The Compositions of Differential Operations and the Gateaux Directional Derivative

Branko J. Malešević and Ivana V. Jovović
University of Belgrade
Faculty of Electrical Engineering
Bulevar kralja Aleksandra 73
Belgrade
Serbia
malesh@EUnet.yu
ivana121@EUnet.yu

Abstract
This paper deals with the number of meaningful compositions of higher order of differential operations and the Gateaux directional derivative.

1 The compositions of differential operations of the space \mathbb{R}^3

In the real three-dimensional space \mathbb{R}^3 we consider the following sets:

$$A_0 = \{ f: \mathbb{R}^3 \rightarrow \mathbb{R} | f \in C^\infty(\mathbb{R}^3) \} \quad \text{and} \quad A_1 = \{ \vec{f}: \mathbb{R}^3 \rightarrow \mathbb{R}^3 | \vec{f} \in \vec{C}^\infty(\mathbb{R}^3) \}. \quad (1)$$

It is customary in vector analysis to consider $m = 3$ basic differential operations on A_0 and A_1 [1], namely:

$$\nabla_1 f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3} \right): A_0 \rightarrow A_1,$$

$$\nabla_2 \vec{f} = \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}, \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}, \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} \right): A_1 \rightarrow A_1, \quad (2)$$

$$\nabla_3 \vec{f} = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}: A_1 \rightarrow A_0.$$
Let us present the number of meaningful compositions of higher order over the set \(\mathcal{A}_3 = \{\nabla_1, \nabla_2, \nabla_3\} \). It is familiar fact that there are \(m = 5 \) compositions of the second order \(\cite{2}, p. 161 \):

\[
\Delta f = \text{div} \text{grad} f = \nabla_3 \circ \nabla_1 f,
\]

\[
\text{curl} \text{curl} f = \nabla_2 \circ \nabla_2 f,
\]

\[
\text{grad} \text{div} f = \nabla_1 \circ \nabla_3 f,
\]

\[
\text{curl} \text{grad} f = \nabla_2 \circ \nabla_1 f = 0,
\]

\[
\text{div} \text{curl} f = \nabla_3 \circ \nabla_2 f = 0.
\]

Malešević \(\cite{3} \) proved that there are \(m = 8 \) compositions of the third order:

\[
\text{grad} \text{div} \text{grad} f = \nabla_1 \circ \nabla_3 \circ \nabla_1 f,
\]

\[
\text{curl} \text{curl} \text{curl} f = \nabla_2 \circ \nabla_2 \circ \nabla_2 f,
\]

\[
\text{div} \text{grad} \text{div} f = \nabla_3 \circ \nabla_1 \circ \nabla_3 f,
\]

\[
\text{curl} \text{grad} \text{curl} f = \nabla_2 \circ \nabla_1 \circ \nabla_3 f = 0,
\]

\[
\text{div} \text{curl} \text{grad} f = \nabla_3 \circ \nabla_2 \circ \nabla_1 f = 0,
\]

\[
\text{div} \text{curl} \text{curl} f = \nabla_3 \circ \nabla_2 \circ \nabla_2 f = 0,
\]

\[
\text{grad} \text{div} \text{curl} f = \nabla_1 \circ \nabla_3 \circ \nabla_2 f = 0,
\]

\[
\text{curl} \text{grad} \text{div} f = \nabla_2 \circ \nabla_1 \circ \nabla_3 f = 0.
\]

If \(f(k) \) is the number of compositions of the \(k \)th order, then Malešević \(\cite{4} \) proved

\[
f(k) = F_{k+3},
\]

where \(F_k \) is \(k \)th Fibonacci number.

