Master’s Thesis Presentation • Systems and Networking — Aggregation of Heterogeneous Anomaly Detectors for Cyber-Physical SystemsExport this event to calendar

Thursday, December 13, 2018 10:00 AM EST

Murray Dunne, Master’s candidate
David R. Cheriton School of Computer Science

Distributed, life-critical systems that bridge the gap between software and hardware are becoming an integral part of our everyday lives. From autonomous cars to smart electrical grids, such cyber-physical systems will soon be omnipresent. With this comes a corresponding increase in our vulnerability to cyber-attacks. Monitoring such systems to detect malicious actions is of critical importance. 

One method of monitoring cyber-physical systems is anomaly detection: the process of detecting when the target system is deviating from expected normal behavior. Anomaly detection is a vibrant research area with many different viable approaches. There is no best anomaly detection method for the diversity and volume of data from cyber-physical systems. Instead, we focus on aggregating the result of multiple anomaly detection methods into a final anomalous or non-anomalous verdict. 

In this thesis, we present Palisade, a distributed data collection, anomaly detection, and aggregation framework for cyber-physical systems. We discuss various methods of anomaly detection and aggregation and include a case study of anomaly aggregation on a cyber-physical treadmill driving demonstrator. We conclude with a discussion of lessons learned from the construction of Palisade, and recommendations for future research.

Location 
DC - William G. Davis Computer Research Centre
1304
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

S M T W T F S
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
  1. 2024 (96)
    1. April (19)
    2. March (27)
    3. February (25)
    4. January (25)
  2. 2023 (296)
    1. December (20)
    2. November (28)
    3. October (15)
    4. September (25)
    5. August (30)
    6. July (30)
    7. June (22)
    8. May (23)
    9. April (32)
    10. March (31)
    11. February (18)
    12. January (22)
  3. 2022 (245)
  4. 2021 (210)
  5. 2020 (217)
  6. 2019 (255)
  7. 2018 (217)
  8. 2017 (36)
  9. 2016 (21)
  10. 2015 (36)
  11. 2014 (33)
  12. 2013 (23)
  13. 2012 (4)
  14. 2011 (1)
  15. 2010 (1)
  16. 2009 (1)
  17. 2008 (1)