m)
n ) = C(m+1)(T

(m)
n ). The last equality holds because

dropping the U can only decrease the value, but it is already equal to its minimal value of
m+ 1. By the induction hypothesis, T

(m)
n is a prefix of A(m+1), and therefore T

(m)
n s

(m)
n (1) is

a prefix of A(m+1). For i ≥ 1, as long as s
(m)
n (i) ≥ m+ 1, we have

s(m)
n (i+ 1) = C(m)(UT (m)

n s(m)
n (1) · · · s(m)

n (i))

= C(m+1)(UT (m)
n s(m)

n (1) · · · s(m)
n (i))

= C(m+1)(T (m)
n s(m)

n (1) · · · s(m)
n (i)) .

The second equality holds because s
(m)
n (i) ≥ m+1. The third equality holds because Y k for

s
(m)
n (i + 1) goes back no further than the beginning of T

(m)
n , as we saw in the proof of the

previous lemma. Hence T
(m)
n+1 = T

(m)
n S

(m)
n is a prefix of A(m+1), as required.

Theorem 3.2. For all m ≥ 1, the sequences A(m) and B(m) coincide.

Proof. Fix m ≥ 1. We will show by induction on n that, for all n ≥ 1, B
(m)
n is a prefix of

A(m) or is all of A(m) if B
(m)
n is infinite. This will establish the theorem.

The cases n = 1 and n = 2 are immediate, since B
(m)
1 = m, B

(m)
2 = (mm+1,m + 1). So

assume the truth of the induction hypothesis up to and including some n ≥ 2.
If B

(m)
n is infinite the result follows from (12), so we may assume that B

(m)
n and hence

T
(m)
n are finite. We wish to show that B

(m)
n+1 = (B

(m)
n )m+1S

(m)
n is a prefix of A(m). If this is

not true, the first discrepancy between B
(m)
n+1 and A(m) occurs in the substring (B

(m)
n )m+1,

10



by the definition of S
(m)
n . Let i ≥ β(m)(n) + 1 be the first position in (B

(m)
n )m+1 at which

a(m)(i) 6= b(m)(i). Our goal is to show that the existence of i leads to a contradiction.
We may write i = jβ(m)(n) + r with 1 ≤ j ≤ m and 1 ≤ r ≤ β(m)(n). Then i is also

minimal with respect to the condition that a(m)(i) 6= a(m)(r). Let a(m)(1), . . . , a(m)(i− 1) =
XY k with k maximal and l(Y ) minimal. Then a(m)(i) = max{m, k}.

We consider two cases, depending on whether or not a(m)(i) is at the beginning of one of

the B
(m)
n blocks, i.e. whether r = 1 or r ≥ 2.

First, suppose r = 1; then we need to prove that a(m)(i) = a(m)(1) = m. This follows by

definition of S
(m)
n−1 if j = 1; so assume j ≥ 2, and that k = a(m)(i) ≥ m + 1. Using (21) we

may write a(m)(1), . . . , a(m)(i− 1) = (B
(m)
n )j = (B

(m)
n )j−1UmT

(m)
n for some U ∈ P

∗

m. If T
(m)
n

is a proper suffix of Y k then m ∈ Y , which implies that T
(m)
n is a proper suffix of Y and

therefore (B
(m)
n )j contains at least m+1 copies of T

(m)
n , contradicting the Remark following

Lemma 3.2. On the other hand, if Y k were a suffix of T
(m)
n , this would contradict the fact

that S
(m)
n−1 is followed by an element ≤ m.

Second, suppose that r ≥ 2. Let L = a(m)(1), . . . , a(m)(r − 1) and write L = X∗Y
k∗
∗

with k∗ maximal and l(Y∗) minimal. Then a(m)(r) =max{m, k∗}. By the definition of i,
a(m)(i) > a(m)(r) ≥ m. Hence a(m)(i) = k ≥ m + 1. To have a(m)(i) > a(m)(r), L must be
a suffix of Y k, so m ∈ Y and therefore, by Lemma 3.1, k is at most m + 1 and therefore is
equal to m+ 1. Hence k∗ ≤ m.

The situation, then, is that (B
(m)
n )jL is a prefix of A(m). We are supposing that we can

achieve a(m)(i) = m + 1 by allowing L to be a suffix of Y m+1. Noting that T
(m)
n is a suffix

of (B
(m)
n )j, by (21), we distinguish two cases, depending on the relationship between T

(m)
n L

and Y m+1.
(i) Suppose that T

(m)
n L is a suffix of Y m+1. We know m ∈ Y and m 6∈ T

(m)
n , so Y m+1

contains at least m disjoint copies of T
(m)
n . Hence j = m, and there are exactly m disjoint

copies, by the Remark following Lemma 3.2. This means that each copy of T
(m)
n straddles

the end of one copy of Y and the beginning of the next (if not, T
(m)
n is wholly contained

in Y , and so there are m + 1 copies of T
(m)
n in the sequence before position i, which is a

contradiction since there are only m copies, one in each of the m copies of B
(m)
n and none

so far in the next copy of B
(m)
n that we are building), and hence that Y is a proper suffix of

T
(m)
n L. Write T

(m)
n = VW where W is the intersection of T

(m)
n and the last (or (m + 1)-st)

copy of Y , and write B
(m)
n = UT

(m)
n , using (21). If m ≥ 2 it is easy to complete the proof.

We have Y = WL = WUV , so L = UV and therefore i > l(Y m+1) = (m + 1)l(WUV ) =
(m+ 1)l(UVW ) = (m+ 1)β(m)(n), contradicting the definition of i.

