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Abstract

Given a sequence x = {xn, n ∈ N} with integer values, or more generally with

values in a ring of polynomials with integer coefficients, one can form the generalized

binomial coefficients associated with x,
(

n
m

)

x
=

∏m
l=1

xn−l+1

xl
. In this note we introduce

several sequences that possess the following remarkable feature: the fractions
(

n
m

)

x
are

in fact polynomials with integer coefficients.

1 Introduction

By a deformation of the integers we mean a sequence x = {xn, n ∈ N} of polynomials in one
or more variables and with integral coefficients, having the property that there exists some
value q0 of the variables such that ∀n ∈ N, xn(q0) = n. The quantum integers xn =

∑n−1
l=0 ql

are a typical example of a deformation of the integers. Another example is given by the
version of the Chebyshev polynomials defined by xn(cos(θ)) =

sin(nθ)
sin(θ)

.
In this note we consider some deformations of the factorial function and of the binomial

coefficients that are induced by such deformations of the integers. This situation can be
interpreted as a deformation of the Taylor formula, as explained below. Given a polynomial
P of degree n with complex coefficients, the Taylor expansion at some point X gives

P (X + 1) = P (X) + 1 ·
dP

dX
(X) +

12

2!
·
d2P

dX2
(X) + · · ·+

1n

n!
·
dnP

dXn
(X).

In other words, if one denotes by τ : C[X] → C[X] the “translation by one” operator,
defined by τ(P )(X) = P (X + 1), then τ = exp( d

dX
). A matrix version of this fact can
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be stated as follows. Denote by P and D the semi-infinite matrices whose coefficients are,
respectively, Pi,j =

(

i

j

)

and Di,j = i if i = j + 1 and 0 otherwise, (i, j) ∈ N
2. Then

P = exp(D).

P =















1 0 0 0 . . .

1 1 0 0 . . .

1 2 1 0 . . .

1 3 3 1 . . .
...

...
...

...
. . .















D =















0 0 0 0 . . .

1 0 0 0 . . .

0 2 0 0 . . .

0 0 3 0 . . .
...

...
...

...
. . .















This suggests the following way to deform the Taylor formula. Replace the sequence N

of the integers which appears as the non-zero coefficients of D by the terms of a sequence
x = {xn, n ∈ N} with values in some polynomial ring. Denote by Dx the corresponding
matrix. Given some integer n, define n!x to be the polynomial n!x =

∏n

l=1 xl. Define expx to

be the formal series expx(t) =
∑∞

k=0
tk

k!x
. Observe that the matrix expx(Dx) is well defined

since, coefficients-wise, the summation is finite. Its coefficients expx(Dx)i,j will be denoted
by the symbols

(

i

j

)

x
and will be called the generalized binomial coefficients associated with

the sequence x. Note that
(

i

j

)

x

=

j
∏

l=1

xi−l+1

xl

if i ≥ j, and 0 otherwise.
This definition has appeared already in several contexts; see, for example, Knuth and

Wilf [4] for an introduction to the relevant literature. Note that the fractions
(

i

j

)

x
have no a

priori reason to be polynomials with integer coefficients. In fact, such a phenomenon appears
only for very specific sequences x.

In this note we are interested in deformations of the integers x that possess this property.
The first part of the paper (section 2) is a variation on the classical theme of quantum
integers and q-binomials. It deals with sequences that satisfy a second order linear recurrence
relation. In the second part, (section 3), we deform the integers and the q-binomials in a less
standard way, using a sequence that satisfies a first order non-linear recurrence relation. In
the third part (section 4), we introduce a sequence related to the Fermat numbers (which is
not a deformation of the integers), and we show that the corresponding generalized binomial
coefficients are polynomials with integer coefficients.

Let us mention that Knuth and Wilf [4] showed that if a sequence x with integral values
is a gcd-morphism (that is, xgcd(n,m) = gcd(xn, xm)), then the associated binomial coefficients
are integers.

