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Abstract

In this note, we prove that the coefficients of an ordinary generating function can

be deduced from some determinant formula about the coefficients in the reciprocal of

the ordinary generating function. We use this result to obtain determinant identities

for some well-known numbers.

1 Introduction

Let {an}
∞

n=0 be a sequence of complex numbers. We define a sequence of determinants
{Dn(ak)}

∞

n=0 related to the given sequence {an}
∞

n=0: D0(ak) = 1, D1(ak) = a1, D2(ak) =
∣

∣

∣

∣

a1 a0
a2 a1

∣

∣

∣

∣

= a21 − a0a2, and in general for n ≥ 1,

Dn(ak) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0
an an−1 an−2 · · · a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1)
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In 2005 Van Malderen [6] found the two identities

B2n =
(−1)n(2n)!

2

{

n
∑

k=0

(−1)kDn−k(1/(2k + 1)!)

(2k)!
+Dn

(

1

(2k + 1)!

)

}

(2)

and

B2n =
(−1)n+1(2n)!Dn(1/(2k + 1)!)

2(22n−1 − 1)
. (3)

where the Bernoulli numbers Bn are defined by

t

et − 1
=

∞
∑

n=0

Bnt
n

n!
,

Motivated by the above work we obtained some interesting results. LetA(z) =
∑

∞

n=0 anz
n,

B(z) =
∑

∞

n=0 bnz
n be the ordinary generating functions of {an} and {bn}, respectively. If

A(z)B(z) = 1, then
n
∑

k=0

akbn−k = δ0,n,

where δ0,n is the Kronecker delta. These equations form a system of linear equations in n+1
unknowns b0, b1, . . . , bn. It should be mentioned that a0 6= 0. By Cramer’s Rule, we can
solve bn = (−1)nDn(ak)/a

n+1
0 . We summarize the above result as the following theorem.

Theorem 1.1. Let A(z) =
∑

∞

n=0 anz
n, B(z) =

∑

∞

n=0 bnz
n be the ordinary generating func-

tions of {an} and {bn}, respectively. If A(z)B(z) = 1, then a0 6= 0 and bn can be expressed
as (−1)nDn(ak)/a

n+1
0 .

In fact, the above result could be generalized for Am(z) =
∑

∞

n=m an−mz
n with m ∈ Z

and a0 6= 0. For this case we can write Am(z) = zmA(z). Applying Theorem 1.1 then yields
Am(z)Bm(z) = 1 where Bm(z) = z−mB(z) in which B(z) is determined from A(z)B(z) = 1
using Theorem 1.1.

There are many interesting applications. For example, Euler [2] gave a generating func-
tion for the partition numbers p(n) using the q-series

(q)∞ =
∞
∏

m=1

(1− qm) =
∞
∑

n=0

anq
n,

where

an =







1, if n = k(3k ± 1)/2 and k is even,
−1, if n = k(3k ± 1)/2 and k is odd,
0, otherwise.

Here the exponents of nonzero terms are generalized pentagonal numbers. Then the partition
numbers p(n) are given by the generating function

1

(q)∞
=

∞
∑

n=0

p(n)qn.
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Applying Theorem 1.1,

p(n) = (−1)nDn(ak) and an = (−1)nDn(p(n)). (4)

As application we use Theorem 1.1 to obtain determinant identities for well-known
numbers by specializing to specific sequences {ak}. We also give an elegant proof of Van
Malderen’s recent results on the formula for even-indexed Bernoulli numbers.

2 Some Properties of Dn(ak)

We expand the determinant Dn(ak) according to the first row repeatedly. Then

Dn(ak) =
n
∑

k=1

(−a0)
k−1akDn−k(ar).

This gives a recursive formula for Dn(ak).

Proposition 2.1. (The Recursive Formula for Dn(ak)) For each positive integer n, we have

n
∑

k=0

(−a0)
kakDn−k(ar) = 0. (5)

The sequence of a lower triangular Toeplitz matrix {Ln(ak)}
∞

n=0 related to the given
sequence {an}

∞

n=0 can be defined as

Ln(ak) =















a0 0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a0















. (6)

The determinant of Ln(ak) is a
n+1
0 . The inverse matrix of Ln(ak) exists if a0 6= 0. Using the

recursive formula for Dn(ak) we have the following corollary.

Corollary 2.2. Let a0 6= 0. Then for each integer n ≥ 0, the inverse matrix of Ln(ak) is
Ln((−1)kDk(ar)/a

k+1
0 ).

Theorem 2.3. Let D(ak, z) =
∑

∞

n=0 Dn(ak)z
n, A(ak, z) =

∑

∞

n=0 anz
n be the ordinary gen-

erating functions of {Dn(ak)} and {an}, respectively. Then we have

D(ak, z) · A(ak,−a0z) = a0. (7)

3



Proof. Since

D(ak, z)A(ak,−a0z) =
∞
∑

n=0

Dn(ak)z
n ·

∞
∑

n=0

an(−a0z)
n

=
∞
∑

n=0

n
∑

k=0

(−a0)
kakDn−k(ar)z

n.