Suppose then that m = 1. Again L is a proper suffix of Y and Y is a proper suffix of
T

(1)
n L. Write Y = WL, and let s ≥ 2 be the first element of Y . Let this element s in the

second copy of Y be preceded by s copies of some string Y ′ with l(Y ′) minimal.
Suppose that Y ′ does not contain a 1. Since Y does contain a 1 (L starts with a 1), Y ′s

is a suffix of the first copy of Y , and hence also of the second copy of Y . This contradicts
the minimality of l(Y ), since then l(Y ′) < l(Y ).

So we may assume that 1 ∈ Y ′, hence by Lemma 3.3 we know that

Y ′ = B(1)
κ

11



for some κ < n. Now T
(1)
κ is a suffix of Y 2 and since L starts with a 1, T

(1)
κ is also a suffix

of L. By Lemma 3.2, B
(1)
κ is also a suffix of L. Suppose B

(1)
κ = L. Then WL is a suffix of

Y ′Y ′ = LL (look at the first copy of Y = WL and remember Y ′Y ′ begins with a 1) and

hence W is a suffix of L. But then W 2 is a suffix of T
(1)
n , contradicting the fact that L starts

with a 1.
So we may assume that B

(1)
κ is a strict suffix of L. But now l(Y ) > l(L) ≥ 2l(B

(1)
κ ).

(Indeed, if l(L) < 2l(B
(1)
κ ), then we know that L is a prefix of B

(1)
n , by definition, B

(1)
κ B

(1)
κ is

also a prefix of B
(1)
n , and so L is a strict prefix of B

(1)
κ B

(1)
κ ; but L has T

(1)
κ as a suffix, so by

Lemma 3.2, L = B
(1)
κ , a contradiction.) But now (B

(1)
κ )2 is a suffix of Y , contradicting the

minimality of Y .
(ii) Suppose on the other hand that Y m+1 is a suffix of T

(m)
n L. Since no Y is contained

in T
(m)
n (remember that m ∈ Y ), Y m is a suffix of L and the first element, t, of Y is in T

(m)
n

with t ≥ m+1. Therefore the first element of the second Y is also t and since (B
(m)
n )jL is a

prefix of A(m), Y ends with U t for some U . Hence U t is a suffix of L, which contradicts the
fact that k∗ = m. This completes the proof.

Corollary 3.3. The sequence A(m) contains every integer ≥ m.

Proof. From Theorem 3.1 we know that, for m ≥ 2, n ≥ 2, T
(m−1)
n is a prefix of A(m), so,

for a given m, either
A(m) = S

(m−1)
1 S

(m−1)
2 · · ·S(m−1)

n

if some S
(m−1)
n is infinite, or

A(m) = S
(m−1)
1 S

(m−1)
2 S

(m−1)
3 · · ·

if all S
(m−1)
n are finite. Also, by Theorem 3.2, B

(m−1)
n+1 is a prefix of A(m−1), so from (12), if

some S
(m−1)
n is infinite, A(m−1) contains

S
(m−1)
1 , S

(m−1)
2 , . . . , S(m−1)

n ,

or if all S
(m−1)
n are finite, A(m−1) contains S

(m−1)
1 , S

(m−1)
2 , . . . , S

(m−1)
n for all n. In either case

(and this is the key point), every prefix of A(m) is a subsequence of A(m−1). Repeating this
argument shows that every prefix of every A(j) is a subsequence of A(m) if j ≥ m.

Since A(j) begins with j, A(m) contains every integer j ≥ m.

Corollary 3.4. The strings B
(m)
n , S

(m)
n and T

(m)
n have finite length.

Proof. The first occurrence of an integer in A(m) is necessarily followed by an m. Since we
saw in the previous corollary that A(m) contains infinitely many different integers, it follows
that all S

(m)
n are finite. This implies that B

(m)
n and T

(m)
n are also finite.

Promotion

In the definition of A(m), (10), let us say that a(m)(i) is promoted if either i = 1 or
C(a(m)(1), . . . , a(m)(i − 1)) < m. If we know which elements in A(m+1) are promoted, we

12



can recover A(m) from A(m+1). To make this precise, we define the strings D
(m)
i ∈ P

+
m by

D
(m)
0 = m and, for i > 0,

D
(m)
i =







D
(m)
i−1a

(m+1)(i) , if a(m+1)(i) is not promoted ;
(

D
(m)
i−1

)m+1

a(m+1)(i) , if a(m+1)(i) is promoted .
(24)

Since D
(m)
i starts with D

(m)
i−1 , we can define the limiting sequence D(m) = limi→∞ D

(m)
i . Then

it can be shown that:

Theorem 3.5. For all m ≥ 1, the sequences A(m) and D(m) coincide.

Sketch of proof. By Theorem 3.1, A(m+1) = S
(m)
1 S

(m)
2 · · · . The promoted elements

a(m+1)(i1), a
(m+1)(i2), . . . of A

(m+1) are precisely the initial elements of the S
(m)
k . Indeed,

by definition of S
(m)
k , the first element of S

(m)
k is promoted.

To see the reverse, let a(m)(i) = t ≥ m+1, with (m+1)β(m)(k)+1 < i ≤ β(m)(k+1). That

is, we are in the first copy of S
(m)
k . It suffices to show that when a(m)(1) · · · a(m)(i) = XY t,

Y t lies completely inside T
(m)
k+1; that is, Y does not contain an m. This follows since otherwise

XY t contains t ≥ m+ 1 copies of Tk, contradicting Lemma 3.2.
We now show by induction that D

(m)
ik−1 = B

(m)
k (k = 1, 2, . . .). For k = 1 this is obvious:

D
(m)
0 = B1 = m. Let k ≥ 2. Then

D
(m)
ik

= (D
(m)
ik−1)

m+1a(m+1)(ik) = (B
(m)
k )m+1a(m+1)(ik) . (25)

Hence

D
(m)
ik+1−1 = (B

(m)
k )m+1a(m+1)(ik) · · · a

(m+1)(ik+1 − 1) (26)

= (B
(m)
k )m+1S

(m)
k = B

(m)
k+1 . (27)

4 Estimates for the rate of growth

In this section we take an experimental approach, and record a series of observations about
the sequence. These observations appear to be correct, but we have been unable to prove
them, so we state them as conjectures. In §4.1 we study the lengths of the glue strings S

(m)
n .

