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Abstract

Validated numeric methods can be used to significantly speed up exact solving of equations and inequalities and
to find and represent exact solutions of problems that cannot be solved by known purely symbolic algorithms.
Mathematica solvers use such methods to find and represent roots of univariate polynomial and transcendental
functions. The cylindrical algebraic decomposition algorithm, used to solve systems of real polynomial equations
and inequalities, applies validated numeric methods in the lifting phase. In my talk | will discuss the types of
validation of numeric computation results used by the Mathematica solvers. | will present the validation criteria
used and describe the algorithms using them.
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Problem

Given an expression representing a holomorphic function f : Co> U — € find the solutions of f(x)==01in a
closed rectangle Rc U.

= A symbolic-numeric heuristic

SolveHeuristic(f, R, prec)

(1) Use ablack-box numeric method with working precision prec to find approximate solutions.

(2) Apply symboalic criteriato the approximate solutions in an attempt to find exact isolating sets and multiplici-
ties of the solutions and to prove that we have found al solutions.

(3) If (2) succeeds return a symbolic representation of the solutions otherwise return failed.

= A symbolic-numeric algorithm

If certain additional conditions are satisfied (shown in blue text on the following slides) the following agorithm
finds the solutions.

SolveAlgorithm(f, R)
(1) Set prec=machine double precision, answer=failed,
(2) While (answer==failed)
(a) Set answer=SolveHeuristic(f, R, prec).
(b) Set prec=2*prec.
(3) Return answer.
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Example

Find the solutions of 33 + ¢* — sin(cos(2 x — 1)) + 1 =0 intherectangle [-1, 1]x[-1, 1].
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Solve[e*-Sin[Cos[2x-1]] +3x®+1=08&&-1<Re[x] <18 -1=xIm[x] =1, x]
{{x > Root [{1+e™-Sin[Cos[1-211]] +3 11 & -0.903875096725008420822753483550} | }
{x > Root [{1+e™-Sin[Cos[1-2n1]]+3n1%¢&,

0.16467119796087211763838020431533578139887826330063434530726 -
0. 59938806354617993049447862473622069756099787976942345332526 i } | |,
{x > Root [{1+e™-Sin[Cos[1-2u1]]+3n1%¢&,
0.16467119796087211763838020431533578139887826330063434530726 +
0. 59938806354617993049447862473622069756099787976942345332526 i } | } }

The solutions represent exact numbers.

X /. %[[1]]

Root [{1 +el-Sin[Cos[1-251]]+3x1%&, -0. 903875096725008420822753483550}]
N[%, 100]

-0.903875096725008420822753483549551654203206816077444082660668627941895883392088234-.
5129922880401265627
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Assumptions

Given an expression representing a holomorphic function f : Co> U — € find the solutions of f(x)==01in a
closed rectangle Rc U.

We assumethat for anyne N
« an expression representing f ™ can be computed,

* an interval -arithmetic evaluation is available for ™.
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Interval-arithmetic evaluation

A complex interval isan element of theset D :={(c, r) : c€ Q[i], r € Q; U {co}}.
A complex interval | ==(c(l), r(1)) e D representstheset |, == {xe C: | x—c(l)| < r(l)}.

Let g be an expression representing a holomorphic function. An interval -arithmetic evaluation for g is an algo-
rithm Eg which for any | €D computes Ey(l) € D with the following properties:

* For any c € D(g) and € > 0 there exists § > 0 such that

r<oA(d,s)=Eq((c, r) = s<e
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Approximate solutions

Given an expression representing a holomorphic function f : Co> U — € find the solutions of f(x)==01in a
closed rectangle Rc U.

Let &, ..., & bethedistinct solutionsof f(x)==0 inR.

We assume that there is an algorithm ApproximateSolutions such that
» ApproximateSolutions(f, R, prec) givesalist of numbersin R.

