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Antonio Bernini and Elisa Pergola
Dipartimento di Sistemi e Informatica
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Abstract

Claesson and Mansour recently proposed some conjectures about the enumeration of
the permutations avoiding more than three Babson-Steingŕımsson patterns (generalized
patterns of type (1, 2) or (2, 1)). The avoidance of one, two or three patterns has
already been considered. Here, the cases of four and five forbidden patterns are solved
and the exact enumeration of the permutations avoiding them is given, confirming the
conjectures of Claesson and Mansour. The approach we use can be easily extended to
the cases of more than five forbidden patterns.

1 Introduction

The results of the present paper concern the exact enumeration of the permutations, accord-
ing to their length, avoiding any set of four or five generalized patterns of type (1, 2) or (2, 1)
[2]. The cases of the permutations avoiding one, two or three generalized patterns (of the
same types) were solved by Claesson [4], Claesson and Mansour [5], and Bernini, Ferrari and
Pinzani [3], respectively. In particular, Claesson and Mansour [5] conjectured the plausible
sequences enumerating the permutations of Sn(P ), for any set P of three or more patterns.

Substantially, Bernini, Ferrari and Pinzani [3] conducted the proofs by finding the ECO
construction [1] for the permutations avoiding three generalized patterns of type (1, 2) or
(2, 1), encoding it with a succession rule and, finally, checking that this one leads to the
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enumerating sequence conjectured by Claesson and Mansour [5]. This approach could surely
be used also for the investigation of the avoidance of four or five generalized patterns of type
(1, 2) or (2, 1) and, maybe, it would allow to find some nice and interesting results: we think
that, for instance, in some case new succession rules for known sequences would appear.
However, this approach has one obstacle: the large number of cases to consider in order to
exhaust all the conjectures. The line we are going to follow (see below) is simple and allows
us to reduce the number of cases to be considered. Most of the results are summarized in
several tables which are presented in Section 4. Really, the paper could appear an easy
exercise, but we believe that it is a valuable contribute to the classification of permutations
avoiding generalized patterns, started with Claesson, Mansour, Elizalde and Noy [6], Kitaev
[8]. Moreover, it can be seen as the continuation of the work started by Bernini, Ferrari
and Pinzani [3] for the fulfillment of the proofs of the conjectures presented by Claesson and
Mansour [5].

1.1 Preliminaries

A (classical) pattern is a permutation σ ∈ Sk and a permutation π ∈ Sn avoids σ if there is no
any subsequence πi1πi2 . . . πik with 1 ≤ i1 < i2 < . . . < ik ≤ n which is order-isomorphic to σ.
In other words, π must contain no subsequences having the entries in the same relative order
of the entries of σ. Generalized patterns were introduced by Babson and Steingŕımsson for
the study of the mahonian statistics on permutations [2]. They are constructed by inserting
one or more dashes among the elements of a classical pattern (two or more consecutive dashes
are not allowed). For instance, 216 − 4 − 53 is a generalized pattern of length 6. The type

(t1, t2, . . . , th+1) of a generalized pattern containing h dashes records the number of elements
between two dashes (we suppose a dash at the beginning and at the end of the generalized
pattern, but we omit it): the type of 216 − 4 − 53 is (3, 1, 2). A permutation π contains a
generalized pattern τ if π contains τ in the classical sense and if any pair of elements of π
corresponding to two adjacent elements of τ (not separated by a dash) are adjacent in π,
too. For instance, π = 153426 contains 32−14 in the entries π2π3π5π6 = 5326 or the pattern
3− 214 in the entries π2π4π5π6 = 5426. A permutation π avoids a generalized pattern τ if it
does not contain τ . If P is a set of generalized patterns, we denote Sn(P ) the permutations
of length n of S (symmetric group) avoiding the patterns of P .

In the paper, we are interested in the generalized patterns of length three, which are of
type (1, 2) or (2, 1). They are those ones specified in the set

M = {1− 23, 12− 3, 1− 32, 13− 2, 3− 12, 31− 2, 2− 13, 21− 3,
2− 31, 23− 1, 3− 21, 32− 1}.

In the sequel, sometimes we can refer to a generalized pattern of length three more concisely
with pattern.

If π ∈ S, we define its reverse and its complement to be the permutations πr and πc,
respectively, such that πr

i = πn+1−i and πc
i = n + 1 − πi. We generalize this definition to

a generalized pattern τ obtaining its reverse τ r by reading τ from right to left (regarding
the dashes as particular entries) and its complement τ c by considering the complement
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of τ regardless of the dashes which are left unchanged (e.g., if τ = 216 − 4 − 53, then
τ r = 35 − 4 − 612 and τ c = 561 − 3 − 24). It is easy to check τ rc = τ cr. If P ⊆ M, the
set {P, P r, P c, P rc} is called the symmetry class of P (P r, P c and P rc contain the reverses,
the complements and the reverse-complements of the patterns specified in P , respectively).
We have that |Sn(P )|=|Sn(P

r)|=|Sn(P
c)|=|Sn(P

rc)| [9], therefore we can choose one of the
four possible sets as the representative of a symmetry class, as far as the enumeration of
S(R), R ∈ {P, P r, P c, P rc}, is concerned.

