

Journal of Integer Sequences, Vol. 10 (2007), Article 07.9.2

Mean Values of Generalized gcd-sum and lcm-sum Functions

Olivier Bordellès 2, Allée de la Combe La Boriette 43000 Aiguilhe France borde43@wanadoo.fr

Abstract

We consider a generalization of the gcd-sum function, and obtain its average order with a quasi-optimal error term. We also study the reciprocals of the gcd-sum and lcm-sum functions.

1 Introduction and notation

The so-called gcd-sum function, defined by

$$g\left(n\right) = \sum_{j=1}^{n} \left(n, j\right)$$

where (a, b) denotes the greatest common divisor of a and b, was first introduced by Broughan ([3, 4]) who studied its main properties, and showed among other things that g satisfies the convolution identity (see also the beginning of the proof of Lemma 3.1)

$$g = \varphi * \mathrm{Id}$$

where F * G is the usual Dirichlet convolution product. By using the following alternative convolution identity

$$g = \mu * (\mathrm{Id} \cdot \tau),$$

where μ is the Möbius function and τ is the divisor function, we were able in [1] to get the average order of g. Our result can be stated as follow. If θ is the exponent in the Dirichlet divisor problem, then the following asymptotic formula

$$\sum_{n \leqslant x} g\left(n\right) = \frac{x^2 \log x}{2\zeta\left(2\right)} + \frac{x^2}{2\zeta\left(2\right)} \left(\gamma - \frac{1}{2} + \log\left(\frac{\mathcal{A}^{12}}{2\pi}\right)\right) + O_{\varepsilon}\left(x^{1+\theta+\varepsilon}\right) \tag{1}$$

holds for any real number $\varepsilon > 0$, where $\mathcal{A} \approx 1.282\ 427\ 129...$ is the Glaisher-Kinkelin constant. The inequality $\theta \ge 1/4$ is well-known, and, from the work of Huxley [5] we know that $\theta \le 131/416 \approx 0.3149$.

The aim of this paper is first to work with a function generalizing the function g and prove an asymptotic formula for its average order similarly as in (1). In sections 5, 6 and 7 we will establish estimates for the lcm-sum function, and for reciprocals of the gcd-sum and lcm-sum functions. We begin with classical notation.

1. *Multiplicative functions*. The following arithmetic functions are well-known.

$$Id^{a}(n) = n^{a} \quad (a \in \mathbb{Z}^{*})$$
$$\mathbf{1}(n) = 1$$

and μ , φ , σ_k and τ_k are respectively the Möbius function, the Euler totient function, the sum of kth powers of divisors function and the kth Piltz divisor function. Recall that τ_k can be defined by $\tau_k = \underbrace{\mathbf{1} * \cdots * \mathbf{1}}_{k \text{ times}}$ for any integer $k \ge 1$ and that $\tau_2 = \tau$. We also have $\sigma_k = \sum_{d|n} d^k$ and $\sigma_0 = \tau$.

2. Exponent in the Dirichlet-Piltz divisor problem. For any integer $k \ge 2$, θ_k is defined to be the smallest positive real number such that the asymptotic formula

$$\sum_{n \leq x} \tau_k(n) = x \mathcal{P}_{k-1}(\log x) + O_{\varepsilon,k}\left(x^{\theta_k + \varepsilon}\right)$$
(2)

holds for any real number $\varepsilon > 0$. Here \mathcal{P}_{k-1} is a polynomial of degree k-1 with real coefficients, the leading coefficient being $\frac{1}{(k-1)!}$. It is now well-known that $\frac{1}{3} \leq \theta_3 \leq \frac{43}{96}$ and that $\frac{k-1}{2k} \leq \theta_k \leq \frac{k-1}{k+2}$ for $k \geq 4$ (see [6], for example).

By convention, we set

$$\tau_0(n) = \begin{cases} 1, & \text{if } n = 1; \\ 0, & \text{otherwise;} \end{cases}$$

and $\theta_1 = 0$.

2 A generalization of the gcd-sum function

Definition 2.1. We define the sequence of arithmetic functions $f_{k,j}(n)$ in the following way.

