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Abstract

We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and r-
Lucas sequences which arise in connection with two statistics defined, respectively, on
linear, phased, and circular r-mino arrangements.

1 Introduction

In what follows, Z, N, and P denote, respectively, the integers, the nonnegative integers, and
the positive integers. Empty sums take the value 0 and empty products the value 1, with
0° := 1. If ¢ is an indeterminate, then 0, := 0, n, :==1+¢q+---+¢" ' for n € P, O}z =1,

n}l = 1424---ng for n € P, and

!
n

4 if0<k<n;

| |

n ky(n—k);
= 1.1
(k>q (1.1)

0, ifk<0Oor0<n<k.
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The (Z)q are also given, equivalently, by the column generating function [12, pp. 201-202]

Z(k‘)qxn: (1—x)(1—qgj)...(1_qu)a k € N. (1.2)

n=0
If » > 2, the r-Fibonacci numbers F{" are defined by Fy (r) = F M —... = F, (r )1 = 1, with
F" = F(T) + F™ if n > r. The r-Lucas numbers L\ are defined by Ll = Lé) =
Lf_)l =1 and L") =r+ 1, with LY = ngl +L(T) itn>r+1. If r=2, the F" and LT)

reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrlzed, as in Wilf
[13] by Fy = Fy =1, etc., and Ly = 1, Ly = 3, etc.).

Polynomial generalizations of F,, and/or L, have arisen as distribution polynomials for
statistics on binary words [3], lattice paths [8], Morse code sequences [7], and linear and
circular domino arrangements [9]. Generalizations of EF and/or LY have arisen similarly
in connection with statistics on Morse code sequences [7] as well as on linear and circular
r-mino arrangements [10, 11].

In the next section, we consider the g-generalization

Fy)(q,t) = Z qk+T( )(n N (Tk_ 1)k) ik (1.3)

0<k<|n/r|

of £, The r = 2 case of (1.3) or close variants thereof have appeared several times in
the literature starting with Carlitz (see, e.g., [3, 4, 5, 8, 9]. The Fy)(q,t) arise as joint
distribution polynomials for two statistics on linear r-mino arrangements which naturally
extend well known statistics on domino arrangements. When defined, more broadly, on
phased r-mino arrangements, these statistics lead to a further generalization of the Fr(f)(q, t)

which we denote by G,(f)(q, t). In the third section, we consider the g-generalization

LOq.t) = > ¢l [(n_ (f‘I_ 1)/<:)J (n_ (Tk_ 1)k)qtk (1.4)

0<k<|n/r|

of Lg), which arises as the joint distribution polynomial for the same two statistics, now
defined on circular r-mino arrangements. The r = 2 case of (1.4) was introduced by Carlitz
[3] and has been subsequently studied (see, e.g., [9]).

2 Linear and Phased r-Mino Arrangements

Let R . denote the set of coverings of the numbers 1,2,... n arranged in a row by k
1ndlst1ngu1shable r-minos and n — rk indistinguishable squares, Where pieces do not overlap,
an r-mino, r > 2, is a rectangular piece covering r numbers, and a square is a piece covering
a single number. Each such covering corresponds uniquely to a word in the alphabet {r, s}
comprising k r’s and n — rk s’s so that

RU)| = (” - (Tk‘ 1)k>, 0< k< |n/rl, (2.1)
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for all n € P. (If we set Rg:()) = {0}, the “empty covering,” then (2.1) holds for n = 0 as
well.) In what follows, we will identify coverings ¢ with such words ¢jco -+ in {r,s}. With

R = |J RU.  neN, (2.2)
0<k<|n/r|
it follows that ( Dk
n—(r—
RO = — F(r) 2.3
rol= > (") = (23)
0<k<|n/r|
where F\”) = F" = ... = F" =1, with £ = F", + F")_if n > r. Note that
1
DI A e —— (2.4)
l—x—2"
n=0

Given ¢ € RV, let v(c) := the number of r-minos in the covering ¢, let o(c) := the sum
of the numbers covered by the leftmost segments of each of these r-minos, and let

