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Abstract

We find asymptotics for lacunary sums of binomial coefficients. As an application
we determine the exact and approximate probability that the first card has the uniquely
highest rank among the top l cards of a standard card deck.

1 Introduction

In card games, we often pick the first i cards from the top of a standard deck and check the
ranks of these cards as they show up. The kings have the highest rank, 13, while the aces
have the lowest, 1. What are the chances, pi, that the first card has the uniquely highest
rank among these i cards? One expects this number to be slightly less than 1/i for small
values of i. We will obtain some asymptotics for this probability in the generalized case in
which there are m denominations (of face values 1, 2, . . . , m) in each of k suits, i.e., m = 13
and k = 4 for the standard deck. We prove

Theorem 1. Let i, k and m be positive integers and pi as defined above. Then

pi ≈
1

i
−

1

2m

(

1−
1

k

)

, (1)

for 2 ≤ i ≤ m1/4 as m → ∞.
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We can rephrase Theorem 1 and obtain Theorem 2 which is of general interest since it
concerns the k-sected version of the so-called upper summation [3, p. 174] (sometimes also
referred to as the hockey stick pattern, though apparently, there is some confusion regarding
this naming convention).

Theorem 2. Let i, k and m be positive integers. We have that

m
∑

l=1

(

k(l − 1)

i− 1

)

∼

(

km

i

)

1

k

(

1−
i

2m

(

1−
1

k

))

(2)

for 2 ≤ i ≤ m1/4 as m → ∞.

Some particular lacunary sums of this type have combinatorial interpretations (cf. Table
1), and they appear in Sloane’s On-Line Encyclopedia of Integer Sequences [5].

k i A-number Comments

2 3 A002412 hexagonal pyramidal numbers, or greengrocer’s numbers
2 4 A112742 second derivative of the n-th Chebyshev polynomial

(of the first kind) evaluated at x = 1
3 4 A116689 partial sums of dodecahedral numbers

Table 1: Lacunary sums of binomial coefficients

We can extend Theorem 2 for other k-sections using simple identities for binomial coef-
ficients.

Theorem 3. Let i, k and m be positive integers and j be an integer so that 0 ≤ j < min{i, k}.
We have that

m
∑

l=1

(

k(l − 1) + j

i− 1

)

∼

(

km+ j

i

)

1

k

(

1−
i

2(m+ j
k
)

(

1−
1

k

)

)

(3)

for 2 ≤ i ≤ m1/4 as m → ∞.

The approximation (2) (and subsequently, (3)) can be improved by involving more terms
in the last factor as it is indicated immediately after (14) for approximating pi. Note that the
sum in (2) has a closed form by standard binomial summation if k = 1, and it corresponds
to the upper summation identity. In this case, equality holds in (2) for all positive integers
i and m. The same applies to (3).

2 Preliminaries

The simplest version of the card selection problem is proposed in [4, Example 2.3.3] with the
standard deck and i = 2: “Two cards are drawn from a poker deck without replacement.
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What is the probability that the second is higher in rank than the first?” We use the notation

Ai = the rank of first card exceeds that of the other i− 1 cards, so
A2 = the rank of first card exceeds that of the second card,
B = the rank of second card exceeds that of the first card,
C = the first and second cards have the same rank.

Clearly, P (A2) = P (B), by symmetry, and P (C) = 3
51

which yields P (A2) =
24
51

= 1
2
− 3

102
≈

0.4706, while the approximation (1) yields p2 ≈
1
2
− 1

26

(

1− 1
4

)

≈ 0.4712.
By using conditional probabilities, we get that in general,

pi = P (Ai) =
∑m

l=1 P (Ai | Dl)P (Dl) =
∑m

l=1

(k(l−1)
i−1 )

(km−1
i−1 )

k
km

= k
i

1

(kmi )

∑m
l=1

(

k(l−1)
i−1

)

,
(4)

with Dl being the event that the first card is of face value l = 1, 2, . . . ,m. Clearly, p1 = 1
and pk(m−1)+1 = 1/

(

km
k

)

, since in the latter case, the first card and the last k− 1 cards in the

full deck of km cards are of the highest rank. Easy calculation shows that p2 =
k(m−1)
2(km−1)

but

pi looks less and less manageable as i gets large. Also, it is obvious that pi = 1/i for k = 1.
We applied symbolic summation techniques to rewrite (2), (3) and (4) but did not succeed

in obtaining useful closed forms. Note, however, that we can derive the generating function
of the last sum in (4) in the form of

g(x) =

k(m−1)+1
∑

i=1

pi
i

k

(

km

i

)

xi =

k(m−1)+1
∑

i=1

m
∑

l=1

(

k(l − 1)

i− 1

)

xi

through the generating function in two variables

f(x, y) =
∑k(m−1)+1

i=1

∑m
l=1

(

k(l−1)
i−1

)

xiyl =
∑m

l=1 y
l
∑k(l−1)+1

i=1

(

k(l−1)
i−1

)

xi

=
∑m

l=1 y
lx(1 + x)k(l−1) = xy

1−(y(1+x)k)
m

1−y(1+x)k
.