Although these lengths are somewhat irregular, it appears that they can be “smoothed”
so as to become much more regular “ruler” sequences, whose peak values will be denoted
by ρ(m)(n). In §4.2 we describe a “tabular” construction for the higher-order sequences
A(2), A(3), . . . which leads to a recurrence relating the ρ(m)(n), β(m)(n) and σ(m)(n). Sections
4.3, 4.4 and 4.5 contain estimates for β(m)(n), ρ(m)(n) and τ (m)(n). Finally, in §4.6, we use
these estimates to determine where each number t ≥ 1 appears for the first time in our
sequence A.
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4.1 Ruler sequences and smoothing

It appears that the sequence σ(m) = σ(m)(1), σ(m)(2), σ(m)(3), . . . giving the lengths of the glue

strings S
(m)
n is essentially a “ruler” sequence, in the sense that σ(m)(n) essentially depends

only on the (m+ 1)-adic valuation of n.
For positive integers m,n, define the m-adic valuation of n, |n|m, to be the highest

power of m dividing n. The classical example of a ruler sequence is the sequence r =
r(1), r(2), r(3), . . . given by

r(n) = |n|2 + 1 . (28)

The first 32 terms are

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6

where the new record entries, shown in bold-face, occur at powers of 2. For much more
about this sequence, including an extensive bibliography, see entry A1511 in [8].

The initial values of σ(1), . . . , σ(4) are shown in Table 4, and the record entries in σ(1), . . . , σ(10)

in Table 5. Let π(m)(j) (j ≥ 0) denote the j-th record in σ(m).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
σ(1)(n) 1 3 1 9 4 24 1 3 1 9 4 67 1 3 1 9
σ(2)(n) 1 1 3 1 1 3 1 1 9 1 1 3 1 1 3 1
σ(3)(n) 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 10

σ(4)(n) 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
σ(1)(n) 4 24 1 3 1 9 4 196 3 1 9 4 24 1 3 1
σ(2)(n) 1 9 1 1 3 1 1 3 1 1 32 1 3 1 1 3
σ(3)(n) 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 10
σ(4)(n) 1 1 1 11 1 1 1 1 3 1 1 1 1 3 1 1

n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
σ(1)(n) 9 4 68 3 1 9 4 24 1 3 1 9 4 581 3 1

Table 4: Values of σ(1)(n) for n ≤ 48 and σ(2)(n), σ(3)(n), σ(4)(n), for n ≤ 32, with record
entries shown in bold-face.
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m \ j 0 1 2 3 4 5 6 7 8 9
1 1 3 9 24 67 196 581 1731 5180 15534
2 1 3 9 32 119 463 1837 7332 29307 117203
3 1 3 10 42 200 983 4892 24434 122141
4 1 3 11 55 315 1872 11205 67195
5 1 3 12 70 471 3273 22883
6 1 3 13 87 673 5355 42805
7 1 3 14 106 927 8309 74740
8 1 3 15 127 1239 12351 123463
9 1 3 16 150 1615 17721
10 1 3 17 175 2061 24683

Table 5: Values of π(m)(j), the j-th record in sequence σ(m). The smoothed record values
ρ(m)(j) are obtained by reducing the italicized entries by 1. The next three terms in the
first row are 46578 , 139713 , 419116 , and the next term in the m = 2 row is 468785. The
missing entries in this table have not been calculated, although we predict that the entries
on or below the diagonal m = j are given by (43) and the entries just above this diagonal
by (44).
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As can be seen from Table 4, σ(1) is not quite as regular as the ruler sequence r. However:

Conjecture 4.1. If the sequence σ(1) is “smoothed” by replacing every instance of 4 by the
pair of numbers 3, 1, every 9 by 8, 1, every 25 by 24, 1, and so on, σ(1) becomes a ruler
sequence r(1) given by

r(1)(n) = ρ(1)(|n|2) , (29)

in which the first 64 terms are

1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 67

1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 195

1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 67
1 3 1 8 1 3 1 24 1 3 1 8 1 3 1 580

and where the record values (shown in bold-face) ρ(1)(0), ρ(1)(1), . . . are

1, 3, 8, 24, 67, 195, 580, 1730, 5179, 15533, 46578, 139712, 419115, . . . . (30)

The numbers i in σ(1) that are to be replaced by i− 1, 1 to get r(1) are

4, 9, 25, 68, 196, 581, 1731, 5180, 15534, 46579, 139713, 419116, . . . , (31)

The numbers that need to be smoothed, given in (31), are one greater than the numbers
in (30), except that 2 is missing. The records in the smoothed sequence r(1), (30), either
agree with or are one less than the terms in the first row of Table 5.

