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Abstract

A minimal r-complete partition of an integer m is a partition of m with as few parts
as possible, such that all the numbers 1, . . . , rm can be written as a sum of parts taken
from the partition, each part being used at most r times. This is a generalization
of M-partitions (minimal 1-complete partitions). The number of M-partitions of m
was recently connected to the binary partition function and two related arithmetic
functions. In this paper we study the case r ≥ 2, and connect the number of minimal
r-complete partitions to the (r + 1)-ary partition function and a related arithmetic
function.

1 Introduction

Let λ = (λ0, λ1, . . . , λn) be a partition of the natural number m into n+1 parts λi arranged
in non-decreasing order,

m = λ0 + λ1 + · · ·+ λn, 1 6 λ0 6 λ1 6 · · · 6 λn.

The sum of the parts is called the weight of the partition and is denoted by |λ|, while n+ 1
is the length of the partition.

MacMahon [3], [4, pp. 217–223] calls the partition λ of weight m perfect if each positive
integer less than m can be written in a unique way as a sum of distinct parts λi. Park
[6] calls λ a complete partition of m if the representation property is maintained, while the
uniqueness constraint is dropped. (O’Shea [5] calls this a weak M-partition.) Prior to Park’s
paper, infinite complete sequences had been introduced by Hoggatt and King [2], and studied
by Brown [1].

1

mailto:rodseth@math.uib.no


Park [7] generalized the notion of a complete partition to r-complete partitions for a
positive integer r. The partition λ = (λ0, . . . , λn) of m is r-complete if each integer w in the
interval 0 6 w 6 rm can be written as

w = α0λ0 + · · ·+ αnλn with 0 6 αi 6 r. (1)

Clearly, “complete” is the same as “1-complete”. An r-complete partition is also (r + 1)-
complete.

We call an r-complete partition of m of minimal length a minimal r-complete partition of
m. O’Shea [5] uses the term M-partition in place of minimal complete partition. He showed
that for half the numbers m, the number of M-partitions of m is equal to the number of
binary partitions of 2n+1 − 1−m, where n = ⌊log2 m⌋. (In a binary partition, all parts are
powers of 2.) O’Shea’s partial enumeration formula was completed by us in [8].

In this paper we connect the minimal r-complete partition function (for r > 2) to the
(r+1)-ary partition function and a related arithmetic function. (In an (r+1)-ary partition,
all parts are powers of r + 1.) In Section 2 we state our results. In Section 3 we consider
a characterization of minimal r-partitions, and in Section 4 we prove our main result using
(truncated) polynomials and formal power series.

2 Statement of Results

Let f(k) be the (r + 1)-ary partition function, that is, the number of partitions of k into
powers of r + 1. For the generating function F (x) we have

F (x) =
∞
∑

k=0

f(k)xk =
∞
∏

i=0

1

1− x(r+1)i
.

We also define the auxiliary arithmetic function g(k) as follows:

G(x) =
∞
∑

k=0

g(k)xk =
∞
∑

j=0

x(r+1)j−1

1− x2(r+1)j
F (x(2r+1)(r+1)j)

j
∏

i=0

1

1− x(r+1)i
.

A straightforward verification shows that the following functional equations hold:

F (x) =
1

1− x
F (xr+1), (2)

G(x) =
xr

1− x
G(xr+1) +

1

(1− x)(1− x2)
F (x2r+1). (3)

These functional equations give simple recurring relations for fast computation of f(k) and
g(k). We adopt the convention that g(k) = 0 if k is not a non-negative integer.

Theorem 2.1. Let r > 2, and let ar(m) be the number of minimal r-complete partitions of

m. Then

ar(m) = f

(

1

r

(

(r + 1)n+1 − 1
)

−m

)

− g

(

1

r

(

(2r + 1)(r + 1)n−1 − 1
)

− 1−m

)

,

where n = ⌊logr+1(rm)⌋.
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Corollary 2.1. We have

ar(m) = f

(

1

r

(

(r + 1)n+1 − 1
)

−m

)

if 1
r
((2r + 1)(r + 1)n−1 − 1) 6 m 6

1
r
((r + 1)n+1 − 1).

The case r = 1 is not covered by Theorem 2.1. This case is slightly different from
r > 2, as an additional arithmetic function is required in the description of a1(m); see
[8, Theorem 2]. The expression for ar(m) in Theorem 2.1 is, however, valid for r = 1 if
2n + 2n−3 − 4 6 m 6 2n+1 − 1. In particular, Corollary 2.1 remains valid if r = 1, a result
due to O’Shea [5].

