

Partial Sums of Powers of Prime Factors

Jean-Marie De Koninck Département de Mathématiques et de Statistique Université Laval Québec G1K 7P4 Canada jmdk@mat.ulaval.ca

> Florian Luca Mathematical Institute, UNAM Ap. Postal 61-3 (Xangari) CP 58 089 Morelia, Michoacán Mexico

fluca@matmor.unam.mx

Abstract

Given integers $k \ge 2$ and $\ell \ge 3$, let $S_{k,\ell}^*$ stand for the set of those positive integers n which can be written as $n = p_1^k + p_2^k + \dots + p_\ell^k$, where p_1, p_2, \dots, p_ℓ are distinct prime factors of n. We study the properties of the sets $S_{k,\ell}^*$ and we show in particular that, given any odd $\ell \ge 3$, $\# \bigcup_{k=2}^{\infty} S_{k,\ell}^* = +\infty$.

1 Introduction

In [1], we studied those numbers with at least two distinct prime factors which can be expressed as the sum of a fixed power $k \ge 2$ of their prime factors. For instance, given an integer $k \ge 2$, and letting

$$S_k := \{n : \omega(n) \ge 2 \text{ and } n = \sum_{p|n} p^k\},\$$

where $\omega(n)$ stands for the number of distinct prime factors of n, one can check that the following 8 numbers belong to S_3 :

$$\begin{array}{rcl} 378 &=& 2\cdot 3^3\cdot 7 = 2^3 + 3^3 + 7^3,\\ 2548 &=& 2^2\cdot 7^2\cdot 13 = 2^3 + 7^3 + 13^3,\\ 2\,836\,295 &=& 5\cdot 7\cdot 11\cdot 53\cdot 139 = 5^3 + 7^3 + 11^3 + 53^3 + 139^3,\\ 4\,473\,671\,462 &=& 2\cdot 13\cdot 179\cdot 593\cdot 1621 = 2^3 + 13^3 + 179^3 + 593^3 + 1621^3,\\ 23\,040\,925\,705 &=& 5\cdot 7\cdot 167\cdot 1453\cdot 2713 = 5^3 + 7^3 + 167^3 + 1453^3 + 2713^3,\\ 13\,579\,716\,377\,989 &=& 19\cdot 157\cdot 173\cdot 1103\cdot 23857 = 19^3 + 157^3 + 173^3 + 1103^3 + 23857^3,\\ 21\,467\,102\,506\,955 &=& 5\cdot 7^3\cdot 313\cdot 1439\cdot 27791 = 5^3 + 7^3 + 313^3 + 1439^3 + 27791^3\\ 119\,429\,556\,097\,859 &=& 7\cdot 53\cdot 937\cdot 6983\cdot 49199 = 7^3 + 53^3 + 937^3 + 6983^3 + 49199^3. \end{array}$$

In particular, we showed that 378 and 2548 are the only numbers in S_3 with exactly three distinct prime factors.

We did not find any number belonging to S_k for k = 2 or $k \ge 4$, although each of these sets may very well be infinite.

In this paper, we examine the sets

$$S_k^* := \{n : \omega(n) \ge 2 \text{ and } n = \sum_{p|n}^* p^k\} \qquad (k = 2, 3, \ldots),$$

where the star next to the sum indicates that it runs over some subset of primes dividing n. For instance, $870 \in S_2^*$, because

$$870 = 2 \cdot 3 \cdot 5 \cdot 29 = 2^2 + 5^2 + 29^2.$$

Clearly, for each $k \ge 2$, we have $S_k^* \supseteq S_k$. Moreover, given integers $k \ge 2$ and $\ell \ge 3$, let $S_{k,\ell}^*$ stand for the set of those positive integers n which can be written as $n = p_1^k + p_2^k + \cdots + p_\ell^k$, where p_1, p_2, \ldots, p_ℓ are distinct prime factors of n, so that for each integer $k \ge 2$,

$$S_k^* = \bigcup_{\ell=3}^{\infty} S_{k,\ell}^*$$

We study the properties of the sets $S_{k,\ell}^*$ and we show in particular that, given any odd $\ell \geq 3$, the set $\bigcup_{k=2}^{\infty} S_{k,\ell}^*$ is infinite. We treat separately the cases $\ell = 3$ and $\ell \geq 5$, the latter case being our main result.