The sequences σ(m) for m ≥ 2 appear to need less smoothing than σ(1) to make them into
ruler sequences. In the range of our tables, σ(2) needs to be smoothed by replacing every 32
by 31, 1, and every 7332 by 7331, 1; σ(3) by replacing every 200 by 199, 1; σ(4) by replacing
every 1872 by 1871, 1; and so on. If r(m) denotes the smoothed version of σ(m) and ρ(m)(j)
the j-th record in the smoothed version (see Table 5) then we have, for all m ≥ 1, n ≥ 1,

r(m)(n) = ρ(m)(|n|m+1) . (32)

The lengths β(m)(n) of the blocks are given by (from (12), (18))

β(m)(1) = 1 ,

β(m)(n+ 1) = (m+ 1)β(m)(n) + σ(m)(n) for n ≥ 1 . (33)

The initial values of β(1)(n), . . . , β(6)(n) are shown in Table 6.

m \ n 1 2 3 4 5 6 7 8
1 1 3 9 19 47 98 220 441
2 1 4 13 42 127 382 1149 3448
3 1 5 21 85 343 1373 5493 21973
4 1 6 31 156 781 3908 19541 97706
5 1 7 43 259 1555 9331 55989 335935
6 1 8 57 400 2801 19608 137257 960802

Table 6: Lengths β(m)(n) of the blocks B
(m)
n .
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4.2 The tabular construction

The appearance of ruler sequences can be partially explained if we present the construction
of the higher-order sequences A(2), A(3), . . ., in a tabular format. In this construction we
keep track not only of the actual value A(m)(n) = max{m, k} (cf. (10)) but also whether
the promotion rule was invoked (if k < m we indicate this by drawing a circle around the
entry) and the length of the shortest Y that was used to compute k if k ≥ m (shown as a
subscript; if the promotion rule was invoked the subscript is 0). This tabular construction
will also suggest a recurrence that relates ρ(m)(n+ 1), β(m+1)(n+ 1) and σ(m+1)(n+ 1).

We will construct A(2) as an example. We start by making a small table of the glue
strings S

(2)
n for n ≤ 10 — see Table 7. (We already saw S

(2)
1 , . . . , S

(2)
4 in Table 3.)

n S
(2)
n

1 3
2 3
3 3 3 4
4 3
5 3
6 3 3 4
7 3
8 3
9 3 3 4 3 3 3 3 4 4
10 3

Table 7: The first few glue strings S
(2)
n .

We know from Section 3 that A(2) = lim
n→∞

B(2)
n = lim

n→∞

T (1)
n = S

(1)
1 S

(1)
2 · · · and that

B
(2)
n+1 = (B

(2)
n )3S

(2)
n . Table 8 shows the beginning of the construction of A(2).

The aim is to understand how A(2) breaks into the consecutive S
(1)
n glue strings for A(1).

To do this, a version of A(2) is produced in which terms that are obtained by promotion are
circled, and where the subscript on each term is either 0 for a circled term or else gives the
length of the shortest Y that can be used to compute that term. The circled terms will be
the first terms of each of the glue strings S

(1)
n of A(1). Most of the circling and subscripting

work is done by a few simple rules. However, the rules occasionally give the wrong answer
and a few corrections may need to be made by hand at the end of each round. It is the
presence of these adjustments that makes our sequence hard to analyze.

We start with B
(2)
1 = 2©0. The rules for going from B

(2)
n to B

(2)
n+1 are as follows:

(i) Write B
(2)
n as a single string, and construct a three-rowed array in which each row is a

copy of B
(2)
n , omitting all circles from the third row. This three-rowed array (after S

(2)
n is

appended in step (iii)) will form B
(2)
n+1 when read as a single string. (When constructing A(m)

we make m copies of B
(m)
n and omit the circles from the m-th copy.)

(ii) The subscripts in rows 2 and 3 are the same as in row 1, except that terms in row 3 that

are under circled terms in row 2 have their subscripts changed to l(B
(2)
n ).
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(iii) Append S
(2)
n to the end of row 3. The first term of S

(2)
n receives the subscript l(B

(2)
n ).

The subscripts on the remaining terms of S
(2)
n must be computed separately—they can be

obtained from the tabular construction of A(m+1).
(iv) Finally, a few circles in row 2 may need to be omitted and their subscripts recomputed,
as well as the subscripts on the same terms in row 3.

In Table 8, rules (i)–(iii) give the correct answers for B
(2)
2 and B

(2)
3 . But in B

(2)
4 four

terms (marked with asterisks in Table 8) must be corrected. The first entry in row 2 of B
(2)
4

is 2©0. However, row 1 ends with 3 3 = S
(2)
1 S

(2)
2 = Y 2, with a Y of length 1, so that 2 did

not need to be promoted and we must change 2©0 to 21. The fifth entry in row 2 of B
(2)
4 is

2©0. But it is preceded by

3 2 2 2 3 3 2 2 2 3 = S
(2)
1 B

(2)
2 S

(2)
2 B

(2)
2 = Y 2 ,

with a Y of length 5, so we must change 2©0 to 25. The corresponding entries in row 3,
presently both equal to 213, also get changed to 21 and 25 respectively.

B
(2)
1 = 2©0

B
(2)
2 = 2©0

2©0

21 31

B
(2)
3 = 2©0 2©0 21 31

2©0 2©0 21 31
24 24 21 31 34

B
(2)
4 = 2©0 2©0 21 31 2©0 2©0 21 31 24 24 21 31 34

2©∗

0 2©0 21 31 2©∗

0 2©0 21 31 24 24 21 31 34
2∗13 213 21 31 2∗13 213 21 31 24 24 21 31 34 313 31 41

Table 8: Tabular construction of A(2).

When we extend Table 8 to B
(2)
10 , we find that in all only ten circles need to be removed.

After B
(2)
4 , the next changes are at B

(2)
7 , where two circles get removed because of the

splittings S
(2)
4 S

(2)
5 = 3 3 = Y 2, with a Y of length 1, and S

(2)
4 B

(2)
5 S

(2)
5 B

(2)
5 = Y 2 with a

Y of length 128. But not all instances of such splittings cause circles in the table to be
removed, and not all circle-removals arise in this way. It seems difficult to explain exactly
where corrections to the table are required.

