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Abstract

We study two remarkable identities of Andrews relating Fibonacci numbers and
binomial coefficients in terms of generating functions and Riordan arrays. We thus
give a deeper insight to the problem and find several new identities involving many
other well-known sequences.

1 Introduction

There exists a famous relation between binomial coefficients and Fibonacci numbers. In fact,
Fibonacci numbers are just the diagonal sums of the Pascal triangle. The exact formula is

Fn+1 =
n∑

k=0

(
n− k

k

)
,

which can be proved in several ways. In order to introduce some concepts that will be used
in the present paper, we prove this identity by means of the Riordan array method.

A Riordan array D = (dn,k)n,k∈N is an infinite, lower triangular array defined by a pair

of formal power series R(d(t), h(t)) such that dn,k = [tn]d(t)h(t)k, where [tn] denotes the
“coefficient of” operator [tn]

∑
k≥0 fkt

k = fn. If d(0) 6= 0, h(0) = 0 and h′(0) 6= 0, then the
Riordan array is called proper. In practice, D is defined by the generating functions of its
columns, which are d(t)h(t)k for k ∈ N. There is a connection between Riordan arrays and
combinatorial sums; in fact, we have the following result:

n∑

k=0

dn,kfk = [tn]d(t)f(h(t))
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where f(t) is the generating function of the sequence (fk)k∈N. This means that the evaluation
of the sum is reduced to the extraction of a coefficient from a formal power series. As a
consequence of these facts, Sprugnoli [9] proved the two following summation rules involving
binomial coefficients:

∑

k

(
n+ ak

m+ bk

)
fk = [tn]

tm

(1− t)m+1
f

(
tb−a

(1− t)b

)
, b > a; (1.1)

∑

k

(
n+ ak

m+ bk

)
fk = [tm](1 + t)nf(t−b(1 + t)a), b < 0. (1.2)

In the present paper, usually we will use these formulas with fk = 1 and hence f(t) =
1/(1− t).

Let us consider the more general sum
∑n

k=0

(
n−k
k

)
ckbn−2k and apply Formula (1.1):

n∑

k=0

(
n− k

k

)
ckbn−2k = bn

n∑

k=0

(
n− k

k

)( c

b2

)k

=

bn[tn]
1

1− t

[
1

1− cu/b2

∣∣∣ u =
t2

1− t

]
=

= bn[tn]
1

1− t− ct2/b2
= [tn]

1

1− bt− ct2

where the notation: [f(u) | u = g(t)] is the linear form of the substitution rule f(u)|u=g(t) =
f(g(t)). For b = c = 1, the coefficient is obviously Fn+1 (sequence A000045 in [8]). On
the other hand, we have obtained the generating function of several important sequences;
for example, for b = 1, c = 2, we have the Jacobsthal sequence; for b = 2, c = 1, we have
the Pell sequence; for b = 3, c = −2, we have the Mersenne sequence (sequences A001045,
A000129 and A000225 in [8], respectively). We shall use some of these sequences again in
what follows.

Many years ago, Andrews [1] found two remarkable formulas relating Fibonacci numbers
and binomial coefficients:

Fn =
∞∑

j=−∞

(−1)j
(

n

⌊(n− 1− 5j)/2⌋

)
, (1.3)

Fn =
∞∑

j=−∞

(−1)j
(

n− 1

⌊(n− 1− 5j)/2⌋

)
. (1.4)

These equations are not very simple, so they attracted the attention of several researchers,
and different proofs appeared in the literature: Gupta [5], Hirschhorn [6, 7] and, more
recently, Brietzke [2] and Cigler [3]. Actually, Andrews generalizes the two identities to
every integer p, different from 5, but this has not been further considered, at least at our
knowledge. In this paper we wish to approach Andrews’ generalized sums from the point
of view of generating functions and Riordan arrays, hoping to give a deeper insight to the
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problem. In fact, we’ll be able to prove a number of new identities, analogous (but different)
to those of Andrews.