In what follows, the letter p, with or without subscripts, always denotes a prime number.

2 Preliminary results

We shall first consider the set S_2^* . Note that if $n \in S_2^*$, then P(n), the largest prime divisor of n, must be part of the partial sum of primes which allows n to belong to S_2^* . Indeed, assume the contrary, namely that, for some primes $p_1 < p_2 < \cdots < p_r$,

$$n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} = p_{i_1}^2 + \cdots + p_{i_\ell}^2 \quad \in S_2^*,$$

where $i_1 < i_2 < \cdots < i_\ell \leq r-1$, with $r \geq 3$. Then

$$p_1 \cdots p_{r-2} p_{r-1} p_r \le n < \ell p_{i_\ell}^2 \le r p_{r-1}^2,$$

so that $p_1 \cdots p_{r-2} p_r < r p_{r-1} < r p_r$, which implies that $p_1 \cdots p_{r-2} < r$, which is impossible for $r \geq 3$.

While by a parity argument one can easily see that each element of S_k (for any $k \ge 2$) must have an odd number of prime factors, one can observe that elements of S_k^* can on the contrary be written as a sum of an even number of prime powers, as can be seen with 298995972 $\in S_2^*$ (see below).

We can show that if Schinzel's Hypothesis is true (see Schinzel [2]), then the set S_3^* is infinite. We shall even prove more.

Theorem 1. If Schinzel's Hypothesis is true, then $\#S^*_{3,3} = +\infty$.

Proof. Assume that k is an even integer such that $r = k^2 - 9k + 21$ and $p = k^2 - 7k + 13$ are both primes, then $n = 2rp(r+k) \in S^*_{3,3}$. Indeed, in this case, one can see that

$$n = 2rp(r+k) = 2^3 + r^3 + p^3,$$
(1)

since both sides of (1) are equal to $2k^6 - 48k^5 + 492k^4 - 2752k^3 + 8844k^2 - 15456k + 11466$. Now Schinzel's Hypothesis guarantees that there exist infinitely many even k's such that the corresponding numbers r and p are both primes.

Note that the first such values of k are k = 2, 6, 10, 82 and 94. These yield the following four elements of $S_{3,3}^*$ (observing that k = 2 and k = 6 provide the same number, namely n = 378):

$$378 = 2 \cdot 3^{3} \cdot 7 = 2^{3} + 3^{3} + 7^{3},$$

$$109306 = 2 \cdot 31 \cdot 41 \cdot 43 = 2^{3} + 31^{3} + 43^{3},$$

$$450843455098 = 2 \cdot 6007 \cdot 6089 \cdot 6163 = 2^{3} + 6007^{3} + 6163^{3},$$

$$1063669417210 = 2 \cdot 8011 \cdot 8105 \cdot 8191 = 2^{3} + 8011^{3} + 8191^{3}.$$

Not all elements of S_3^* are generated in this way. For instance, the following numbers also belong to S_3^* :

$$23391460 = 2^{2} \cdot 5 \cdot 23 \cdot 211 \cdot 241 = 2^{3} + 211^{3} + 241^{3},$$

$$173871316 = 2^{2} \cdot 223 \cdot 421 \cdot 463 = 2^{3} + 421^{3} + 463^{3},$$

$$126548475909264420 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 83 \cdot 101 \cdot 45569 \cdot 501931$$

$$= 2^{3} + 5^{3} + 83^{3} + 45569^{3} + 501931^{3},$$

as well as all those elements of S_3 mentioned in Section 1.

Theorem 2. $\# \bigcup_{k=2}^{\infty} S_{k,3}^* = +\infty.$

Proof. This follows immediately from the fact that for each element $n \in S_{k,3}^*$, one can find a corresponding element $n' \in S_{k(2r+1),3}^*$ for $r = 1, 2, \ldots$ Indeed, if $n \in S_{k,3}^*$, then it means that

$$n = p_1^k + p_2^k + p_3^k$$

for some distinct primes divisors p_1, p_2, p_3 of n. In particular, it means that $p_a|(p_b^k + p_c^k)$ for each permutation (a, b, c) of the integers 1, 2 and 3. We claim that, given any positive integer r, the number

$$n' := p_1^{k(2r+1)} + p_2^{k(2r+1)} + p_3^{k(2r+1)}$$

belongs to $S_{k(2r+1),3}^*$. Indeed, we only need to show that $p_a|(p_b^{k(2r+1)} + p_c^{k(2r+1)})$ for each permutation (a, b, c) of the integers 1, 2 and 3. But this follows from the fact that $(p_b^k + p_c^k)$ divides $(p_b^{k(2r+1)} + p_c^{k(2r+1)})$; but since p_a divides $(p_b^k + p_c^k)$, we have that p_a divides $(p_b^{k(2r+1)} + p_c^{k(2r+1)})$; and therefore that $n' \in S_{k(2r+1),3}^*$. Since $378 \in S_{3,3}^*$, the proof is complete.