(i) For any integers $j, n \ge 1$, we set

$$f_{1,j}(n) = \begin{cases} 1, & \text{if } (n,j) = 1; \\ 0, & \text{otherwise}; \end{cases}$$
$$f_{2,j}(n) = \begin{cases} (n,j), & \text{if } j \leq n; \\ 0, & \text{otherwise}. \end{cases}$$

(ii) For any integers $j \ge 1$ and $k \ge 3$, we set

$$f_{k,j} = f_{2,j} * (Id \cdot \tau_{k-2}).$$

Definition 2.2. For any integers $n, k \ge 1$, we define the sequence of arithmetic functions $g_k(n)$ by

$$g_{k}\left(n\right)=\sum_{j=1}^{n}f_{k,j}\left(n\right).$$

Examples.

$$g_{1}(n) = \sum_{\substack{j=1\\(n,j)=1}}^{n} 1 = \varphi(n),$$

$$g_{2}(n) = \sum_{\substack{j=1\\j=1}}^{n} (j,n) = g(n),$$

$$g_{3}(n) = \sum_{\substack{j=1\\j=1}}^{n} \sum_{\substack{d|n\\d\geqslant j}} \frac{n}{d} (j,d),$$

$$\vdots$$

$$g_{k}(n) = \sum_{\substack{j=1\\j=1}}^{n} \sum_{\substack{d_{k-2}|n}} \sum_{\substack{d_{k-3}|d_{k-2}}} \cdots \sum_{\substack{d_{1}|d_{2}\\d_{1}\geqslant j}} \frac{n}{d_{1}} (j,d_{1}).$$

Now we are able to state the following result.

Theorem 2.3. Let $\varepsilon > 0$ be any real number and $k \ge 1$ any integer. Then, for any real number $x \ge 1$ sufficiently large, we have

$$\sum_{n \leq x} g_k(n) = \frac{x^2}{2\zeta(2)} \mathcal{R}_{k-1}(\log x) + O_{\varepsilon,k}\left(x^{1+\theta_k+\varepsilon}\right)$$

where \mathcal{R}_{k-1} is a polynomial of degree k-1 and leading coefficient $\frac{1}{(k-1)!}$. The following table gives \mathcal{R}_{k-1} for $k \in \{1, 2, 3\}$

where

$$\alpha = 2\gamma - \frac{1}{2} + \log\left(\frac{\mathcal{A}^{12}}{2\pi}\right)$$

$$\beta = -\frac{\zeta''(2)}{2\zeta(2)} + \left(\gamma - \log\left(\frac{\mathcal{A}^{12}}{2\pi}\right)\right)^2 - \left(3\gamma - \frac{1}{2}\right)\left(\gamma - \log\left(\frac{\mathcal{A}^{12}}{2\pi}\right)\right)$$

$$-\frac{1}{4}\left(12\gamma_1 - 12\gamma^2 + 6\gamma - 1\right)$$

and

Constant	Name
$\gamma \approx 0.577 \ 215 \ 664 \dots$	Euler – Mascheroni
$\gamma_1 \approx -0.072 \ 815 \ 845 \dots$	Stieltjes
$\mathcal{A} \approx 1.282 \ 427 \ 129 \dots$	Glaisher – Kinkelin

3 Main properties of the function g_k

The following lemma lists the main tools used in the proof of Theorem 2.3.

Lemma 3.1. For any integer $k \ge 1$, we have

 $g_{k+1} = g_k * \mathrm{Id}$

and then

 $g_k = \varphi * (\mathrm{Id} \cdot \tau_{k-1}).$

Moreover, we have

$$g_k = \mu * (\mathrm{Id} \cdot \tau_k) \,. \tag{3}$$

Thus, the Dirichlet series $G_k(s)$ of g_k is absolutely convergent in the half-plane $\Re s > 2$, and has an analytic continuation to a meromorphic function defined on the whole complex plane with value

$$G_k(s) = \frac{\zeta(s-1)^k}{\zeta(s)}.$$

Proof. Broughan already proved the first relation for k = 1 (see [3, Thm. 4.7]), but, for the sake of completeness, we give here another proof.

$$(g_1 * \mathrm{Id})(n) = (\varphi * \mathrm{Id})(n) = \sum_{d|n} d\varphi \left(\frac{n}{d}\right)$$
$$= \sum_{d|n} d\sum_{\substack{k \le n/d \\ (k,n/d)=1}} 1 = \sum_{d|n} d\sum_{\substack{j=1 \\ (j,n)=d}}^n 1$$
$$= \sum_{j=1}^n (j,n) = \sum_{j=1}^n f_{2,j}(n) = g_2(n)$$

.