* For prec= py card(ApproximateSolutions(f, R, prec)) ==k

* For any € > O there exists p. = po such that for any prec = p,
ApproximateSolutions(f, R, prec) ={rq, ..., ¢y} and maxq<i<x | i — & | <e.
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Root existence criterion

For | eD let usdenote lyin:=Ming, | Z| and lyax := MaXxe, | Z|.

Criterion: Let f :C2>U — C be aholomorphic function, let | € D be such that |, c U. Suppose that, for some
keN,andJ==(c(l),r)eD, J.cU

( f(k)(J) 10 min k k— 1
> 5%

then f has exactly k rootsin J, (counted with multiplicities).

m(l)

AT T max r|

= Proof

Let zo:=c(l), let ¢ := Arg(c(E;w(J))) and let g(2) := exp(-i ¢) f ().
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The criterion follows from applying the following theoremto g and J,.

Theorem (Neumaier, 1988) Let f : C2> U — C be a holomorphic function and let z; € U and r > 0 be such that
D:={z:|z-z| <r}cU.Ifforal ze D

) k-1 | 19 | ik
[R5 | > 2 = |

then f has exactly k rootsin D (counted with multiplicities).
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Application of the root existence criterion

Criterion: Let f :C2>U - C be aholomorphic function, let | €D be such that |, c U. Suppose that, for some
keN,andJ==(c(l),r)eb, J,.cU

( f’”(‘]) min Zk ]_

then f has exactly k rootsin J, (counted with multiplicities).

f”u) .

We attempt to find an isolated solution of f =0 starting with an approximate solution

Zy € ApproximateSolutions(f, R, prec). If successful, we get r >0 and k e N, such that D(z, r) contains
exactly k solutions of f ==0. If k> 1 the method cannot distinguish between one solution of multiplicity k and a
cluster of solutions. If f isan elementary function one could use zero-testing to prove multiplicity of the solution
(the currently known zero-testing algorithm [Richardson] relies on Schanuel’s conjecture for proof of
termination).

(Er()

(1) Setk:=1. Ifzg+#0sete:= |7 |102P elseset e:=1072P". Putl :=(z, €) and Mo := :
(2) Whilek < kma do

(Ef‘“(l))min . (Ef[k‘(l))max
“u and My = K

(b) If my == 0, increment k and continue the loop.

(a) Compute my :=

(c) Setr := maxogisk_l(ZKrTM;)ﬁ .

(d) If M rk> YkAM; rl return (r, k).

(e) Increment k and continue the loop.
(3) Return failed.

kmax 1S @ bound on the total number of solutions, if known, otherwise it is a fixed parameter. e and r are rational
numbers -- floating point number approximations of the values given in (1) and (2¢). If zy iscloseto aroot £ of f

of multiplicity u, k < u and % ~1thenr s2u? | 0 - £ |. Henceif for somek, % ~1landr islarge we can return
k k

failed without continuing the loop all the way t0 Knyax.
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Verifying the number of solutions

Given an expression representing a holomorphic function f : Co> U — € find the solutions of f(x)==01in a
closed rectangle Rc U.

To find the number of solutions of f(x)==0in R (counted with multiplicities) we compute the winding number of
f aong the boundary of R. We subdivide the boundary into segments such that for each segment either

0¢ Re(E¢ (1)) or 0¢ Im(E¢(1)). This requires that there are no zeros of f on the boundary of R. We use rectangu-
lar interval arithmetic here.
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Finding approximate solutions

ApproximateSolutions(f, R, prec) uses either computational geometry methods or the Kravanja-Van Barel
algorithm to find machine double precision solutions and uses them as starting points to the Newton method.
Satisfying the SolveAlgorithm conditions would require an arbitrary-precision version of the part finding the
starting points (currently not implemented in Mathematica).
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Semialgebraic sets
A real polynomial condition isaformula
f(X1, .-, X)) pO
where f e R[Xy, ..., XsJand pisoneof <, <, >, =, =,0r +.

A quantified real polynomial formulais a formula constructed with real polynomia conditions using Boolean
operators and quantifiers over real variables.

