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Abstract

A Keith number is a positive integer N with the decimal representation a1a2 · · · an
such that n ≥ 2 and N appears in the sequence (Km)m≥1 given by the recurrence
K1 = a1, . . . ,Kn = an and Km = Km−1 +Km−2 + · · · +Km−n for m > n. We prove
that there are only finitely many Keith numbers using only one decimal digit (i.e.,
a1 = a2 = · · · = an), and that the set of Keith numbers is of asymptotic density zero.

1 Introduction

With the number 197, let (Km)m≥1 be the sequence whose first three terms K1 = 1, K2 = 9
and K3 = 7 are the digits of 197 and that satisfies the recurrence Km = Km−1+Km−2+Km−3

1

mailto:klazar@kam.mff.cuni.cz
mailto:fluca@matmor.unam.mx


for all m > 3. Its initial terms are

1, 9, 7, 17, 33, 57, 107, 197, 361, 665, . . .

Note that 197 itself is a member of this sequence. This phenomenon was first noticed by
Mike Keith and such numbers are now called Keith numbers. More precisely, a number N
with decimal representation a1a2 · · · an is a Keith number if n ≥ 2 and N appears in the
sequence KN = (KN

m )m≥1 whose n initial terms are the digits of N read from left to right
and satisfying KN

m = KN
m−1 +KN

m−2 + · · · +KN
m−n for all m > n. These numbers appear in

Keith’s papers [3, 4] and they are the subject of entry A007629 in Neil Sloane’s Encyclopedia
of Integer Sequences [11] (see also [7, 8, 9]).

Let K be the set of all Keith numbers. It is not known if K is infinite or not. The
sequence K begins

14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788, . . .

M. Keith and D. Lichtblau found all 94 Keith numbers smaller than 1029 [4]. D. Lichtblau
found the first pandigital Keith number (containing each of the digits 0 to 9 at least once):
27847652577905793413.

Recall that a rep-digit is a positive integer N of the form a(10n − 1)/9 for some a ∈
{1, . . . , 9} and n ≥ 1; i.e., a number which is a string of the same digit a when written in
base 10. Our first result shows that there are only finitely many Keith numbers which are
rep-digits.

Theorem 1.1. There are only finitely many Keith numbers that are rep-digits and their set
can be effectively determined.

We point out that some authors refer to the Keith numbers as replicating Fibonacci
digits in analogy with the Fibonacci sequence (Fn)n≥1 given by F1 = 1, F2 = 1 and Fn+2 =
Fn+1 + Fn for all n ≥ 1. F. Luca showed [5] that the largest rep-digit Fibonacci number is
55.

The proof of Theorem 1.1 uses Baker-type estimates for linear forms in logarithms. It
will be clear from the proof that it applies to all base b Keith numbers for any fixed integer
b ≥ 3, where these numbers are defined analogously starting with their base b expansion (see
the remark after the proof of Theorem 1.1).

For a positive integer x we write K(x) = K∩[1, x]. As we mentioned before, K(1029) = 94.
A heuristic argument [4] suggests that #K(x) ≫ log x, and, in particular, that K should be
infinite. Going in the opposite way, we show that K is of asymptotic density zero.

Theorem 1.2. The estimate
#K(x) ≪ x√

log x

holds for all positive integers x ≥ 2.
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The above estimate is very weak. It does not even imply that that sum of the reciprocals
of the members of K is convergent. We leave to the reader the task of finding a better upper
bound on #K(x). Typographical changes (see the remark after the proof of Theorem 1.2)
show that Theorem 1.2 also is valid for the set of base b Keith numbers if b ≥ 4. Perhaps
it can be extended also to the case b = 3. For b = 2, Kenneth Fan has an unpublished
manuscript (mentioned by Keith [4]) showing how to construct all Keith numbers and that,
in particular, there are infinitely many of them. For example, any power of 2 is a binary
Keith number.