For k = 2, we get

$$(g_2 * \mathrm{Id})(n) = \sum_{d|n} \frac{n}{d} \sum_{j=1}^d (j, d) = \sum_{j=1}^n \sum_{\substack{d|n \\ d \ge j}} \frac{n}{d} (j, d) = \sum_{j=1}^n f_{3,j}(n) = g_3(n).$$

Now let us suppose $k \ge 3$. We have

$$g_{k+1}(n) = \sum_{j=1}^{n} f_{k+1,j}(n) = \sum_{j=1}^{n} (f_{2,j} * (\mathrm{Id} \cdot \tau_{k-1}))(n)$$

= $\sum_{j=1}^{n} (f_{2,j} * \mathrm{Id} \cdot \tau_{k-2} * \mathrm{Id})(n)$
= $\sum_{d|n} \frac{n}{d} \sum_{j=1}^{d} (f_{2,j} * (\mathrm{Id} \cdot \tau_{k-2}))(d) = (g_k * \mathrm{Id})(n).$

The second relation is easily shown by induction. For the third, we have using $\varphi = \mu * \operatorname{Id}$

$$g_k = \varphi * (\operatorname{Id} \cdot \tau_{k-1}) = \mu * (\operatorname{Id} * (\operatorname{Id} \cdot \tau_{k-1}))$$
$$= \mu * (\operatorname{Id} \cdot (\mathbf{1} * \tau_{k-1})) = \mu * (\operatorname{Id} \cdot \tau_k).$$

The last proposition comes from the equality (3)

$$g_k = \mu * (\mathrm{Id} \cdot \tau_k) = \mu * \underbrace{\mathrm{Id} * \cdots * \mathrm{Id}}_{k \text{ times}}$$

and the Dirichlet series of μ and Id.

4 Proof of Theorem 1

Lemma 4.1. For any integer $k \ge 1$ and any real numbers x > 1 and $\varepsilon > 0$, we have

$$\sum_{n \leq x} n\tau_k(n) = x^2 \mathcal{Q}_{k-1}(\log x) + O_{\varepsilon,k}\left(x^{1+\theta_k+\varepsilon}\right)$$

where \mathcal{Q}_{k-1} is a polynomial of degree k-1 and leading coefficient $\frac{1}{2(k-1)!}$.

Proof. Using summation by parts and (2), we get

$$\sum_{n \leq x} n\tau_k(n) = x \sum_{n \leq x} \tau_k(n) - \int_1^x \left(\sum_{n \leq t} \tau_k(n) \right) dt$$
$$= x^2 \mathcal{P}_{k-1}(\log x) + O_{\varepsilon,k}\left(x^{1+\theta_k+\varepsilon} \right) - \int_1^x \left(t\mathcal{P}_{k-1}(\log t) + O_{\varepsilon,k}\left(t^{\theta_k+\varepsilon} \right) \right) dt.$$

Writing

$$\mathcal{P}_{k-1}\left(X\right) = \sum_{j=0}^{k-1} a_j X^j$$

with $a_{k-1} = \frac{1}{(k-1)!}$, we obtain

$$\sum_{n \leq x} n\tau_k(n) = x^2 \sum_{j=0}^{k-1} a_j (\log x)^j - \sum_{j=0}^{k-1} a_j \int_1^x t (\log t)^j dt + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right)$$

and the formula

$$\int_{1}^{x} t \left(\log t\right)^{j} dt = x^{2} \sum_{i=0}^{j} (-1)^{j-i} \frac{j!}{2^{j+1-i} \times i!} \left(\log x\right)^{i} - (-1)^{j} \frac{j!}{2^{j+1}}$$

(easily proved by induction) gives

$$\sum_{n \leq x} n\tau_k (n) = x^2 \sum_{j=0}^{k-1} a_j \left\{ (\log x)^j - \sum_{i=0}^j (-1)^{j-i} \frac{j!}{2^{j+1-i} \times i!} (\log x)^i \right\}$$
$$+ \sum_{i=0}^j (-1)^j \frac{j! a_j}{2^{j+1}} + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right)$$
$$= x^2 \sum_{j=0}^{k-1} a_j \left\{ \frac{(\log x)^j}{2} - \sum_{i=0}^{j-1} (-1)^{j-i} \frac{j!}{2^{j+1-i} \times i!} (\log x)^i \right\} + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right)$$

which completes the proof of the lemma.