2 The compositions of the differential operations and Gateaux directional derivative of the space \(\mathbb{R}^3 \)

Let \(f \in A_0 \) be a scalar function and \(\vec{e} = (e_1, e_2, e_3) \in \mathbb{R}^3 \) be a unit vector. The \textit{Gateaux directional derivative} in direction \(\vec{e} \) is defined by \(\cite{5}, p. 71 \):

\[
dir_{\vec{e}} f = \nabla_0 f = \nabla_1 f \cdot \vec{e} = \frac{\partial f}{\partial x_1} e_1 + \frac{\partial f}{\partial x_2} e_2 + \frac{\partial f}{\partial x_3} e_3 : A_0 \to A_0.
\]
Let us determine the number of meaningful compositions of higher order over the set $B_3 = \{\nabla_0, \nabla_1, \nabla_2, \nabla_3\}$. There exist $m = 8$ compositions of the second order:

\[
\begin{align*}
\text{dir}_e \text{dir}_e f &= \nabla_0 \circ \nabla_0 f = \nabla_1 (\nabla_1 f \cdot \vec{e}) \cdot \vec{e}, \\
\text{grad dir}_e f &= \nabla_1 \circ \nabla_0 f = \nabla_1 (\nabla_1 f \cdot \vec{e}), \\
\Delta f &= \text{div grad} f = \nabla_3 \circ \nabla_1 f, \\
\text{curl curl} \vec{f} &= \nabla_2 \circ \nabla_2 \vec{f}, \\
\text{dir}_e \text{div} \vec{f} &= \nabla_0 \circ \nabla_3 \vec{f} = (\nabla_1 \circ \nabla_3 \vec{f}) \cdot \vec{e}, \\
\text{grad div} \vec{f} &= \nabla_1 \circ \nabla_3 \vec{f}, \\
\text{curl grad} \vec{f} &= \nabla_2 \circ \nabla_1 f = \vec{0}, \\
\text{div curl} \vec{f} &= \nabla_3 \circ \nabla_2 \vec{f} = 0; \\
\end{align*}
\]

and there exist $m = 16$ compositions of the third order:

\[
\begin{align*}
\text{dir}_e \text{dir}_e \text{dir}_e f &= \nabla_0 \circ \nabla_0 \circ \nabla_0 f, \\
\text{grad dir}_e \text{dir}_e f &= \nabla_1 \circ \nabla_0 \circ \nabla_0 f, \\
\text{div grad dir}_e f &= \nabla_3 \circ \nabla_1 \circ \nabla_0 f, \\
\text{dir}_e \text{div grad} f &= \nabla_0 \circ \nabla_3 \circ \nabla_1 f, \\
\text{grad div grad} f &= \nabla_1 \circ \nabla_3 \circ \nabla_1 f, \\
\text{curl curl curl} \vec{f} &= \nabla_2 \circ \nabla_2 \circ \nabla_2 \vec{f}, \\
\text{dir}_e \text{dir}_e \text{div} \vec{f} &= \nabla_0 \circ \nabla_0 \circ \nabla_3 \vec{f}, \\
\text{grad dir}_e \text{div} \vec{f} &= \nabla_1 \circ \nabla_0 \circ \nabla_3 \vec{f}, \\
\text{div grad div} \vec{f} &= \nabla_3 \circ \nabla_1 \circ \nabla_3 \vec{f}, \\
\text{curl grad dir} \vec{f} &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}, \\
\text{curl curl grad} \vec{f} &= \nabla_2 \circ \nabla_2 \circ \nabla_1 f = \vec{0}, \\
\text{div curl grad} \vec{f} &= \nabla_3 \circ \nabla_2 \circ \nabla_1 f = 0, \\
\text{div curl curl} \vec{f} &= \nabla_3 \circ \nabla_2 \circ \nabla_2 \vec{f} = 0, \\
\text{dir}_e \text{div curl} \vec{f} &= \nabla_0 \circ \nabla_3 \circ \nabla_2 \vec{f} = 0, \\
\text{grad div curl} \vec{f} &= \nabla_1 \circ \nabla_3 \circ \nabla_2 \vec{f} = \vec{0}, \\
\text{curl grad div} \vec{f} &= \nabla_2 \circ \nabla_1 \circ \nabla_3 \vec{f} = \vec{0}. \\
\end{align*}
\]
Further on we shall use the method from the paper [4]. Let us define a binary relation \(\sigma \) “to be in composition”: \(\nabla_i \sigma \nabla_j \) iff the composition \(\nabla_j \circ \nabla_i \) is meaningful. Then Cayley table of the relation \(\sigma \) is determined by

\[
\begin{array}{c|cccc}
\sigma & \nabla_0 & \nabla_1 & \nabla_2 & \nabla_3 \\
\hline
\nabla_0 & T & T & \bot & \bot \\
\nabla_1 & \bot & \bot & T & T \\
\nabla_2 & \bot & \bot & T & T \\
\nabla_3 & T & T & \bot & \bot \\
\end{array}
\] (9)

Let us denote by \(\nabla_{-1} \) nowhere-defined function, where domain and range are empty sets [3] and let \(\nabla_{-1} \sigma \nabla_i \) hold for \(i = 0, 1, 2, 3 \). If \(G \) is graph which is determined by the relation \(\sigma \), then graph of paths of \(G \) is the tree with the root \(\nabla_{-1} \) (Fig. 1).