Throughout this paper, we use the Vinogradov symbols ≫ and ≪ as well as the Landau
symbols O and o with their usual meaning. Recall that for functions A and B the inequalities
A ≪ B, B ≫ A and A = O(B) are all equivalent to the fact that there exists a positive
constant c such that the inequality |A| ≤ cB holds. The constants in the inequalities implied
by these symbols may occasionally depend on other parameters. For a real number x we use
log x for the natural logarithm of x. For a set A, we use #A and |A| to denote its cardinality.

2 Preliminary Results

For an integer N > 0, recall the definition of the sequence KN = (KN
m )m≥1 given in the

Introduction. In KN we allow N to be any string of the digits 0, 1, . . . , 9, so N may have
initial zeros. So, for example, K020 = (0, 2, 0, 2, 4, 6, 12, 22, . . . ). For n ≥ 1 we define the
sequence Ln as Ln = KM where M = 11 · · · 1 with n digits 1. In particular, L1 = (1, 1, 1, . . . )
and L2 = (1, 1, 2, 3, 5, 8, . . . ), the Fibonacci numbers. In the following lemma, which will be
used in the proofs of both Theorems 1 and 2, we establish some properties of the sequences
KN and Ln.

Lemma 2.1. Let N be a string of the digits 0, 1, . . . , 9 with length n ≥ 1. If N does not
start with 0, we understand it also as the decimal representation of a positive integer.

(a) If N has at least k ≥ 1 nonzero entries, then KN
m ≥ Lk

k+m−n holds for every m ≥ n+ 1.

(b) If N has at least one nonzero entry, then KN
m ≥ Ln

m−n holds for every m ≥ n + 1. We
have KN

m ≤ 9Ln
m for every m ≥ 1.

(c) If n ≥ 3 and N = KN
m for some m ≥ 1 (so N is a Keith number), then 2n < m < 7n.

(d) For fixed n ≥ 2 and growing m ≥ n+ 1,

Ln
m = 2m−n−1(n− 1)(1 +O(m/2n)) + 1

where the constant in O is absolute.

Proof. (a). By the recurrences defining KN and Lk, the inequality clearly holds for the first
k indices m = n+ 1, n+ 2, . . . , n+ k. For m > n+ k it holds by induction.

(b). We have KN
m ≥ 1 = Ln

m−n for m = n+1, n+2, . . . , 2n and the inequality holds. For
m > 2n it holds by induction. The second inequality follows easily by induction.
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(c). The lower bound m > 2n follows from the fact that KN is nondecreasing and that

KN
2n ≤ 9Ln

2n = 9 · 2n−1(n− 1) + 9 < 10n−1 ≤ N

for n ≥ 3. To obtain the upper bound, note that for m ≥ n we have by induction that
Ln
m ≥ L2

m−n+2 ≥ φm−n where φ = 1.61803 · · · is the golden ratio. Thus, by part (b),

10n > N = KN
m ≥ Ln

m−n ≥ φm−2n

and m < (2 + log 10/ log φ)n < 7n.

(d). We write Ln
m in the form Ln

m = (2m−n−1 − d(m))(n− 1) + 1 and prove by induction
on m that for m ≥ n+ 1,

0 ≤ d(m) < m2m−2n.

This will prove the claim.

It is easy to see by the recurrence that Ln
n+1, L

n
n+2, . . . , L

n
2n+1 are equal, respectively, to

20(n− 1) + 1, 21(n− 1) + 1, . . . , 2n(n− 1) + 1. So d(m) = 0 for n+ 1 ≤ m ≤ 2n+ 1 and the
claim holds. For m ≥ 2n+ 1,

Ln
m = Ln

m−1 + Ln
m−2 + · · ·+ Ln

m−n

=
n
∑

k=1

(

(2m−n−1−k − d(m− k))(n− 1) + 1
)

=
(

2m−n−1 − 2m−2n−1 + 1−
n
∑

k=1

d(m− k)
)

(n− 1) + 1

and the induction hypothesis gives

0 ≤ d(m) = 2m−2n−1 − 1 +
n
∑

k=1

d(m− k)

< 2m−2n−1 + (m− 1)
n
∑

k=1

2m−2n−k

< m2m−2n.

