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Abstract

The substitution ofX byX2 in binomial polynomials generates sequences of integers
by Mahler’s expansion. We give some properties of these integers and a combinatorial
interpretation with covers by projection. We also give applications to the classification
of boolean functions. This sequence arose from our previous research on classification
and complexity of Binary Decision Diagrams (BDD) associated with boolean functions.

1All correspondence should be directed to this author.
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1 Mahler’s expansion

We recall some standard facts about binomial polynomials and Mahler’s expansion (see
[2, 3, 5].

A binomial polynomial Bj(X) =
(

X

j

)

∈ Q[X], for any integer j ≥ 1, is defined by:

Bj(X) =
X(X − 1) · · · (X − j + 1)

j!

and B0(X) =
(

X

0

)

= 1 by convention. For example:
(

X

1

)

= X,
(

X

2

)

= X(X−1)
2

.
The degree of Bj is j, so they form a basis of Q[X]. The expansion of a polynomial in

this basis is called its Mahler expansion, also known as the Newton interpolation formula.
From the definition, the j roots of Bj are 0, . . . , j − 1. This can be interpreted as an

extension of the definition of binomial coefficients: for n, j ∈ N,
(

n

j

)

= 0 if n < j.
The Pascal triangle equality is

(

X + 1

j

)

=

(

X

j

)

+

(

X

j − 1

)

for j > 0. This equality says that, in this basis, the endomorphism P (X) → P (X + 1) of
Q[X] has a Jordan form.

Let f any function from Qp → Qp, where Qp is the field of p-adic numbers, using the
difference operators:

∆f = f(X + 1)− f(X)

∆2f = f(X + 2)− 2f(X + 1) + f(X)

...

∆jf =

j
∑

r=0

(−1)r
(

j

r

)

f(X + j − r).

Then the Mahler expansion of f is

∞
∑

j=0

(∆jf)(0)

(

X

j

)

(1)

Mahler’s theorem says that, for any prime p, this expansion converges uniformly towards f
if f is any continuous mapping f : Zp → Qp.

2 Squaring variable operator

Consider the Q-linear endomorphism of Q[X] defined by:

f(X) 7→ f(X2) (2)
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This endomorphism is clearly injective because f(X2) = g(X2) implies that f − g has
infinitely many roots: the squares of Q. It is also an algebra endomorphism because
(fg)(X2) = f(X2)g(X2) and constant 1 is invariant.

We study the effect of this operator on the basis Bj.

Definition 1. We define ak,m ∈ Q for all k,m ∈ N as the coefficients of the Mahler expansion

of
(

X2

k

)

:

Bk(X
2) =

(

X2

k

)

=
∞
∑

m=0

ak,mBm (3)

This double sequence is the sequence A100344 in Sloane’s Online Encyclopedia [6].

2.1 General properties of the ak,m

For fixed k, all the ak,m are 0, except a finite number of them.
From this definition we compute the first values of ak,m:

a0,0 = 1, a0,r = ar,0 = 0 for r > 0

We give in the last section the table for the first values of ak,m. The binomial polynomials
Bj(X) are a Z-basis for the Z-module of integer polynomials, therefore trivially ak,m ∈ Z,
but we shall now prove that ak,m ∈ N .

From (3), substituting X with all integral values in N, we get an infinite linear system.
The study of this system gives many important properties of the ak,m.

Proposition 1. ak,m = 0 if m > 2k or m <
√
k.

Proof. To establish the first inequality consider that the degree of the left-hand side of (3)
is 2k.

The second inequality is obviously true for k = 0. Suppose k > 0, if n ∈ N and n <
√
k

then n2 < k and n is a root of
(

X2

k

)

. Replacing X by n in (3) with n = 0, . . . ,m we get

0 = ak,0

0 = ak,0 + ak,1

0 = ak,0 + 2ak,1 + ak,2

...

0 = ak,0 +

(

m

1

)

ak,1 +

(

m

2

)

ak,2 + · · ·+ ak,m

and so ak,0 = ak,1 = · · · = ak,m = 0.

