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Abstract
Validated numeric methods can be used to significantly speed up exact solving of equations and inequalities and
to find and represent exact solutions of problems that cannot be solved by known purely symbolic algorithms.
Mathematica solvers use such methods to find and represent roots of univariate polynomial and transcendental
functions. The cylindrical algebraic decomposition algorithm, used to solve systems of real polynomial equations
and inequalities, applies validated numeric methods in the lifting phase. In my talk I will discuss the types of
validation of numeric computation results used by the Mathematica solvers. I will present the validation criteria
used and describe the algorithms using them.
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Problem
Given an expression representing a  holomorphic function f : C � U ® C   find the solutions of  f HxL � 0 in a
closed rectangle R Ì U .

� A symbolic-numeric heuristic

SolveHeuristic(f, R, prec)
(1) Use a black-box numeric method with working precision prec to find approximate solutions.
(2) Apply symbolic criteria to the approximate solutions in an attempt to find exact isolating sets and multiplici-
ties of the solutions and to prove that we have found all solutions.
(3) If (2) succeeds return a symbolic representation of the solutions otherwise return failed.

� A symbolic-numeric algorithm

If certain additional conditions are satisfied (shown in blue text on the following slides) the following algorithm
finds the solutions.

SolveAlgorithm(f, R)
(1) Set prec=machine double precision, answer=failed, 
(2) While (answer==failed) 

(a) Set answer=SolveHeuristic(f, R, prec).
(b) Set prec=2*prec.

(3) Return answer.
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Example
Find the solutions of  3 x3 + ãx - sinHcosH2 x - 1LL + 1 � 0  in the rectangle @-1, 1D � @-1, 1D.

� Picture
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� Solution

SolveAã
x

- Sin@Cos@2 x - 1DD + 3 x3
+ 1 � 0 && -1 £ Re@xD £ 1 && -1 £ Im@xD £ 1, xE

99x ® RootA91 + ã
ð1

- Sin@Cos@1 - 2 ð1DD + 3 ð13 &, -0.903875096725008420822753483550=E=,

9x ® RootA91 + ã
ð1

- Sin@Cos@1 - 2 ð1DD + 3 ð13 &,

0.16467119796087211763838020431533578139887826330063434530726 -

0.59938806354617993049447862473622069756099787976942345332526 ä=E=,

9x ® RootA91 + ã
ð1

- Sin@Cos@1 - 2 ð1DD + 3 ð13 &,

0.16467119796087211763838020431533578139887826330063434530726 +

0.59938806354617993049447862473622069756099787976942345332526 ä=E==

The solutions represent exact numbers.

x �. %@@1DD

RootA91 + ã
ð1

- Sin@Cos@1 - 2 ð1DD + 3 ð13 &, -0.903875096725008420822753483550=E

N@%, 100D

-0.903875096725008420822753483549551654203206816077444082660668627941895883392088234�

5129922880401265627
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Assumptions
Given an expression representing a  holomorphic function f : C � U ® C   find the solutions of  f HxL � 0 in a
closed rectangle R Ì U .

We assume that for any n Î N

• an expression representing f HnL can be computed,

• an interval-arithmetic evaluation is available for f HnL.
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Interval-arithmetic evaluation
A complex interval is an element of the set D := 8Hc, rL : c Î Q@iD, r Î Q+ Ü 8¥<<. 
A complex interval I � HcHIL, rHILL Î D represents the set I* � 8x Î C : x - cHIL £ rHIL<. 
Let g  be an expression representing a holomorphic function. An interval-arithmetic evaluation for g  is an algo-
rithm Eg which for any I Î D computes EgHIL Î D with the following properties:

• gHI*L Í EgHIL*

• I* Í J* � EgHIL* Í EgHJ L*

• For any c Î DHgL and Ε > 0 there exists ∆ > 0 such that 
  
   r < ∆ ì Hd, sL � EgHHc, rLL � s < Ε
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Approximate solutions
Given an expression representing a  holomorphic function f : C � U ® C   find the solutions of  f HxL � 0 in a
closed rectangle R Ì U .

Let Ξ1, …, Ξk be the distinct solutions of f HxL � 0  in R.

We assume that there is an algorithm ApproximateSolutions such that

• ApproximateSolutions(f, R, prec) gives a list of numbers in R.