E"(q,t) Z G, n € N. (2.5)
CER

Categorizing linear covers of 1,2, ..., n according to the final and initial pieces, respectively,

yields the recurrences
EO(@t) = B (a0 + ¢ TR (), nz (2.6)

and

F(q,) = (0, qt) + gt B (0, a7, nz (27)
where F(T)(q, t) = F(T)( ,t) .= F"\(q,t) = 1. Tterating (2.6) or (2.7) gives Fg)(q, t)=0

if 1 <i<r—1with F")(q, ) = ¢" !, which we’ll take as a convention.
With the ordinary generating function

o0 (x,q,t) == F{ (g, )", (2.8)

n>0
recurrence (2.6) is equivalent to the identity
M (x,q,t) =1+ 20" (z,q,t) + qta"®") (qz, ¢, 1), (2.9)
which may be rewritten, with the operator e f(z) := f(qz), as
(1—x— thrs)Q(T)(x, q,t) =1,

or

1—=z 1—=x

tx” 1
(1 S g) ") (2, q,t) = . (2.10)
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From (2.10), we immediately get

k
. gtx” 1

k>0

which implies

Theorem 2.1.

ket () ph ok
) (z,q,0) =Y ! - (2.11)
k

=)l —qa) - (1—q'a)

=

By (2.11) and (1.2),

k
O (z,q,t) = qk—l-r(g)th(r—l)k . x
,; (1—2)(1 —qz)--- (1 —q*x)
_ k+r(’;)tk (r—1)k n—(r—1)k n—(r—1)k
PRV D DI ST
k>0 nzrk q

s (5 et e

n=20 \ 0<k<|n/r]
which establishes the explicit formula:
Theorem 2.2. For alln € N,

Fgn= 3 ¢+ (”_ (2_ 1)k> * (2.12)

0<k<|n /7]

Remark: Cigler [7] has studied algebraically the polynomials
RGasg= 3 @OV DI en sy
0<jk<n—j+1 q

which, by (2.12), are related to the Fr(f)(q, t) by

Fn(]? z,s, Q) = xn_j+1FTEj2j+1 (q7 q%) ’ n 2 0. (213)

From (2.5) and (2.13), one gets a combinatorial interpretation for the F,,(j, z, s, ¢) in terms of
J-mino arrangements; viz., F,(j, x, s, q) is the joint distribution polynomial for the statistics

on Rﬁf}j 41 recording the number of squares, the number of j-minos, and the sum of the
numbers directly preceding leftmost segments of j-minos.

Note that (2.11) and (2.12) reduce, respectively, to (2.4) and (2.3) when ¢ = ¢t = 1.
Setting ¢ = 1 and ¢ = —1 in (2.11) gives



Corollary 2.3.

O (x,1,t) = (2.14)

1—ax—ta"
and

Corollary 2.4.
1+ax—ta"

1 — 224 (—1)r+1222

M) (z,—1,1) = (2.15)

Taking the even and odd parts of both sides of (2.15), replacing = with #'/2, and applying
(2.14) yields

Theorem 2.5. Let m € N. If m and r have the same parity, then

F(=1,8) = By (1, (1)) —tF() (1, (1)1, (2.16)

and if m and r have different parity, then

FD(=1,6) = F{) o (1,(=1)"82). (2.17)

One can provide combinatorial proofs of (2.16) and (2.17) similar to those in [10, 11] given
for comparable formulas involving other g-Fibonacci polynomials.

The F\" (g, t) may be generalized as follows:

If » > 2 and a,b € P, then define the sequence (G,(LT))nGZ by the recurrence G =
Gy + G, for all n € Z with the initial conditions G7) , = = G"} =0, G = q,
and GY) = b. When r = 2, these are the Gibonacci numbers G,, (shorthand for generalized
Fibonacci numbers) occurring in Benjamin and Quinn [2, p. 17]. Whena =b=1and a =,
b =1, the Gg) reduce to the r-Fibonacci and r-Lucas numbers, respectively. We'll call the
G\ r_Gibonacci numbers.

From the initial conditions and recurrence, one sees that the Gg), when n > 1, count
linear r-mino coverings of length n in which an initial r-mino is assigned one of a phases and
an initial square is assigned one of b phases. We'll call such coverings phased r-mino tilings
(of length n), in accordance with Benjamin and Quinn [1, 2] in the case r = 2. Let R be
the set consisting of these phased tilings and let

GO(qt) = > ¢ 99 n>1, (2.18)
R

where the o and v statistics on R\ are defined as above. When a = b = 1, the G%T)(q, t)

reduce to the Fy)(q, t).
Conditioning on the final and initial pieces of a phased r-mino tiling yields the respective
recurrences