![Fig. 1](image)

Let \(g(k) \) be the number of meaningful compositions of the \(k \)th order of the functions from \(\mathcal{B}_3 \) and let \(g_i(k) \) be the number of meaningful compositions of the \(k \)th order beginning from the left by \(\nabla_i \). Then \(g(k) = g_0(k) + g_1(k) + g_2(k) + g_3(k) \). Based on the partial self similarity of the tree (Fig. 1) we obtain equalities

\[
\begin{align*}
g_0(k) &= g_0(k-1) + g_1(k-1), \\
g_1(k) &= g_2(k-1) + g_3(k-1), \\
g_2(k) &= g_2(k-1) + g_3(k-1), \\
g_3(k) &= g_0(k-1) + g_1(k-1).
\end{align*}
\] (10)

Hence, the recurrence for \(g(k) \) is

\[
g(k) = 2g(k-1)
\] (11)

and because \(g(1) = 4 \) we have

\[
g(k) = 2^{k+1}.
\] (12)

3 The compositions of differential operations of the space \(\mathbb{R}^n \)

Let us present the number of meaningful compositions of differential operations in the vector analysis of the space \(\mathbb{R}^n \), where differential operations \(\nabla_r \ (r = 1, \ldots, n) \) are defined on
Let us define higher order differential operations as meaningful compositions of higher order
differential operations from the set $\mathcal{A}_n = \{\nabla_1, \ldots, \nabla_n\}$. The number of higher order
differential operations is given according to the paper [4]. Furthermore, let us define a
binary relation ρ “to be in composition”: $\nabla_i \rho \nabla_j$ iff the composition $\nabla_j \circ \nabla_i$ is meaningful.
Then Cayley table of the relation ρ is determined by

$$
\nabla_i \rho \nabla_j = \begin{cases}
\top & , (j = i + 1) \lor (i + j = n + 1); \\
\bot & , \text{otherwise.}
\end{cases}
$$

Let $A = [a_{ij}] \in \{0, 1\}^{n \times n}$ be the adjacency matrix associated with the graph which is
determined by the relation ρ. Malešević [6] proved the following statements.

Theorem 3.1. Let $P_n(\lambda) = [A - \lambda I] = \alpha_0 \lambda^n + \alpha_1 \lambda^{n-1} + \cdots + \alpha_n$ be the characteristic polynomial
of the matrix A and $v_n = [1 \ldots 1]_{1 \times n}$. If $f(k)$ is the number of the k^{th} order differential
operations, then the following formulas hold:

$$
f(k) = v_n \cdot A^{k-1} \cdot v_n^T \quad (15)
$$

and

$$
\alpha_0 f(k) + \alpha_1 f(k-1) + \cdots + \alpha_n f(k-n) = 0 \quad (k > n). \quad (16)
$$
Lemma 3.2. Let $P_n(\lambda)$ be the characteristic polynomial of the matrix A. Then the following recurrence holds:

$$P_n(\lambda) = \lambda^2(P_{n-2}(\lambda) - P_{n-4}(\lambda)).$$ \hfill (17)

Lemma 3.3. Let $P_n(\lambda)$ be the characteristic polynomial of the matrix A. Then it has the following explicit form:

$$P_n(\lambda) = \begin{cases} \sum_{k=1}^{\lfloor \frac{n+2}{4} \rfloor + 1} (-1)^{k-1} \left(\begin{array}{c} \frac{n-k+2}{2} \\ k-1 \end{array} \right) \lambda^{n-2k+2}, & n = 2m; \\ \sum_{k=1}^{\lfloor \frac{n+2}{4} \rfloor + 2} (-1)^{k-1} \left(\begin{array}{c} \frac{n+3-k}{2} \\ k-1 \end{array} \right) + \left(\begin{array}{c} \frac{n+3-k}{2} \\ k-2 \end{array} \right) \lambda^{n-2k+2}, & n = 2m+1. \end{cases}$$ \hfill (18)