The paper is organized in the following way. In Section 2, we consider Andrews’ gen-
eralized sums and observe that they can be transformed into other sums for which we find
the corresponding generating functions. By using these results, in Section 3, we compute
the rational generating functions of Andrews’ generalizations and give several examples for
specific values of p. Finally, in Section 4, we apply our results to other new combinatorial
identities.

2 The generating functions’ approach

In analogy to Andrews [1], we wish to extend the two sums (1.3) and (1.4) to:

S[p]
n =

∞∑

j=−∞

(−1)j
(

n

⌊(n− 1− pj)/2⌋

)
, (2.5)

T [p]
n =

∞∑

j=−∞

(−1)j
(

n− 1

⌊(n− 1− pj)/2⌋

)
, (2.6)

where p is any positive integer number.
In the cited papers by Gupta, Hirschborn and Brietzke, it is proven that these sums can

be transformed into sums of the type:

L[p,r]
n =

∞∑

k=0

(
2n

n+ r + pk

)
and M [p,r]

n =
∞∑

k=0

(
2n+ 1

n+ r + pk

)
;

these sums are actually finite and, therefore, let us begin by looking for their generating
functions. In the proof of the next theorem we use the Lagrange Inversion Formula (LIF) as
in Goulden and Jackson [4].

Theorem 1. The generating function of the sum L
[p,r]
n is

L[p,r](t) =
1√

1− 4t

(
1− 2t−

√
1− 4t

2t

)r / (
1−

(
1− 2t−

√
1− 4t

2t

)p)

or, alternatively:

L[p,r](t) =
1√

1− 4t

(
1−

√
1− 4t

1 +
√
1− 4t

)r
(1 +

√
1− 4t)p

(1 +
√
1− 4t)p − (1−

√
1− 4t)p

.

Proof. We apply rule (1.2) in the Introduction:

∑

k

(
2n

n+ r + pk

)
=

∑

k

(
2n

n− r − pk

)
(1.2)
= [tn−r](1 + t)2n

[
1

1− u

∣∣∣ u = tp
]
=
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= [tn](1 + t)2n
tr

1− tp
LIF
= [tn]

[
wr

1− wp
· 1

1− 2t(1 + w)

∣∣∣ w = t(1 + w)2
]
=

= [tn]

[
wr

1− wp
· 1 + w

1− w

∣∣∣ w =
1− 2t−

√
1− 4t

2t

]
.

Now we find

1 + w

1− w
=

(
1 +

1− 2t−
√
1− 4t

2t

) / (
1− 1− 2t−

√
1− 4t

2t

)
=

=
1−

√
1− 4t√

1− 4t− (1− 4t)
=

1√
1− 4t

and from this the first formula in the assert follows immediately.
Alternatively, we can apply rule (1.1):

∑

k

(
2n

n+ r + pk

)
(1.1)
= [t2n]

tn+r

(1− t)n+r+1

[
1

1− u

∣∣∣ u =
tp

1− tp

]
=

= [tn]
tr

(1− t)n+r+1
· (1− t)p

(1− t)p − tp
LIF
=

LIF
= [tn]

[
wr

(1− w)r+1
· (1− w)p

(1− w)p − wp
· 1− w

1− 2w

∣∣∣ w =
t

1− w

]
.

The following partial computations hold

w =
1−

√
1− 4t

2
; 1− w =

1 +
√
1− 4t

2
;

w

1− w
=

1−
√
1− 4t

1 +
√
1− 4t

; 1− 2w =
1√

1− 4t
.

By substituting these values in the previous expression, we immediately find the second
desired formula.