1.2 The strategy

Looking at the table of the conjectures by Claesson and Mansour [5], it is possible to note
that most of the sequences enumerating the permutations avoiding four patterns are the
same of those ones enumerating the permutations avoiding three patterns. A similar fact
happens when the forbidden patterns are four and five. This suggests to use the results for
the case of three forbidden patterns (at our disposal) to deduce the proof of the conjectures
for the case of four forbidden patterns and, similarly, use the results for the case of four
forbidden patterns to solve the case of five forbidden patterns. Indeed, it is obvious that
S(p1, p2, p3, p4) ⊆ S(pi1 , pi2 , pi3) (with ij ∈ {1, 2, 3, 4} and pl ∈ M). If the inverse inclusion
can be proved for some patterns, then the classes S(p1, p2, p3, p4) and S(pi1 , pi2 , pi3) coincide
and they are enumerated by the same sequence (a similar argument can be used for the cases
of four and five forbidden patterns).

To this end, the following eight propositions are useful: each of them proves that if a
permutation avoids certain patterns, then it avoids also a further pattern. Therefore, it is
possible to apply one of them to a certain class S(pi1 , pi2 , pi3) to prove that S(pi1 , pi2 , pi3) ⊆
S(p1, p2, p3, p4) (the generalization to the case of four and five forbidden pattern is straight-
forward). The proof of the first one can be recovered in the paper of Claesson [4], where he
proves that S(2− 13) = S(213), and the three similar ones follow by symmetry.

Proposition 1.1. If π ∈ S(2− 13), then π ∈ S(2− 13, 21− 3).

Proposition 1.2. If π ∈ S(31− 2), then π ∈ S(31− 2, 3− 12).

Proposition 1.3. If π ∈ S(2− 31), then π ∈ S(2− 31, 23− 1).

Proposition 1.4. If π ∈ S(13− 2), then π ∈ S(13− 2, 1− 32).

Proposition 1.5. If π ∈ S(1− 23, 2− 13), then π ∈ S(1− 23, 2− 13, 12− 3).

Proof. Suppose that π contains a 12−3 pattern in the entries πi, πi+1 and πk (k > i+1).
Let us consider the entry πi+2. It can be neither πi+2 > πi+1 (since πi πi+1 πi+2 would show
a pattern 1− 23) nor πi+2 < πi+1 (since πi+1 πi+2 πk would show a pattern 21− 3 which is
forbidden thanks to Proposition 1.1).
(The proof of the following proposition is very similar and is omitted.)

Proposition 1.6. If π ∈ S(1− 23, 21− 3), then π ∈ S(1− 23, 21− 3, 12− 3).

Proposition 1.7. If π ∈ S(1− 23, 2− 31), then π ∈ S(1− 23, 2− 31, 12− 3).
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Proof. Suppose that a pattern 12− 3 appear in πi, πi+1 and πk. If we consider the entry
πk−1, then it is easily seen that it can be neither πi < πk−1 < πk (the entries πi πk−1 πk

would form a 1− 23 pattern) nor πk−1 < πi (the entries πi πi+1 πk−1 would show a pattern
23− 1 which is forbidden thanks to Proposition 1.3). Hence, πk−1 > πk. We can repeat the
same above argument for the entry πj, j = k− 2, k− 3, . . . , i+ 2, concluding each time that
πj > πj+1. When j = i+2 a pattern 1− 23 is shown in πi πi+1 πi+2, which is forbidden.

Proposition 1.8. If π ∈ S(1− 23, 23− 1), then π ∈ S(1− 23, 23− 1, 12− 3).

This last proposition can be be proved by simply adapting the argument of the proof of
the preceding one.

2 Permutations avoiding four patterns

First of all we recall the results relating to the case of three forbidden patterns [3] in Tables
1 and 2. For the sake of brevity, for each symmetry class only a representative is reported.
In the first column of these tables, a name to each symmetry class is given, the second
one shows the three forbidden patterns (the representative) and the third one indicates the
sequence enumerating the permutations avoiding the specified patterns.

Having at our disposal the results for the permutations avoiding three patterns, the proofs
for the case of four forbidden patterns are conducted following the line indicated in the
previous section. These proofs are all summarized in tables. Tables 3, 4 and 5 are related to
the permutations avoiding four patterns enumerated by the sequences {n}n≥1, {Fn}n≥1 and
{2n−1}n≥1, respectively (the sequence {Fn}n≥1 denotes the Fibonacci numbers). The empty
permutation with length n = 0 is not considered, therefore the length is n ≥ 1. The Tables
have to be read as follows: consider the representative of the symmetry class specified in the
rightmost column of each table; apply the proposition indicated in the preceding column to
the three forbidden patterns which one can find in Tables 1 and 2 to obtain the four forbidden
patterns written in the column named avoided patterns. At this point, as we explained in
the previous section, the permutations avoiding these four patterns are enumerated by the
same sequence enumerating the permutations avoiding the three patterns contained in the
representative of the symmetry class indicated in the rightmost column.

The first column of Table 3 and 4 specifies a name for the the symmetry class represented
by the four forbidden patterns of the second column. This name is useful in the next section.
Table 6 indicates in the first column the sequence enumerating the permutations avoiding
the patterns of the second column, which are obtained as in the above tables.

2.1 Classes enumerated by {0}n≥k.

The classes of four patterns avoiding permutations enumerated by the ultimately constant
sequence {0}n≥k can be handled in a very simple way (the value of k ∈ N depends on the
considered patterns, however it is never greater than 4). If S(q1, q2, q3), qi ∈ M, is a class
of permutations avoiding three patterns such that |Sn(q1, q2, q3)| = 0, for n ≥ k, then it is
easily seen that S(q1, q2, q3, r), ∀r ∈ M, is also enumerated by the same sequence. Then, each
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symmetry class from C1 to C7 (see Table 2) generates nine symmetry classes by choosing
the pattern r 6= qi, i = 1, 2, 3. It is easy to see that some of the classes we obtain in this
way are equal, thanks to the operations of reverse, complement and reverse-complement. In
Table 7, only the different possible cases are presented. Here, the four forbidden patterns are
recovered by adding a pattern of a box of the second column to the three patterns specified
in the box to its right at the same level (rightmost column). The representative so obtained
is recorded in the leftmost column with a name, which will be useful in the next section.