Proposition 2 (First recursive formula). For all k, n ∈ N

ak,n =

(

n2

k

)

−
n−1
∑

m=0

ak,m

(

n

m

)

(4)
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Proof. We suppose first 0 ≤ n ≤ 2k. We use (3) and write
(

X2

k

)

=
∑2k

m=0 ak,mBm. Make
X = n and use the property that Bm(n) = 0 if m > n, and Bn(n) = 1.

If n > 2k we must show that the right-hand side of (4) is 0. But
∑n−1

m=0 ak,mBm =
∑2k

m=0 ak,mBm by Proposition 1 and this sum is 0 by definition of the ak,m.

A consequence of this Proposition is that ak,m ∈ Z.

Proposition 3. For all integers k,m we have

ak,m =
m
∑

i=0

(−1)m−i

(

m

i

)(

i2

k

)

(5)

Proof. This is a just a translation of Mahler’s coefficient computation (1).

Proposition 4. (a) ak,2k =
(2k)!
k!

(b) ak,m =
(

m2

k

)

if k > (m− 1)2

Proof. The first identity (a) is easily obtained by comparing the leading coefficients of the
polynomials of left-hand side and right-hand side of (3) which are 1

k!
and ak,2k

1
(2k)!

respectively.

To prove the second equality (b), use (4) and Proposition 1, which shows that all the
terms in the sum are 0.

It is useful for computing to formally generalize the definition when m is a negative
integer. We shall set ak,m = 0 if k ∈ N and m < 0.

We now prove a more difficult identity:

Theorem 1 (Second recursive formula). For k ≥ 1

ak,m =
1

k
[(m2 − k + 1)ak−1,m +m(2m− 1)ak−1,m−1 +m(m− 1)ak−1,m−2].

Proof. Consider the endomorphism of Q[X] defined by f(X) → Xf(X) (multiplication by
X). We study its effect on the Bm basis. Clearly, for all m ≥ 0

XBm = (X −m+m)Bm = (m+ 1)Bm+1 +mBm

We consider now the endomorphism f(X) → X2f(X) (multiplication by X2). Its effect on
the binomial basis is, by iteration of the preceding formula

X2Bm = (m+ 1)[(m+ 2)Bm+2 + (m+ 1)Bm+1] +m(m+ 1)Bm+1 +m2Bm

= (m+ 1)(m+ 2)Bm+2 + (m+ 1)(2m+ 1)Bm+1 +m2Bm

We start from (k ≥ 1):
(

X2

k

)

=

(

X2

k − 1

)

X2 − k + 1

k
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and expand the right-hand side

X2 − k + 1

k

2k−2
∑

m=0

ak−1,mBm

=
1

k

2k−2
∑

m=0

ak−1,m[(m+ 1)(m+ 2)Bm+2 + (m+ 1)(2m+ 1)Bm+1 + (m2 − k + 1)Bm]

Grouping together the coefficients of Bm we get the formula.

We applied this formula to construct the table in Section 6. We started from the first
column et derived all others.

Corollary 1. 0 ≤ ak,m ≤
(

m2

k

)

Proof. From Theorem 1 if m2 − k + 1 < 0 or if m = 0 then ak,m = 0 or 1, in all other cases
the coefficient used in Theorem 1 are ≥ 0. The higher bound is an immediate consequence
of the positivity and of the recurrence formula.

Corollary 2. ak,2k−1 = ak,2k.
2k−1
2

= (2k)!
k!

2k−1
2

Proof. Easy consequence.

Corollary 3. Fix m, then the sequence ak,m is increasing with k for 0 ≤ k ≤ m2

2
.

Proof. By Theorem 1, for k > 0:

ak,m ≥ m2 − k + 1

k
ak−1,m

and m2
−k+1
k

= m2

k
− 1 + 1

k
≥ 1 + 1

k
> 1.

Questions : Fixm or k, prove the ak,m are increasing then decreasing and find good bound
for them. Are there other simple expressions for the ak,m ?

3 Covering of a finite set by projection

Let M = [1..m] the set of integers from 1 to m, and a fixed integer k. We look for families
F of k distinct pairs F = {(a1, b1), . . . , (ak, bk)} ⊂ M2. If

⋃k

i=1{ai, bi} = M we say that F is
a covering of M by projection.

This definition easily generalizes to any exponent r of M ; in this way, we get families
of k distinct r-uples covering of M r by projection. All the results of this article could have
been written in this perspective.