Remark. For k = 3, the following result is well-known (see [7, Exer. II.3.4], for example)

$$\sum_{n \le x} \tau_3(n) = x \left\{ \frac{(\log x)^2}{2} + (3\gamma - 1)\log x + 3\gamma^2 - 3\gamma - 3\gamma_1 + 1 \right\} + O_{\varepsilon} \left(x^{\theta_3 + \varepsilon} \right)$$

and gives

$$\sum_{n \leqslant x} n\tau_3(n) = x^2 \left\{ \frac{(\log x)^2}{4} + \left(\frac{6\gamma - 1}{4}\right) \log x - \frac{12\gamma_1 - 12\gamma^2 + 6\gamma - 1}{8} \right\} + O_{\varepsilon} \left(x^{1+\theta_3+\varepsilon}\right).$$
(4)

Now we are able to prove Theorem 2.3.

Using (3) we get

$$\sum_{n \leqslant x} g_k(n) = \sum_{d \leqslant x} \mu(d) \sum_{m \leqslant x/d} m \tau_k(m),$$

and lemma 3.1 gives

$$\sum_{n \leqslant x} g_k(n) = \sum_{d \leqslant x} \mu(d) \left\{ \left(\frac{x}{d}\right)^2 \mathcal{Q}_{k-1}\left(\log\frac{x}{d}\right) + O_{\varepsilon,k}\left(\left(\frac{x}{d}\right)^{1+\theta_k+\varepsilon}\right) \right\}$$
$$= x^2 \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \mathcal{Q}_{k-1}\left(\log\frac{x}{d}\right) + O_{\varepsilon,k}\left(x^{1+\theta_k+\varepsilon}\right).$$

Writing

$$\mathcal{Q}_{k-1}\left(X\right) = \sum_{j=0}^{k-1} b_j X^j$$

with $b_{k-1} = \frac{1}{2(k-1)!}$, we get

$$\sum_{n \leqslant x} g_k(n) = x^2 \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \sum_{j=0}^{k-1} b_j \left(\log \frac{x}{d} \right)^j + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right)$$
$$= x^2 \sum_{j=0}^{k-1} \sum_{h=0}^j \binom{j}{h} b_j \left(\log x \right)^{j-h} \sum_{d \leqslant x} (-1)^h \frac{\mu(d)}{d^2} \left(\log d \right)^h + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right)$$

and the equality

$$\sum_{d \leq x} (-1)^h \frac{\mu(d)}{d^2} (\log d)^h = \sum_{d=1}^\infty (-1)^h \frac{\mu(d)}{d^2} (\log d)^h - \sum_{d > x} (-1)^h \frac{\mu(d)}{d^2} (\log d)^h$$
$$= \left[\frac{d^h}{ds^h} \left(\frac{1}{\zeta(s)} \right) \right]_{[s=2]} + O\left(\frac{(\log x)^h}{x} \right),$$

implies

$$\sum_{n \leqslant x} g_k(n) = x^2 \sum_{j=0}^{k-1} \sum_{h=0}^j {j \choose h} \left(\left[\frac{d^h}{ds^h} \left(\frac{1}{\zeta(s)} \right) \right]_{[s=2]} \right) b_j (\log x)^{j-h} + O\left(x (\log x)^{k-1} \right) + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right) = x^2 \sum_{j=0}^{k-1} \sum_{h=0}^j {j \choose h} \left(\left[\frac{d^h}{ds^h} \left(\frac{1}{\zeta(s)} \right) \right]_{[s=2]} \right) b_j (\log x)^{j-h} + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right),$$

and writing

$$\left[\frac{d^{h}}{ds^{h}}\left(\frac{1}{\zeta\left(s\right)}\right)\right]_{[s=2]} = \frac{A_{h}}{2\zeta\left(2\right)^{h+1}}$$

with $A_h \in \mathbb{R}$ (and $A_0 = 2$), we obtain

$$\sum_{n \leq x} g_k(n) = \frac{x^2}{2\zeta(2)} \sum_{j=0}^{k-1} \sum_{h=0}^j {j \choose h} \frac{A_h b_j (\log x)^{j-h}}{\zeta(2)^h} + O_{\varepsilon,k} \left(x^{1+\theta_k+\varepsilon} \right)$$

which is the desired result. The leading coefficient is $\binom{k-1}{0}A_0b_{k-1} = \frac{1}{(k-1)!}$. The particular cases are easy to check.

