
Graph Compression in a

Distributed Memory Environment

Cleve Ashcraft, LSTC ∗ Roger Grimes, LSTC †

March 20, 2013

Abstract

LSTC produces the multiphysics simulation package LS-DYNA. Internally, we need
to solve large real symmetric sparse linear systems K u = f in a distributed memory
parallel environment. At present, our typical large stiffness matrices K have 60 million
rows and columns, and this size is growing rapidly.

In our current production environment we perform a graph compression of the
matrix K to get a compressed graph that is usually 3 to 6 times fewer vertices and 9
or 36 times fewer edges. We then order the compressed graph in some fashion, and
uncompress the ordering to the original graph.

For the past twenty years, our algorithm to perform this graph compression is
as follows. We start with a with a strict partition of the lower triangle of K across
processes. We generate three stimulus vectors, each filled with a random permutation
of {1, · · · , n}. We take the adjacency matrix of K, (same nonzero structure and filled
with one’s), and multiply the stimulus vectors to form three response vectors. Two
vertices are equivalent if they have the same response values in their rows for each of
the response vectors.

This algorithm suffers from overflow on today’s larger matrices, particularly where
(partially) dense rows are present, or large nonzero blocks, e.g., from superelements.

Multiplying by the adjacency matrix is equivalent to summing the labels of adjacent
vertices of a given vertex. In our new implementation we replace the label summation
by “label XOR”. A stimulus vector is a bit pattern of a certain length, and to get a
response value, we XOR the bit patterns of the adjacent vertices. Two vertices are
equivalent if they have the same values in their rows for each response vector.

False positives are possible, where we incorrectly recognize two vertices as indistin-
guishable if their response values are the same. We iterate the process (create stimulus
vector, compute response vector) until there is no change in the equivalence map.
There is an interesting relationship between the width of the bitmap and the number
of false positives.

A robust distributed memory implementation is a challenge. At the heart of the
algorithm is a matrix-vector multiply (with XOR instead of addition). We cannot rely
on any pre-existing domain decomposition to order the degrees of freedom to reduce
communication.

∗Livermore Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94550.
cleve@lstc.com

†Livermore Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94550.
grimes@lstc.com

1