A subset of R"issemialgebraicif it isasolution set of area polynomial formulawith n free variables.
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Cell decomposition

Every semialgebraic set can be represented as a finite union of digjoint cells defined recursively as follows.
* A cell inR isapoint or an open interval.

+ A cell inR¥ has one of the two forms

(@, .., &g &) 1@, - &) € Cu N A =1 (ay, ..., &)}

{(all st ak! ak+l) : (al! LA ak)ECk/\rl(al, R} ak)<ak+l<r2(all e ak)}

where C isacell inRR¥, r is a continuous algebraic function, and r, and r, are continuous algebraic functions,
-0, OF 00, and ry <rp on Cy.

By an algebraic function we mean afunction

Rooty, , p f: G2 (X, ..., X)—RoOty,  p F(X1, ..., %) €R

where

f=coXy+C X+ .+ CneR[Xq, ...y X Xiet)

isapolynomial and

Rooty, , p F(X1, -y X0

isthe p-th real root (multiplicities counted) of f treated as aunivariate polynomial in X, 1.
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Cylindrical algebraic decomposition
The CAD algorithm, introduced by Collins (1975), allows to compute a cell decomposition of any semialgebraic
set presented by areal polynomial formula.
* Cellsare arranged cylindrically.
* Polynomials whose roots bound cells extending C are delineable over C.

A set ACR[Xy, ..., %, X1] is delinesble over C c RK if each f € A has afixed number of real rootson C as a
polynomial in X1, the roots are continuous functions on C, they have constant multiplicities, and two roots of
f, ge A areequal either everywhere or nowherein C.

inegs = -5 (y-3)3+7x% (y-3) <18&8x%+2 (y-4)2 < 21;

/

A7
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The projection phase of the CAD algorithm

Finding a cell decomposition of a semialgebraic set using the CAD agorithm consists of two phases, projection
and lifting. In the projection phase we start with the set A, of factors of the polynomials present in the system,
and eliminate variables one by one using a projection operator P such that

Pii1 T R[Xg, oy X X1l D At — A CR[Xq, ..., X]

and, generally speaking, if all polynomials of A, have constant signs on a cell C cR¥, then all polynomials of
A1 are delineable over C. Thisway the roots of polynomials of Ay, ..., A, are the algebraic functions needed in
the construction of the cell decomposition of the semialgebraic set.
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The lifting phase of the CAD algorithm

In the lifting phase we find a cell decomposition of the semialgebraic set. We start with cellsin R* consisting of
all distinct roots of A; and the open intervals between the roots. We find a sample point in each of the cells and
remove the cells whose sample points do not satisfy the system describing the semialgebraic set (the system may
contain conditions involving only x;). Now we lift the cells to cellsin R", one dimension at atime. Suppose we
have lifted the cellsto R¥. To lift acell C cR¥ to R**! we find the real roots of A,1(c), where c is a sample
point in C and the elements of Ay, 1(c) arethe elements of A1 with Xy, ...Xx replaced with the coordinates of c.
If r is the p-th root of f(c, X«.1) for some f e Ag,1, then Root,, , , f(x1, ..., X is a continuous algebraic

function on C, because the polynomials of A, are delineable on C. The lifting of C to R**! will consist of
graphs of such algebraic functions, and of the slices of CxR between the consecutive graphs. The sample points
in each of the new cells will be obtained by adding the k + 1-st coordinate to ¢, equal to one of the roots or to a
number between two consecutive roots. Similarly as in the first step we remove those lifted cells whose sample
points do not satisfy the system describing the semialgebraic set.