• For prec ³ p0  cardHApproximateSolutionsH f , R, precLL � k

• For any Ε > 0 there exists pΕ ³ p0 such that for any prec ³ pΕ

  ApproximateSolutionsH f , R, precL � 8r1, …, rk<  and max1£i£k ri - Ξi < Ε.
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Root existence criterion
For  I Î D  let us denote Imin := minzÎI*

z  and Imax := maxzÎI*
z .

Criterion: Let f : C � U ® C  be a holomorphic function, let I Î D be such that I* Ì U . Suppose that, for some
k Î N+ and J � HcHIL, rL Î D,  J* Ì U

IE f HkL HJLM
min

k!
rk > Úi=0

k-1 IE f HiL HILM
max

i!
ri

then f  has exactly k roots in J* (counted with multiplicities).

� Proof

Let z0 := cHIL, let j := ArgIcIE f HkL HJ LMM and let gHzL := expH-i jL f HzL. 

f IkMHzL

gIkMHzL

E f HkL HJL

ã
-ä j E f HkL HJL

j

-2 2 4 6

-2

2

4

6

For z Î J* we have

ReJ gHkLHzL
k!

N ³
IE f HkL HJLM

min

k!
> Úi=0

k-1 IE f HiL HILM
max

i!
ri-k ³ Úi=0

k-1 f HiLHz0L
i!

ri-k = Úi=0
k-1 gHiLHz0L

i!
ri-k 

The criterion follows from applying the following theorem to g and J*.

Theorem (Neumaier, 1988) Let f : C � U ® C  be a holomorphic function and let z0 Î U  and r > 0 be such that
D := 8z : z - z0 £ r< Ì U . If for all z Î D

ReJ f HkLHzL
k!

N > Úi=0
k-1 f HiLHz0L

i!
ri-k 

then f  has exactly k roots in D (counted with multiplicities).
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Application of the root existence criterion
Criterion: Let f : C � U ® C  be a holomorphic function, let I Î D be such that I* Ì U . Suppose that, for some
k Î N+ and J � HcHIL, rL Î D,  J* Ì U

IE f HkL HJLM
min

k!
rk > Úi=0

k-1 IE f HiL HILM
max

i!
ri

then f  has exactly k roots in J* (counted with multiplicities).

We  attempt  to  find  an  isolated  solution  of  f � 0  starting  with  an  approximate  solution
z0 Î ApproximateSolutionsH f , R, precL.  If  successful,  we  get  r > 0  and  k Î N+  such  that  DHz0, rL  contains
exactly k  solutions of f � 0. If k > 1 the method cannot distinguish between one solution of multiplicity k  and a
cluster of solutions. If f  is an elementary function one could use zero-testing to prove multiplicity of the solution
(the  currently  known  zero-testing  algorithm  [Richardson]  relies  on  Schanuel’s  conjecture  for  proof  of
termination).

(1) Set k := 1.   If z0 ¹ 0 set Ε := z0 10-2 prec else set  Ε := 10-2 prec.   Put I := Hz0, ΕL and M0 :=
IE f HILM

max

i!
.

(2) While k £ kmax do

(a) Compute mk :=
IE f HkL HILM

min

k!
 and Mk :=

IE f HkL HILM
max

k!
.

(b) If mk � 0, increment k and continue the loop.

(c) Set r := max0£i£k-1J2 k Mi

mk
N

1

k-i  .

(d) If  
IE f HkL HHz0, rLLM

min

k!
rk > Úi=0

k-1 Mi ri return Hr, kL.
(e) Increment k and continue the loop.

(3) Return failed.

kmax is a bound on the total number of solutions, if known, otherwise it is a fixed parameter. Ε and r are rational
numbers -- floating point number approximations of the values given in (1) and (2c). If z0 is close to a root Ξ of f

of multiplicity Μ, k £ Μ and 
mk

Mk
» 1 then r d 2 Μ2 z0 - Ξ . Hence if for some k, 

mk

Mk
» 1 and r is large we can return

failed without continuing the loop all the way to kmax.
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Verifying the number of solutions
Given an expression representing a  holomorphic function f : C � U ® C   find the solutions of  f HxL � 0 in a
closed rectangle R Ì U .