2 q-binomials

The properties of the so-called “quantum integers”

[n]q =
n−1
∑

l=0

ql =
1− qn

1− q
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and the associated “q-binomials” were investigated long before the introduction of quantum
mechanics (see [2]). We rephrase below an approach developed by Carmichael [1] (and
probably already implicit in earlier works). It deals with a slightly more general, two-variable
version of the quantum integers.

Consider the sequence x with values in Z[a, b] defined by the following linear recurrence
relation of order 2:

x0 = 0, x1 = 1, xn+1 = a · xn + b · xn−1.

This sequence specializes to the quantum integers when a = q + 1 and b = −q (and to
the usual integers for a = 2 and b = −1).

Remark. xn is given by the following explicit formula:

xn =
n

∑

l=1

(

l − 1

n− l

)

a2l−n−1bn−l

as one can check by induction. ✷

Proposition 1. (rephrased from [1]).

• x : N → Z[a, b] is a gcd-morphism:

gcd(xn, xm) = xgcd(n,m).

• The associated binomial coefficients
(

n

m

)

x
are polynomials in a and b with integral co-

efficients.

✷

The first few rows of the corresponding deformation of Pascal’s triangle are as follows:

















1 0 0 0 0 0
1 1 0 0 0 0
1 a 1 0 0 0
1 a2 + b a2 + b 1 0 0
1 a3 + 2ba (a2 + 2b)(a2 + b) a3 + 2ba 1 0
1 a4 + 3ba2 + b2 (a4 + 3ba2 + b2)(a2 + 2b) (a4 + 3ba2 + b2)(a2 + 2b) a4 + 3ba2 + b2 1

















Many classical sequences of integers or polynomials arise as solutions of second order
recurrence relations with the appropriate initial conditions. The corresponding deformations
of the Pascal triangle have often been considered separately in the literature. They receive
a unified treatment through Carmichael’s approach.
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Example 1. For a = b = 1, the sequence x specializes to the Fibonacci sequence
(A000045 in [5]), and the triangle looks as follows:























1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 1 1 0 0 0 . . .

1 2 2 1 0 0 . . .

1 3 6 3 1 0 . . .

1 5 15 15 5 1 . . .
...

...
...

...
...

...
. . .























.

Example 2. For a = 3 and b = −2, the sequence x specializes to the Mersenne numbers
(A000225 of [5]), xn = 2n − 1. The triangle then looks like























1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 3 1 0 0 0 . . .

1 7 7 1 0 0 . . .

1 15 35 15 1 0 . . .

1 31 155 155 31 1 . . .
...

...
...

...
...

...
. . .























.

Example 3. For a = 2s and b = −1, the sequence xn = Un−1(s), where Un is the
n−th Chebyshev polynomial of the second kind. This implies that, for any (n,m) ∈ Z

2, the
polynomial

∏m

l=0 Un−l is always divisible by
∏m

l=0 Ul in Z[s].

3 Iterations of a polynomial

Fix some parameter d ∈ N. Consider the polynomial

p(X, a0, . . . , ad) =
d

∑

k=0

akX
k

and the sequence x with values in Z[a0, . . . , ad] defined by the following recurrence relation:

x0 = 0, xn = p(xn−1, a0, . . . , ad).

Note that this sequence is a deformation of the integers that encompasses the quantum
integers (i.e., the case d = 1, a0 = 1, a1 = q, for which xn = [n]q).

Proposition 2. • x : N → Z[a0, . . . , ad] is a gcd-morphism: xgcd(n,m) = gcd(xn, xm).