However, the corrections are rare, and still fewer corrections are needed for larger values
of m.

Since A(2) is also lim
n→∞

T (1)
n , we can read off the lengths of the glue strings S

(1)
n from the

table. Look at the lengths of the strings (in B
(2)
4 ) between one circle and the next: these are

1, 3, 1, 9, 4, 24, . . .. exactly the values of σ(1)(1), σ(1)(2), . . . (cf. Table 4). If we do not make
the corrections needed in step (iv), we instead get the smoothed lengths 1, 3, 1, 8, 1, 3, 1,
24, . . .. These observations lead to our conjectured recurrence. For example, note that the
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string in B
(2)
4 from the last circled entry to the end has length 24 (which is ρ(1)(3)) and is

made up of the last string in B
(2)
3 (length 8, which is ρ(1)(2)) plus the whole of B

(2)
3 (length

13, which is β(2)(3)), plus S
(2)
3 (length 3, which is σ(2)(3)). More generally, we have:

Conjecture 4.2. For m ≥ 1,

ρ(m)(0) = 1 ,

ρ(m)(n+ 1) = ρ(m)(n) + β(m+1)(n+ 1) + σ(m+1)(n+ 1) for n ≥ 0 . (34)

This recurrence is supported by all the data, although we do not have a proof.

4.3 Estimates for the lengths β(m)(n) of the blocks

In this section we first prove formulas (36), (37), (38), which give the exact value of β(m)(n)
in the parabolic region 1 ≤ n ≤ (m+ 1)2 − 1 for m ≥ 1. We then give conjectural estimates
for β(m)(n) (indicated by ≈), (39) and (40), which apply for all m and n.

We take (33) as our starting point. For m ≥ 1, σ(m)(n) and r(m)(n) coincide for 1 ≤ n ≤
(m+ 1)2 − 1, and in that range are given by

σ(m)(n) = r(m)(n) =

{
1 , if m+ 1 does not divide n ;
3 , if m+ 1 divides n .

(35)

By iterating (33) and using (35) we find:

Lemma 4.1. For m ≥ 1 and 1 ≤ n ≤ (m+ 1)2 − 1,

β(m)(n) =
(m+ 1)n − 1

m
+ 2

(m+ 1)n−1 − (m+ 1)v

(m+ 1)m+1 − 1
, (36)

where v ∈ {0, 1, . . . ,m} is given by n− 1 ≡ v mod m+ 1.

In particular, for 1 ≤ n ≤ m+ 1 we have v = n− 1 and so

β(m)(n) =
(m+ 1)n − 1

m
, (37)

and for m+ 2 ≤ n ≤ 2m+ 2 we have v = n−m− 2 and

β(m)(n) =
(m+ 1)n + 2(m+ 1)n−m−1 − 2(m+ 1)n−m−2 − 1

m
. (38)

Equation (37) explains the entries on or below the diagonal n = m + 1 in Table 6, (38)
explains the entries in the “wedge” m + 2 ≤ n ≤ 2m + 2, and (36) the entries in the whole
parabolic region bounded by n ≤ (m+ 1)2 − 1.

The right-hand side of (36) is also a good approximation to β(m)(n) for fixed m ≥ 2 and
n ≥ (m+ 1)2. The case m = 1 is special, because of the greater differences between σ(m)(n)
and r(m)(n) when m = 1. However, calculations show that β(1)(n) is well-approximated by

β(1)(n) ≈ ε1 2
n−1 , (39)

where ε1 = 3.48669886 . . ..
For our applications, the approximation

β(m)(n) ≈ εm (m+ 1)n−1 for m ≥ 1, n ≥ 1 (40)

(consistent with (36)–(39)) will be adequate, where εm is a constant on the order of 1.
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4.4 Estimates for the records ρ(m)(n)

We now apply (34) to estimate ρ(m)(n). Except for (41), the formulas in this section are
conjectural. Again using (35), we find that

ρ(m)(n) =
m(n+ 1 + 2u) + β(m+1)(n+ 1)

m+ 1
(41)

for 0 ≤ n ≤ (m+ 2)2 − 1, where u = ⌊n/(m+ 2)⌋. Eliminating β(m+1)(n+ 1) from (34) and
(41) we obtain

ρ(m)(n+ 1) = (m+ 2)ρ(m)(n) + σ(m+1)(n+ 1)−m(n+ 1 + 2u) . (42)

In particular, for 0 ≤ n ≤ m+ 1, u = 0 and so (41) gives

ρ(m)(n) =
(m+ 2)n+1 + (n+ 1)m(m+ 1)− 1

(m+ 1)2
, (43)

while for m+ 2 ≤ n ≤ 2m+ 3, u = 1 and

ρ(m)(n) =
(m+ 2)n+1 + 2(m+ 1)(m+ 2)n−m−2 + (n+ 3)m(m+ 1)− 1

(m+ 1)2
. (44)

Equation (43) matches the smoothed values on or below the diagonal n = m+ 1 in Table 5,
(44) matches the values in the “wedge” m + 2 ≤ n ≤ 2m + 3, and (41) matches the values
in the whole region bounded by the “parabola” n ≤ (m+ 2)2 − 1. Equation (44) is in fact a
good estimate of ρ(m)(n) for all m and n.