2.2 Classes enumerated by {2}n≥2.

The enumerating sequences encountered till now (see Tables 3, 4, 5, 6, 7) are all involved
in the enumeration of some class of permutations avoiding three patterns (Tables 1, 2).
Therefore, applying the eight propositions of the previous section to the classes of Table 1
and 2, the three forbidden patterns have been increased by one pattern, obtaining Table 3,
4, 5, 6 and 7. For the classes enumerated by the sequence {2}n≥2 it is not possible to use the
same strategy, since there are no classes of permutations avoiding three patterns enumerated
by that sequence. The proofs, in this case, use four easy propositions whose proofs can be
directly derived from the statement of the first four propositions of the Introduction. We
prefer to explicit them the same.

Proposition 2.1. If a permutation π contains the pattern 23−1, then it contains the pattern

2− 31, too.

Taking the reverse, the complement and the reverse-complement of the patterns involved
in Prop. 2.1, the following propositions are obtained:

Proposition 2.2. If a permutation π contains the pattern 1−32, then it contains the pattern

13− 2, too.

Proposition 2.3. If a permutation π contains the pattern 21−3, then it contains the pattern

2− 13, too.

Proposition 2.4. If a permutation π contains the pattern 3−12, then it contains the pattern

31− 2, too.

In Table 8 the results relating to the enumeration of the permutations avoiding four
patterns enumerated by the sequence {2}n≥2 (whose proofs are contained in the six next
propositions) are summarized. The four forbidden patterns can be recovered by choosing
one pattern from each column, in the same box-row of the table.

In the sequel, pi ∈ Ai with i = 1, 2, 3, 4 where Ai is a subset of generalized patterns.

Proposition 2.5. Let A1 = {1 − 23}, A2 = {2 − 31, 23 − 1}, A3 = {1 − 32, 13 − 2} and

A4 = {3 − 12, 31 − 2}. Then |Sn(p1, p2, p3, p4)| = 2 and Sn = {n (n − 1) . . . 3 2 1, (n −
1) (n− 2) . . . 3 2 1 n}.

Proof. Let σ ∈ Sn(p2, p3). Then, σ1 = n or σn = n, otherwise, if σi = n with i 6= 1, n ,
the entries σi−1σiσi+1 would be a forbidden pattern p2 or p3.
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If ρ ∈ Sn(p1, p3), then ρn−1 = 1 or ρn = 1, otherwise, if ρi = 1 with i < n − 1, then the
entries ρiρi+1ρi+2, would be a forbidden pattern p1 or p3.

Therefore, if π ∈ Sn(p1, p2, p3), then there are only the following three cases for π:

1. πn = n and πn−1 = 1. In this case π = (n − 1) (n − 2) . . . 2 1 n, otherwise, if an
ascent appears in πjπj+1 with j = 1, 2, . . . , n − 3, the entries πjπj+1πn−1 would show
the pattern 23− 1 and π would contain the pattern 2− 31, too (see Prop. 2.1).

2. π1 = n and πn = 1. In this case π = n (n− 1) . . . 3 2 1, otherwise, if an ascent appears
in πjπj+1 with j = 2, 3, . . . , n− 2, the entries πjπj+1πn would show the pattern 23− 1
and π would contain the pattern 2− 31, too (see Prop. 2.1).

3. π1 = n and πn−1 = 1 (and πn = k < n).

If π has to avoid the pattern p4, too (π ∈ Sn(p1, p2, p3, p4)), then the third above case is
not allowed since π1πn−1πn are a 3− 12 pattern which induces an occurrence of 31− 2 in π

(Prop. 2.4).

Proposition 2.6. Let A1 = {1 − 23}, A2 = {2 − 13, 21 − 3}, A3 = {1 − 32, 13 − 2} and

A4 = {3 − 12, 31 − 2}. Then |Sn(p1, p2, p3, p4)| = 2 and Sn = {n (n − 1) . . . 3 2 1, (n −
1) n (n− 2) (n− 3) . . . 2 1}.

Proof. If σ ∈ Sn(p1, p2), then π1 = n or π2 = n. If ρ ∈ Sn(p1, p3), then πn = 1 or
πn−1 = 1. Then, if π ∈ Sn(p1, p2, p3), there are only the four following cases:

1. π1 = n and πn = 1.

2. π2 = n and πn = 1. In this case π1 = n− 1, otherwise if πk = n− 1 with k > 3, then
πk−2πk−1πk is a 1−23 pattern or a 21−3 pattern which induces an occurrence of 2−13
(Prop. 2.3). If k = 3, then π1π2π3 is a 1− 32 or 13− 2 pattern which are forbidden.

3. π1 = n and πn−1 = 1.

4. π2 = n and πn−1 = 1. For the same reasons of case 2, it is π1 = n− 1.

If π has to avoid p4, too (π ∈ Sn(p1, p2, p3, p4)), then the third and the fourth above cases
are not allowed since π1πn−1πn are a 3 − 12 pattern which induces an occurrence of 31 − 2
(Prop. 2.4). Moreover, the permutations of the above cases 1 and 2, must be such that there
are not ascents πiπi+1 between n and 1 in order to avoid p4. Then, π = n (n− 1) . . . 3 2 1 or
π = (n− 1) n (n− 2) . . . 3 2 1.

Proposition 2.7. Let A1 = {2−13, 21−3}, A2 = {2−31, 23−1}, A3 = {1−32, 13−2} and

A4 = {3− 12, 31− 2}. Then |Sn(p1, p2, p3, p4)| = 2 and Sn = {n (n− 1) . . . 2 1, 1 2 . . . n}.

