Level set methods to find separators

Cleve Ashcraft, LSTC * Roger Grimes, LSTC †

January 22, 2013

Abstract

Our object is to find a vertex separator. Given a graph $G = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} are vertices and \mathcal{E} are edges, we want to partition the vertices $\mathcal{V} = \mathcal{B} \sqcup \mathcal{S} \sqcup \mathcal{W}$ where \mathcal{S} separates \mathcal{B} from \mathcal{W} . The boundaries of \mathcal{B} and \mathcal{W} , nodes adjacent to but not included in \mathcal{B} and \mathcal{W} , are subsets of \mathcal{S} . Our goal is to find a partition where the weight of \mathcal{S} is small and the weights of \mathcal{B} and \mathcal{W} are close.

Level sets can be used effectively to find separators. Given a source node s, we find the distance between s and every other node, dist(u, s). One or two source nodes can be used to find separators. Here is a comparison.

Level Sets	Half-Level Sets
• one source node s	• two source nodes s and t
• $\phi(u) = dist(u, s)$	• $\psi(u) = dist(u, s) - dist(u, t)$
• $\phi: \mathcal{V} \mapsto \{0, 1, \dots, r\}$	• $\psi : \mathcal{V} \mapsto \{-dist(s,t), \dots, dist(s,t)\}.$
• $0 \le \phi(u) - \phi(v) \le 1$ for $(u, v) \in \mathcal{E}$	• $0 \le \psi(u) - \psi(v) \le 2$ for $(u, v) \in \mathcal{E}$
\bullet reduced matrix is tridiagonal	• reduced matrix is pentadiagonal
• $S = \phi^{-1}(k)$	• $S = \psi^{-1}(k) \sqcup \psi^{-1}(k+1)$
for some $0 < k < r$	for some $0 < k < k + 1 < r$
• S is minimal	• S may not be minimal

GENAND from George and Liu (1981) uses "Level Sets" on the left. Our new contribution uses "Half-Level Sets" on the right.

Half-level sets have advantages. Their separators are more "straight" or "planar" than the curved separators from single source level sets. Their non-minimal property does require a second step to smooth the separator into a minimal separator. This can be done with a simple greedy "trimming" method, or by solving a max flow problem to find minimum weight separators.

We improve a partition by exploring a nearby space in search of better separators. Level sets and half-level sets can be used to determine these nearby "wide" separators, and form the basis for trimming and max flow algorithms to find better separators.

^{*}Livermore Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94550. cleve@lstc.com

 $^{^\}dagger Livermore$ Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94550. grimes@lstc.com