From previous statements one can obtain the recurrences in the table, [4]:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Recurrence for the number of the k^{th} order differential operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 3$</td>
<td>$f(k) = f(k-1) + f(k-2)$</td>
</tr>
<tr>
<td>$n = 4$</td>
<td>$f(k) = 2f(k-2)$</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>$f(k) = f(k-1) + 2f(k-2) - f(k-3)$</td>
</tr>
<tr>
<td>$n = 6$</td>
<td>$f(k) = 3f(k-2) - f(k-4)$</td>
</tr>
<tr>
<td>$n = 7$</td>
<td>$f(k) = f(k-1) + 3f(k-2) - 2f(k-3) - f(k-4)$</td>
</tr>
<tr>
<td>$n = 8$</td>
<td>$f(k) = 4f(k-2) - 3f(k-4)$</td>
</tr>
<tr>
<td>$n = 9$</td>
<td>$f(k) = f(k-1) + 4f(k-2) - 3f(k-3) - 3f(k-4) + f(k-5)$</td>
</tr>
<tr>
<td>$n = 10$</td>
<td>$f(k) = 5f(k-2) - 6f(k-4) + f(k-6)$</td>
</tr>
</tbody>
</table>

The values of the function $f(k)$, for small values of the argument k, are given in the database of integer sequences [8] as the following sequences: A020701 ($n = 3$), A090989 ($n = 4$), A090990 ($n = 5$), A090991 ($n = 6$), A090992 ($n = 7$), A090993 ($n = 8$), A090994 ($n = 9$), A090995 ($n = 10$).

4 The compositions of differential operations and Gateaux directional derivative of the space \mathbb{R}^n

Let $f \in A_0$ be a scalar function and $\vec{e} = (e_1, \ldots, e_n) \in \mathbb{R}^n$ be a unit vector. The Gateaux directional derivative in direction \vec{e} is defined by [5, p. 71]:

$$\text{dir}_{\vec{e}} f = \nabla_0 f = \sum_{k=1}^{n} \frac{\partial f}{\partial x_k} e_k : A_0 \rightarrow A_0.$$ \hfill (19)
Let us extend the set of differential operations $A_n = \{\nabla_1, \ldots, \nabla_n\}$ with Gateaux directional derivative to the set $B_n = A_n \cup \{\nabla_0\} = \{\nabla_0, \nabla_1, \ldots, \nabla_n\}$:

$$
\begin{align*}
B_n (n=2m): & \quad \nabla_0 : A_0 \rightarrow A_0 \\
& \nabla_1 : A_0 \rightarrow A_1 \\
& \nabla_2 : A_1 \rightarrow A_2 \\
& \vdots \\
& \nabla_i : A_{i-1} \rightarrow A_i \\
& \vdots \\
& \nabla_m : A_{m-1} \rightarrow A_m \\
& \nabla_{m+1} : A_m \rightarrow A_{m-1} \\
& \vdots \\
& \nabla_{n-j} : A_{j+1} \rightarrow A_j \\
& \vdots \\
& \nabla_{n-1} : A_2 \rightarrow A_1 \\
& \nabla_n : A_1 \rightarrow A_0, \\
\end{align*}
$$

$$
\begin{align*}
B_n (n=2m+1): & \quad \nabla_0 : A_0 \rightarrow A_0 \\
& \nabla_1 : A_0 \rightarrow A_1 \\
& \nabla_2 : A_1 \rightarrow A_2 \\
& \vdots \\
& \nabla_i : A_{i-1} \rightarrow A_i \\
& \vdots \\
& \nabla_m : A_{m-1} \rightarrow A_m \\
& \nabla_{m+1} : A_m \rightarrow A_{m-1} \\
& \vdots \\
& \nabla_{n-j} : A_{j+1} \rightarrow A_j \\
& \vdots \\
& \nabla_{n-1} : A_2 \rightarrow A_1 \\
& \nabla_n : A_1 \rightarrow A_0. \\
\end{align*}
$$