To find the number of solutions of f HxL � 0 in R (counted with multiplicities) we compute the winding number of
f  along  the  boundary  of  R.  We  subdivide  the  boundary  into  segments  such  that  for  each  segment  either
0 Ï ReIE f HILM or 0 Ï ImIE f HILM. This requires that there are no zeros of f  on the boundary of R. We use rectangu-

lar interval arithmetic here.
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Finding approximate solutions
ApproximateSolutions(f,  R,  prec)  uses  either  computational  geometry  methods  or  the  Kravanja-Van  Barel
algorithm to find machine double precision solutions and uses them as starting points to the Newton method.
Satisfying the SolveAlgorithm  conditions would require an arbitrary-precision version of the part finding the
starting points (currently not implemented in Mathematica).

Talk1111.nb  11
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Semialgebraic sets
A real polynomial condition is a formula

f Hx1, …, xnL Ρ 0

where f Î R@x1, …, xnD and Ρ is one of < , £ , > , ³ , =, or ¹.

A quantified real polynomial formula is a formula constructed with real polynomial conditions using Boolean
operators and quantifiers over real variables.

A subset of  Rn is semialgebraic if it is a solution set of a real polynomial formula with n free variables.
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Cell decomposition
Every semialgebraic set can be represented as a finite union of disjoint cells defined recursively as follows.

• A cell in R is a point or an open interval.

• A cell in Rk has one of the two forms

8Ha1, …, ak, ak+1L : Ha1, …, akL Î Ck ì ak+1 � rHa1, …, akL<
8Ha1, …, ak, ak+1L : Ha1, …, akL Î Ck ì r1Ha1, …, akL < ak+1 < r2Ha1, …, akL<
where Ck  is a cell in Rk, r  is a continuous algebraic function, and r1 and r2 are continuous algebraic functions,
-¥, or ¥, and r1 < r2 on Ck.

By an algebraic function we mean a function

Rootxk+1,p f : Ck � Hx1, ..., xkL �Rootxk+1,p f Hx1, ..., xkL Î R

where

f = c0 xk+1
m

+ c1 xk+1
m-1

+ … + cm Î R@x1, …, xk, xk+1D
is a polynomial and

Rootxk+1,p f Hx1, ..., xkL
is the p-th real root (multiplicities counted) of f  treated as a univariate polynomial in xk+1.
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Cylindrical algebraic decomposition
The CAD algorithm, introduced by Collins (1975), allows to compute a cell decomposition of any semialgebraic
set presented by a real polynomial formula.

• Cells are arranged cylindrically.

• Polynomials whose roots bound cells extending C are delineable over C.

A set A Ì R@x1, …, xk, xk+1D is delineable over C Í R
k  if each f Î A has a fixed number of real roots on C as a

polynomial in xk+1, the roots are continuous functions on C, they have constant multiplicities, and two roots of
f , g Î A  are equal either everywhere or nowhere in C.

ineqs = -5 Hy - 3L3
+ 7 x2 Hy - 3L < 1 && x2

+ 2 Hy - 4L2
< 21;

-4 -2 2 4

2

4

6

14   Talk1111.nb



Slide 15 of 21

The projection phase of the CAD algorithm
Finding a cell decomposition of a semialgebraic set using the CAD algorithm consists of two phases, projection
and lifting. In the projection phase we start with the set An  of  factors of the polynomials present in the system,
and eliminate variables one by one using a projection operator P such that

Pk+1 : R@x1, …, xk, xk+1D É Ak+1 � Ak Ì R@x1, …, xkD
and, generally speaking, if all polynomials of Ak  have constant signs on a cell C Ì R

k, then all polynomials of
Ak+1 are delineable over C. This way the roots of polynomials of A1, …, An are the algebraic functions needed in
the construction of the cell decomposition of the semialgebraic set.
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The lifting phase of the CAD algorithm
In the lifting phase we find a cell decomposition of the semialgebraic set. We start with cells in R1 consisting of
all distinct roots of A1 and the open intervals between the roots. We find a sample point in each of the cells and
remove the cells whose sample points do not satisfy the system describing the semialgebraic set (the system may
contain conditions involving only x1). Now we lift the cells to cells in Rn, one dimension at a time. Suppose we
have lifted the cells to Rk.  To lift a cell C Ì R