Proof. It is easily seen that each three consecutive elements of π can only be in increasing
or decreasing order.

Proposition 2.8. Let A1 = {12 − 3}, A2 = {2 − 13, 21 − 3}, A3 = {2 − 31, 23 − 1} and

A4 = {32− 1}. Then |Sn(p1, p2, p3, p4)| = 2 and Sn = {1 n 2 (n− 1) . . . , n 1 (n− 1) 2 . . .}.
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Proof. If π ∈ Sn(p1, p2, p3, p4), then it is easy to see that π1π2 = 1 n or π1π2 = n 1.
Considering the sub-permutation π2π3 . . . πn, in the same way we deduce π2π3 = 2 (n − 1)
or π2π3 = (n− 1) 2. The thesis follows by recursively using the above argument.

Proposition 2.9. Let A1 = {1−23}, A2 = {2−13, 21−3}, A3 = {2−31, 23−1} and A4 =
{3− 12, 31− 2}. Then |Sn(p1, p2, p3, p4)| = 2 and Sn = {n (n− 1) . . . 1, 1 n (n− 1) . . . 3 2}.

Proof. Let π ∈ Sn(p1, p2, p3, p4). It is π1 = n or π2 = n, otherwise a 1− 23 or p2 pattern
would appear.

If π1 = n, then π = n (n−1) . . . 1 since if an ascent appears in πiπi+1, the entries π1πiπi+1

are a p4 pattern.
If π2 = n, then π1 = 1 since the p3 pattern has to be avoided. Moreover, in this case, it is

πj > πj+1 with j = 3, 4, . . . , (n−1) in order to avoid 1−23. Then π = 1 n (n−1) . . . 2 1.

Proposition 2.10. Let A1 = {1−23}, A2 = {2−13, 21−3}, A3 = {2−31, 23−1} and A4 =
{1−32, 13−2}. Then |Sn(p1, p2, p3, p4)| = 2 and Sn = {n (n−1) . . . 3 2 1, n (n−1) . . . 3 1 2}.

Proof. Let π ∈ Sn(p1, p2, p3, p4). The entries 1 and 2 have to be adjacent in order to
avoid p3 and p4 and πn = 1 or πn−1 = 1 in order to avoid p1 and p4. So, πn−1πn = 1 2
or πn−1πn = 2 1. Moreover, each couple of adjacent elements πjπj+1 must be a descent,
otherwise a 23 − 1 pattern (which induces an occurrences of 2 − 31) would appear. Then
π = n (n− 1) . . . 3 2 1 or π = n (n− 1) . . . 3 1 2.

The conjecture stated by Claesson and Mansour [5] about the permutations enumerated
by {2}n≥2 declares that there are 42 symmetry classes of such permutations, while from
Table 8 it is possible to deduce 52 symmetry classes. However, some of them represent the
same class: for example the symmetry class {2 − 13, 2 − 31, 1 − 32, 31 − 2} is the same of
{2− 13, 23− 1, 13− 2, 31− 2} (the second one is the reverse of the first one). Note that the
repetitions come out only from the third box-row of Table 8.

3 Permutations avoiding five patterns

3.1 Classes enumerated by {1}n≥1

The sequence {1}n≥1 does not enumerate any class of permutations avoiding four patterns,
so that we can not apply the same method of the previous section using the propositions of
the Introduction.

Referring to Proposition 2.7, we deduce that there are sixteen different classes Sn(p1, p2, p3, p4)
such that pi ∈ Ai with i = 1, 2, 3, 4. We recall that |Sn(p1, p2, p3, p4)| = 2 and Sn(p1, p2, p3, p4) =
{n (n− 1) . . . 2 1, 1 2 . . . n}. If a permutation π ∈ Sn(p1, p2, p3, p4) has to avoid the pattern
1 − 23, too, then π = n (n − 1) . . . 2 1 and |Sn(p1, p2, p3, p4, 1 − 23)| = 1. Then, the five
forbidden patterns avoided by the permutations enumerated by {1}n≥1 can be recovered by
considering the four patterns chosen from the third box-row of Table 8 (one pattern from
each column) and the pattern 1− 23. We do not present the corresponding table.
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3.2 Classes enumerated by {0}n≥4

This case is treated as the case of the permutations avoiding four patterns. It is sufficient to
add a pattern r ∈ M to each representative (from O1 to O37 in Table 7) of four forbidden
patterns of Table 7 in order to obtain a representative T of five forbidden patterns such
that |Sn(T )| = 0, n ≥ 4. In Table 9 we present the different representatives T which can
be derived from Table 7. The five forbidden patterns of each representative are a pattern
chosen in a box of the first column and the four patterns indicated by the representative
(which refer to Table 7) in the second box at the same level. In the table, only the different
representatives of five patterns are presented.

3.3 Classes enumerated by {2}n≥2, {n}n≥1, {Fn}n≥1

Tables 10 and 11 summarize the results related to the permutations avoiding five patterns
enumerated by {2}n≥2. The five forbidden patterns are obtained by considering a represen-
tative of four forbidden patterns of the rightmost column and the pattern specified in the
corresponding box of the preceding column. The first column indicates which is the propo-
sition to apply. Note that each representative of four patterns (rightmost column) can be
found in Table 8.