(20)

Let us define higher order differential operations with Gateaux derivative as the meaningful compositions of higher order of the functions from the set $B_n = \{\nabla_0, \nabla_1, \ldots, \nabla_n\}$. Our aim is to determine the number of higher order differential operations with Gateaux derivative. Let us define a binary relation σ “to be in composition”:

$$
\nabla_i \sigma \nabla_j = \begin{cases}
T, & (i = 0 \land j = 0) \lor (i = n \land j = 0) \lor (j = i + 1) \lor (i + j = n + 1); \\
\bot, & \text{otherwise.}
\end{cases}
$$

(21)

and let $B = [b_{ij}] \in \{0, 1\}^{(n+1) \times n}$ be the adjacency matrix associated with the graph which is determined by relation σ. So, analogously to the paper [6], the following statements hold.

Theorem 4.1. Let $Q_n(\lambda) = |B - \lambda I| = \beta_0 \lambda^{n+1} + \beta_1 \lambda^n + \cdots + \beta_{n+1}$ be the characteristic polynomial of the matrix B and $v_{n+1} = [1 \ldots 1]_{1 \times (n+1)}$. If $g(k)$ is the number of the k^{th} order differential operations with Gateaux derivative, then the following formulas hold:

$$
g(k) = v_{n+1} \cdot B^{k-1} \cdot v_{n+1}^T
$$

(22)

and

$$
\beta_0 g(k) + \beta_1 g(k - 1) + \cdots + \beta_{n+1} g(k - (n + 1)) = 0 \quad (k > n + 1).
$$

(23)

Lemma 4.2. Let $Q_n(\lambda)$ and $P_n(\lambda)$ be the characteristic polynomials of the matrices B and A respectively. Then the following equality holds:

$$
Q_n(\lambda) = \lambda^2 P_{n-2}(\lambda) - \lambda P_n(\lambda).
$$

(24)
Proof. Let us calculate the characteristic polynomial

\[Q_n(\lambda) = |B - \lambda I| = \begin{vmatrix}
1 - \lambda & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & -\lambda & 1 & 0 & \ldots & 0 & 0 & 1 \\
0 & 0 & -\lambda & 1 & \ldots & 0 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 1 & \ldots & -\lambda & 1 & 0 \\
1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & -\lambda \\
\end{vmatrix}. \tag{25}\]

Expanding the determinant \(Q_n(\lambda) \) by the first column we have

\[Q_n(\lambda) = (1 - \lambda)P_n(\lambda) + (-1)^{n+2}D_n(\lambda), \tag{26}\]

where

\[D_n(\lambda) = \begin{vmatrix}
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
-\lambda & 1 & 0 & 0 & \ldots & 0 & 0 & 1 \\
0 & -\lambda & 1 & 0 & \ldots & 0 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 1 & \ldots & -\lambda & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & \ldots & 0 & -\lambda & 1 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 & -\lambda & 1 \\
\end{vmatrix}. \tag{27}\]

Let us expand the determinant \(D_n(\lambda) \) by the first row and then in the next step, multiply the first row by \(-1\) and add it to the last row. We obtain the determinant of order \(n - 1 \):

\[D_n(\lambda) = \begin{vmatrix}
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 \\
-\lambda & 1 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & -\lambda & 1 & 0 & \ldots & 0 & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 1 & \ldots & -\lambda & 1 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 & -\lambda & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & -\lambda & 0 \\
\end{vmatrix}. \tag{28}\]

Expanding the previous determinant by the last column we have

\[D_n(\lambda) = (-1)^n \begin{vmatrix}
-\lambda & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 \\
0 & -\lambda & 1 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & 0 & -\lambda & 1 & \ldots & 0 & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 1 & 0 & \ldots & 0 & -\lambda & 1 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 & -\lambda & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & -\lambda \\
\end{vmatrix}. \tag{29}\]
If we expand the previous determinant by the last row and if we expand the obtained determinant by the first column, we have the determinant of order $n - 4$:

$$D_n(\lambda) = (-1)^n \lambda^2$$

\[
\begin{vmatrix}
-\lambda & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 \\
0 & -\lambda & 1 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & 0 & -\lambda & 1 & \ldots & 0 & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 1 & 0 & \ldots & 0 & -\lambda & 1 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 & -\lambda & 1 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & -\lambda \\
\end{vmatrix}
\]