The greatest differences between the exact values π(m)(n) and the smoothed values ρ(m)(n)
occur in the first row of Table 5. The ratio of terms π(m)(n + 1)/π(m)(n) in row m of that
table rapidly approaches m+ 2, and for fixed m we find that

π(m)(n) ≈ λm(m+ 2)n , (45)

where approximate values of λm are

m : 1 2 3 4 5 6 7 · · ·
λm : .778 .447 .312 .240 .194 .163 .140 · · ·

Curve-fitting suggests that

λm ≈
.956m+ 2.11

(m+ 1)2

which we approximate by

λm ≈
m+ 2

(m+ 1)2
, (46)

leading to

π(m)(n) ≈
(m+ 2)n+1

(m+ 1)2
(47)

for m fixed and n large.
Since the leading terms in (41), (43) and (44) agree with (47), we will take (47) as our

approximation to both π(m)(n) and ρ(m)(n) for all m and n.
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4.5 An estimate for τ (m)(n)

From equations (16), (20) we have

τ (m)(n+ 1) =
n∑

i=1

σ(m)(i), n ≥ 1 . (48)

To simplify the analysis (we are only seeking a crude estimate in this section) we suppose

we have reached the end of block B
(m)
n in A(m), where n = (m+1)µ+1 for some µ ≥ 1. This

block ends with the string T
(m)
n of length τ (m)(n).

Of the (m + 1)µ strings S
(m)
i , 1 ≤ i ≤ (m + 1)µ, that appear in T

(m)
n , a fraction m

m+1

have |i|m+1 = 0 and contribute π(m)(0) to the sum; a fraction m
(m+1)2

have |i|m+1 = 1 and

contribute π(m)(1); and so on. Therefore, from (48),

τ (m)((m+ 1)µ + 1) = (m+ 1)µ
µ−1
∑

i=0

m

(m+ 1)i+1
π(m)(i) + π(m)(µ) ,

where the last term accounts for the final glue string S
(m)
n−1. Using (47) this becomes

τ (m)((m+ 1)µ + 1) ≈
m+ 2

m+ 1

(

(m+ 2)µ −m(m+ 1)µ−1
)

. (49)

We summarize the discussion in the last two sections in the following:

Conjecture 4.3. After smoothing (cf. Conjecture 4.1), the sequence σ(m) = σ(m)(1), σ(m)(2), . . .
of the lengths of the glue strings in A(m) is a ruler sequence given by (32), where the record
values are given by (41) (exact, for n ≤ (m+ 2)2 − 1) and (47) (approximate, for all m and
n). Equation (49) gives an estimate for τ (m)(n).

4.6 The first occurrence of t

We use the above estimates to determine where a number t ≥ 1 appears for the first time in
A. We already know from Tables 1 and 2 that a 1 appears at position 1, a 2 at position 3,
a 3 at position 9, and a 4 at position 220, so we may assume t ≥ 5.

For fixed t, let x(m) be the position where t appears for the first time in the sequence
A(m), for 1 ≤ m ≤ t. We will successively estimate x(t), x(t−1), . . . , x(1), working backwards
from

A(t) = t, t, . . . , t
︸ ︷︷ ︸

t+1 copies

, t+ 1, . . . ,

where t appears as the leading term, t + 1 appears for the first time at position t + 2, and
t+ 2 appears for the first time at position

(t+ 1)t+2 + 2t− 1

t
. (50)
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For example, 3 appears in A at position 9, 4 in A(2) at position 42, and 5 in A(3) at position
343. Thus x(t) = 1, x(t− 1) = t+ 1, and

x(t− 2) =
(t− 1)t + 2t− 5

t− 2
. (51)

We first consider the case t = 5. Since x(3) = 343, a 5 appears in A(2) for the first time

at the end of block B
(2)
i , where i is such that τ (2)(i) = 343. That is, i is determined (see (48)

and Table 4) by the equation

τ (2)(i) = 1 + 1 + 3 + 1 + 1 + 3 + 1 + 1 + 9 + · · ·
︸ ︷︷ ︸

i−1 terms

= 343 .

By direct calculation, i = 80, and again by direct calculation from (33), a 5 appears in A(2)

at position

x(2) = β(2)(80) = 77709404388415370160829246932345692180 ,

which is 1037.9.... So 5 appears in A = A(1) at the end of block B
(1)
i , where i is such that

τ (1)(i) = x(2). Setting m = 1 in (49) we get

τ (1)(2µ + 1) =
3

2
· 3µ

(

1−
1

2

(2

3

)µ)

= x(2) ,

hence µ = 79.0 . . ., i = 279.0.... Setting m = 1, n = 279.0... in (39) we finally obtain

x(1) = β(1)(279.0...) = ε12
279.0... = 1010

23.3...

for the position of the first 5.
Consider now a general value of t ≥ 6. To find x(t− 3), we must solve (from (51))

τ (t−3)(i) =
(t− 1)t + 2t− 5

t− 2
.

Setting i = (t− 2)µ + 1 and using (49) we get

t− 1

t− 2

(

(t− 1)µ − (t− 3)(t− 2)µ−1
)

=
(t− 1)t + 2t− 5

t− 2
,

hence µ ≈ t− 1, and so

x(t− 3) = β(3)((t− 2)µ + 1) = ε3(t− 2)(t−2)t−1

.

The ε3 may be ignored, since it can be absorbed into the tower of exponentials. The next
iteration gives

x(t− 4) = (t− 3)(t−3)(t−2)t−1

and eventually we obtain, for t ≥ 5,

x(1) = 22
34

·
·
·
t−1

, (52)

a tower of height t− 1. We formalize this as our final
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Conjecture 4.4. The number t ≥ 5 appears for the first time in the sequence A at about
position (52).

Remark. The position of the first 5 can be estimated more accurately using the tabular
construction of Section 4.2, thus avoiding the simplifying assumptions made in Section 4.5.
This analysis predicts that the first 5 will appear at about position

ε1 × 2418090195952691922788353 = 1010
23.09987...

.

where ε1 is given in §4.3. We omit the details.