The reading of Tables 12 and 13 (related to the sequences {n}n≥1 and {Fn}n≥1, re-
spectively) is as usual: apply the proposition specified in the first column to recover the
representative of five forbidden patterns which is composed by the pattern of the second
column and the four patterns of the representative indicated in the rightmost column. Here,
the names of the representatives refer to Tables 3 and 4.
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4 Tables

symmetry class avoided patterns enumerating sequence

N1 {1-23,2-13,3-12}
N2 {1-23,2-13,31-2}
N3 {1-23,21-3,3-12}
N4 {1-23,21-3,31-2}
N5 {12-3,3-12,2-13}
N6 {12-3,3-12,21-3}
N7 {12-3,31-2,2-13}
N8 {12-3,31-2,21-3}
N9 {1-23,2-13,2-31}
N10 {1-23,2-13,23-1}
N11 {1-23,21-3,2-31}
N12 {1-23,21-3,23-1}
N13 {2-13,2-31,1-32} {n}n≥1

N14 {2-13,23-1,1-32}
N15 {2-13,2-31,13-2}
N16 {2-13,23-1,13-2}
N17 {2-31,21-3,13-2}
N18 {2-31,21-3,1-32}
N19 {13-2,21-3,23-1}
N20 {21-3,23-1,1-32}
N21 {1-23,2-31,31-2}
N22 {1-23,23-1,31-2}
N23 {1-23,2-31,3-12}
N24 {1-23,1-32,3-21}
A1 {1-23,12-3,23-1}
A2 {2-31,23-1,1-32}
A3 {2-31,23-1,13-2}
A4 {1-23,12-3,2-13}
A5 {1-23,2-13,21-3} {2n−1}n≥1

A6 {1-23,3-12,31-2}
A7 {31-2,3-12,13-2}
A8 {31-2,3-12,1-32}
A9 {2-13,21-3,1-32}
A10 {2-13,21-3,13-2}
A11 {1-23,23-1,3-12} {2n− 2 + 1}n≥1

Table 1: permutations avoiding three patterns
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symmetry class avoided patterns enumerating sequence

F1 {1− 23, 2− 13, 1− 32}
F2 {1− 23, 2− 13, 13− 2}
F3 {1− 23, 21− 3, 13− 2}
F4 {1− 23, 13− 2, 3− 12} {Fn}n≥1

F5 {1− 23, 1− 32, 3− 12}
F6 {1− 23, 1− 32, 31− 2}
F7 {1− 23, 13− 2, 31− 2}
M1 {1− 23, 12− 3, 21− 3}
M2 {12− 3, 21− 3, 2− 13} {Mn}n≥1

B1 {1− 23, 21− 3, 1− 32} {
(

n
⌈n/2⌉

)

}n≥1

B2 {12− 3, 1− 23, 31− 2}
B3 {1− 23, 2− 31, 23− 1} {1 +

(

n
2

)

}
C8 {12− 3, 2− 13, 32− 1} {3}n≥3

C1 {1− 23, 2− 13, 3− 21}
C2 {1− 23, 23− 1, 32− 1}
C3 {1− 23, 2− 13, 32− 1}
C4 {1− 23, 12− 3, 3− 21} {0}n≥k

C5 {1− 23, 21− 3, 3− 21}
C6 {1− 23, 21− 3, 32− 1}
C7 {1− 23, 2− 31, 32− 1}

Table 2: permutations avoiding three patterns
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Enumerating sequence: {n}n≥1

name avoided patterns apply Proposition to the symmetry class

d1 {1− 23, 2− 13, 3− 12, 21− 3} 1.1 N1
d2 {1− 23, 2− 13, 31− 2, 21− 3} 1.1 N2
d3 {1− 23, 2− 13, 31− 2, 3− 12} 1.2 N2
d4 {1− 23, 21− 3, 31− 2, 3− 12} 1.2 N4
d5 {12− 3, 3− 12, 2− 13, 21− 3} 1.1 N5
d6 {12− 3, 31− 2, 2− 13, 21− 3} 1.1 N7
d7 {12− 3, 31− 2, 2− 13, 3− 12} 1.2 N7
d8 {12− 3, 31− 2, 21− 3, 3− 12} 1.2 N8
d9 {1− 23, 2− 13, 2− 31, 21− 3} 1.1 N9
d10 {1− 23, 2− 13, 2− 31, 23− 1} 1.3 N9
d11 {1− 23, 2− 13, 23− 1, 21− 3} 1.1 N10
d12 {1− 23, 21− 3, 2− 31, 23− 1} 1.3 N11
d13 {2− 13, 2− 31, 1− 32, 21− 3} 1.1 N13
d14 {2− 13, 2− 31, 1− 32, 23− 1} 1.3 N13
d15 {2− 13, 23− 1, 1− 32, 21− 3} 1.1 N14
d16 {2− 13, 2− 31, 13− 2, 21− 3} 1.1 N15
d17 {2− 13, 2− 31, 13− 2, 23− 1} 1.3 N15
d18 {2− 13, 2− 31, 13− 2, 1− 32} 1.4 N15
d19 {2− 13, 23− 1, 13− 2, 21− 3} 1.1 N16
d20 {2− 13, 23− 1, 13− 2, 1− 32} 1.4 N16
d21 {2− 31, 21− 3, 13− 2, 23− 1} 1.3 N17
d22 {2− 31, 21− 3, 13− 2, 1− 32} 1.4 N17
d23 {2− 31, 21− 3, 1− 32, 23− 1} 1.3 N18
d24 {13− 2, 21− 3, 23− 1, 1− 32} 1.4 N19
d25 {1− 23, 2− 31, 31− 2, 23− 1} 1.3 N21
d26 {1− 23, 2− 31, 31− 2, 3− 12} 1.2 N21
d27 {1− 23, 23− 1, 31− 2, 3− 12} 1.2 N22
d28 {1− 23, 2− 31, 3− 12, 23− 1} 1.3 N23
d29 {1− 23, 2− 13, 31− 2, 12− 3} 1.5 N2
d30 {1− 23, 2− 13, 3− 12, 12− 3} 1.5 N1
d31 {1− 23, 2− 13, 2− 31, 12− 3} 1.5 N9
d32 {1− 23, 2− 13, 23− 1, 12− 3} 1.5 N10
d33 {1− 23, 21− 3, 2− 31, 12− 3} 1.6 N11
d34 {1− 23, 21− 3, 23− 1, 12− 3} 1.6 N12
d35 {1− 23, 21− 3, 31− 2, 12− 3} 1.6 N4
d36 {1− 23, 21− 3, 3− 12, 12− 3} 1.6 N3
d37 {1− 23, 2− 31, 3− 12, 12− 3} 1.7 N23
d38 {1− 23, 2− 31, 31− 2, 12− 3} 1.7 N21