This allows a straightforward combinatorial interpretation of the ak,m.

Theorem 2. The number of parts F ⊂ M2 of k distinct pairs covering M by projection is
ak,m.

Proof. Let X any finite set with X elements. The number of subsets of X 2 having k elements
is

(

X2

k

)

. Each of these subsets is a covering of some subset M ⊂ X with m elements by
projection and m may take values between 0 and X2. This enumeration gives each term of
the sum in the right-hand side of (3). The coefficients ak,m are uniquely determined by (3)
because the binomial polynomials form a basis of the polynomial ring Q[X].
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4 Profiles of boolean functions in n variables

The set Bn of boolean functions in n variables is the set of all functions

f : {0, 1}n → {0, 1}.

It is in bijective correspondence with the set of parts of {0, 1}n. For n = 0, B0 is the set
of the two constant boolean functions 0 and 1. The number of elements of Bn is 22

n

for all
n ∈ N.

Definition 2. Let F = {f1, . . . , fr} ⊂ Bn any finite and non-empty family of distinct boolean
functions in n variables. We associate with F a sequence of n+ 1 positive integers

p(F) = (p0(F), . . . , pn(F)),

where pi(F) is the number of distinct boolean functions in n− i variables obtained from F by
substituting all possible boolean values to the first i boolean variables x1, . . . , xi. For i = 0
we set p0(F) = r.

We call p(F) the profile of the family F or the profile of f if F is reduced to one boolean
function f .

Example with r = 1, F = {f(x1, x2, x3) = x2}.
We have f(0, x2, x3) = f(1, x2, x3) = x2, so p1(f) = 1. If we give all boolean
values to x1 and x2 (4 possible pairs of values), in all cases we get the 0 (resp. 1)
constant function if x2 = 0 (resp. x2 = 1), so we have p2(f) = 2. When we give
any boolean values to the three variables we get the constants 0 or 1. Finally
p(f) = (1, 1, 2, 2).

The profile is a very interesting “classifier” which is connected to complexity questions. It
is related to the Binary Decision Diagram theory (a BDD is a boolean graph canonically
associated with any boolean function). A way to define complexity of f ∈ Bn is to consider
its profile p(f) = (1, p1, . . . , pn) and to define its complexity as

c(f) = p0 + · · ·+ pn

This complexity measures the number of different “subfunctions” inside f generated by our
sequential affectations of values to the variables. In BDD theory it is the number of vertices
of the canonical boolean graph associated with f . We refer the reader to our paper [4] for
the details and related results.

The important thing about the profile and the complexity, is that they are not invariant
by permutations of variables in general. This can be easily verified on our example: if
f(x1, x2, x3) = x1 then p(f) = (1, 2, 2, 2) and if f(x1, x2, x3) = x3 then p(f) = (1, 1, 1, 2).

Now we can state our main result:

Theorem 3. The number of families of boolean functions in n ≥ 1 variables whose profile
is (p0, . . . , pn) is the product

ap0,p1ap1,p2 · · · apn−1,pn

with pn = 1 or 2. For n = 0 the number is ap0,1.
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Proof. The last profile value pn of any boolean function in n variables is always 1 or 2 because
there are only 2 boolean constant functions namely 0 and 1.

We proceed by recurrence. For n = 0 the Theorem is true by simple inspection.
The number of families of p1 distinct boolean functions in the variables x2, . . . , xn whose

profile is (p1, . . . , pn) is ap1,p2 · · · apn−1,pn by the recurrence hypothesis. Let F ′ = {f ′

1, . . . , f
′

p1
}

such a family. Then we can construct an unique boolean function f ∈ Bn from each pair
(u, v) ∈ F ′2 by using the well known Boole identity

f(x1, . . . , xn) = (1− x1)u⊕ x1v

and we must choose p0 distinct pairs (u, v) in F ′2. In this manner we can construct a family
of p0 distinct boolean functions in n variables whose profile is (p0, . . . , pn). The number of
such families constructed from F ′ coincides with the combinatorial definition of the ap0,p1 as
a covering of F ′ by projection of p0 elements.