(30)

In other words

$$D_n(\lambda) = (-1)^n \lambda^2 P_{n-4}(\lambda).$$

(31)

From equalities (31) and (26) there follows:

$$Q_n(\lambda) = (1 - \lambda) P_n(\lambda) + \lambda^2 P_{n-4}(\lambda).$$

(32)

On the basis of Lemma 3.2, the following equality holds:

$$Q_n(\lambda) = \lambda^2 P_{n-2}(\lambda) - \lambda P_n(\lambda).$$

(33)

Lemma 4.3. Let $Q_n(\lambda)$ be the characteristic polynomial of the matrix B. Then the following recurrence holds:

$$Q_n(\lambda) = \lambda^2 (Q_{n-2}(\lambda) - Q_{n-4}(\lambda)).$$

(34)

Proof. On the basis of Lemma 3.2 and Lemma 4.2, the Lemma follows.

Lemma 4.4. Let $Q_n(\lambda)$ be the characteristic polynomial of the matrix B. Then it has the following explicit form:

$$Q_n(\lambda) = \begin{cases}
(\lambda - 2) \sum_{k=1}^{\lfloor n/2 \rfloor} (-1)^{k-1} \binom{n+1}{2k+1} \lambda^{n-2k+1}, & n = 2m+1; \\
\sum_{k=1}^{\lfloor (n+3)/4 \rfloor} (-1)^{k-1} \left(\binom{n-k+2}{k-1} + \binom{n-k+2}{k-2} \right) \lambda^{n-2k+3}, & n = 2m.
\end{cases}$$

(35)

Proof. On the basis of Lemma 3.3 and Lemma 4.2, the Lemma follows.

The recurrences for dimensions $n = 3, 4, \ldots, 10$ are obtained by means of Malešević-Jovović [7] and they are given in the table below.
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Recurrence for the num. of the k^{th} order diff. operations with Gateaux derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 3$</td>
<td>$g(k) = 2g(k-1)$</td>
</tr>
<tr>
<td>$n = 4$</td>
<td>$g(k) = g(k-1) + 2g(k-2) - g(k-3)$</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>$g(k) = 2g(k-1) + g(k-2) - 2g(k-3)$</td>
</tr>
<tr>
<td>$n = 6$</td>
<td>$g(k) = g(k-1) + 3g(k-2) - 2g(k-3) - g(k-4)$</td>
</tr>
<tr>
<td>$n = 7$</td>
<td>$g(k) = 2g(k-1) + 2g(k-2) - 2g(k-3)$</td>
</tr>
<tr>
<td>$n = 8$</td>
<td>$g(k) = g(k-1) + 4g(k-2) - 3g(k-3) - 3g(k-4) + g(k-5)$</td>
</tr>
<tr>
<td>$n = 9$</td>
<td>$g(k) = 2g(k-1) + 3g(k-2) - 6g(k-3) - g(k-4) + 2g(k-5)$</td>
</tr>
<tr>
<td>$n = 10$</td>
<td>$g(k) = g(k-1) + 5g(k-2) - 4g(k-3) - 6g(k-4) + 3g(k-5) + g(k-6)$</td>
</tr>
</tbody>
</table>

The values of the function $g(k)$, for small values of the argument k, are given in the database of integer sequences [8] as the following sequences $A000079$ ($n = 3$), $A090990$ ($n = 4$), $A007283$ ($n = 5$), $A090992$ ($n = 6$), $A000079$ ($n = 7$), $A090994$ ($n = 8$), $A020714$ ($n = 9$), $A129638$ ($n = 10$).

References

2000 Mathematics Subject Classification: 05C30, 26B12, 58C20.

Keywords: compositions of the differential operations, enumeration of graphs and maps, Gateaux directional derivative.

(Concerned with sequences A000079, A007283, A020701, A020714, A090989, A090990, A090991, A090992, A090993, A090994, A090995, and A129638.)

Received June 5 2007; revised version received July 30 2007. Published in Journal of Integer Sequences, August 3 2007.

Return to Journal of Integer Sequences home page.