Remark. It clearly follows from Theorems 1 and 2 that $\#S^*_{3(2r+1),3} = +\infty$ for any $r \ge 1$.

3 Proof of the main result

Theorem 3. Given any odd integer $\ell \geq 5$,

$$\# \bigcup_{k=2}^{\infty} S_{k,\ell}^* = +\infty$$

This is an immediate consequence of the following two lemmas.

Lemma 3.1. Let $t = 2s \ge 2$ be an even integer and p_1, \ldots, p_t be primes such that

- (i) $p_i \equiv 3 \pmod{4}$ for all i = 1, ..., t.
- (*ii*) $gcd(p_i, p_j 1) = 1$ for all i, j in $\{1, \ldots, t\}$.
- (*iii*) $gcd(p_i 1, p_j 1) = 2$ for all $i \neq j$ in $\{1, \ldots, t\}$.

Assume furthermore that a_1, \ldots, a_t are integers and n_1, \ldots, n_t are odd positive integers such that

(iv)
$$gcd(2n_i + 1, p_i - 1) = 1$$
 for all $i = 1, ..., t$.

(v)
$$p_i \mid \sum_{j=1}^{t} p_j^{n_i} + a_i^{n_i}$$
 for all $i = 1, ..., t$

(vi) s = t/2 of the t numbers $\left(\frac{a_i}{p_i}\right)$ for i = 1, ..., t are equal to 1 and the other s are equal to -1.

Then there exist infinitely many primes p such that $S^*_{\frac{p-1}{2},t+1}$ contains at least one element.

Proof. Let a be such that

$$a \equiv 2n_i + 1 \pmod{(p_i - 1)/2}, \qquad a \equiv 3 \pmod{4}, \qquad a \equiv a_i \pmod{p_i}$$
(2)

for all i = 1, ..., t. The fact that the above integer a exists is a consequence of the Chinese Remainder Theorem and conditions (i)-(iii) above. Since n_i is odd, $(p_i - 1)/2$ is also odd and $a \equiv 3 \pmod{4}$, we conclude that the congruence $a \equiv 2n_i + 1 \pmod{(p_i - 1)/2}$ implies $a \equiv 2n_i + 1 \pmod{2(p_i - 1)}$.

Now let $M = 4 \prod_{i=1}^{t} \frac{p_i(p_i - 1)}{2}$. Note that the number *a* is coprime to *M* by conditions

(i)-(iv). Thus, by Dirichlet's Theorem on primes in arithmetic progressions, it follows that there exist infinitely many prime numbers p such that $p \equiv a \pmod{M}$. It is clear that these primes satisfy the same congruences (2) as a does. Let p be such a prime and set

$$n = \sum_{i=1}^{t} p_i^{(p-1)/2} + p^{(p-1)/2}.$$

Note that since $p \equiv 2n_i + 1 \pmod{2(p_i - 1)}$, we get that $(p - 1)/2 \equiv n_i \pmod{p_i - 1}$. Therefore by Fermat's Little Theorem and condition (v) we get

$$n \equiv \sum_{j=1}^{t} p_j^{n_i} + p^{n_i} \equiv \sum_{j=1}^{t} p_j^{n_i} + a_i^{n_i} \equiv 0 \pmod{p_i}$$

for all i = 1, ..., t. Finally, conditions (i), (v) and the Quadratic Reciprocity Law show that from the t = 2s numbers

$$\left(\frac{p_i}{p}\right) = -\left(\frac{p}{p_i}\right) = -\left(\frac{a_i}{p_i}\right),$$

exactly half of them are 1 and the other half are -1. Thus, half of the numbers $p_i^{(p-1)/2}$ are congruent to 1 modulo p and the other half are congruent to -1 modulo p which shows that n is a multiple of p. Hence, n is a multiple of p_i for $i = 1, \ldots, t$ and of p as well, which implies that $n \in S^*_{\frac{p-1}{2},t+1}$.

