
Despite continuing advances in fast multigrid and domain decomposition pre-
conditioners for iterative methods, commercial finite element codes continue to
rely on direct factorization methods. These methods are reliable and make effec-
tive use of modern memory hierarchies to achieve high flop rates, but their mem-
ory usage scales poorly with problem size: standard direct factorization meth-
ods based on nested dissection typically require O(N3/2) memory for “blocky”
three-dimensional problems. Recently, “superfast” direct methods have been
proposed that significantly reduce the time and memory complexity of standard
direct methods by exploiting the fact that Cholesky factors in PDE problems
often include large, nearly low-rank off-diagonal block. These methods show the
potential to combine the reliability of direct solvers with the speed of iterative
methods; but, as with standard sparse solvers, careful engineering is required to
actually produce efficient implementations.

In this talk, we describe our code for “superfast” Cholesky factorization
for large, sparse linear systems arising from PDE discretizations. Our code is
based on a state-of-the art supernodal left-looking Cholesky solver, CHOLMOD;
like CHOLMOD, our code is organized around dense matrix operations, and
thus much of the work can be done in tuned level-3 BLAS routines that make
efficient use of the memory hierarchy. After discussing the high-level idea behind
our approach, we describe some details of how our code combines sparsity and
low-rank structure and how we directly compute low-rank approximate block
factorizations using randomized algorithms. We also illustrate the performance
of our method with a challenging model problem from nearly-inompressible
elasticity. We show that conjugate gradients with our rank-structured Cholesky
factorization converges far more quickly than CG with standard preconditioners
based on incomplete Cholesky and the ML multigrid solver, both in iteration
counts and in run time on an eight-core Intel Xeon. We also describe the
relative memory scalability of our approach compared to exact factorization;
for an instance with roughly 106 degrees of freedom, our approach uses only 3
GB of memory, while exact factorization with CHOLMOD requires 30 GB.

1