We conclude that for each F ′ we can construct ap0,p1 families with profile (p0, ..., pn),and
the Theorem is proved.

We can specialize the last formula with p0 = 1. We get immediately

Remark 1. The set of f ∈ Bn with profile (1, p1, . . . , pn−1, 2) has

a1,p1 · · · apn−1,2

elements.

We list all possible profiles for n ≤ 4 in lexicographical order and give the number of
boolean functions with each profile.

n = 0 n = 1 n = 2 n = 3 n = 4
1 2 1, 1 2 1, 1, 1 2 1, 1, 1, 1 2 1, 1, 1, 1, 1 2

1, 2 2 1, 1, 2 2 1, 1, 1, 2 2 1, 1, 1, 1, 2 2
1, 2, 2 12 1, 1, 2, 2 12 1, 1, 1, 2, 2 12

1, 2, 2, 2 72 1, 1, 2, 2, 2 72
1, 2, 3, 2 144 1, 1, 2, 3, 2 144
1, 2, 4, 2 24 1, 1, 2, 4, 2 24

1, 2, 2, 2, 2 432
1, 2, 2, 3, 2 864
1, 2, 2, 4, 2 144
1, 2, 3, 3, 2 864
1, 2, 3, 4, 2 10368
1, 2, 4, 2, 2 8928
1, 2, 4, 2, 2 144
1, 2, 4, 3, 2 11808
1, 2, 4, 4, 2 31728

For a given n, we ignore which profile gives the largest number of boolean functions. This
question is connected to interesting works on “Shannon effect” (for short: random functions
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have almost surely a maximal complexity) [1]. Our computations can be seen as a enumer-
ative and effective approach to this problem. We recall that Shannon’s theorem is relative
to “circuit” complexity, and for this complexity “almost” nothing effective is known about
functions achieving maximal complexity.

5 Conclusion

The ak,m numbers where first introduced in a combinatorial way in our article [4]. Theorem 1
was also proved in a combinatorial way. We were unsuccessful in the search of a generating
series for these numbers and realized after a while that the Mahler expansion of the Bk(X

2)
is an answer. This permits a whole algebraic reinterpretation of the formulas of our article [4]
and the enlargement of the scope to all boolean functions, giving the Theorem 3. Moreover,
all the results of this paper can be generalized using other exponent than 2, and give other
interpretations with non boolean functions and m-ary trees instead of binary trees. We
choose to keep our scope restricted to the squaring and to the boolean functions formulas for
simplicity. We think that the interested reader will have no great difficulties in constructing
more general formulas if needed.

6 Table of the ak,m

k
0 1 2 3 4 5 6 7 8 9 10

m 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
2 0 2 6 4 1 0 0 0 0 0 0
3 0 0 18 72 123 126 84 36 9 1 0
4 0 0 12 248 1322 3864 7672 11296 12834 11436 8008
5 0 0 0 300 4800 32550 137900 423860 1017315 1985785 3228720
6 0 0 0 120 7800 121212 1003632 5634360 23963760 82057010 234694416
7 0 0 0 0 5880 235200 3791032 37162384 261418626 1437954784 6506878224
8 0 0 0 0 1680 248640 8280272 141626144 1605962556 13627345424 92665376496
9 0 0 0 0 0 136080 10886400 336616560 6156764640 79330914540 790034244120

10 0 0 0 0 0 30240 8517600 516327840 15590248560 305402753240 4409098539560
11 0 0 0 0 0 0 3659040 512265600 26837228880 812355376800 17025823879944
12 0 0 0 0 0 0 665280 318003840 31638388320 1529756532480 47104037930928
13 0 0 0 0 0 0 0 112432320 25184839680 2058204788640 95321107801920
14 0 0 0 0 0 0 0 17297280 12955662720 1968191184960 142446885060480
15 0 0 0 0 0 0 0 0 3891888000 1307674368000 157084383456000
16 0 0 0 0 0 0 0 0 518918400 574269696000 126281698583040
17 0 0 0 0 0 0 0 0 0 149967417600 71984360448000
18 0 0 0 0 0 0 0 0 0 17643225600 27576361612800
19 0 0 0 0 0 0 0 0 0 0 6369204441600
20 0 0 0 0 0 0 0 0 0 0 670442572800
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