k  to Rk+1  we find the real roots of Ak+1HcL, where c is a sample
point in C and the elements of Ak+1HcL are the elements of  Ak+1 with x1, …xk  replaced with the coordinates of c.
If  r  is  the  p-th  root  of  f Hc, xk+1L  for  some f Î Ak+1,  then  Rootxk+1,p f Hx1, ..., xkL  is  a  continuous  algebraic

function on C,  because the polynomials of Ak+1  are delineable on C.  The lifting of C  to Rk+1  will consist of
graphs of such algebraic functions, and of the slices of C ´R between the consecutive graphs. The sample points
in each of the new cells will be obtained by adding the k + 1-st coordinate to c, equal to one of the roots or to a
number between two consecutive roots. Similarly as in the first step we remove those lifted cells whose sample
points do not satisfy the system describing the semialgebraic set.

To lift a cell we need to find the real root structure of Ak+1HcL. That is, we need to find disjoint intervals isolating
the distinct real roots of Ak+1HcL, find the multiplicity of each root and identify the common roots of different
elements of Ak+1HcL. The coefficients of sample points are in general algebraic numbers. We can avoid algebraic
number computations by using a validated numeric method.
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Problem (Real root structure)
Given

• a finite set of polynomials A Ì Z@x1, …, xk, xk+1D, where k ³ 0,

• a tuple HI1, …, IkL of real intervals such that ai Î Ii for 1 £ i £ k,

find

• a tuple HJ1, …, JlL of disjoint real intervals,

• a function mult : A´ 81, . . . , l< �N

such that

• the polynomials 8 f Ha, xk+1L : f Î A< have l distinct real roots r1, …, rl,

• ri Î Ji for 1 £ i £ l, 

• multH f , iL is the multiplicity of ri as a root of f  for all f Î A and 1 £ i £ l.

� Additional assumptions

For any f , g Î A we can obtain the following information

• the degree of the polynomial f Ha, xk+1L,
• the degree of the g.c.d. of f Ha, xk+1L and gHa, xk+1L,
• the degree of the g.c.d. of f Ha, xk+1L and ¶xk+1

f Ha, xk+1L.
� Obtaining the additional information in the CAD algorithm

This information may be deduced from knowing the number of initial coefficients of  f Ha, xk+1L that are zero and
the number of initial principal subresultant coefficients (PSC) of f Ha, xk+1L and gHa, xk+1L or of  f Ha, xk+1L and
¶xk+1

f Ha, xk+1L that are zero. 

In the CAD algorithm, the projection Ak  of the polynomial set Ak+1 contains the nonconstant initial coefficients,
the discriminants and the pairwise resultants for all polynomials in Ak+1. The projection may also contain PSC for
pairs of polynomials or for pairs polynomial and its derivative. 

The signs of projection polynomials Ak  on a given cell cell C Ì R
k  are constant. If a Î C then for a polynomial

g Î Ak, gHaL � 0 iff C is the graph of a root of g. Hence if a coefficient or a PSC belongs to the projection, the
information on whether it is zero at a comes for free from the construction of  C.  We just need to keep track of
where the projection polynomials come from and which projection polynomials are zero on the given cell.

If we need to know whether a PSC that is not a part of the projection is zero at a, we can use zero testing to obtain
this information. This may require nontrivial computation, but still it tends to be faster than lifting the cell using
exact algebraic number computation.
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Symbolic-numeric real root structure computation
RealRootStructureHeuristic(A, I, prec)
(1) Let F := 8gHcHI1L, …, cHIkL, zL : g Î A< Ì Q@zD 
(2) Use a black-box numeric method with working precision prec to find approximations of all complex roots of
elements of F.
(3) Apply symbolic criteria to the approximate solutions in an attempt to find the real root structure of A at a.

� A symbolic-numeric algorithm for cell lifting in CAD

CellLifting(projection data)
(1) Construct cells C1, …, Cm in R (exact real root isolation).
(2) Set prec=initial precision, answer=empty.
(3) For 1 £ i £ m,

(a) Let a be a sample point in Ci. If a Î Q, set I := Ha, 0L, else find I � Hc, rL such that c - r < a < c + r and
r < c 10-prec.

(b) Append CellLiftingRecursiveHCi, I , prec, projection dataL to answer.
(4) Return answer.