For the sums M
[p,r]
n the result is analogous, and we can state

Theorem 2. The generating function of the sum M
[p,r]
n is

M [p,r](t) =
1 +

√
1− 4t

2t
L[p,r](t) = L[p,r](t) + L[p,r−1](t). (2.7)

Proof. The proof is analogous to that of the previous theorem:

∑

k

(
2n+ 1

n+ r + pk

)
=

∑

k

(
2n+ 1

n+ 1− r − pk

)
(1.2)
=

= [tn+1−r](1 + t)2n+1

[
1

1− u

∣∣∣ u = tp
]
= [tn](1 + t)2n+1 tr−1

1− tp
LIF
=
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= [tn]

[
1 + w

w

wr

1− wp
· 1

1− 2t(1 + w)

∣∣∣ w = t(1 + w)2
]
=

= [tn]

[
1 + w

w

wr

1− wp
· 1 + w

1− w

∣∣∣ w =
1− 2t−

√
1− 4t

2t

]
.

With respect to L[p,r](t) we have an extra (1 + w)/w, the transformation of which is

1 + w

w
=

(
1 +

1− 2t−
√
1− 4t

2t

) / (
1− 2t−

√
1− 4t

2t

)
=

1 +
√
1− 4t

2t
;

therefore, equation (2.7) follows.

We can now make the following observations:

Theorem 3. The generating function L[p,r](t) = L[p,r](t) + L[p,p−r](t) is a rational function.

Proof. For the sake of simplicity, let us set A =
√
1− 4t and write L[p,r](A) instead of L[p,r](t)

to emphasize the dependence from A. We have:

L[p,p−r](A) =
1

A

(
1− A

1 + A

)p−r
(1 + A)p

(1 + A)p − (1− A)p
=

=
1

A

(
1 + A

1− A

)r
(1− A)p

(1 + A)p − (1− A)p
= L[p,r](−A).

This implies
L[p,r](A) = L[p,r](A) + L[p,r](−A) = L[p,r](−A),

so that L[p,r](t) is an even function of A =
√
1− 4t, that is, it depends only on 1 − 4t and

not on
√
1− 4t. This is sufficient to show that L[p,r](t) is a rational function.

In the same way we obtain

Theorem 4. The generating function M[p,r](t) = M [p,r](t)+M [p,p−r+1](t) is a rational func-

tion.

Proof. By using the same notations as in the previous theorem, we have

M [p,p−r+1](A) =
1 + A

2t

1− A

1 + A
L[p,p−r](A) =

1− A

2t
L[p,r](−A) = M [p,r](−A),

since by the second equation of Theorem 1: L[p,p+1−r](A) = 1−A
1+A

L[p,p−r](A). So:

M[p,r](A) = M [p,r](A) +M [p,r](−A) = M[p,r](−A),

and M[p,r](A) depends only on the square of
√
1− 4t.
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From the two previous theorems, we obtain a limit for the order of the recurrences
corresponding to the rational generating functions L[p,r](t) and M[p,r](t). Since the terms
in

√
1− 4t disappear, the degree of the denominator (1 +

√
1− 4t)p − (1 −

√
1− 4t)p is at

most ⌈p/2⌉ (see Tables 1–4). This improves the results of Cigler [3] about the order of the
recurrences.

We can now return to the identities of Andrews. If we perform the change of variable
n 7→ 2n we can introduce a new quantity Ŝ

[p]
n :

Ŝ[p]
n = S

[p]
2n =

∞∑

j=−∞

(−1)j
(

2n

⌊(2n− 1− pj)/2⌋

)

which represents the elements of even position in the Andrews sequence (S
[p]
n )

n∈N. We can
show the following result:

Theorem 5. The generating function Ŝ[p](t) of the sequence (Ŝ
[p]
n )

n∈N is

Ŝ[p](t) =

{
L[p,1](t)− L[p,q−1](t)− L[p,q+1](t) + L[p,p−1](t), p = 2q;

L[p,1](t)− L[p,q](t)− L[p,q+1](t) + L[p,p−1](t), p = 2q + 1.