Some of the sequences appearing above can be found in Sloane’s On-Line Encyclopedia of

Integer Sequences [9]. For perfect partitions, see sequence A002033; for a1(m), see A100529.
The sequences A000123, A018819, A0005704, A0005705, A0005706 give the first several
values of f(k) for r = 1, 1, 2, 3, and 4, respectively. In addition, sequence A117115 gives
the 53 first values of g(k) for r = 1, and A117117 gives the 53 first values of the additional
arithmetic function required in the description of a1(m).

3 Completeness

The following lemma is due to Park [7], with partial results by Brown [1] and Park [6].

Lemma 3.1. The partition λ = (λ0, . . . , λn) is r-complete if and only if λ0 = 1 and

λi 6 1 + r(λ0 + · · ·+ λi−1) for i = 1, 2, . . . , n. (4)

The necessity of the conditions λ0 = 1 and (4) is clear, and the sufficiency follows by
induction on n; see the proof of Theorem 2.2 in [7].

Suppose that λ = (λ0, . . . , λn) is an r-complete partition of m. Then (1) must be solvable
for rm+ 1 values of w. Since the right hand side attains at most (r + 1)n+1 distinct values,
we have rm+ 1 6 (r + 1)n+1. Alternatively, by Lemma 3.1, λi 6 (r + 1)i for i = 0, 1, . . . , n,
so that rm 6 (r+1)n+1− 1. In any case, we have ⌊logr+1(rm)⌋ 6 n, cf. [7, Proposition 2.4].

On the other hand, for a given m, let n = ⌊logr+1(rm)⌋. Order the n+1 positive integers
1, r + 1, (r + 1)2, . . . , (r + 1)n−1, k = m− 1

r
((r + 1)n − 1) in increasing order 1 = λ0 6 λ1 6

· · · 6 λn. We have 1 6 k 6 (r + 1)n, and it follows that λ is a minimal r-complete partition
of m.

Lemma 3.2. Let λ be an r-complete partition of weight m and length n + 1. Then λ is

minimal if and only if

n = ⌊logr+1(rm)⌋. (5)

We have shown that if λ = (λ0, . . . , λn) is a partition of weight m with λ0 = 1, then λ is
a minimal r-complete partition if and only if (4) and (5) hold.
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4 Generating functions

In order to determine the number ar(m) of minimal r-complete partitions of weight m, we
first consider the number qn(m) of r-complete partitions of weight m and length n + 1. By
Lemma 3.2, we know that such an r-complete partition is minimal if and only if 1

r
((r+1)n−

1) + 1 6 m 6
1
r
((r + 1)n+1 − 1). Thus

ar(m) = qn(m) if
1

r
((r + 1)n − 1) + 1 6 m 6

1

r

(

(r + 1)n+1 − 1
)

. (6)

For the generating function Qn(x) of qn(m), we have

Qn(x) =

(1/r)((r+1)n+1−1)
∑

m=n+1

qn(m)xm =
∑

λ

x|λ|, (7)

where we sum over the λ satisfying 1 = λ0 6 λ1 6 · · · 6 λn and (4).
We change parameters by setting µi = (r + 1)i − λi for i = 0, 1, . . . , n. Then the

constraints, necessary for λ being r-complete, become µ0 = 0, and

r(µ0 + · · ·+ µi−1) 6 µi 6 r(r + 1)i−1 + µi−1 for i = 1, . . . , n. (8)

Moreover,

|λ| =
1

r
((r + 1)n+1 − 1)− |µ|, (9)

for |µ| = µ0 + · · · + µn. For a fixed n, we are interested in the number of solutions λ of
|λ| = m for each m in the interval 1

r
((r + 1)n − 1) + 1 6 m 6

1
r
((r + 1)n+1 − 1), that is, the

number of solutions µ of |µ| = k for each k in the interval 0 6 k 6 (r + 1)n − 1.
We write

Rn(x) =
∑

k>0

rn(k)x
k =

∑

µ

x|µ|, (10)

where we sum over the µ satisfying µ0 = 0 and (8). We are interested in the coefficients rn(k)
for k < (r + 1)n. Therefore we shall on some occasions truncate polynomials and formal
power series under consideration. We shall use the order symbol O(xN) for truncation of
order N . Thus, if we write

∑

k

b(k)xk =
∑

k

c(k)xk +O(xN),

then b(k) = c(k) for all k < N .
Let n > 2. It simplifies notations to “sum” over µ0 = 0. We have