• The associated binomial coefficients
(

n

m

)

x
are polynomials of the variables a0, . . . , ad,

with integral coefficients.
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Proof. Denote by φa the function x → p(x, a0, . . . , an) and by φ◦n
a its n−th iterate, so

that xn = φ◦n
a (0). For any k ≤ n, xn = φ◦k

a (xn−k). Writing φ◦k
a (x) = φ◦k

a (0) + x ·Q(x) gives
xn = φ◦k

a (0) + xn−k ·Q(xn−k). In other words, for any k ≤ n, there exists a polynomial Rn,k

in Z[a0, . . . , an] such that
xn = xk + xn−k ·Rn,k.

This implies that, for any (k, l) ∈ Z
2, xkl is divisible by xk and by xl. Furthermore this

implies the following recurrence relation, from which the polynomiality of
(

n

m

)

x
follows by

induction:

(

n

k

)

x

= xn ·
xn−1 · · · · · xn−k+1

1 · x2 · · · · · xk

=

(

n− 1

k − 1

)

x

+Rn,k ·

(

n− 1

k

)

x

.

Denote by δ the gcd of n and k. We already know that xd is a divisor of gcd(xn, xk).
Write δ = α · n+ β · k, with α ≥ 0 and β ≤ 0, so that xαn = xδ + xβk · Rαn,δ. Any common
divisor of xn and xk is also a common divisor of xαn and xβk, and hence a divisor of xδ. This
proves that xδ = gcd(xn, xk). ✷

Even in the case d = 2,
(

n

m

)

x
is a rather complicated polynomial. For example

(

5
3

)

x
is

of degree 11 in a1 and of degree 21 in a0 and a2. If one specializes to the case a0 = a1 = 1
and a2 = q − 1, the corresponding one-parameter deformation of Pascal’s triangle (which is
recovered at q = 1) looks like



















1 0 0 . . .

1 1 0 . . .

1 1 + q 1 . . .

1 1 + q2 + q3 1 + q2 + q3 . . .

1 (1 + q)(q6 − q4 + 2q3 − q2 + 1) (1 + q2 + q3)(q6 − q4 + 2q3 − q2 + 1) . . .
...

...
...

. . .



















.

Remark. Consider now a polynomial p(X, a1, . . . , ad) =
∑d

k=1 akX
k whose constant

term vanishes, and the sequence x with values in Z[a0, . . . , ad] defined by the following
recurrence relation:

x0 = a0, xn = p(xn−1, a1, . . . , ad).

The corresponding
(

n

m

)

x
are also polynomials in the variables a0, . . . , a1 with integral

coefficients, for all (n,m) ∈ Z
2. This is due to the fact that, if n ≥ m, xn is a multiple of

xm, which implies that
(

n

m

)

x
is a multiple of

(

n−1
m−1

)

x
.

On the other hand, this sequence x is not a deformation of the integers, since ∀n ≥ m,
xm divides xn.

4 Fermat polynomials

The sequence of polynomials considered in this section is not a deformation of the integers,
but is related to the Fermat numbers (A000215 of [5]). It is defined explicitly by the formula
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xn =
n−1
∑

l=0

(

(

n− 1

l

)

mod 2) ·X l.

If n > 0, xn is the unique element of Z[X] with coefficients in {0, 1} that is congruent to
(1 + X)n−1 modulo 2. The first few terms are x0 = 0, x1 = 1, x2 = 1 + X, x3 = 1 + X2,
x4 = 1 +X +X2 +X3.

By a theorem of Lucas (see, for example [3, Ex. 61, p2̇48]), the parity of
(

n

m

)

is determined
by the binary decomposition of n and m as follows: Write n =

∑

l∈N ǫl2
l and m =

∑

l∈N ηl2
l,

with ǫl, ηl ∈ {0, 1}, ∀l ∈ N. Then

(

n

m

)

=
∏

l∈N

(

ǫl

ηl

)

mod 2.

Since
(

ǫl
ηl

)

= 1+ ηl · (ǫl − 1), this can be rephrased in a compact way as follows. With an
integer p, associate the set Kp of the exponents that appear in the binary decomposition of
p, so that n =

∑

l∈Kn
2l and m =

∑

l∈Km
2l. Then

(

n

m

)

is odd if and only if Km ⊂ Kn.