In fact, it follows that g(x) = f(x, 1) = x1−(1+x)km

1−(1+x)k
. However, this does not seem to help

with the asymptotics.

3 Proof of Theorem 1

Clearly, p1 = 1, and it is easy to see that pi =
1
i
− 1

2m
(1 − 1

k
) +

(i−1) (k2−6 k+5)
12 k2m2 + O( 1

m3 ) for
2 ≤ i ≤ 8 as m → ∞, in agreement with (1).

By standard asymptotical expansion of the binomial coefficients, we have that

(

n

k

)

=
nk

k!

(

1−

(

k
2

)

n
+

(3k − 1)
(

k
3

)

4n2
+O

(

k6

n3

)

)

, (5)
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which is useful when k = O
(

n1/2−ǫ
)

with any small positive ǫ. We will use the inequality

(

n

k

)

≤
nk

k!
, (6)

which holds for every k, 0 ≤ k ≤ n, in the second part of the estimation (13). On the other
hand,

∑m
l=1(l − 1)i = 1

i+1

∑i
l=0

(

i+1
l

)

Blm
i+1−l

= 1
i+1

mi+1 − 1
2
mi + i

12
mi−1 +O (i2mi−2)

(7)

with i = o (m) by using the Bernoulli numbers, Bl [3, Section 6.5]; for example, B0 = 1, B1 =
−1

2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
, B5 = 0, and B6 =

1
42
. We note that an alternative approach

for approximating sums of powers is outlined in [1] based on an observation of Bernoulli
which is related to the Faulhaber polynomials [2]

m
∑

l=1

(l − 1)i =
mi+1

1

i+ 1

(

1−

(

i+1
2

)

12m2
1

+
7
(

i+1
4

)

240m4
1

− . . .

)

with m1 = m−
1

2
. (8)

For an application of this technique see [6]. Note that while in the expansion (7) the fourth
term vanishes since B3 = 0, in the alternative approach the second term vanishes already.
This fact might help in getting the asymptotic evaluations below a little faster, although
by somewhat more complicated expansions. This approach can be easily tested by some
software with symbolic calculation capabilities. We achieved this by using the Mathematica

function FullSimplify with the assumption that the exponents in the terms of the form
(m− 1

2
)i are positive integers. In fact, to get the approximation (1), we need only

1

mi

(

1 +

(

i
2

)

km

)(

(m− 1
2
)i

i
−

(

i−1
2

)

k

(m− 1
2
)i−1

i− 1

)

,

while our main approach requires an extra term from the expansion (7) (cf. (11))

1

mi

(

1 +

(

i
2

)

km

)(

mi

(

1

i
−

1

2m

)

−

(

i−1
2

)

k
mi−1 1

i− 1

)

to obtain (14). In order to determine the next term (15) of the approximation, we need 4
and 6 terms of the expansions (8) and (7), respectively. We note, however, that in both
approaches, every other term vanishes after the initial terms.

The good news is that the dominant terms in the sum (4) have large values of l in the
binomial coefficients for which we can use the asymptotics given in (5). This fact will make
the approximation surprisingly effective even for fairly large values of i.

Let i be any integer between 9 and the sufficiently large m1/4, and a(i) = ⌈ i8/3

k
⌉+1. This

choice guarantees
(

a(i)

m

)i

= O

(

(

1

km1/3

)i
)

= O

(

1

m3

)

. (9)
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Note that as m → ∞, formulas (7) and (9) yield the asymptotics

a(i)−1
∑

l=1

(l − 1)i−1 = a(i)i
(

1

i
−

1

2a(i)
+

i− 1

12a(i)2
+O

(

i2

a(i)3

))

(10)

and
∑m

l=a(i)(l − 1)i−1 =
∑m

l=1(l − 1)i−1 −
∑a(i)−1

l=1 (l − 1)i−1

= mi
(

1
i
− 1

2m
+ i−1

12m2 +O
(

i2

m3

))

+mi
(

a(i)
m

)i

O
(

1
i

)

= mi
(

1
i
− 1

2m
+ i−1

12m2 +O
(

i2

m3

))

+miO
(

1
im3

)

.

(11)

The identity (5) implies that

(

km
i

)

= (km)i

i!

(

1−
(i2)
km

+
(3i−1)(i3)
4(km)2

+O
(

i6

(km)3

)

)

,

1

(kmi )
= i!

(km)i

(

1 +
(i2)
km

+
(3i−2)(i+1

3 )
4(km)2

+O
(

i6

(km)3

)

)

.
(12)

According to (4), (5), (6), (9), (10) and (12), and with A = k
i

1

(kmi )
, we get that

pi = A
∑m

l=1

(

k(l−1)
i−1

)

= A
(

∑m
l=a(i)

(

k(l−1)
i−1

)

+ ki−1

i!
O(a(i)i)

)

= k
i

i!
(km)i

(

1 +
(i2)
km

+
(3i−2)(i+1

3 )
4(km)2

+O
(

i6

(km)3

)

)

×
∑m

l=a(i)
ki−1(l−1)i−1

(i−1)!