Or, in a single expression:

Ŝ[p](t) = L[p,1](t)− L[p,⌊(p−1)/2⌋)](t)− L[p,⌊(p+2)/2⌋)](t) + L[p,p−1](t) =

= L[p,1](t)− L[p,⌊p/2⌋+1](t), p ∈ N.

Proof. Let us separate the binomial coefficients according to even and odd values of j:

Ŝ[p]
n =

∞∑

k=−∞

((
2n

⌊(2n− 1− 2pk)/2⌋

)
−
(

2n

⌊(2n− 1− 2pk − p)/2⌋

))
.

We now distinguish between even and odd values of p.

First case: p is even: p = 2q

⌊
2n− 1− 2pk

2

⌋
= n− 1− pk

⌊
2n− 1− 2pk − p

2

⌋
= n− 1− q − pk.

Therefore we have

Ŝ[p]
n =

∞∑

k=−∞

((
2n

n− 1− pk

)
−

(
2n

n− 1− q − pk

))
.

We now further divide the sum, distinguishing positive and negative indices. For k ≥ 0 we
have

∞∑

k=0

((
2n

n− 1− pk

)
−

(
2n

n− 1− q − pk

))
=
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=
∞∑

k=0

((
2n

n+ 1 + pk

)
−
(

2n

n+ (q + 1) + pk

))
.

For k < 0 we perform the change of variable k 7→ −k − 1, so that k ≥ 0:

∞∑

k=0

((
2n

n− 1 + pk + p

)
−

(
2n

n− 1− q + pk + p

))
=

=
∞∑

k=0

((
2n

n+ (p− 1) + pk

)
−
(

2n

n+ (q − 1) + pk

))
.

The two sums can be merged together and we find the first formula in the assert.

Second case: p is odd: p = 2q + 1

⌊
2n− 1− 2pk

2

⌋
= n− 1− pk

⌊
2n− 1− 2pk − 2q − 1

2

⌋
= n− (q + 1)− pk.

We proceed as above and find

Ŝ[p]
n =

∞∑

k=−∞

((
2n

n− 1− pk)

)
−
(

2n

n− (q + 1)− pk

))
.

In this case also we distinguish between positive and negative indices. For k ≥ 0 we have

∞∑

k=0

((
2n

n− 1− pk)

)
−

(
2n

n− 1− q − pk

))
=

=
∞∑

k=0

((
2n

n+ 1 + pk)

)
−

(
2n

n+ (q + 1) + pk

))
.

For k < 0 we perform the change of variable k 7→ −k − 1, so that k ≥ 0:

∞∑

k=0

((
2n

n− 1 + pk + p)

)
−

(
2n

n− 1− q + pk + p

))
=

=
∞∑

k=0

((
2n

n+ (p− 1) + pk)

)
−

(
2n

n+ q + pk

))
;

in fact, p = 2q + 1 implies p− q − 1 = 2q + 1− q − 1 = q. Therefore we conclude with the
second formula in the assert.

Let us now examine the sequence (T
[p]
n )

n∈N. If we perform the change of variable n 7→
2n+ 1 we can introduce a new quantity T̂

[p]
n :

T̂ [p]
n = T

[p]
2n =

∞∑

j=−∞

(−1)j
(

2n

⌊(2n− pj)/2⌋

)

which represents the elements of even position in the Andrews sequence (T
[p]
n )

n∈N. We can
show the following result:
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Theorem 6. The generating function T̂ [p](t) of the sequence (T̂
[p]
n )

n∈N is:

T̂ [p](t) =

{
L[p,0](t)− 2L[p,q](t) + L[p,p](t), p = 2q;

L[p,0](t)− L[p,q](t)− L[p,q+1](t) + L[p,p](t), p = 2q + 1.

Or, in a single expression:

T̂ [p](t) = L[p,0](t)− L[p,⌊p/2⌋](t)− L[p,⌊(p+1)/2⌋](t) + L[p,p](t) =

= L[p,0](t)− L[p,⌊p/2⌋](t), p ∈ N.