(i) For k = 1, the result is well-known (see [2, Exer. 4.14])

$$\sum_{n \leq x} g_1(n) = \sum_{n \leq x} \varphi(n) = \frac{x^2}{2\zeta(2)} + O(x \log x).$$

(ii) For k = 2, see [1].

(iii) For k = 3, we use (4) and the computations made above. The proof of Theorem 2.3 is now complete.

5 Sums of reciprocals of the gcd

The purpose of this section is to prove the following estimate.

Theorem 5.1. For any real number x > e sufficiently large, we have

$$\sum_{n \leqslant x} \left(\sum_{j=1}^{n} \frac{1}{(j,n)} \right) = \frac{\zeta(3)}{2\zeta(2)} x^2 + O\left(x \left(\log x \right)^{2/3} \left(\log \log x \right)^{4/3} \right).$$

Proof. For any integer $n \ge 1$, we set

$$\mathcal{G}(n) = \sum_{j=1}^{n} \frac{1}{(j,n)}.$$

With a similar argument used in the proof of the identity $g = \varphi * \text{Id}$ (see lemma 3.1), it is easy to check that

$$\mathcal{G} = \varphi * \mathrm{Id}^{-1},$$

and thus

$$\sum_{n \leqslant x} \mathcal{G}(n) = \sum_{d \leqslant x} \frac{1}{d} \sum_{m \leqslant x/d} \varphi(m) \,.$$

The well-known result (see [8], for example)

$$\sum_{n \leq x} \varphi(n) = \frac{x^2}{2\zeta(2)} + O\left(x \left(\log x\right)^{2/3} \left(\log \log x\right)^{4/3}\right),$$

combined with some classical computations, allows us to conclude the proof of Theorem 5.1. $\hfill \Box$

6 The lcm-sum function

Definition 6.1. For any integer $n \ge 1$, we define

$$l\left(n\right) = \sum_{j=1}^{n} \left[n, j\right]$$

where [a, b] is the least common multiple of a and b.

Lemma 6.2. We have the following convolution identity

$$l = \frac{1}{2} \left((\mathrm{Id}^2 \cdot (\varphi + \tau_0)) * \mathrm{Id} \right).$$

Proof. We have

$$\sum_{j=1}^{n} \frac{j}{(n,j)} = \sum_{d|n} \frac{1}{d} \sum_{\substack{j=1\\(n,j)=d}}^{n} j = \sum_{d|n} \frac{1}{d} \sum_{\substack{k \le n/d\\(k,n/d)=1}}^{k < n/d} kd = \sum_{d|n} \sum_{\substack{k \le n/d\\(k,n/d)=1}}^{k < n/d} kd$$

with

$$\sum_{\substack{k \leq N \\ (k,N)=1}} k = \sum_{d|N} d\mu (d) \sum_{m \leq N/d} m$$
$$= \frac{1}{2} \sum_{d|N} d\mu (d) \left\{ \frac{N}{d} \left(\frac{N}{d} + 1 \right) \right\}$$
$$= \frac{N}{2} \sum_{d|N} \mu (d) \left(\frac{N}{d} + 1 \right) = \frac{N}{2} \left(\varphi + \tau_0 \right) (N) ,$$

and hence

$$\sum_{j=1}^{n} \frac{j}{(n,j)} = \frac{1}{2} \sum_{d|n} \frac{n}{d} \left(\varphi + \tau_{0}\right) \left(\frac{n}{d}\right) = \frac{1}{2} \left(\left(\text{Id} \cdot \left(\varphi + \tau_{0}\right)\right) * \mathbf{1} \right) (n) ,$$

and we conclude by noting that

$$l(n) = n \sum_{j=1}^{n} \frac{j}{(n,j)}$$

which completes the proof, since Id is completely multiplicative.