In part (d), if m is roughly of size 2n or larger then the error term swallows the main
term and the asymptotic estimate is useless. Indeed, the actual asymptotic behavior of Ln

m

when m → ∞ is cαm where c > 0 is a constant and α < 2 is the only positive root of the
polynomial xn − xn−1 − · · · − x− 1. But for m small relative to 2n, say m = O(n) (ensured
for Keith numbers by part (c)), this “incorrect” asymptotic estimate of Ln

m is very precise
and useful, as we shall demonstrate in the proofs of Theorems 1.1 and 1.2.

In the proof of Theorem 1.1 we will apply also a lower bound for a linear form in log-
arithms. The following bound can be deduced from a result due to Matveev [6, Corollary
2.3].
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Lemma 2.2. Let A1, . . . , Ak, Ai > 1, and n1, . . . , nk be integers, and let N = max{|n1|, . . . , |nk|, 2}.
There exist positive absolute constants c1 and c2 (which are effective), such that if

Λ = n1 logA1 + n2 logA2 + · · ·+ nk logAk 6= 0,

then
log |Λ| > −c1c

k
2(logA1) · · · (logAk) logN.

For the proof of Theorem 2 we will need an upper bound on sizes of antichains (sets of
mutually incomparable elements) in the poset (partially ordered set)

P (k, n) = ({1, 2, . . . , k}n,≤p)

where ≤p is the product ordering

a = (a1, a2, . . . , an) ≤p b = (b1, b2, . . . , bn) ⇐⇒ ai ≤ bi for i = 1, 2, . . . , n.

We have |P (k, n)| = kn and for k = 2 the poset P (2, n) is the Boolean poset of subsets of
an n-element set ordered by inclusion. The classical theorem of Sperner [1, 2] asserts that
the maximum size of an antichain in P (2, n) equals the middle binomial coefficient

(

n
⌊n/2⌋

)

.
In the next lemma we obtain an upper bound for any k ≥ 2.

Lemma 2.3. If k ≥ 2, n ≥ 1 and X ⊂ P (k, n) is an antichain to ≤p, then

|X| < (k/2) · kn

n1/2
.

Proof. We proceed by induction on k. For k = 2 this bound holds by Sperner’s theorem
because

(

n

⌊n/2⌋

)

<
2n

n1/2

for every n ≥ 1. Let k ≥ 3 and X ⊂ P (k, n) be an antichain. For A running through
the subsets of [n] = {1, 2, . . . , n}, we partition X in the sets XA where XA consists of the
u ∈ X satisfying ui = k ⇐⇒ i ∈ A. If we delete from all u ∈ XA all appearances of k, we
obtain (after appropriate relabelling of coordinates) a set of |XA| distinct (n − |A|)-tuples
from P (k− 1, n− |A|) that must be an antichain to ≤p. Thus, by induction, for |A| < n we
have

|XA| <
((k − 1)/2) · (k − 1)n−|A|

(n− |A|)1/2

and |X[n]| ≤ 1. Summing over all As and using the inequality
√

n/m ≤ (n + 1)/(m + 1)
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(which holds for 1 ≤ m ≤ n) and standard properties of binomial coefficients, we get

|X| =
∑

A⊂[n]

|XA|

< 1 +
n−1
∑

i=0

(

n

i

)

((k − 1)/2) · (k − 1)n−i

(n− i)1/2

=
1√
n

(

√
n+

1

2

n−1
∑

i=0

(

n

i

)

√

n/(n− i) · (k − 1)n−i+1

)

≤ 1√
n

(

√
n+

1

2

n−1
∑

i=0

(

n+ 1

n− i+ 1

)

(k − 1)n−i+1

)

<
kn+1

2
√
n
.

We conclude this section with three remarks as to the last lemma.

1. Various generalizations and strengthenings of Sperner’s theorem were intensively stud-
ied, see, e.g., the book of Engel and Gronau [2]. Therefore, we do not expect much originality
in our bound.