Table 3: permutations avoiding four patterns
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Enumerating sequence: {Fn}n≥1

name avoided patterns apply Proposition to the symmetry class

e1 {1− 23, 2− 13, 1− 32, 21− 3} 1.1 F1
e2 {1− 23, 2− 13, 1− 32, 12− 3} 1.5 F1
e3 {1− 23, 2− 13, 13− 2, 21− 3} 1.1 F2
e4 {1− 23, 2− 13, 13− 2, 1− 32} 1.4 F2
e5 {1− 23, 2− 13, 13− 2, 12− 3} 1.5 F2
e6 {1− 23, 21− 3, 13− 2, 1− 32} 1.4 F3
e7 {1− 23, 13− 2, 3− 12, 1− 32} 1.4 F4
e8 {1− 23, 1− 32, 31− 2, 3− 12} 1.2 F6
e9 {1− 23, 13− 2, 31− 2, 1− 32} 1.4 F7
e10 {1− 23, 13− 2, 31− 2, 3− 12} 1.2 F7

Table 4: permutations avoiding four patterns

Enumerating sequence: {2n−1}n≥1

avoided patterns apply Proposition to the symmetry class

{1− 23, 12− 3, 2− 13, 21− 3} 1.1 A4
{31− 2, 3− 12, 13− 2, 1− 32} 1.4 A7
{2− 13, 21− 3, 13− 2, 1− 32} 1.4 A10
{2− 31, 23− 1, 1− 32, 13− 2} 1.4 A3

Table 5: permutations avoiding four patterns

Enumerating

sequence
avoided patterns apply Proposition to the symmetry class

{1 +
(

n
2

)

}n≥1 {12− 3, 1− 23, 31− 2, 3− 12} 1.2 B2

{
(

n
⌈n/2⌉

)

}n≥1 {1− 23, 21− 3, 1− 32, 12− 3} 1.6 B1

{2n−2 + 1}n≥1 {1− 23, 23− 1, 3− 12, 12− 3} 1.8 A11

{3}n≥3 {12− 3, 2− 13, 32− 1, 21− 3} 1.1 C8

Table 6: permutations avoiding four patterns
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Enumerating sequence: {0}n≥k

name choose a pattern from the following to add to the symmetry class

O1 12− 3
O2 1− 32
O3 13− 2
O4 3− 12
O5 31− 2 {1− 23, 2− 13, 3− 21} (C1)
O6 21− 3
O7 2− 31
O8 23− 1
O9 32− 1
O10 12− 3
O11 1− 32
O12 13− 2
O13 3− 12
O14 31− 2 {1− 23, 23− 1, 32− 1} (C2)
O15 2− 13
O16 21− 3
O17 2− 31
O18 3− 21
O19 12− 3
O20 13− 2
O21 3− 12
O22 31− 2 {1− 23, 2− 13, 32− 1} (C3)
O23 21− 3
O24 2− 31
O25 31− 2
O26 1− 32
O27 23− 1 {1− 23, 12− 3, 3− 21} (C4)
O28 32− 1
O29 1− 32
O30 13− 2
O31 3− 12 {1− 23, 21− 3, 3− 21} (C5)
O32 31− 2
O33 23− 1
O34 13− 2
O35 3− 12 {1− 23, 21− 3, 32− 1} (C6)
O36 2− 31
O37 13− 2 {1− 23, 2− 31, 32− 1} (C7)

Table 7: permutations avoiding four patterns
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Enumerating sequence: {2}n≥2

1st pattern 2nd pattern 3rd pattern 4th pattern

1− 23
2− 31 or

23− 1
1− 32 or

13− 2
3− 12 or

31− 2

1− 23
2− 13 or

21− 3
1− 32 or

13− 2
3− 12 or

31− 2
2− 13 or

21− 3
2− 31 or

23− 1
1− 32 or

13− 2
3− 12 or

31− 2

12− 3
2− 13 or

21− 3
2− 31 or

23− 1
32− 1

1− 23
2− 13 or

21− 3
2− 31 or

23− 1
3− 12 or

31− 2

1− 23
2− 13 or

21− 3
2− 31 or

23− 1
1− 32 or

13− 2

Table 8: permutations avoiding four patterns
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Enumerating sequence: {0}n≥k