To lift acell we need to find the real root structure of Ay, 1(c). That is, we need to find disjoint intervals isolating
the distinct real roots of Ay, ;(c), find the multiplicity of each root and identify the common roots of different
elements of Ay, 1(c). The coefficients of sample points are in general algebraic numbers. We can avoid algebraic
number computations by using a validated numeric method.
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Problem (Real root structure)
Given
* afinite set of polynomials Ac Z[Xq, ..., X, X+1], wherek = 0,

catuple(lq, ..., ly) of real intervalssuch that g e I; for 1 <i <Kk,

find

e atuple(Jy, ..., J)) of digoint real intervals,
e afunction mult : Ax{1, ..., 1}—N

such that

« the polynomials{f(a, x.1): f € A} havel distinct real rootsry, ..., ,

erieJiforl<ix<l,

e mult(f, i) isthe multiplicity of rj asaroot of f foral f e Aand1<i<|.
= Additional assumptions

For any f, g € Awe can obtain the following information

« the degree of the polynomial f(a, X«:1),

« the degree of the g.c.d. of f(a, X«;1) and g(a, Xk+1),

» the degree of the g.c.d. of f(a, X¢.1) and dy,, f(a, Xks1).
= Obtaining the additional information in the CAD algorithm

This information may be deduced from knowing the number of initial coefficients of f(a, X,1) that are zero and
the number of initial principal subresultant coefficients (PSC) of f(a, xk+1) and g(a, xx.1) or of f(a, xx+1) and
Ox,., T(a, X 1) that are zero.

In the CAD algorithm, the projection Ay of the polynomial set Ay, ; contains the nonconstant initial coefficients,
the discriminants and the pairwise resultants for al polynomiasin Ay, 1. The projection may also contain PSC for
pairs of polynomials or for pairs polynomial and its derivative.

The signs of projection polynomials A, on a given cell cell C c R¥ are constant. If a e C then for a polynomial
ge A, 9(@) = 0iff Cisthe graph of aroot of g. Hence if a coefficient or a PSC belongs to the projection, the
information on whether it is zero at a comes for free from the construction of C. We just need to keep track of
where the projection polynomial s come from and which projection polynomials are zero on the given cell.

If we need to know whether a PSC that is not a part of the projection is zero at a, we can use zero testing to obtain
this information. This may require nontrivial computation, but still it tends to be faster than lifting the cell using
exact algebraic number computation.
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= Timings

TABLE 1. Examples from applications (timings)

Example | Time | Time Time Time Time
Proj | ACAD | ECAD | ICAD | QEPCAD
1 0.08 0.12 3.96 3.93 0.83
2—-1 0.22 1.94 | > 3600 | > 3600 389
2-—2 0.27 2.61 | > 3600 | > 3600 1235
3 0.37 19.6 | > 3600 | > 3600 | ['(3446)
4 6.43 408 > 3600 | = 3600 F(402)

TaBLE 3. Randomly generated examples (timings)

Example | Time | Time Time Time Time
Proj | ACAD | ECAD | ICAD | QEPCAD

a—|1 0.25 1.49 > 3600 | = 3600 F(306)
a—2 0.28 2.19 > 3600 | > 3600 F(270)
a—3 0.03 1.07 2123 1624 3.68
a—4 0.04 1.23 > 3600 | = 3600 0.34
a—>h 0.88 3.09 | = 3600 | > 3600 F(211)
b—1 0.05 15.7 > 3600 | > 3600 | F(1272)
b—2 13.4 15.5 > 3600 | = 3600 F(265)
b—3 0.32 19.1 > 3600 | > 3600 F(498)
b—4 14.2 24.3 > 3600 | = 3600 F(317)
b—5 0.11 34.5 > 3600 | = 3600 | F(3278)
c—1 0.64 73 > 3600 | = 3600 | F(1042)
c—2 0.23 104 = 3600 | = 3600 = 10000
c—3 1.05 196 > 3600 | = 3600 F(279)
c—4 4.32 854 > 3600 | > 3600 | F(1766)
c—>5 65.7 606 > 3600 | > 3600 F(624)
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Symbolic-numeric real root structure computation

RealRootStructureHeuristic(A, I, prec)

(1) Let F:={g(c(ly), ..., c(ly), 2:g € A cQ[Z]

(2) Use a black-box numeric method with working precision prec to find approximations of all complex roots of
elements of F.

(3) Apply symbolic criteriato the approximate solutionsin an attempt to find the real root structure of A at a.