2. It is clear that for k = 2 the exponent 1/2 of n in the bound of Lemma 2.3 cannot
be increased. The same is true for any k ≥ 3. We briefly sketch a construction of a
large antichain when k = 3; for k > 3 similar constructions can be given. For k = 3 and
n = 3m ≥ 3 consider the set X ⊂ P (3, n) consisting of all u which have i 1s, n− 2i 2s and i
3s, where i = 1, 2, . . . ,m = n/3. It follows that X is an antichain and that

|X| =
m
∑

i=1

(

n

i, i, n− 2i

)

=
m
∑

i=1

n!

(i!)2(n− 2i)!
.

By the usual estimates of factorials, if m−√
n < i ≤ m then

(

n

i, i, n− 2i

)

≫
(

n

m,m,m

)

≫ 3n

n
.

Hence X is an antichain in P (3, n) with size

|X| ≫
√
n · 3

n

n
=

3n√
n
.

3. For composite k we can decrease the factor k/2 in the bound of Lemma 2.3. Suppose
that k = lm where l ≥ m ≥ 2 are integers and let X ⊂ P (k, n) be an antichain. We
associate with every u ∈ X the pair of n-tuples (vu, wu) ∈ P (m,n) × P (l, n) defined by
vui = ui −m⌈ui/m⌉+m and wu

i = ⌈ui/m⌉, 1 ≤ i ≤ n. Note that the pair (vu, wu) uniquely
determines u and that if wu = wu′

then vu and vu
′

are incomparable by ≤p. Thus, by

6



Lemma 2.3, for fixed w ∈ P (l, n) there are less than (m/2)mn/
√
n elements u ∈ X with

wu = w. The number of ws is at most |P (l, n)| = ln. Hence

|X| < (m/2) ·mn

n1/2
· ln =

(m/2) · kn

n1/2
.

In particular, if k is a power of 2 then |X| < kn/
√
n for every antichain X ⊂ P (k, n).

3 The proof of Theorem 1.1

Let N = a(10n − 1)/9 = aa · · · a, 1 ≤ a ≤ 9, be a rep-digit. Since KN = aLn, N is a Keith
number if and only if the rep-unit M = (10n − 1)/9 = 11 · · · 1 is a Keith number. Suppose
that M is a Keith number: for some m we have

M =
10n − 1

9
= Ln

m = 2m−n−1(n− 1)
(

1 +O
(m

2n

))

,

where the asymptotic relation was proved in part (d) of Lemma 2.1. We rewrite this relation
as

22n+1−m5n

9(n− 1)
− 1 =

1

9(n− 1)2m−n−1
+O

(m

2n

)

.

Since 2n < m < 7n by part (c) of Lemma 2.1, we get

22n+1−m5n

9(n− 1)
− 1 = O

( n

2n

)

.

Because 5n > 9(n−1) for every n ≥ 1, the left side is always non-zero (the power of 5 cannot
be canceled). Writing it in the form eΛ− 1 and using that eΛ− 1 = O(Λ) (as Λ → 0), we get

0 6= Λ = (2n+ 1−m) log 2 + n log 5− log(9(n− 1)) ≪ n

2n
.

Taking logarithms and applying Lemma 2.2, we finally obtain

−d(log n)2 < log |Λ| < c(log n− n log 2)

where c, d > 0 are effectively computable constants. This implies that n is effectively bounded
and completes the proof of Theorem 1.1.

Remark. The same argument shows that for every integer b ≥ 3 there are only effectively
finitely many base b rep-digits, i.e., positive integers of the form a(bn − 1)/(b − 1) with
a ∈ {1, . . . , b − 1}, which are base b Keith numbers. Indeed, we argue as for b = 10 and
derive the equation

bn

(b− 1)(n− 1)2m−n−1
− 1 = O(n/2n).