5 Comments and generalizations

5.1 The Finiteness Conjecture

The proof of Theorem 3.2 would have been simpler if we had known in advance that the glue
strings S

(m)
n were finite. This would follow from the following:

Finiteness Conjecture. For integers m ≥ 2 and r ≥ 1, let x(1), x(2), . . . , x(r) be a string
from P

+
m. Let x(n + 1) = C(x(1), x(2), . . . , x(n)) for n ≥ r. Then for some n ≥ r + 1,

x(n) < m.

In other words, there is no finite starting string from P
r
m which extends under repeated

application of the map C to an infinite sequence from P
∗

m. Sooner or later a term less than
m must appear.

Although this conjecture seems very plausible, we have not been able to find a proof.
If one tries to construct a starting string which extends for a long time without dropping
below m one quickly runs into difficulties. Let m1 and m2 be respectively the smallest and
largest values in the starting string. Then no number outside the range [m1,m2] — or in
fact any number not in the starting string — may appear in the resulting sequence, for such
a number is immediately followed by a 1, terminating the sequence. So if the sequence is
infinite it must be bounded.

As an experiment we considered all 2n starting strings of length n ≤ 30 consisting just of
2’s and 3’s, and calculated the lengths of the resulting strings until just before the appearance
of the first 1. The maximum and average lengths are shown in Table 9 below.
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n Max. Ave.
1 1 1
2 4 2.75
3 5 3.75
4 8 5.125
5 9 6.2187
6 14 7.5
7 15 8.5703
8 66 10.2734
9 68 11.3828
10 70 12.5293
11 123 13.6099
12 124 14.6658
13 125 15.6683
14 132 16.6957
15 133 17.7047
16 134 18.7168
17 135 19.7206
18 136 20.7278
19 138 21.7304
20 139 22.7341
21 140 23.7353
22 142 24.7372
23 143 25.7379
24 144 26.7388
25 145 27.7391
26 146 28.7396
27 147 29.7398
28 148 30.74
29 149 31.7401
30 150 32.7402

Table 9: Maximum and average length of string produced by any starting sequence of n 2’s
and 3’s, stopping when first 1 is reached.

The average length seems to approach n+ constant, but the maximum length is harder
to understand, and it would be nice to have more data. Does the maximum length continue
to grow linearly, or are there further jumps of ever-increasing size? We do not know.

Table 10 shows the starting strings of lengths 2, 4, 6, 8 and 11 (when there are jumps
in the maximum length) and the strings of record lengths 4, 8, 14, 66 and 123 that they
produce. These five starting strings are unique.
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n = 2 Starting string 2 2 produces length 4:
2 2 2 3

n = 4 Starting string 2 3 2 3 produces length 8:
2 3 2 3 2 2 2 3

n = 6 Starting string 2 2 2 3 2 2 produces length 14:
2 2 2 3 2 2 2 3 2 2 2 3 3 2

n = 8 Starting string 2 3 2 2 2 3 2 3 produces length 66:
2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2
2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2
3 2 2 3 3 2

n = 11 Starting string 2 2 3 2 3 2 2 2 3 2 2 produces length 123:
2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3
2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2
2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2
2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3

Table 10: Starting strings of n 2’s and 3’s which extend under the map C for a record number
of steps before reaching a 1. Each entry also shows the final string (until just before the first
1 is reached).

5.2 Curling number transforms of other sequences

It is interesting to apply the curling number transform to other sequences, particularly those
for which the definition involves properties of substrings. For example, the binary Thue-
Morse sequence

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 . . .

(A10060 in [8]) has the property that it contains no cubes UUU as substrings (see [2], [5],
[6], [8] for further information). Its curling number transform, which naturally contains only
1’s and 2’s, is

1 1 1 2 1 1 2 2 1 2 1 2 2 1 2 2
1 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 . . .

(A93914). We leave it to the interested reader to investigate the properties of this sequences
and of the other new sequences mentioned below.

There are many examples of ternary sequences which contain no squares, and of course
their curling number transforms are simply the all-ones sequence 1. However, the lexico-
graphically earliest sequence from P

∗ whose transform is 1 is the ruler sequence r (A1511)
mentioned in Section 4.4.
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We give one further example. The Kolakoski sequence is a sequences of 1’s and 2’s defined
by K(1) = 1, K(n) = length of n-th run:

1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1
1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 1 . . .

(A2 in [8]). This also contains no cubes. The transformed sequence is

1 1 1 2 1 2 1 1 2 2 1 2 2 2 2 1
1 2 2 2 1 1 2 2 1 2 2 2 1 2 1 1 . . .

(A93921).

5.3 Generalizations

In this final section we briefly mention a few of the possible generalizations of the sequence
A.

(i) The recurrence (2) may be replaced by a(1) = 1, a(n + 1) = f(C(a(1), . . . , a(n))) for
n ≥ 1, for any suitable function f . For example, f(x) = floor(x/2) produces

0 0 1 0 0 1 1 1 1 2 0 0 1 0 0 1
1 1 1 2 1 0 0 1 0 0 1 1 1 1 2 0 . . .

(A91970), which presumably has an even slower rate of growth than A.

(ii) a(1) = a(2) = 1, a(n+ 2) = C(a(1), . . . , a(n)) for n ≥ 1 produces

1 1 1 2 3 1 1 1 2 3 1 2 2 1 2 1
1 2 2 1 2 1 1 2 2 2 2 3 4 1 1 1 . . .

(A94006). This has the property that its curling number transform is the same sequence but
shifted one place to the left.