Rn(x) =
∑

µ0

· · ·
∑

µn

xµ0+···+µn ,

where the innermost sum is

r(r+1)n−1+µn−1
∑

µn=r(µ0+···+µn−1)

xµ0+···+µn = x(r+1)(µ0+···+µn−1)
1− xr(r+1)n−1+1−r(µ0+···+µn−1)+µn−1

1− x
.
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Now, we have

Rn(x) =
1

1− x
Rn−1(x

r+1)−
xr(r+1)n−1+1

1− x

∑

µ0

· · ·
∑

µn−1

xµ0+···+µn−2+2µn−1 .

We repeat this process once, and obtain

Rn(x) =
1

1− x
Rn−1(x

r+1)−
xr(r+1)n−1+1

(1− x)(1− x2)
Rn−2(x

2r+1)

+
xr(r+3)(r+1)n−2+3

(1− x)(1− x2)

∑

µ0

· · ·
∑

µn−2

xµ0+···+µn−3+3µn−2 ,

so that

Rn(x) =
1

1− x
Rn−1(x

r+1)−
xr(r+1)n−1+1

(1− x)(1− x2)
Rn−2(x

2r+1) +O(x(r+1)n) (11)

for n > 2.
By (2) and (3), we have

F (x) =
1

1− x
+O(xr+1),

G(x) =
1

(1− x)(1− x2)
+O(xr). (12)

Moreover, R0(x) = 1, and

R1(x) = 1 + x+ · · ·+ xr =
1− xr+1

1− x
= F (x) +O(xr+1),

so we may write
R1(x) = F (x)− xr+1G(x) +O(xr+1). (13)

Putting n = 2 in (11), we get

R2(x) =
1

1− x
R1(x

r+1)−
xr(r+1)+1

(1− x)(1− x2)
R0(x

2r+1) +O(x(r+1)2),

and using (13), we obtain

R2(x) =
1

1− x
F (xr+1)−

xr(r+1)+1

(1− x)(1− x2)
+O(x(r+1)2).

Hence, by (2) and (12), we have

R2(x) = F (x)− xr(r+1)+1G(x) +O(x(r+1)2).
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We claim that if r > 2 and n > 1, then

Rn(x) = F (x)− xr(r+1)n−1+1G(x) +O(x(r+1)n). (14)

To prove this, we use induction on n. We have just seen that the claim is valid for n = 1
and n = 2. Suppose that (14) holds for n replaced by n − 1 and by n − 2 for some n > 3.
Using (11) and the induction hypotheses, we obtain

Rn(x) =
1

1− x

(

F (xr+1)− xr(r+1)n−1+r+1G(xr+1) +O(x(r+1)n)
)

−
xr(r+1)n−1+1

(1− x)(1− x2)

(

F (x2r+1)− x(2r+1)(r(r+1)n−3+1)G(x2r+1) +O(x(2r+1)(r+1)n−2

)
)

+O(x(r+1)n).

We find that

Rn(x) =
1

1− x
F (xr+1)−

xr(r+1)n−1+r+1

1− x
G(xr+1)−

xr(r+1)n−1+1

(1− x)(1− x2)
F (x2r+1) +O(x(r+1)n),

and, using the functional equations (2) and (3), (14) follows.
We are now ready to conclude the proof of Theorem 2.1. By (10) and (9), we have

Rn(x) =
∑

µ

x|µ| =
∑

λ

x(1/r)((r+1)n+1−1)−|λ|.

Moreover, by (7),

Rn(x) = x(1/r)((r+1)n+1−1)Qn(x
−1) =

(1/r)((r+1)n+1−1)
∑

m=n+1

qn(m)x(1/r)((r+1)n+1−1)−m.

Hence,

Rn(x) =
∑

k>0

rn(k)x
k =

(1/r)((r+1)n+1−1)−n−1
∑

k=0

qn

(

1

r

(

(r + 1)n+1 − 1
)

− k

)

xk;

that is,

rn(k) = qn

(

1

r

(

(r + 1)n+1 − 1
)

− k

)

. (15)

For n > 1, we have by (14),

rn(k) = f(k)− g(k − r(r + 1)n−1 − 1) for 0 6 k 6 (r + 1)n − 1.

Setting k = 1
r
((r + 1)n+1 − 1)−m and using (15) and (6), we get Theorem 2.1. By inspection,

the theorem also holds for n = 0.
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