For example, if n − 1 = 2k is a power of 2,
(

n−1
l

)

is even for any 1 ≤ l ≤ 2k − 1. Hence

x2k+1 = 1 + X2k , and x2k+1 specializes to the k−th Fermat number 1 + 22
k

at X = 2. If

n = 2k is a power of 2,
(

n−1
l

)

is odd for any 0 ≤ l ≤ 2k − 1. Hence x2k =
∑2k−1

0 X l = X2
k

−1
X−1

.
In particular, for all k ∈ N, x2k+1 = 2 + (X − 1)x2k .

Proposition 3. • xn+1 =
∏

l∈Kn
(1 + X2l), and xm divides xn in Z[X] if and only if

(

n−1
m−1

)

is odd.

• The associated binomial coefficients
(

n

m

)

x
are polynomials in X, with integral coeffi-

cients.

Proof. Observe that, for any (l,m) ∈ N
2,

(1 +X)2
l+m = (1 +X)2

l

(1 +X)m ≡ (1 +X2l)(1 +X)m mod 2.

This imply that

(1 +X)(
∑

l∈Kn
2l) ≡

∏

l∈Kn

(1 +X2l) mod 2.

On the other hand
∏

l∈Kn
(1+X2l) is an element of Z[X] whose coefficients are in {0, 1}. But

xn+1 is by definition the unique element of Z[X] whose coefficients are in {0, 1} and which
is congruent to (1 +X)n modulo 2. Hence xn+1 =

∏

l∈Kn
(1 +X2l). From this factorization

it follows that xm divides xn in Z[X] if and only if Km−1 ⊂ Kn−1. By Lucas’s theorem, this
last condition is equivalent to the oddity of

(

n−1
m−1

)

.

To prove that
(

n

m

)

x
is a polynomial, we will study the exponent αl(n,m) of each factor

(1 + X2l) in the decomposition
(

n

m

)

x
=

∏

l∈N(1 + X2l)αl(n,m). Denote by ǫl : N → {0, 1}

the function such that ǫl(p) = 1 iff l ∈ Kp, so that p =
∑

l∈N ǫl(p)2
l. It follows that

αl(n,m) =
∑m

p=1 ǫl(n− p+ 1− 1)− ǫl(p− 1).
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The function ǫl is periodic, of period 2l+1. Hence, when estimating αl(n,m), one can
assume that m is smaller than 2l+1. Observe that ǫl(p) = 0 for p ∈ {0, . . . , 2l − 1}, and that
ǫl(p) = 1 for p ∈ {2l, . . . , 2l+1 − 1}. The sum

∑

p∈{r,...,r+m−1} ǫl(p) over a ”window” of width

m is bounded from below by max(0,m− 2l). This minimal value is attained at r = 0. This
proves that

∑m

p=1 ǫl(n− p) ≥
∑m

p=1 ǫl(p− 1), and hence that αl(n,m) ≥ 0. ✷

Example. The first few rows of the corresponding triangle are as follows:






















1 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 1 +X 1 0 0 0 . . .

1 1 +X2 1 +X2 1 0 0 . . .

1 1 +X +X2 +X3 (1 +X2)2 1 +X +X2 +X3 1 0 . . .

1 1 +X4 (1 +X2)(1 +X4) (1 +X2)(1 +X4) 1 +X4 1 . . .
...

...
...

...
...

...
. . .























.

We have seen that the specialization of x at X = 2 gives a sequence that interpolates in
a natural way between the Fermat numbers. The specialization 1, 2, 2, 4, 2, . . . at X = 1 is
also meaningful: xn(1) = 2|Kn−1|, where |Kn−1| denotes the number of non-vanishing terms
in the binary expansion of n− 1 (A000120 of [5]).
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