(iii) A greedy version of A(2). Let g(1) = 2. For n ≥ 1, let k = C(g(1), . . . , g(n)). If k > 1,
g(n + 1) = k (as in A(2)), but if k = 1, choose g(n + 1) so that C(g(1), . . . , g(n + 1)) is
maximized. If there is more than one choice for g(n + 1), pick the smallest. The resulting
sequence (A94321) is:

2 2 2 3 3 2 2 2 3 3 2 2 2 3 2 2
2 3 2 2 2 3 3 2 2 2 3 2 2 2 3 2 . . .

(iv) A two-dimensional version of A. Define t(i, j), i ≥ 1, j ≥ 1, as follows: t(i, 1) = t(1, i) =
a(i). For i, j ≥ 1, t(i+ 1, j + 1) = max{k1, k2}, where k1 = C(t(i+ 1, 1), t(i+ 1, 2), . . . , t(i+
1, j)), k2 = C(t(1, j + 1), t(2, j + 1), . . . , t(i, j + 1)) — see Table 11 (A94781). The first two
rows (or columns) give A and the third row (or column) is A(2).
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1 1 2 1 1 2 2 2 3 1 1 2 1 1 . . .
1 1 2 1 1 2 2 2 3 1 1 2 1 1 . . .
2 2 2 3 2 2 2 3 2 2 2 3 3 2 . . .
1 1 3 1 1 3 3 2 1 1 2 1 1 2 . . .
1 1 2 1 1 2 2 2 3 1 2 1 1 2 . . .
2 2 2 3 2 1 1 2 1 2 3 2 2 3 . . .
. . . . . . . . . . . . . . . . .

Table 11: A two-dimensional version of the sequence.

(v) J. Taylor [9] has suggested two broad generalizations of the original recurrence. Let ∼
be an equivalence relation on strings of integers of each fixed length. Write

a(1)a(2) · · · a(n) = XY1Y2 · · ·Yk , (53)

where the Yi are nonempty strings with Y1 ∼ Y2 ∼ · · · ∼ Yk and k is maximal; then
a(n+1) = k. Choosing ∼ to be the identity relation gives A. Taylor has contributed several
interesting generalizations of A to [8] obtained from other equivalence relations. For example,
if two strings are equivalent if one is a permutation of the other, the resulting sequence is

1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2
2 3 2 2 2 3 2 2 2 3 3 2 2 4 1 1 . . .

(A91976), which agrees with A for the first 19 terms. But after

1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2

the next term is now 2, not 1, since we can take U = 1 1 2 1 1, Y1 = 2 2 2 3 1 1 2,
Y2 = 1 1 2 2 2 3 2, where Y2 is a permutation of Y1.
(vii) More generally, Taylor suggests using a partial order ≺ on integer strings of all lengths
(not just strings of the same length), and requiring the Yi in (53) to be nonempty and satisfy
Y1 ≺ Y2 ≺ · · · ≺ Yk where k is maximal. For further examples of Taylor’s sequences the
reader is referred to the entries A91975 and A92331–A92335 in [8].

Acknowledgements

We thank J. Taylor for telling us about his generalizations of the sequence.

References

[1] W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928),
118–133.

[2] J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

27



[3] J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover
and Gopinath, eds., Open Problems in Communication and Computation, Springer-
Verlag, NY, 1987, pp. 173–188.

[4] H. M. Friedman, Long finite sequences, J. Combin. Theory, Ser A, 95 (2001), 102–144.

[5] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

[6] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville,
MD, 1981.

[7] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Ap-
plications, Cambridge Univ. Press, 1995.

[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electroni-
cally at http://www.research.att.com/∼njas/sequences/, 1996–2006.

[9] J. Taylor, personal communication.

2000 Mathematics Subject Classification: Primary 11B37.
Keywords: recurrence, Friedman sequence, Ackermann function.

(Concerned with sequences A000002, A001511, A010060, A090822, A091408, A091409, A091410,
A091411, A091412, A091413, A091579, A091586, A091587, A091588, A091787, A091799,
A091839, A091970, A091970, A091975, A091976, A092331, A092332, A092333, A092334,
A092335, A093914, A093921, A093955, A093956, A093957, A093958, A094006, A094321,
and A094781.)

Received June 26 2006; revised versions received February 22 2006 and September 13 2006.
Published in Journal of Integer Sequences, December 16 2006.

Return to Journal of Integer Sequences home page.

28

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/
http://oeis.org/A000002
http://oeis.org/A001511
http://oeis.org/A010060
http://oeis.org/A090822
http://oeis.org/A091408
http://oeis.org/A091409
http://oeis.org/A091410
http://oeis.org/A091411
http://oeis.org/A091412
http://oeis.org/A091413
http://oeis.org/A091579
http://oeis.org/A091586
http://oeis.org/A091587
http://oeis.org/A091588
http://oeis.org/A091787
http://oeis.org/A091799
http://oeis.org/A091839
http://oeis.org/A091970
http://oeis.org/A091970
http://oeis.org/A091975
http://oeis.org/A091976
http://oeis.org/A092331
http://oeis.org/A092332
http://oeis.org/A092333
http://oeis.org/A092334
http://oeis.org/A092335
http://oeis.org/A093914
http://oeis.org/A093921
http://oeis.org/A093955
http://oeis.org/A093956
http://oeis.org/A093957
http://oeis.org/A093958
http://oeis.org/A094006
http://oeis.org/A094321
http://oeis.org/A094781
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	The recursive structure
	The main theorems
	Estimates for the rate of growth
	Ruler sequences and smoothing 
	The tabular construction 
	 Estimates for the lengths (m) (n) of the blocks
	 Estimates for the records (m)(n) 
	 An estimate for (m)(n) 
	The first occurrence of t

	Comments and generalizations
	The Finiteness Conjecture
	Curling number transforms of other sequences
	Generalizations