Lemma 3.2. If $s \ge 2$ then there exist primes p_i and integers a_i , n_i for i = 1, ..., t satisfying the conditions of Lemma 3.1.

Proof. Observe that $t-1 \geq 3$. Choose primes p_1, \ldots, p_{t-1} such that $p_i \equiv 11 \pmod{12}$ for all $i = 1, \ldots, t-1$, $\gcd(p_i, p_j - 1) = 1$ for all i, j in $\{1, \ldots, t-1\}$, $\gcd(p_i - 1, p_j - 1) = 2$ for all $i \neq j$ in $\{1, \ldots, t-1\}$ and finally $p_1 + \cdots + p_{t-1}$ is coprime to $p_1 \cdots p_{t-1}$. Note that $N = p_1 + \cdots + p_{t-1}$ is an odd number. Such primes can be easily constructed starting with say $p_1 = 11$ and recursively defining p_2, \ldots, p_{t-1} as primes in suitable arithmetic progressions. Take $n_i = 1$ for $i = 1, \ldots, t$. Let q_1, \ldots, q_ℓ be all the primes dividing N. Pick some integers a_1, \ldots, a_{t-1} such that s of the numbers $\left(\frac{-a_i}{p_i}\right)$ are -1 and the other s-1 are 1. Now choose a prime p_t such that $p_t \equiv 11 \pmod{12}$, p_t is coprime to $p_i - 1$ for $i = 1, \ldots, t - 1$,

 $p_t \equiv -a_i - N \pmod{p_i}$ for $i = 1, \ldots, t - 1$, and $\left(\frac{q_i}{p_t}\right) = 1$ for all $i = 1, \ldots, \ell$. For these last congruences to be fulfilled, we note that it is enough to choose $p_t \equiv 1 \pmod{q_u}$ if $q_u \equiv 1 \pmod{q_u}$ if $q_u \equiv 1 \pmod{q_u}$ and $p_t \equiv -1 \pmod{q_u}$ if $q_u \equiv 3 \pmod{4}$, where $u = 1, \ldots, \ell$. Notice that this choice is consistent with the fact that $p_t \equiv 11 \pmod{12}$ if it happens that one of the q_u is 3. So far, the primes p_1, \ldots, p_t satisfy conditions (i)–(iii) of Lemma 3.1. Finally, put $a_t = -N$. Note that $\left(\frac{-a_t}{p_t}\right) = \prod_{u=1}^{\ell} \left(\frac{q_u}{p_t}\right)^{\alpha_u} = 1$. Here, α_u is the exact power of q_u in $-a_t$. Hence,

exactly s of the numbers $\left(\frac{-a_i}{p_i}\right)$ are 1 and the others are -1 and since all primes p_i are congruent to 3 modulo 4 the same remains true if one replaces $-a_i$ by a_i . Thus, condition (vi) of Lemma 3.1 holds. Now one checks immediately that (v) holds with $n_i = 1$ for all $i = 1, \ldots, t$, because for all $i = 1, \ldots, t - 1$ we have

$$\sum_{j=1}^{t} p_j^{n_j} + a_i^{n_i} \equiv N + p_t + a_i \pmod{p_i} \equiv 0 \pmod{p_i},$$

while

$$\sum_{j=1}^{t} p_j^{n_j} + a_t = N + p_t - N \equiv 0 \pmod{p_t},$$

and (iv) is obvious because $2n_i + 1 = 3$ and $p_i - 1 \equiv 10 \pmod{12}$ is not a multiple of 3 for $i = 1, \ldots, t$.

Remark. The above argument does not work for s = 1. Indeed, in this case t - 1 = 1, therefore $p_1 + \cdots + p_{t-1} = p_1$ and this is **not** coprime to p_1 .

4 Computational results and further remarks

To conduct a search for elements of S_k^* , one can proceed as follows. If $n \in S_{k,\ell}^*$, then there exists a positive number Q and primes p_1, p_2, \ldots, p_ℓ such that

$$n = Qp_1 \cdots p_{\ell-1}p_\ell = p_1^k + \dots + p_{\ell-1}^k + p_\ell^k,$$

so that a necessary condition for n to be in $S_{k,\ell}^*$ is that $p_{\ell}|(p_1^k + \cdots + p_{\ell-1}^k)$. (Note that some of the p_i 's may also divide Q.)