For any positive integer n, the recursive formula for Dn(ak) implies that the coefficients of
zn on the right-hand side are all zeros. Hence all that remains of the above equation is the
constant term. So

D(ak, z)A(ak,−a0z) = (−a0)
0a0D0(ak) = a0.

If A(z)B(z) = 1, it implies that a0b0 = 1. Thus the number a0 must be nonzero.
Set t = −a0z in Eq. (7), a0 = D(ak,−t/a0)A(ak, t). Therefore bn can be expressed as
(−1)nDn(ak)/a

n+1
0 . This gives another proof of Theorem 1.1.

Here we give a basic property of the determinant Dn(ak).

Proposition 2.4. Let u be a complex number and n be a nonnegative integer. Then

Dn(u
kak) = unDn(ak). (8)

Proof. Using the recursive formula for Dn(ak) and the strong mathematical induction on the
integer n, we easily get the assertion.

3 Applications

Theorem 3.1. Let n be a nonnegative integer. Then the ordinary generating function of
Dn(1/(2k + 1)!) is

D

(

1

(2k + 1)!
, z2
)

=
z

sin z
. (9)

Moreover,
(2n)!Dn(1/(2k + 1)!) = (−1)n+1(22n − 2)B2n. (10)

Proof. The ordinary generating function of 1/(2n+1)! is related to the power series expansion
of sin z.

A

(

1

(2k + 1)!
,−z2

)

=
∞
∑

n=0

(−1)nz2n

(2n+ 1)!
=

sin z

z
.

In view of Theorem 1.1 the ordinary generating function of Dn(1/(2k + 1)!) becomes

D

(

1

(2k + 1)!
, z2
)

=
z

sin z
.
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We express the function z/ sin z in the form

z

sin z
=

2iz

eiz − e−iz
=

2izeiz

e2iz − 1
.

Therefore,

D

(

1

(2k + 1)!
,−z2

)

=
2zez

e2z − 1
.

Since the Bernoulli polynomial Bn(z) is defined by

tezt

et − 1
=

∞
∑

n=0

Bn(z)t
n

n!
,

this implies that
(2n)!Dn(1/(2k + 1)!) = (−1)n22nB2n(1/2).

Our assertion follows from Eq. 23.1.21 of [1], for n ≥ 0,

Bn(1/2) = (21−n − 1)Bn.

The Eq. (10) is just Eq. (3) obtained by Van Malderen [6]. We can rewrite the well-known
recursive relation among Bernoulli numbers

∑n

k=0

(

n+1
k

)

Bk = 0 as

n
∑

k=1

B2k

(2k)!
·

1

(2n+ 1− 2k)!
=

1

2(2n)!
−

1

(2n+ 1)!
. (11)

This formula can be represented in the matrix form

Ln

(

1

(2k + 1)!

)

·

−−−−−→(

B2k

(2k)!

)

n+1 =

−−−−−−−−−−−−−−−−→(

1

2(2k)!
−

1

(2k + 1)!

)

n+1, (12)

where
−−→
(vk)n = (v1, v2, . . . , vn)

t be a n × 1 vector. By Corollary 2.2 the inverse matrix of
Ln(1/(2k + 1)!) is Ln((−1)kDk(1/(2r + 1)!)). We can obtain Eq. (2) by multiplying this
inverse matrix.

The Genocchi numbers Gn and the tangent numbers Tn are defined by [4]

2t

et + 1
=

∞
∑

n=0

Gnt
n

n!
and 1 + tanh t =

∞
∑

n=0

Tnt
n

n!
.

They can be expressed in terms of the Bernoulli numbers as

G2n = (22n+1 − 2)B2n and T2n−1 =
22n(22n − 1)

2n
B2n.

Hence we can express them as Dn(1/(2k + 1)!) multiplied a suitable constant.
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Corollary 3.2. Let n, m be integers with n ≥ 1, m ≥ 0, we have

(22n − 1)(2n− 1)!Dn(2
2k/(2k + 1)!) = (−1)n+1(22n − 2)T2n−1 (13)

and
(22m − 1)(2m)!Dm(1/(2k + 1)!) = (−1)m+1(22m−1 − 1)G2m. (14)

The Bernoulli numbers of order m, B
(m)
n , are defined by

B(m, t) =

(

t

et − 1

)m

=
∞
∑

n=0

B
(m)
n tn

n!
.

The Stirling numbers of the second kind
{

n

m

}

are defined by [5]

(ex − 1)m

m!
=

∞
∑

n=m

{

n

m

}

xn

n!
.

Theorem 3.3. Let n, m be nonnegative integers and S
(m)
n =

{

m+n

m

}

/
(

m+n

m

)

. Then the

ordinary generating function of Dn(S
(m)
k /k!) is

D(S
(m)
k /k!, z) = B(m,−z). (15)

Moreover,

n!Dn(S
(m)
k /k!) = (−1)nB(m)

n and n!Dn(B
(m)
k /k!) = (−1)nS(m)

n . (16)

Proof. The ordinary generating function of the Stirling numbers of the second kind
{

n

m

}

can
be rewritten as

(ez − 1)m

m!
=

∞
∑

n=0

{

m+ n

m

}

zm+n

(m+ n)!
.