Proof. The proof proceeds as in the previous theorem; therefore we limit ourselves to give
the main points of the reasoning:

T̂ [p]
n =

∞∑

k=−∞

((
2n

⌊(2n− 2pk)/2⌋

)
−
(

2n

⌊(2n− 2pk − p)/2⌋

))
.

First case: p is even: p = 2q. The denominators are n− pk and n− pk− q, respectively.
For k ≥ 0 we have

∞∑

k=0

((
2n

n− pk

)
−
(

2n

n− q − pk

))
=

∞∑

k=0

((
2n

n+ pk

)
−
(

2n

n+ q + pk

))
;

for k < 0, changing k 7→ −k − 1 :

∞∑

k=0

((
2n

n+ pk + p

)
−

(
2n

n− q + pk + p

))
=

=
∞∑

k=0

((
2n

n+ p+ pk

)
−
(

2n

n+ q + pk

))
.

This implies the first formula in the assert.

Second case: p is odd: p = 2q + 1. The denominators are n − pk and n − pk − q − 1,
respectively. For k ≥ 0 we have

∞∑

k=0

((
2n

n− pk

)
−

(
2n

n− q − 1− pk

))
=

=
∞∑

k=0

((
2n

n+ pk

)
−

(
2n

n+ q + 1 + pk

))
;

for k < 0, changing k 7→ −k − 1 :

∞∑

k=0

((
2n

n+ pk + p

)
−

(
2n

n− q − 1 + pk + p

))
=

=
∞∑

k=0

((
2n

n+ p+ pk

)
−
(

2n

n+ q + pk

))
.

This implies the second formula in the assert.
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Let us now consider the elements in odd position. If we perform the change of variable

n 7→ 2n+ 1 we can introduce a new quantity S
[p]

n :

S
[p]

n = S
[p]
2n+1 =

∞∑

j=−∞

(−1)j
(

2n+ 1

⌊(2n− pj)/2⌋

)
.

We find

Theorem 7. The generating function S
[p]
(t) of the sequence (S

[p]

n )
n∈N is

S
[p]
(t) =

{
M [p,1](t)−M [p,q](t)−M [p,q+1](t) +M [p,p](t), p = 2q;

M [p,1](t)−M [p,q](t)−M [p,q+2](t) +M [p,p](t); p = 2q + 1.

Or, in a single expression:

S
[p]
(t) = M [p,1](t)−M [p,⌊p/2⌋](t)−M [p,⌊(p+3)/2⌋](t) +M [p,p](t) =

= M[p,1](t)−M[p,⌊p/2⌋](t), p ∈ N.

Proof. The proof proceeds as in the previous theorems:

S
[p]

n =
∞∑

k=−∞

((
2n+ 1

⌊(2n− 2pk)/2⌋

)
−
(

2n+ 1

⌊(2n− 2pk − p)/2⌋

))
.

First case: p is even: p = 2q. The denominators are n− pk and n− pk− q, respectively.
For k ≥ 0 we have

∞∑

k=0

((
2n+ 1

n− pk

)
−

(
2n+ 1

n− q − pk

))
=

=
∞∑

k=0

((
2n+ 1

n+ 1 + pk

)
−

(
2n+ 1

n+ q + 1 + pk

))
;

for k < 0, changing k 7→ −k − 1 :

∞∑

k=0

((
2n+ 1

n+ pk + p

)
−

(
2n+ 1

n− q + pk + p

))
=

=
∞∑

k=0

((
2n+ 1

n+ p+ pk

)
−
(

2n+ 1

n+ q + pk

))
.

This implies the first formula in the assert.