For instance, in order to find $n \in S_{k,3}^*$, we examine the prime factors p of $r^k + q^k$ as $2 \leq r < q$ run through the primes up to a given x, and we then check if $Q := \frac{r^k + q^k + p^k}{rqp}$ is an integer. If this is so, then the integer n = Qrqp belongs to $S_{k,3}^*$.

Proceeding in this manner (with $\ell = 3, 4$), we found the following elements of S_2^* :

$$\begin{array}{rcl} 870 &=& 2\cdot 3\cdot 5\cdot 29 = 2^2 + 5^2 + 29^2,\\ 188355 &=& 3\cdot 5\cdot 29\cdot 433 = 5^2 + 29^2 + 433^2,\\ 298995972 &=& 2^2\cdot 3\cdot 11\cdot 131\cdot 17291 = 3^2 + 11^2 + 131^2 + 17291^2,\\ 1152597606 &=& 2\cdot 3\cdot 5741\cdot 33461 = 2^2 + 5741^2 + 33461^2,\\ 1879906755 &=& 3\cdot 5\cdot 2897\cdot 43261 = 5^2 + 2897^2 + 43261^2,\\ 5209105541772 &=& 2^2\cdot 3\cdot 11\cdot 17291\cdot 2282281 = 3^2 + 11^2 + 17291^2 + 2282281^2. \end{array}$$

Although we could not find any elements of S_4 , we did find some elements of S_4^* , but they are quite large. Here are six of them:

 $107827277891825604 = 2^2 \cdot 3 \cdot 7 \cdot 31 \cdot 67 \cdot 18121 \cdot 34105993 = 3^4 + 31^4 + 67^4 + 18121^4,$ $48698490414981559698 = 2 \cdot 3^4 \cdot 7 \cdot 13 \cdot 17 \cdot 157 \cdot 83537 \cdot 14816023 = 2^4 + 17^4 + 83537^4,$ 3137163227263018301981160710533087044 $= 2^2 \cdot 3^2 \cdot 7 \cdot 11 \cdot 191 \cdot 283 \cdot 7541 \cdot 1330865843 \cdot 2086223663996743$ $= 3^4 + 7^4 + 191^4 + 1330865843^4.$ 129500871006614668230506335477000185618 $= 2 \cdot 3^2 \cdot 7 \cdot 13^2 \cdot 31 \cdot 241 \cdot 15331 \cdot 21613 \cdot 524149 \cdot 1389403 \cdot 3373402577$ $= 2^4 + 241^4 + 3373402577^4,$ 225611412654969160905328479254197935523312771590 $= 2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13^2 \cdot 37 \cdot 41 \cdot 109 \cdot 113 \cdot 127 \cdot 151 \cdot 541 \cdot 911 \cdot 5443$ $\cdot 3198662197 \cdot 689192061269$ $= 5^4 + 7^4 + 113^4 + 127^4 + 911^4 + 689192061269^4.$ 17492998726637106830622386354099071096746866616980 $= 2^2 \cdot 5 \cdot 7 \cdot 23 \cdot 31 \cdot 97 \cdot 103 \cdot 373 \cdot 1193 \cdot 8689 \cdot 2045107145539 \cdot 2218209705651794191$ $= 2^4 + 103^4 + 373^4 + 1193^4 + 2045107145539^4.$ Note that these numbers provide elements of $S_{4,3}^*$, $S_{4,4}^*$, $S_{4,5}^*$ and $S_{4,6}^*$. The smallest elements of $S_2^*, S_3^*, \ldots, S_{10}^*$ are the following: $870 = 2 \cdot 3 \cdot 5 \cdot 29 = 2^2 + 5^2 + 29^2$ $378 = 2 \cdot 3^3 \cdot 7 = 2^3 + 3^3 + 7^3$ $107\,827\,277\,891\,825\,604 = 2^2 \cdot 3 \cdot 7 \cdot 31 \cdot 67 \cdot 18121 \cdot 34105993 = 3^4 + 31^4 + 67^4 + 18121^4$ $178\,101 = 3^2 \cdot 7 \cdot 11 \cdot 257 = 3^5 + 7^5 + 11^5$ $594\,839\,010 = 2 \cdot 3 \cdot 5 \cdot 17 \cdot 29 \cdot 37 \cdot 1087 = 2^6 + 5^6 + 29^6$ $275\,223\,438\,741 = 3 \cdot 23 \cdot 43 \cdot 92761523 = 3^7 + 23^7 + 43^7$ $26\,584\,448\,904\,822\,018 = 2 \cdot 3 \cdot 7 \cdot 17 \cdot 19 \cdot 113 \cdot 912733109 = 2^8 + 17^8 + 113^8$ $40\,373\,802 = 2 \cdot 3^4 \cdot 7 \cdot 35603 = 2^9 + 3^9 + 7^9$ $420\,707\,243\,066\,850 = 2 \cdot 3^2 \cdot 5^2 \cdot 29 \cdot 32238102917 = 2^{10} + 5^{10} + 29^{10}.$