G (q,t) =G (q¢,) + " TG (g, 1), n=r+1, (2.19)

n—1
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and

G (g,t) = bF (4, 9t) + agt B (q,7t), n>r+1, (2.20)
with G1(g,t) = -+ = G\ (¢,t) = b and G\ (¢, t) = b+ aqt. From (2.20), one gets formulas

for Gg)(q,t) similar to those for FT(LT)(q, t). For example, taking a = r, b = 1 in (2.20), and
applying (2.12), yields

L(q,t) = g @) [ Dk (n=(r = DR)g | (n=(r=DEY i 5y
ogk%%m { (n—(r—1)k), ] ( k >q

a g-generalization of the r-Lucas numbers.
3 Circular r-Mino Arrangements

IfnePand0< k< [n/r],let Cf:,l denote the set of coverings by k r-minos and n — rk
squares of the numbers 1,2,...,n arranged clockwise around a circle:

By the initial segment of an r-mino occurring in such a cover, we mean the segment first
encountered as the circle is traversed clockwise. Classifying members of CT(LT/,)c according as (i)
1 is covered by one of r segments of an r-mino or (ii) 1 is covered by a square, and applying

(2.1), yields
_ T(n—(rk—_ll)k—l) N <n—(r—kl)k:—1)

B n n—(r—1k
B n—(’r’—l)k( k

(r)
Cn,k

>, 0< k< [n/r] (3.1)

Below we illustrate two members of Céfll) :

(i)




In covering (i), the initial segment of the 4-mino covers 1, and in covering (ii), the initial
segment covers 4.

With
cn= |J ¢ nepr (3.2)
0<k<|n/r|
it follows that ( Dk
c| — o (nm Yo 3.3
0<k<|n/r]
where = ==L ",=1 1y =r4+1,and Ly’ =L’ + itn=>r—+ ote
here LY = LY LY =1, Ly 1, and Ly = L+ LU it 1. N
that -
ZL%T)QU” _ (3.4)
l—z—2a"
n>1
and that

L(”) — F(T) + ( 1)F(7")

n n n—ro

n>1. (3.5)

Given ¢ € CY, let v(c) := the number of r-minos in the covering ¢, let (c) := the sum
of the numbers covered by the initial segments of each of these r-minos, and let

LI (q,t) = Y ¢, (3.6)
cECT(lT)

Conditioning on whether the number 1 is covered by a square or by an initial segment of an
r-mino or by an r-mino with initial segment n — (r — 1 — 7) for some i, 1 <7 < r — 1, yields
the formula

LI (g, t) = F (g, 1)+ ¢"~ T“th Y (q.q't), n>1, (3.7)

which reduces to the well known formula (see, e.g., [10])

LO,4) = FO1Lt) + (r— DR (1,1), n>1, (3.8)
when ¢ = 1. The L,(f)(q,t), though, do not appear to satisfy a simple recurrence like (2.6)
or (2.7).
With the ordinary generating function
A (2, q,t) == Z L (g, t)a", (3.9)
n=1

one sees that (3.7) is equivalent to

r—1

A (2, q,1) = =1+ @2, ¢, 1) + qta” Y ¢'D"(qz, g, ¢'t). (3.10)

=1

By (2.11), identity (3.10) is equivalent to



Theorem 3.1.

k-‘rr()krk A
W= e R L

k>1

The following theorem gives an explicit formula for the Lgf)(q, t):

Theorem 3.2. For alln € P,

t@t= 5 ¢+ {(n - (:q_ 1)k)q] (” N (2_ 1)’“) qtk. (3.12)

0<k<|n/r|

Proof. 1t suffices to show

> a0 =g )h ST Mj (n_(Tk_ l)k)q'

(r)
ECn %

Partitioning Cff,)c into three classes according to whether (i) 1 is covered by an initial segment
of an r-mino, (ii) 1 is covered by an r-mino with initial segment n — (r — 1 — ¢) for some 1,
1<i<r—1,or (iii) 1 is covered by a square, and applying (2.12) to each class, yields

r—1
o@) _ (h-ntr(ty) (n— (r=1Dk -1 r(h—1)41 (k= 1)i+(n—r+144)
d 9 = g 1 q +) g
q

cec(), i=1

mw(n—(r—1k—-1

N qk+r(2)( ( 3 ) ) g
q

_ ) (n — (7;{—_11)/% — 1) (1 N iqn—(r—i)k> + g2 (®) (n —(r —kl)k: — 1)

_ o) [(n— (rk—_ll)k— 1) (H’“Zlqn k) » <n— (r—kl)k— 1) ]
S (n —r= Dk) ky (1 - i q""”’) +q"(n — rk)q] :

(n—(r—1k), k i—1

from which (3.12) now follows from the easily verified identity

r—1
ng = ky (1 +) q”"“) +¢"(n —rk),.

i=1
[

Note that (3.11) and (3.12) reduce, respectively, to (3.4) and (3.3) when ¢ = ¢t = 1.
Setting ¢ = 1 and ¢ = —1 in (3.11) gives



Corollary 3.3.