= A symbolic-numeric algorithm for cell liftingin CAD

CellLifting(projection data)
(1) Construct cellsCy, ..., CinR (exact real root isolation).
(2) Set prec=initial precision, answer=empty.
(@ Forl<i<m,
(a) Let abeasamplepointinCi. If ae Q, set | :=(a, 0), elsefind | ==(c, r) suchthatc—r <a<c+r and
r<|c|107P,
(b) Append CellLiftingRecursive(C;, |, prec, projection data) to answer.
(4) Return answer .

CellLiftingRecursive(C, |, prec, projection data)
(1) Set I :=1, newprec=prec.
(2) Compute root structure = RealRootStructureHeuristic(Ax, 1, Ic, newprec).
(3) While (root structure==failed)
(@) Set newprec = 2 newprec.
(b) Recompute I working with precision newprec.
(c) Compute root structure = RealRoot StructureHeuristic(Ax. 1, |c, hewprec).
(4) Construct cellsCy, ..., CinRK* L and intervalsy, ..., I, in1€*! extending C and I...
(5) Set answer=empty. For 1 <i <= m, append CellLiftingRecur sive(C;, |;, newprec, projectiondata) to answer.
(6) Return answer.

An aternative version of the algorithm, currently used by the Mathematica CAD implementation, is to revert to
exact algebraic number computations for the cell C if the call to RealRootStructureHeuristic in step (2) of
CellLiftingRecursive fails. The termination of the version of the algorithm presented here depends on the
following property of the numeric root finding method NumericRoots(f, prec).

For any polynomial f € Q[z] and any e > O there exists p, such that for any prec = p,
NumericRoots(f, prec)=={ry, ..., rn} and maxicj<n | i = & | <€
where f(2) =a(z— &£1) ...(2— &)
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Interval-arithmetic evaluation of polynomials

Let us slightly modify the definition of complex interval.
A complex interval isan element of theset D :={(c, r) : c€ Q[i], r € Q, U {0, oo}}.
A real interval isan element of thesetl:={(c,r):ceQ, re Q. U {0, oo}}. Wehavel c D.

We allow one-point intervals here -- unlike for analytic functions, we can always compute the exact value of a
rational polynomial at a Gaussian rational point.

Forl=(lq, ..., ) eD¥let 1, :=(I1),x... x(ly), € CK.
Let g Q[Xy, ..., X]. An interval-arithmetic evaluation for g is an algorithm Eg which for any | € DX computes
Eg(1) € D with the following properties:

« For any a e CK and e > 0 there exists § > 0 such that

I'=((@u, 1), ..., (@ M) A MaXcick 1 <6 A (C, 1) =Eg(l) =T <€
«If I el* then E4(l) el.
For f =1,2"+ ... + l|geD[Zz] and 7y € Q[i] define
f(z0) :=Ey(lo, ..., In, (20, 0)) €D
whereg=x,2"+ ... + X € Q[Xo, ..., Xn, Z].



Talk1111.nb |21

Root existence criterion

For | eD let usdenote lyin:=Ming, | Z| and lyax := MaXxe, | Z|.

[0
Criterion: Let f =1,Z2"+ ... + lpeD[z] with0¢ |, let zy € Q[i] and let ¢ := % e D for 0<i < n. Suppose
that
() - (Cm) :
N (Cmex | m—i H Cm)min \i-m
MaXot < o™ | ™ <1< Ml |

then for any agelg, ..., a, € I, the polynomial a, Z" + ... + ag € C[z] has exactly mroots in the disk D(z, r)
(counted with multiplicities).

m Proof
The criterion follows from:
Proposition (A.S., JSC 2006, proof based on Rouche’ s theorem)
Let f € C[x] beapolynomial of degreen, let zy e C and let ¢; := | @ ‘ Suppose that

1 1

nei \ii . S \ik
MaXo; (—')‘“ < I <MiNkgi< (—)
O<i<k c k<i<n ne

then f has exactly k rootsin the disk D(zg, r) (counted with multiplicities).
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Application of the root existence criterion

@)
Criterion: Let f ==1,2"+ ... + lgeDJ[z] with 0 ¢ |, let Zy € Q[i] and let ¢; := fi—('z(’) eD for 0<i <n. Suppose
that
( X 1
N(C)max \ m-i H Cm)min )i-m
Mo = | <1 < Mifncn( 5

then for any agelo, ..., a, € I, the polynomial a, Z" + ... + ag € C[Zz] has exactly mroots in the disk D(z, r)
(counted with multiplicities).