Below is a table of the smallest element $n \in S_{k,\ell}^*$ for $\ell = 3, 4, 5, 6, 7$ (with a convenient k):

 $\frac{\ell}{3}$

4

 $378 = 2 \cdot 3^3 \cdot 7 = 2^3 + 3^3 + 7^3$ 298995972 = 2² · 3 · 11 · 131 · 17291 = 3² + 11² + 131² + 17291²

 $5 \ 2836295 = 5 \cdot 7 \cdot 11 \cdot 53 \cdot 139 = 5^3 + 7^3 + 11^3 + 53^3 + 139^3$

6 (a 48 digit number) = $5^4 + 7^4 + 113^4 + 127^4 + 911^4 + 689192061269^4$

7 (a 145 digit number) = $2^{14} + 3^{14} + 5^{14} + 11^{14} + 29^{14} + 149^{14} + 19809551197^{14}$

Theorem 3 provides a way to construct infinitely many elements of $S_{k,\ell}^*$ given any fixed positive odd integer ℓ . However, in practice, the elements obtained are very large. Indeed, take the case k = 5. With the notation of Lemma 1, we have t = 4; one can then choose $\{p_1, p_2, p_3, p_4\} = \{11, 47, 59, 227\}$. As suggested in Lemma 2, let $n_i = 1$ for i = 1, 2, 3, 4. An appropriate set of integers a_i 's is given by $\{a_1, a_2, a_3, a_4\} = \{8, 32, 10, 110\}$, which gives $\left\{ \left(\frac{a_i}{p_i}\right) : i = 1, 2, 3, 4 \right\} = \{-1, 1, -1, 1\}$. Looking for a solution a of the set of congruences

$$\begin{cases} a \equiv 3 \pmod{\frac{p_i - 1}{2}} & (i = 1, 2, 3, 4) \\ a \equiv 3 \pmod{4} \\ a \equiv a_i \pmod{p_i} & (i = 1, 2, 3, 4) \end{cases}$$

we obtain $a = 4\,619\,585\,064\,883$. With $M = 4\prod_{i=1}^{4} \frac{p_i(p_i-1)}{2} = 10\,437\,648\,923\,020$, we notice that indeed gcd(q, M) = 1. As the smallest prime number $n \equiv q \pmod{M}$, we find $n \equiv 1$

that indeed gcd(a, M) = 1. As the smallest prime number $p \equiv a \pmod{M}$, we find $p = 10M + a = 108\,996\,074\,295\,083$. This means that the smallest integer $n \in S_{k,5}^*$ constructed with our algorithm is given by

$$n = \sum_{i=1}^{4} p_i^{\frac{p-1}{2}} + p^{\frac{p-1}{2}},$$

which is quite a large integer since

$$n \approx p^{\frac{p-1}{2}} \approx (10^{14})^{\frac{1}{2} \cdot 10^{14}} \approx 10^{7 \cdot 10^{14}}$$

References

- [1] J. M. De Koninck and F. Luca, Integers representable as the sum of powers of their prime factors, *Functiones et Approximatio* **33** (2005), 57–72.
- [2] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185–208. Corrigendum: 5 (1959), 259.

2000 Mathematics Subject Classification: Primary 11A41; Secondary 11A25. *Keywords:* prime factorization. Received January 5 2006; revised version received December 30 2006. Published in *Journal* of Integer Sequences, December 30 2006.

Return to Journal of Integer Sequences home page.