+ rtx”
A (2, 1,8) = T 3.13
(z,1,1) 1 —x—ta" (3:.13)
and
Corollary 3.4.
2 _¢ 2L%J+1 —1)r 22
A (g, —1,¢) = T T - r(-1)t (3.14)

1 — .1'2 + (_1)r+1t2x27‘

Either setting ¢ = —1 in (3.7) and applying (2.16), (2.17), and (3.8) or taking the even
and odd parts of both sides of (3.14), replacing  with x'/2, and applying (3.13) and (2.14)
yields

Theorem 3.5. If m € P, then

L (=1,8) = LY)(1,(=1)'¢?) (3.15)
and
L1 (=1,8) = By Ly (1, (1)) =ty (1, (=1)782). (3.16)

For a combinatorial proof of (3.15) and (3.16), we first associate to each ¢ € ¢ a word
Ue = ujus - -+ in the alphabet {r, s}, where

' r, if the i** piece of ¢ is an r-mino;
U; ‘= if tho. .
s, if the i"" piece of ¢ is a square,

and one determines the i*" piece of ¢ by starting with the piece covering 1 and proceeding
clockwise from that piece. Note that for each word starting with r, there are exactly r
associated members of C,(f), while for each word starting with s, there is only one associated
member.

Assign to each covering ¢ € ¢ the weight w, := (—1)7@#"() where t is an indeterminate.

Let Cq(f)/ consist of those ¢ in C,(f) whose associated words u. = ujus - - - satisfy the conditions
Ug; = Ugit1, ¢ = 1. Suppose ¢ € el — C,(f)/, with i¢ being the smallest value of ¢ for which
Ug; # Ugiy1. Exchanging the positions of the (2ig)™ and (2ig + 1)* pieces within ¢ produces
a o-parity changing, v-preserving involution of C{” — C{"”".

First assume n = 2m and let Céﬁ* - Cg,): comprise those ¢ whose first and last pieces
are the same and containing an even number of pieces in all. We extend the involution of
e — el above to €57 — €{* as follows. Let ¢ € ) — € first assuming r is even. If
the initial segment of the r-mino covering 1 in ¢ lies on an odd (resp., even) number, then
rotate the entire arrangement counterclockwise (resp., clockwise) one position, moving the
pieces but keeping the numbered positions fixed.

Now assume r is odd. If 1 is covered by a segment of an r-mino which isn’t initial, the
rotate the entire arrangement clockwise or counterclockwise depending on whether the initial
segment of this r-mino covers an odd or an even number. If 1 is covered by a square or by an
initial segment of an r-mino, then pair ¢ with the covering obtained by reading u, = ujus - - -

backwards. Thus,



L1t = S w= 3 w=Y (-1

cECéz cECé:r)L* cecgz*
= Y ()@ = L (1, (~ 1)),
cEC,(,?

which gives (3.15).
Next, assume n = 2m — 1 and let Cégil - Cé:gfl comprise those ¢ in which 1 is covered
by a square or by an initial segment of an r-mino and containing an odd number of pieces

in all if 1 is covered by a square. Define an involution of Cé:,);,l — Cé:,);:l as follows. If 7 is

odd, then use the mapping defined above for ng/ o

sm When r was even. If r is even, then

slightly modify the mapping defined above for CéQL/ — "% when r was odd (i.e., replace the

2m
word “initial” with “second” in a couple of places). Thus,

Lgn)z—l(_Lt) = Z We = Z We + Z We

cecs)” cecs)™ | cec{)”

2m—1 m Qr_nfl
u1=s in ue w1=r in ue
S
CGREQL_Q CER;2/7T71
v(c) even
= EL (L (1)) =ty (L (1)),
which gives (3.16), where RI" C RY) consists of those ¢ = cycy - -+ such that ey = ca,
1> 1.
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