(

1−
(i−1

2 )
k(l−1)

+
(3i−4)(i−1

3 )
4(k(l−1))2

+O
(

i6

(l−1)3

)

)

+O
(

1
im3

)

,

(13)

for a(i) ≤ l implies that i ≤ (k(l − 1))3/8, and thus, we can use (5) in the last part of (13).
Now by (11), we derive that

pi = k
i

i!
(km)i

(

1 +
(i2)
km

+
(3i−2)(i+1

3 )
4(km)2

+O
(

i6

(km)3

)

)

ki−1

(i−1)!

×
( (

1
i
mi − 1

2
mi−1 + i−1

12
mi−2

)

−
(i−1

2 )
k

(

1
i−1

mi−1 − 1
2
mi−2 + i−2

12
mi−3

)

+
(3i−4)(i−1

3 )
4k2

(

1
i−2

mi−2 − 1
2
mi−3 + i−3

12
mi−4

) )

+O
(

i5

m3

)

+O
(

1
im3

)

which can be rewritten as
(

1 +
(i2)
km

+
(3i−2)(i+1

3 )
4(km)2

)

(

(

1
i
− 1

2m
+ i−1

12m2

)

−
(i−1

2 )
k

(

1
(i−1)m

− 1
2m2

)

+
(3i−4)(i−1

3 )
4k2

(

1
(i−2)m2 −

1
2m3

))

+O
(

i5

m3

)

= 1
i
− 1

2m

(

1− 1
k

)

+O
(

i
m2

)

.

(14)
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The error term in (14) can be further determined to yield

(i− 1) (k2 − 6 k + 5)

12 k2m2
+O(

1

m3
) (15)

as m → ∞ and i is kept fixed. With more involved calculations we find that the next
error term is (i−1) (k−1)(3(k−3) i−4 k+8)

24 k3m3 +O( 1
m4 ) which explains why the previous approximation

becomes even better if k = 3 and m is sufficiently large. Note that if k = 1 then the second
term of (1) and the above mentioned two terms vanish as one might expect since pi = 1/i
in this case.

Numerical calculation and plotting pi against i confirms that the approximation (1) is
valid for a much larger set of values i. (Of course, this observation is of no surprise as in
the above proof we dealt with the bounds on i quite generously. We extend the range of
values of i in the next section.) For example, in the case of the standard deck, we get that
pi ≈

1
i
− 0.029, in agreement with the fact that second term in (1) does not depend on i,

and it seems to be a fairly precise over-estimation for any 2 ≤ i ≤ 22. In general, however,
numerical experimentation also suggests that the approximation (1) needs correcting terms
when i grows.

4 Extending the range

The proof presented in the previous section can be improved to work for a larger set of values
of i; thus, we can extend the validity of Theorems 1-3. In fact, let i be any integer between
9/(1− ǫ) and the sufficiently large m1/3, and a(i) = ⌈ i2+ǫ

k
⌉+1 with any small positive ǫ. We

note that a(i) ≤ l implies that i ≤ (k(l− 1))
1

2+ǫ ; thus, we can use the approximation (5) for
binomial coefficients. We also need 9/(1 − ǫ) ≤ k to guarantee (9). After streamlining the
steps outlined in (10)-(14), we obtain a complete proof. First, we observe that

(

km
i

)

= (km)i

i!

(

1−
(i2)
km

+O
(

i4

(km)2

)

)

,

1

(kmi )
= i!

(km)i

(

1 +
(i2)
km

+O
(

i4

m2

)

)

.

It follows that

pi = A
∑m

l=1

(

k(l−1)
i−1

)

= A
(

∑m
l=a(i)

(

k(l−1)
i−1

)

+ ki−1

i!
O(a(i)i)

)

= k
i

i!
(km)i

(

1 +
(i2)
km

+O
(

i4

m2

)

)

×
∑m

l=a(i)
ki−1(l−1)i−1

(i−1)!

(

1−
(i−1

2 )
k(l−1)

+O
(

i4

(l−1)2

)

)

+O
(

1
im3

)

,

therefore,

pi = k
i

i!
(km)i

(

1 +
(i2)
km

+O
(

i4

m2

)

)

ki−1

(i−1)!

×
( (

1
i
mi − 1

2
mi−1 + i−1

12
mi−2

)

−
(i−1

2 )
k

(

1
i−1

mi−1 − 1
2
mi−2

)

+O(i4) 1
i−2

mi−2
)

+O
(

i5

m3

)

+O
(

1
im3

)

.
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This can be rewritten as
(

1 +
(i2)
km

)

(

(

1
i
− 1

2m

)

−
(i−1

2 )
k

1
(i−1)m

)

+O
(

i3

m2

)

= 1
i
− 1

2m

(

1− 1
k

)

+O
(

i3

m2

)

.

By including more correcting terms, one might be able to extend the range for i to m1/2−ǫ

with any positive ǫ.
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