Therefore, the ordinary generating function of S
(m)
n /n! is

A

(

S
(m)
k

k!
, z

)

=
(ez − 1)m

zm
.

Applying Theorem 2.3 we have

D

(

S
(m)
k

k!
, z

)

=

(

−z

e−z − 1

)m

= B(m,−z).

Comparing the coefficients of z in the both sides of the above equation, we get Eq. (16).
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The case ofm = 1 in the above theorem gives a well-known formula for Bernoulli numbers
(see Eq. (4) of [3]):

Dn

(

1

(k + 1)!

)

=
(−1)nBn

n!
. (17)

Using Proposition 2.4 we get an interesting identity from the above formula:

Dn

(

(−1)k

(k + 1)!

)

=
Bn

n!
. (18)

The Harmonic numbers Hn are defined by

Hn = 1 +
1

2
+ · · ·+

1

n
,

for n ≥ 1. Since [7]

Hn =
(−1)n−1B

(n+1)
n−1

(n− 1)!
,

we have the following corollary.

Corollary 3.4. For each positive integer n, we have

Hn = Dn−1(S
(n+1)
k /k!). (19)

The Euler numbers of order m, E
(m)
n , are defined by

E(m, t) = ( sech t)m =
∞
∑

n=0

E
(m)
n tn

n!
.

Since sech t is an even function, E
(m)
2n+1 = 0 for n ≥ 0. This gives that

E(m, t) =
∞
∑

n=0

E
(m)
2n t2n

(2n)!
.

Theorem 3.5. Let n, m be nonnegative integers and

C(m)
n =

∑

pi≥0

p1+···+pm=n

(2n)!

(2p1)! · · · (2pm)!
=

∑

pi≥0

p1+···+pm=n

(

2n

2p1, . . . , 2pm

)

. (20)

Then the ordinary generating function of Dn(C
(m)
k /(2k)!) is

D(C
(m)
k /(2k)!, z2) = E(m, iz). (21)

Moreover,

(2n)!Dn(C
(m)
k /(2k)!) = (−1)nE

(m)
2n and (2n)!Dn(E

(m)
2k /(2k)!) = (−1)nC(m)

n . (22)
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Proof. The ordinary generating function of C
(m)
n /(2n)! is related to the power series expan-

sion of (cosh z)m.

A

(

C
(m)
k

(2k)!
, z2

)

=

(

∞
∑

n=0

z2n

(2n)!

)m

= (cosh z)m.

The remaining proof is similar to the proofs of Theorems 3.1 and 3.3, therefore we omit
it.

The Bernoulli numbers of the second kind of order m, b
(m)
n , are defined by

b(m, t) =

(

t

ln(1 + t)

)m

=
∞
∑

n=0

b
(m)
n tn

n!
.

The Stirling numbers of the first kind
[

n

m

]

are defined by [5]

(ln(1 + t))m

m!
=

∞
∑

n=m

[

n

m

]

tn

n!
.

Theorem 3.6. Let n, m be nonnegative integers and s
(m)
n =

[

m+n

m

]

/
(

m+n

m

)

. Then the ordinary

generating function of Dn(s
(m)
k /k!) is

D(s
(m)
k /k!, z) = b(m,−z). (23)

Moreover,
n!Dn(s

(m)
k /k!) = (−1)nb(m)

n and n!Dn(b
(m)
k /k!) = (−1)ns(m)

n . (24)

Proof. We indicate that the definition of the Stirling numbers of the first kind
[

n

m

]

can be
rewritten as

(ln(1 + t))m

m!
=

∞
∑

n=0

[

n+m

m

]

tm+n

(n+m)!
.

The results follow.

The case of m = 1 in the above theorem gives a new formula for the Bernoulli numbers
of second kind:

Dn

(

1

k + 1

)

=
bn
n!
. (25)

In the same spirit we can apply Theorem 1.1 to many other areas. For example, in
the theory of symmetric functions the Jacobi-Trudi Determinants (page 154 of [8]) say that
sλ = det(hλi−i+j) and sλ′ = det(eλi−i+j) where sλ is the Schur function associated with the
partition λ, λi is the ith part of λ, λ′ is the conjugate of λ, and hn is the nth complete
symmetric function, en is the nth elementary symmetric function.

The generating functions of en(x) and hn(x) are

E(t) =
∞
∑

n=0

en(x)t
n =

∞
∏

i=1

(1 + xit), H(t) =
∞
∑

n=0

hn(x)t
n =

∞
∏

i=1

1

1− xit
,
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respectively. Since E(−t)H(t) = 1, our Theorem 1.1 gives

en = Dn(hk) and hn = Dn(ek). (26)

These formulae are the same with the results specialized to λ = 1n in the Jacobi-Trudi
Determinants.
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