CellLiftingRecursiveHC, I , prec, projection dataL
(1) Set IC := I , newprec=prec.
(2) Compute  root structure = RealRootStructureHeuristicHAk+1, IC, newprecL.
(3) While (root structure==failed) 

(a) Set newprec = 2 newprec.
(b) Recompute IC working with precision newprec.
(c) Compute root structure = RealRootStructureHeuristicHAk+1, IC, newprecL.

(4) Construct cells C1, …, Cm in Rk+1 and intervals I1, …, Im in Ik+1  extending C and Ic. 
(5) Set answer=empty. For 1 £ i £ m, append CellLiftingRecursiveHCi, Ii, newprec, projection dataL to answer.
(6) Return answer.

An alternative version of the algorithm, currently used by the Mathematica CAD implementation, is to revert to
exact algebraic number computations for the cell C  if  the call to RealRootStructureHeuristic  in step (2) of
CellLiftingRecursive  fails.  The  termination  of  the  version  of  the  algorithm presented  here  depends  on  the
following property of the numeric root finding method NumericRoots(f, prec).

For any polynomial f Î Q@zD and any Ε > 0 there exists pΕ such that for any prec ³ pΕ 
NumericRootsH f , precL � 8r1, …, rn< and max1£i£n ri - Ξi < Ε

where f HzL � anHz - Ξ1L …Hz - ΞnL 
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Interval-arithmetic evaluation of polynomials
Let us slightly modify the definition of complex interval. 

A complex interval is an element of the set D := 8Hc, rL : c Î Q@iD, r Î Q+ Ü 80, ¥<<. 
A real interval is an element of the set I := 8Hc, rL : c Î Q, r Î Q+ Ü 80, ¥<<. We have I Ì D.

We allow one-point intervals here -- unlike for analytic functions, we can always compute the exact value of a
rational polynomial at a Gaussian rational point.

For I � HI1, …, IkL Î D
k let I* := HI1L* �…� HIkL* Í C

k. 

Let g Î Q@x1, …, xkD. An interval-arithmetic evaluation for g is an algorithm Eg  which for any I Î D
k  computes

EgHIL Î D with the following properties:

• g*HI*L Í EgHIL*

• I* Í J* � EgHIL* Í EgHJ L*

• For any a Î C
k and Ε > 0 there exists ∆ > 0 such that 

  I � HHa1, r1L, …, Hak, rkLL ì max1£i£k ri < ∆ ì Hc, rL � EgHIL �r < Ε

• If I Î I
k then EgHIL Î I. 

For f � In zn + … + I0 Î D@zD and z0 Î Q@iD define

f Hz0L := EgHI0, …, In, Hz0, 0LL Î D

where g � xn zn + … + x0 Î Q@x0, …, xn, zD.
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Root existence criterion
For  I Î D  let us denote Imin := minzÎI*

z  and Imax := maxzÎI*
z .

Criterion: Let f � In zn + … + I0 Î D@zD with 0 Ï In, let z0 Î Q@iD and let ci :=
f HiLHz0L

i!
Î D for 0 £ i £ n. Suppose

that

max0£i<mJ n HciLmax

HcmLmin
N

1

m-i
< r < minm<i£nJ HcmLmin

nHciLmax
N

1

i-m

then for any  a0 Î I0, …, an Î In  the polynomial an zn + … + a0 Î C@zD has exactly m roots in the disk DHz0, rL
(counted with multiplicities).

� Proof

The criterion follows from:

Proposition  (A.S., JSC 2006, proof based on Rouche’s theorem)

Let f Î C@xD be a polynomial of degree n, let z0 Î C and let ci :=
f HiLHz0L

i!
. Suppose that

max0£i<kJ n ci

ck
N

1

k-i < r < mink<i£nJ ck

n ci
N

1

i-k

then f  has exactly k roots in the disk DHz0, rL (counted with multiplicities).

Talk1111.nb  21



Slide 21 of 21

Application of the root existence criterion

Criterion: Let f � In zn + … + I0 Î D@zD with 0 Ï In, let z0 Î Q@iD and let ci :=
f HiLHz0L

i!
Î D for 0 £ i £ n. Suppose

that

max0£i<mJ n HciLmax

HcmLmin
N

1

m-i
< r < minm<i£nJ HcmLmin

nHciLmax
N

1

i-m

then for any  a0 Î I0, …, an Î In  the polynomial an zn + … + a0 Î C@zD has exactly m roots in the disk DHz0, rL
(counted with multiplicities).