In order to apply Lemma 2.2, we need to justify that the left side is not zero. If b is not a
power of 2, it has an odd prime divisor p, and pn cannot be cancelled, for big enough n, by
(b−1)(n−1). If b ≥ 3 is a power of 2, then b−1 is odd and has an odd prime divisor, which
cannot be cancelled by the rest of the expression.
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4 The proof of Theorem 1.2

For an integer N > 0, we denote by n the number of its digits: 10n−1 ≤ N < 10n. We
shall prove that there are ≪ 10n/

√
n Keith numbers with n digits; it is easy to see that this

implies Theorem 2. There are only few numbers with n digits and ≥ n/2 zero digits: their
number is bounded by

∑

i≥n/2

(

n

i

)

9n−i ≤ 2n9n/2 = 6n < (10n)0.8.

Hence it suffices to count only the Keith numbers with n digits, of which at least half are
nonzero.

Let N be a Keith number with n ≥ 3 digits, at least half of them nonzero. So, N = KN
m

for some index m ≥ 1. By part (c) of Lemma 2.1, 2n < m < 7n and we may use the
asymptotic estimate in part (d). Setting k = ⌊n/2⌋ and using the inequality in part (a) of
Lemma 2.1, we get

10n > N = KN
m ≥ Lk

k+m−n.

Part (d) of Lemma 2.1 gives that for big n,

Lk
k+m−n >

2m−n−1(k − 1)

2
>

2m−nn

12
.

On the other hand, the second inequality in part (b) of Lemma 2.1 and part (d) give, for big
n,

10n−1 ≤ N = KN
m ≤ 9Ln

m < 9 · 2m−nn.

Combining the previous inequalities, we get

10n

90
< 2m−nn < 12 · 10n.

This implies that, for n > n0, the index m attains at most 12 distinct values and

m = (1 + log 10/ log 2 + o(1))n = (κ+ o(1))n.

Now we partition the set S of considered Keith numbers (with n digits, at least half
of them nonzero) in blocks of numbers N having the same value of the index m and the
same string of the first (most significant) k = ⌊n/2⌋ digits. So, we have at most 12 · 10k
blocks. We show in a moment that the numbers in one block B, when regarded as (n− k)-
tuples from P (10, n− k), form an antichain to ≤p. Assuming this, Lemma 2.3 implies that
|B| < 10n−k+1/2

√
n− k. Summing over all blocks, we get

|S| < 12 · 10k · 10n−k+1

2
√
n− k

≪ 10n√
n
,

which proves Theorem 2.
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To show that B is an antichain, we suppose for the contradiction that N1 and N2 are two
Keith numbers from B with N1 <p N2. Let M = N2 − N1 and M∗ = 00 · · · 0M ∈ P (10, n)
(we complete M to a string of length n by adding initial zeros). It follows that M has at
most n− k digits and M < 10n−k. On the other hand, by the linearity of recurrence and by
N1 <p N2, we have

M = N2 −N1 = KN2

m −KN1

m = KM∗

m .

Since M∗ has some nonzero entry, the first inequality in part (b) of Lemma 2.1 and part (d)
give, for big n,

KM∗

m ≥ Ln
m−n > 2m−2n−2n.

Thus
10n−k = 10n−⌊n/2⌋ > M > 2m−2n−2n.

Using the above asymptotic estimate of m in terms of n, we arrive at the inequality

exp((1
2
log 10 + o(1))n) > exp((κ log 2− 2 log 2 + o(1))n)

= exp((log 5 + o(1))n)

that is contradictory for big n because 101/2 < 5 = 10/2. This finishes the proof of Theorem
2.

Remark. The above proof generalizes, with small modifications, to all bases b ≥ 4. We
replace base 10 by b, modify the proof accordingly, and have to satisfy two conditions. First,
in the beginning of the proof we delete from the numbers with n base b digits those with
> αn zero digits, for some constant 0 < α < 1. In order that we delete negligibly many,
compared to bn, numbers, we must have 2 · (b−1)1−α < b. Second, for the final contradiction
we need that bα < b/2. For b ≥ 5, both conditions are satisfied with α = 1/2, as in case
b = 10. For b = 4 they are satisfied with α = 0.49, say. However, for b = 3 they cannot be
satisfied by any α. Thus, the case b = 3 seems to require more substantial changes.
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