Second case: p is odd: p = 2q + 1. The denominators are n − pk and n − pk − q − 1,
respectively. For k ≥ 0 we have

∞∑

k=0

((
2n+ 1

n− pk

)
−

(
2n+ 1

n− q − 1− pk

))
=
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=
∞∑

k=0

((
2n+ 1

n+ 1 + pk

)
−

(
2n+ 1

n+ q + 2 + pk

))
;

for k < 0, changing k 7→ −k − 1 :

∞∑

k=0

((
2n+ 1

n+ pk + p

)
−

(
2n+ 1

n− q − 1 + pk + p

))
=

=
∞∑

k=0

((
2n+ 1

n+ p+ pk

)
−
(

2n+ 1

n+ q + pk

))
.

This implies the second formula in the assert.

Finally, let us consider the sequence (T
[p]
n )

n∈N. If we perform the change of variable

n 7→ 2n+ 2 we can introduce a new quantity T
[p]

n :

T
[p]

n = T
[p]
2n+1 =

∞∑

j=−∞

(−1)j
(

2n+ 1

⌊(2n+ 1− pj)/2⌋

)
.

We find

Theorem 8. The generating function T
[p]
(t) of the sequence (T

[p]

n )
n∈N is

T
[p]
(t) =

{
M [p,1](t)−M [p,q](t)−M [p,q+1](t) +M [p,p](t), p = 2q;

M [p,1](t)− 2M [p,q+1](t) +M [p,p](t), p = 2q + 1.

Or, in a single expression:

T
[p]
(t) = M [p,1](t)−M [p,⌊(p+1)/2⌋](t)−M [p,⌊(p+2)/2⌋](t) +M [p,p](t) =

= M[p,1](t)−M[p,⌊p/2⌋+1](t), p ∈ N.

Proof. The proof proceeds as in the previous theorems:

T
[p]

n =
∞∑

k=−∞

((
2n+ 1

⌊(2n+ 1− 2pk)/2⌋

)
−
(

2n+ 1

⌊(2n+ 1− 2pk − p)/2⌋

))
.

First case: p is even: p = 2q. The denominators are n− pk and n− pk− q, respectively.
For k ≥ 0 we have

∞∑

k=0

((
2n+ 1

n− pk

)
−

(
2n+ 1

n− q − pk

))
=

=
∞∑

k=0

((
2n+ 1

n+ 1 + pk

)
−

(
2n+ 1

n+ q + 1 + pk

))
;
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for k < 0, changing k 7→ −k − 1 :

∞∑

k=0

((
2n+ 1

n+ pk + p

)
−

(
2n+ 1

n− q + pk + p

))
=

=
∞∑

k=0

((
2n+ 1

n+ p+ pk

)
−
(

2n+ 1

n+ q + pk

))
.

This implies the first formula in the assert.

Second case: p is odd: p = 2q + 1. The denominators are n − pk and n − pk − q,
respectively. For k ≥ 0 we have

∞∑

k=0

((
2n+ 1

n− pk

)
−

(
2n+ 1

n− q − pk

))
=

=
∞∑

k=0

((
2n+ 1

n+ 1 + pk

)
−

(
2n+ 1

n+ q + 1 + pk

))
;

for k < 0, changing k 7→ −k − 1 :

∞∑

k=0

((
2n+ 1

n+ pk + p

)
−

(
2n+ 1

n− q + pk + p

))
=

=
∞∑

k=0

((
2n+ 1

n+ p+ pk

)
−
(

2n+ 1

n+ q + 1 + pk

))
.

This implies the second formula in the assert.

3 Andrews’ generalizations

By using the results of the previous section we find the generating functions for the sums
(2.5) and 2.6) for any p ∈ N. In fact we have

Theorem 9. The generating functions S[p](t) and T [p](t) of the sequences (S
[p]
n )

n∈N and

(T
[p]
n )

n∈N are rational and are given by the following formulas:

S[p](t) = Ŝ[p](t2) + tS
[p]
(t2),

T [p](t) = tT̂ [p](t2) + t2T
[p]
(t2).