choose a pattern from the following to add to the symmetry class

21− 3, 2− 31, 23− 1, 1− 32, 13− 2,
3− 12, 31− 2, 32− 1

O1

2− 31, 23− 1, 1− 32, 13− 2, 3− 12,
31− 2

O6

21− 3, 2− 31, 23− 1, 1− 32, 3− 12,
31− 2

O19

2− 31, 23− 1, 1− 32, 13− 2, 3− 12
31− 2

O23

1− 32, 13− 2, 3− 12, 31− 2, 32− 1 O8
23− 1, 1− 32, 13− 2, 31− 2, 3− 12 O24
12− 3, 32− 1, 13− 2, 3− 12, 31− 2 O29
3− 12, 13− 2, 1− 32, 23− 1, 12− 3 O36
1− 32, 13− 2, 3− 12, 31− 2 O15
13− 2, 3− 12, 31− 2 O2
1− 32, 2− 31, 31− 2 O10
12− 3, 13− 2, 3− 12 O32
1− 32, 13− 2, 32− 1 O33
3− 21, 23− 1, 1− 32 O34
3− 12, 31− 2 O3
1− 32, 13− 2 O7
13− 2, 3− 12 O9
21− 3, 13− 2 O11
1− 32, 3− 12 O20
3− 12, 23− 1 O26
2− 31, 32− 1 O27
3− 12 O5
2− 31 O12
1− 32 O21
3− 12 O30
23− 1 O35

Table 9: permutations avoiding five patterns
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Enumerating sequence: {2}n≥2

thanks to Proposition add the pattern to the patterns

1.1 21− 3

{1− 23, 2− 13, 1− 32, 3− 12} or

{1− 23, 2− 13, 1− 32, 31− 2} or

{1− 23, 2− 13, 13− 2, 3− 12} or

{1− 23, 2− 13, 1− 32, 31− 2}

1.1 21− 3

{1− 23, 2− 13, 2− 31, 1− 32} or

{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 23− 1, 1− 32} or

{1− 23, 2− 13, 23− 1, 13− 2}

1.1 21− 3

{1− 23, 2− 13, 2− 31, 3− 12} or

{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 3− 12} or

{1− 23, 2− 13, 23− 1, 31− 2}

1.1 21− 3
{1− 23, 2− 13, 23− 1, 32− 1} or

{1− 23, 2− 13, 2− 31, 32− 1}

1.1 21− 3
{2− 13, 2− 31, 1− 32, 3− 12} or

{2− 13, 2− 31, 1− 32, 31− 2} or

{2− 13, 2− 31, 13− 2, 31− 2}

1.1 21− 3

{2− 13, 23− 1, 1− 32, 31− 2} or

{2− 13, 23− 1, 1− 32, 3− 12} or

{2− 13, 23− 1, 13− 2, 31− 2} or

{2− 13, 23− 1, 13− 2, 3− 12}

1.2 3− 12
{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 31− 2}

1.2 3− 12
{1− 23, 2− 13, 1− 32, 31− 2} or

{1− 23, 2− 13, 13− 2, 31− 2}

1.2 3− 12
{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 31− 2}

1.2 3− 12
{1− 23, 21− 3, 1− 32, 31− 2} or

{1− 23, 21− 3, 13− 2, 31− 2}

1.2 3− 12
{1− 23, 2− 31, 1− 32, 31− 2} or

{1− 23, 2− 31, 13− 2, 31− 2}

1.2 3− 12
{1− 23, 23− 1, 1− 32, 31− 2} or

{1− 23, 23− 1, 13− 2, 31− 2}
1.3 23− 1 {2− 13, 2− 31, 1− 32, 31− 2}

1.3 23− 1
{1− 23, 2− 31, 13− 2, 3− 12} or

{1− 23, 2− 31, 13− 2, 31− 2}

Table 10: permutations avoiding five patterns
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Enumerating sequence: {2}n≥2

thanks to Proposition add the pattern to the patterns

1.3 23− 1
{1− 23, 2− 31, 1− 32, 3− 12} or

{1− 23, 2− 31, 1− 32, 31− 2}

1.3 23− 1

{1− 23, 21− 3, 2− 31, 1− 32} or

{1− 23, 21− 3, 2− 31, 13− 2} or

{1− 23, 21− 3, 2− 31, 3− 12} or

{1− 23, 21− 3, 2− 31, 31− 2}

1.3 23− 1

{1− 23, 2− 13, 2− 31, 1− 32} or

{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 2− 31, 3− 12} or

{1− 23, 2− 13, 2− 31, 31− 2}

1.4 1− 32
{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 23− 1, 13− 2}

1.4 1− 32
{1− 23, 2− 13, 13− 2, 3− 12} or

{1− 23, 2− 13, 13− 2, 31− 2}

1.4 1− 32
{1− 23, 21− 3, 2− 31, 13− 2} or

{1− 23, 21− 3, 23− 1, 13− 2}

1.4 1− 32
{1− 23, 21− 3, 13− 2, 3− 12} or

{1− 23, 21− 3, 13− 2, 31− 2}

1.4 1− 32
{1− 23, 2− 31, 13− 2, 3− 12} or

{1− 23, 2− 31, 13− 2, 31− 2}

1.4 1− 32
{1− 23, 23− 1, 13− 2, 3− 12} or

{1− 23, 23− 1, 13− 2, 31− 2}

1.5 12− 3

{1− 23, 2− 13, 2− 31, 1− 32} or

{1− 23, 2− 13, 2− 31, 13− 2} or

{1− 23, 2− 13, 23− 1, 1− 32} or

{1− 23, 2− 13, 23− 1, 13− 2}

1.5 12− 3

{1− 23, 2− 13, 2− 31, 3− 12} or

{1− 23, 2− 13, 2− 31, 31− 2} or

{1− 23, 2− 13, 23− 1, 3− 12} or

{1− 23, 2− 13, 23− 1, 31− 2}

1.5 12− 3
{1− 23, 2− 13, 1− 32, 3− 12} or

{1− 23, 2− 13, 1− 32, 31− 2}

1.6 12− 3
{1− 23, 21− 3, 23− 1, 3− 12} or

{1− 23, 21− 3, 23− 1, 31− 2}

1.6 12− 3
{1− 23, 21− 3, 2− 31, 1− 32} or

{1− 23, 21− 3, 23− 1, 1− 32}

1.6 12− 3
{1− 23, 21− 3, 2− 31, 3− 12} or

{1− 23, 21− 3, 2− 31, 31− 2}

Table 11: permutations avoiding five patterns
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Enumerating sequence: {n}n≥1