Theorem 6.3. For any real number x > e sufficiently large, we have the following estimate

$$\sum_{n \leqslant x} \left(\sum_{j=1}^{n} [n, j] \right) = \frac{\zeta(3)}{8\zeta(2)} x^4 + O\left(x^3 \left(\log x \right)^{2/3} \left(\log \log x \right)^{4/3} \right).$$

Proof. Using lemma 6.2, we get

$$\sum_{n \leqslant x} l(n) = \frac{1}{2} \sum_{d \leqslant x} d \sum_{m \leqslant x/d} m^2 (\varphi + \tau_0) (m)$$
$$= \frac{1}{2} \sum_{d \leqslant x} d \sum_{m \leqslant x/d} m^2 \varphi(m) + O(x^2)$$

and the estimation (see [8])

$$\sum_{n \le x} n^2 \varphi(n) = \frac{x^4}{4\zeta(2)} + O\left(x^3 \left(\log x\right)^{2/3} \left(\log \log x\right)^{4/3}\right)$$

implies

$$\sum_{n \leqslant x} l(n) = \frac{1}{2} \sum_{d \leqslant x} d\left\{ \frac{1}{4\zeta(2)} \left(\frac{x}{d}\right)^4 + O\left(\left(\frac{x}{d}\right)^3 (\log x)^{2/3} (\log \log x)^{4/3}\right)\right\} + O\left(x^2\right)$$
$$= \frac{x^4}{8\zeta(2)} \sum_{d=1}^{\infty} \frac{1}{d^3} + O\left(x^3 (\log x)^{2/3} (\log \log x)^{4/3}\right) + O\left(x^2\right),$$

which is the desired result.

7 Sum of reciprocals of the lcm

We will prove the following result.

Theorem 7.1. For any real number x > 1 sufficiently large, we have

$$\sum_{n \leqslant x} \left(\sum_{j=1}^{n} \frac{1}{[n,j]} \right) = \frac{(\log x)^3}{6\zeta(2)} + \frac{(\log x)^2}{2\zeta(2)} \left(\gamma + \log\left(\frac{\mathcal{A}^{12}}{2\pi}\right) \right) + O\left(\log x\right).$$

Some useful estimates are needed.

Lemma 7.2. Set $C_{\varphi} = \log\left(\frac{\mathcal{A}^{12}}{2\pi}\right) \approx 1.147\ 176\ldots$ For any real number $x \ge 1$, we have $(i): \sum_{n \le x} \frac{\varphi(n)}{n^2} = \frac{\log x}{\zeta(2)} + \frac{C_{\varphi}}{\zeta(2)} + O\left(\frac{\log ex}{x}\right).$ $(ii): \sum_{n \le x} \frac{\varphi(n)}{n^2} \log\left(\frac{x}{n}\right) = \frac{(\log x)^2}{2\zeta(2)} + \frac{C_{\varphi}\log x}{\zeta(2)} + O(1).$ $(iii): \frac{1}{2} \sum_{n \le x} \frac{\varphi(n)}{n^2} \left(\log\left(\frac{x}{n}\right)\right)^2 = \frac{(\log x)^3}{6\zeta(2)} + \frac{C_{\varphi}(\log x)^2}{2\zeta(2)} + O(\log x).$

Proof. (i). Using $\varphi = \mu * \text{ Id}$, we get

$$\sum_{n \leqslant x} \frac{\varphi(n)}{n^2} = \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \sum_{m \leqslant x/d} \frac{1}{m}$$
$$= \sum_{d \leqslant x} \frac{\mu(d)}{d^2} \left\{ \log\left(\frac{x}{d}\right) + \gamma + O\left(\frac{d}{x}\right) \right\}$$
$$= (\log x + \gamma) \sum_{d \leqslant x} \frac{\mu(d)}{d^2} - \sum_{d \leqslant x} \frac{\mu(d) \log d}{d^2} + O\left(\frac{1}{x} \sum_{d \leqslant x} \frac{1}{d}\right)$$
$$= \frac{\log x}{\zeta(2)} + \frac{\gamma}{\zeta(2)} - \frac{\zeta'(2)}{(\zeta(2))^2} + O\left(\frac{\log ex}{x}\right).$$

Recall that $\frac{\zeta'(2)}{\zeta(2)} = \gamma - C_{\varphi}.$

(ii) and (iii). Abel's summation and estimate (i). We leave the details to the reader. \Box