Tables 1 and 2 summarize the generating functions corresponding to Theorem 9 for p ≤ 8.
These expressions can be easily obtained by any system of symbolic computation as Maple.
In particular, for p = 5 we find again formulas (1.3) and (1.4), as expected. In the tables,
we give a reference to the same (or simply related) sequence in the Encyclopedia of Integer
Sequences (EIS) [8].
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p S[p](t) EIS

2 −1

3 0

4
t

1− 2t2
= t+ 2t3 + 4t5 + 8t7 + 16t9 + · · · A000079

5
t

1− t− t2
= t+ t2 + 2t3 + 3t4 + 5t5 + 8t6 + 13t7 + · · · A000045

6
t(1 + t)

1− 3t2
= t+ t2 + 3t3 + 3t4 + 9t5 + 9t6 + 27t7 + 27t8 + · · · A108411

A000244

7
t

1− t− 2t2 + t3
= t+ t2 + 3t3 + 4t4 + 9t5 + 14t6 + 28t7 + · · · A006053

8
t(1 + t− t2)

1− 4t2 + 2t4
= t+ t2 + 3t3 + 4t4 + 10t5 + 14t6 + 34t7 + · · · A121720

Table 1: Function S[p](t) for p ≤ 8

p T [p](t) EIS

2 t

3
t

1− t
= t+ t2 + t3 + t4 + · · · A000012

4
t(1 + t)

1− 2t2
= t+ t2 + 2t3 + 2t4 + 4t5 + 4t6 + · · · A016116

5
t

1− t− t2
= t+ t2 + 2t3 + 3t4 + 5t5 + 8t6 + 13t7 + · · · A000045

6
t(1 + t− t2)

1− 3t2
= t+ t2 + 2t3 + 3t4 + 6t5 + 9t6 + 18t7 + 27t8 + · · · A038754

A000244

7
t(1− t2)

1− t− 2t2 + t3
= t+ t2 + 2t3 + 3t4 + 6t5 + 10t6 + 19t7 + 33t8 + · · · A028495

8
t(1 + t− 2t2 − t3)

1− 4t2 + 2t4
= t+ t2 + 2t3 + 3t4 + 6t5 + 10t6 + 20t7 + · · · A030436

Table 2: Function T [p](t) for p ≤ 8
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4 Some new identities

Formulas (2.5) and (2.6) concern alternating sums: what can we say about the corresponding
non-alternating sums:

S[5]
n =

∞∑

j=−∞

(
n

⌊(n− 1− 5j)/2⌋

)
and T̂[5]

n =
∞∑

j=−∞

(
n− 1

⌊(n− 1− 5j)/2⌋

)
?

Let us begin with the first sum; clearly, the generating functions of even and odd positioned
elements are

Ŝ[5](t) = L[5,1](t) + L[5,2](t) + L[5,3](t) + L[5,4](t)

S
[5]
(t) = M [5,1](t) +M [5,2](t) +M [5,4](t) +M [5,5](t).

By using Maple, we obtain

Ŝ[5](t) =
t− 2 t2

1− 7 t+ 13 t2 − 4 t3
S
[5]
(t) =

1− 3 t

1− 7 t+ 13 t2 − 4 t3
;

the complete generating function is therefore:

S[5](t) = Ŝ[5](t2) + tS
[5]
(t2) =

t

1− t− 3 t2 + 2 t3
=

1

5

(
2

1− 2t
− 2 + t

1 + t− t2

)
,

where we performed a partial fraction expansion. We recognize the generating function of
the Fibonacci numbers with alternating signs, and so we have the closed formula:

S[5]
n =

2n+1 + (−1)n(Fn − 2Fn+1)

5
.

For what concerns the second sum, we have

T[5](t) = L[5,0](t) + L[5,2](t) + L[5,3](t) + L[5,5](t)

T
[5]
(t) = M [5,1](t) + 2M [5,3](t) +M [5,5](t).