thanks to Proposition add the pattern to the representative

1.2 3− 12 d2
1.3 23− 1 d9
1.2 3− 12 d6
1.2 3− 12 d25
1.1 21− 3 d14
1.1 21− 3 d17
1.4 1− 32 d16
1.1 21− 3 d20
1.3 23− 1 d18
1.4 1− 32 d21
1.5 12− 3 d9
1.5 12− 3 d11
1.5 12− 3 d1
1.5 12− 3 d2
1.5 12− 3 d10
1.5 12− 3 d3
1.6 12− 3 d12
1.6 12− 3 d4
1.7 12− 3 d28
1.7 12− 3 d25

Table 12: permutations avoiding five patterns

Enumerating sequence: {Fn}n≥1

thanks to Proposition add the pattern to the representative

1.5 12− 3 e1
1.5 12− 3 e3
1.1 21− 3 e4
1.4 1− 32 e10

Table 13: permutations avoiding five patterns

5 Conclusion: the cases of more than five patterns

Looking at the table of the conjectures by Claesson and Mansour [5], one can see that
the case of six patterns is the unique, among the remaining ones, which presents some
enumerating sequences not ultimately constant. More precisely, in this case there are three
classes enumerated by the sequence {n}n≥1 and one class enumerated by {Fn}n≥1. In order
to find a representative for each of these classes, it is possible to consider the classes of
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permutations avoiding five patterns enumerated by the same sequence and apply one of the
propositions in the Introduction. As far as the class enumerated by {Fn}n≥1 is concerned,
the representative set U = {1 − 23, 2 − 13, 13 − 2, 21 − 3, 12 − 3, 1 − 32} is obtained by
considering the patterns arising from the second line of Table 13 and applying Proposition
1.4. Note that the same above representative set can be obtained by considering the patterns
of the third line of Table 13 and applying Proposition 1.6.

Starting from the set V = {1− 23, 2− 13, 1− 32, 21− 3, 12− 3}, which are the forbidden
patterns specified in the first line of Table 13, it is not possible to apply anyone of the
propositions in the Introduction. Nevertheless, if π ∈ S(V ), then in particular π avoids the
patterns 1− 23 and 1− 32. Next, it is simple to see that such a permutation π avoids also
13− 2, therefore π ∈ Sn(U) and |Sn(U)| = Fn.

The propositions in the Introduction are not even useful when the set of patterns Z = {1−
23, 1−32, 3−12, 31−2, 13−2}, arising from the fourth line of Table 13, is considered. In this
case, if a pattern x ∈ M\Z is added to Z, then it can be proved that either |Sn(Z, x)| = n,
or |Sn(Z, x)| = 0 (n ≥ 5), or |Sn(Z, x)| = n (n ≥ 2). A possible way to menage these proofs
(one for each x ∈ M\Z) uses the ECO method, as Bernini, Ferrari and Pinzani made [3].
This is what we did but we do not show the details of the permutations’ construction, which
can be easily recovered by the reader.

In order to prove the truth of the conjecture relating to the sequence {Fn}n≥1, we observe
that if an and bn are the sequences enumerating Sn(A) and Sn(B), respectively, with A ⊆
B ⊆ M, then an ≥ bn. Therefore, using the strategy mentioned in Subsection 1.2, the
patterns specified in U can be obtained only from the forbidden patterns arising from Table
13.

A similar discussion should be carried out for the permutations avoiding six patterns
enumerated by the sequence {n}n≥1, starting from the patterns of Table 12. We omit it since
it can simply be done by following the line of the case of the sequence {Fn}n≥1. The complete
solution of the conjectures of Claesson and Mansour requires that the same argument has
to be applied for the ultimately constant sequences {0} and {1}, enumerating permutations
avoiding six or more patterns. It should not be difficult to write down the tables summarizing
the results relating to the permutations avoiding six patterns and use them, according to
the usual strategy, for the results of the case of seven forbidden patterns. Then, the tables
relating to the case of seven patterns should be used for the case of eight patterns, and so
on.

Actually, we note that if the tables of the case of six patterns are not at our disposal it
could be quite long to solve the case of seven forbidden patterns using the same strategy.
Nevertheless, it does not seem necessary to provide the tables for all the remaining cases,
since it is easy, given a set D ⊆ M of six or more forbidden patterns, to find the enumerating
sequence of S(D). This sequence should be ultimately constant according to the conjectures
by Claesson and Mansour [5] (aside from the already examined sequences {Fn}n≥1 and
{n}n≥1 for the case of six forbidden patterns). Therefore, by means of the ECO method, for
instance, it is straightforward to generate all the permutations of S(D), following the line
which Bernini, Ferrari and Pinzani used in their paper [3], and find the relating sequence.
Unless the conjectures of Claesson and Mansour are wrong, this kind of approach is quite
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fast every time |S(D)| is required.

We conclude with a hint for a possible further work. Mansour and Vainshtein [7] showed
that the generating function for permutations avoiding 132 and any other classical pattern is
rational. It should be interesting to generalize this result to some set of generalized patterns
(the results of Claesson [4] stating that S(132) = S(13 − 2) or S(213) = S(2 − 13) could
be used for a first effort in this direction). With a similar approach it should be possible to
handle this kind of analysis mechanically.
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