� Problem

Given

• a finite set of polynomials A Ì Z@x1, …, xk, xk+1D, where k ³ 0,

• a tuple HI1, …, IkL of real intervals such that ai Î Ii for 1 £ i £ k,

find

• a tuple HJ1, …, JlL of disjoint real intervals,

• a function mult : A´ 81, . . . , l< �N

such that

• the polynomials 8 f Ha, xk+1L : f Î A< have l distinct real roots r1, …, rl,

• ri Î Ji for 1 £ i £ l, 

• multH f , iL is the multiplicity of ri as a root of f  for all f Î A and 1 £ i £ l.

� Find the root structure of each polynomial

For f Î A do

� Find root approximations

(1) Compute fI � In zn + … + I0 � f HI1, …, Ik, zL Î D@zD.
(2) While n ³ 0 and 0 Î In

(a) If the coefficient at xk+1
n  of f Ha, xk+1L is nonzero, return failed.

(b) Set fI = In-1 zn-1 + … + I0 and decrement n.

(3) If fI � 0 set R f
real = R f

complex
:= ¯ and continue the loop.

(4) Let fc be f HcHI1L, …, cHIkL, zL with monomials of degree higher than n removed. 
(5) Compute approximate roots z1, …, zn Î Q@iD of fc.

� Use the criterion to find disjoint disks containing roots of f Ha, xk+1L
(6) For 1 £ i £ n find the smallest positive integer mi and a radius ri such that the criterion is satisfied for fI, zi, mi

and ri.
(7) Let R := 8Hzi, ri, miL : 1 £ i £ n<. 
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(8) For each Hz, r, mL Î R such that z Ï R ì DHz, rL Ý R ¹ ¯

(a) Find the smallest positive integer m ' and a radius r ' such that the criterion is satisfied for fI, z ', m ' and
reHrL.

(b) Replace Hz, r, mL with HreHzL, r ', m 'L in R. 
(8) While there exist Hz, r, mL, Hz ', r ', m 'L Î R, DHz, rL Ý DHz ', r 'L ¹ ¯ and r £ r ', remove Hz ', r ', m 'L from R.

3

1

1
-3 -2 -1 1 2 3

-1

1

2

3

(9) Set R f
real := 8Hz, r, mL Î R : z Î R< and R f

complex
:= 8Hz, r, mL Î R : imHzL > 0<.

� Verify that the disks contain all roots, each element of R f
real contains one root and the root is real

(10) If  ÚHz,r,mLÎR f
real m + 2 ÚHz,r,mLÎR f

complex m ¹ n return failed.

(11) If there exists Hz, r, mL Î R f
real such that m > 1 find the degree d of the g.c.d. of f Ha, xk+1L and ¶xk+1

f Ha, xk+1L.
If cardIR f

realM + 2 cardJR f
complexN ¹ n - d return failed.
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� Identify the common real roots

For f , g Î A such that there exist Hz, r, mL Î R f
real and  Hz ', r ', m 'L Î Rg

real  with D Hz, rL Ý DHz ', r 'L ¹ ¯ do

(1) Set mtot = 0. 
(2) For each  Hz, r, mL Î R f

real and  Hz ', r ', m 'L Î Rg
real  such that D Hz, rL Ý DHz ', r 'L ¹ ¯  set mtot = mtot + minHm, m 'L.

(3)  For  each   Hz, r, mL Î R f
complex

 and   Hz ', r ', m 'L Î Rg
complex

  such  that  D Hz, rL Ý DHz ', r 'L ¹ ¯   set

mtot = mtot + 2 minHm, m 'L.
(4) Find the degree d of the g.c.d. of f Ha, xk+1L and gHa, xk+1L.
(5) If mtot ¹ d return failed.

� Return isolating intervals for the real roots and the multiplicity function

(1)  Find  real  intervals  HJ1, …, JlL  by  picking  one  representative  from  each  set  of  intersecting  intervals  in

:Hz, rL : f Î A í Hz, r, mL Î R f
real=.

(2) For f Î A  and  1 £ i £ l,  if  there exists Hz, r, mL Î R f
real  such that Ji Ý DHz, rL ¹ ¯  then multH f , iL = m  else

multH f , iL = 0.
(3) Return HJ1, …, JlL and mult.
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