By passing these expressions to Maple, we obtain

T[5](t) =
1− 5t+ 6t2

1− 7t+ 13t2 − 4t3
T

[5]
(t) =

1− 4t+ 4t2

1− 7t+ 13t2 − 4t3
;

the complete generating function is therefore:

T̂[5](t) = 1 + t2T[5](t2) + tT
[5]
(t2) =

=
1− 3t2

1− t− 3 t2 + 2 t3
=

1

5

(
1

1− 2t
+

4 + 7t

1 + t− t2

)
,

where we performed a partial fraction expansion. We have the closed formula:

T̂[5]
n =

2n + (−1)n(4Fn+1 − 7Fn)

5
.
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Tables 3 and 4 summarize the generating functions corresponding to the non-alternating
versions S

[p]
n and T

[p]
n of the sums (2.5) and (2.6) with p ≤ 8.

p S
[p](t) EIS

2
1

1− 2t
= 1 + 2t+ 4t2 + 8t3 + 16t4 + 32t5 + · · · A000079

3
2t

1− t− 2t2
= 2t+ 2t2 + 6t3 + 10t4 + 22t5 + 42t6 + · · · A001045

4
t

1− 2t
= t+ 2t2 + 4t3 + 8t4 + 16t5 + 32t6 + · · · A000079

5
t

1− t− 3t2 + 2t3
= t+ t2 + 4t3 + 5t4 + 15t5 + 22t6 + · · · A084179

6
t

1− t− 2t2
= t+ t2 + 3t3 + 5t4 + 11t5 + 21t6 + · · · A001045

7
t(1− 2t2)

1− t− 4t2 + 3t3 + 2t4
= t+ t2 + 3t3 + 4t4 + 11t5 + 16t6 · · ·

8
t(1− t− t2)

1− 2t− 2t2 + 4t3
= t+ t2 + 3t3 + 4t4 + 10t5 + 16t6 + 36t7 + · · ·

Table 3: Function S[p](t) for p ≤ 8

p T
[p](t) EIS

2
t

1− 2t
= t+ 2t2 + 4t3 + 8t4 + 16t5 + 32t6 + · · · A000079

3
t

1− t− 2t2
= t+ t2 + 3t3 + 5t4 + 11t5 + 21t6 + · · · A001045

4
t(1− t)

1− 2t
= t+ t2 + 2t3 + 4t4 + 8t5 + 16t6 + · · · A000079

5
t(1− 2t2)

1− t− 3t2 + 2t3
= t+ t2 + 2t3 + 4t4 + 7t5 + 12t6 + · · · A099163

6
t(1− t− t2)

1− 2t− t2 + 2t3
= t+ t2 + 2t3 + 3t4 + 6t5 + 11t6 + · · · A005578

7
t(1− 3t2)

1− t− 4t2 + 3t3 + 2t4
= t+ t2 + 2t3 + 3t4 + 6t5 + 10t6 + 21t7 + · · ·

8
t(1− t− 2t2 + t3)

1− 2t− 2t2 + 4t3
= t+ t2 + 2t3 + 3t4 + 6t5 + 10t6 + 20t7 + · · ·

Table 4: Function T[p](t) for p ≤ 8
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In both cases, for p = 7, 8, we did not find a simple relation with a sequence in [8].
However, for p = 8 we have the following explicit formulas:

S[8]
n =

1

4
2n +

{
1
2
2(n−1)/2, if n is odd;

0, otherwise.

R[8]
n =

1

8
2n +

1

4

{
2n/2, if n is even;

2(n−1)/2+1, otherwise.

We note that the first formula is valid for n > 0, while the second one for n > 1.

5 Conclusions

We have shown how Andrews’ formulas can be obtained and generalized in terms of gen-
erating functions. We also obtained results for non-alternating sums, and it is easily seen
that many other identities could be proved by performing suitable linear combinations of
the rational generating functions considered in Theorems 3 and 4.
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