Now we are able to show Theorem 7.1. For any integer $n \ge 1$, we set

$$\mathcal{L}(n) = \sum_{j=1}^{n} \frac{1}{[n,j]}.$$

Since

$$\mathcal{L}(n) = \frac{1}{n} \sum_{j=1}^{n} \frac{(n,j)}{j} = \frac{1}{n} \sum_{d|n} d \sum_{\substack{j=1 \ (j,n)=d}}^{n} \frac{1}{j}$$
$$= \frac{1}{n} \sum_{d|n} d \sum_{\substack{k \le n/d \ (k,n/d)=1}} \frac{1}{kd} = \frac{1}{n} \sum_{d|n} \sum_{\substack{k \le n/d \ (k,n/d)=1}} \frac{1}{k},$$

$$\sum_{n \leqslant x} \mathcal{L}(n) = \sum_{n \leqslant x} \frac{1}{n} \sum_{d|n} \sum_{\substack{k \leqslant n/d \\ (k,n/d)=1}} \frac{1}{k}$$

$$= \sum_{d \leqslant x} \frac{1}{d} \sum_{h \leqslant x/d} \frac{1}{h} \sum_{\substack{k \leqslant h \\ (k,h)=1}} \frac{1}{k}$$

$$= \sum_{d \leqslant x} \frac{1}{d} \sum_{h \leqslant x/d} \frac{1}{h} \sum_{\delta \mid h} \frac{\mu(\delta)}{\delta} \sum_{m \leqslant h/\delta} \frac{1}{m}$$

$$= \sum_{d \leqslant x} \frac{1}{d} \sum_{\delta \leqslant x/d} \frac{\mu(\delta)}{\delta^2} \sum_{a \leqslant x/(d\delta)} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m}$$

$$= \sum_{d \leqslant x} \sum_{\delta d \leqslant x} \frac{1}{d} \frac{\mu(\delta)}{\delta^2} \sum_{a \leqslant x/(d\delta)} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m}$$

$$= \sum_{n \leqslant x} \frac{1}{n^2} \sum_{d \mid n} d\mu\left(\frac{n}{d}\right) \sum_{a \leqslant x/n} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m},$$

and the convolution identity $\varphi=\mu*\operatorname{Id}$ implies that

$$\sum_{n \leqslant x} \mathcal{L}(n) = \sum_{n \leqslant x} \frac{\varphi(n)}{n^2} \sum_{a \leqslant x/n} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m}$$

Thus

$$\sum_{n \leqslant x} \mathcal{L}(n) = \sum_{n \leqslant x} \frac{\varphi(n)}{n^2} \sum_{a \leqslant x/n} \frac{1}{a} \left\{ \log a + \gamma + O\left(\frac{1}{a}\right) \right\}$$
$$= \sum_{n \leqslant x} \frac{\varphi(n)}{n^2} \left\{ \frac{1}{2} \left(\log \frac{x}{n} \right)^2 + \gamma \left(\log \frac{x}{n} \right) + O(1) \right\}$$
$$= \frac{(\log x)^3}{6\zeta(2)} + \frac{C_{\varphi} (\log x)^2}{2\zeta(2)} + \frac{\gamma (\log x)^2}{2\zeta(2)} + O(\log x)$$

where $C_{\varphi} = \log\left(\frac{\mathcal{A}^{12}}{2\pi}\right)$, which concludes the proof.

8 Acknowledgment

I am indebted to the referee for his valuable suggestions.

References

- [1] O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Sequences 10 (2007), Article 07.3.3.
- [2] O. Bordellès, *Thèmes d'Arithmétique*, Editions Ellipses, 2006.
- [3] K. A. Broughan, The gcd-sum function, J. Integer Sequences 4 (2001), Article 01.2.2. Errata, April 16, 2007, http://www.cs.uwaterloo.ca/journals/JIS/VOL4/BROUGHAN/errata1.pdf
- [4] K. A. Broughan, The average order of the Dirichlet series of the gcd-sum function, J. Integer Sequences 10 (2007), Article 07.4.2.
- [5] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591–609.
- [6] A. Ivić, E. Krätzel, M. Kühleitner, and W. G. Nowak, Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, in W. Schwarz and J. Steuding, eds., *Conference on Elementary and Analytic Number Theory*, Frank Steiner Verlag, 2006, pp. 89–128.
- [7] G. Tenenbaum, Introduction à la Théorie Analytique et Probabiliste des Nombres, Société Mathématique de France, 1995.
- [8] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Leipzig BG Teubner, 1963.

2000 Mathematics Subject Classification: Primary 11A25; Secondary 11N37. Keywords: greatest common divisor, average order, Dirichlet convolution.

Received July 2 2007; revised version received August 27 2007. Published in *Journal of Integer Sequences*, August 27 2007.

Return to Journal of Integer Sequences home page.