= Problem
Given
« afinite set of polynomials Ac Z[xq, ..., X, Xk+1], Wherek = 0,
eatuple(ly, ..., ly) of rea intervalssuch that g; I for L <i <Kk,
find
e atuple(Jy, ..., J) of digoint rea intervals,

e afunctionmult: Ax{1, ..., |} —N

such that

* the polynomials { f (a, Xx;1) : f € A} havel distinct real rootsry, ..., 1y,
erieJiforl=ix<l,

o mult(f, i) isthemultiplicity of ry asaroot of f foral f e Aand1l=<i<I.

m Find the root structure of each polynomial
For f € Ado

= Find root approximations
(1) Compute fj =1,Z"+ ... + lg=f(lq, ..., I, 2 €D[Z].

(2) Whilen=0and0 e I,
(a) If the coefficient at X, ; of f(a, X 1) iSnonzero, return failed.
(b) Set f; =1p_1 21 + ... + Ig and decrement n.
(3) If f, =0 set Re = R°™'*:= % and continue the loop.
(4) Let fc be f(c(ly), ..., c(lk), 20 with monomials of degree higher than n removed.
(5) Compute approximate roots zy, ..., z, € Q[i] of f.

m Usethecriterion to find digjoint disks containing roots of f(a, Xk+1)
(6) For 1 <i < nfind the smallest positive integer m and aradius r; such that the criterion is satisfied for f,, z, m
andr;.

(7) LetR:={(z, ri,m):1<i=<n}
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3L
(8) Foreach(z,r, mye Rsuchthat z¢ R AD(z, 1) YR + @

(a) Find the smallest positive integer m' and aradiusr' such that the criterion is satisfied for f,, z', m" and
re(r).

(b) Replace (z, r, m) with (re(2), r', m) inR.
(8) Whilethereexist (z, r, m), (z',r', mYe R D(z, 1) D(Z, r)+@andr <r', remove(z, r', m') from R

3~

1L
(9) Set R :={(z,r, m e R: zeR} and R*™* := {(z, r, m e R:im(2) > O}.

= Verify that the disks contain all roots, each element of R} contains oneroot and theroot isreal
(10) If Xzr mere M+ 2 Z(Z’r’m)eR?mplami n return failed.
(11) If thereexists (z, r, m) € erea' such that m> 1 find the degree d of the g.c.d. of f(a, X.1) and dy,, f(@, Xis1).

If card(R#) + 2 card(R?omp'ex) +n—d return failed.
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= Identify the common real roots
For f, g € Asuchthat thereexist (z r,m) e Ri® and (z',r',m") e Rgea' withD(z, NN D, r') # @ do
(1) Set mg =0.
(2) Foreach (z,r, m e R’fea' and (Z',r',m) e R'gea' suchthat D(z, r) (" D(Z', r") £ @ set Mt = Mgt + Min(m, m’).
(3 For exch (zr,meR*™* and (2,1, m)eR™™™ such that D(z ) D(Z, r)+o set

Mot = Mgt + 2 Min(m, m').
(4) Find the degree d of the g.c.d. of f(a, x;1) and g(a, Xk+1)-
(5) If myg # d return failed.

m Return isolating intervals for the real roots and the multiplicity function
(1) Find real intervals (J4, ..., J;) by picking one representative from each set of intersecting intervals in
{(z, N: feA /\(z, r,meR#}
(2 For f e Aand 1<i<l|, if there exists (z r, m) e R® such that J; () D(z, r) # @ then mult(f, i) = m else

mult(f, i)=0.
(3) Return (Jq, ..., J;) and mult.



