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1 Introduction

Why modularize an ontology? In software engineering, modularly struc-
tured systems are desirable, all other things being equal. Given a well-designed
modular program, it is generally easier to process, modify, and analyze it and to
reuse parts by exploiting the modular structure. As a result, support for modules
(or components, classes, objects, packages, aspects) is a commonplace feature in
programming languages.

Ontologies are computational artefacts akin to programs and, in notable
examples, can get quite large as well as complex, which suggests that exploiting
modularity might be fruitful, and research into modularity for ontologies has
been an active area for ontology engineering. Recently, a lot of effort has gone
into developing logically sensible modules, that is, modules which offer strong
logical guarantees for intuitive modular properties. One such guarantee is called
coverage and means that the module captures all the ontology’s knowledge about
a given set of terms (signature)—a kind of dependancy isolation. A module in this
sense is therefore a subset of the axioms in an ontology that provides coverage
for a signature, and each possible signature determines such a module. Coverage
is provided by modules based on conservative extensions, but also by efficiently
computable approximations, such as modules based on syntactic locality [1].

The task of extracting one such module given a signature, which we call
GetOne in this section, is well understood and starting to be deployed in stand-
ard ontology development environments, such as Protégé 4,1 and online.2 The
extraction of locality-based modules has already been effectively used in the field
for ontology reuse [2] as well as a subservice for incremental reasoning [3].

While GetOne is an important and useful service, it, by itself, tells us nothing
about the modular structure of the ontology as a whole. The modular structure
is determined by the set of all modules and their inter-relations, or at least a
suitable subset thereof. We call the task of a-posteriori determining the modular
structure of an ontology GetStruct and, in order to determine that structure, we
investigate here the task GetAll of extracting all modules. While GetOne is well-
understood and often computationally cheap, GetAll has hardly been examined
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for module notions with strong logical guarantees, with the work described in [4]
being a promising exception. GetOne also requires the user to know in advance
the right set of terms to input to the extractor: we call this a seed signature
for the module and note that one module can have several such seed signatures.
Since there are non-obvious relations between the final signature of a module and
its seed signature, users are often unsure how to generate a proper request and
confused by the results. If they had access to the overall modular structure of the
ontology determined by GetAll, they could use it to guide their extraction choices.
In general, supported by the experience described in [4], we believe that, by
revealing the modular structure of an ontology, we can obtain information about
its topicality, connectedness, structure, superfluous parts, or agreement between
actual and intended modeling. Our use-cases include: for ontology engineers, the
possibility of checking the ontology design—for example, if the module relative
to some terms corresponds to the intuitive “knowledge encapsulation” about
that term; for end users, the possibility to support the understanding of what
the ontology deals with, and where the topic they want to focus on is placed
within the ontology.

In the worst case, the number of all modules of an ontology is exponential in
the number of terms or axioms in the ontology, in fact in the minimum of these
numbers. Hence, it is possibly the case that ontologies have too many modules
to extract all of them, even with an optimized extraction methodology. Even
with only polynomially many modules, there may be too many for direct user
inspection. Then, some other form of analysis would have to be designed.

We report on experiments to obtain or estimate this number and to evaluate
the modular structure of an ontology where we succeeded to compute it.

Related work. One solution to GetStruct is described in [4,5] via partitions
related to E-connections. The resulting modules are disjoint, and this technique
is of limited applicability—when it succeeds, it divides an ontology into three
kinds of modules: (A) those which import vocabulary from others, (B) those
whose vocabulary is imported, and (C) isolated parts. In experiments and user
experience, the numbers of parts extracted were quite low and often correspon-
ded usefully to user understanding. For instance, the tutorial ontology Koala,
consisting of 42 logical axioms, is partitioned into one A-module about animals
and three B-modules about genders, degrees and habitats.

It has also been shown in [4] that certain combinations of these parts provide
coverage. For Koala, such a combination would still be the whole ontology. In
general, partitions were observed to be too coarse grained; sometimes extraction
resulted in a single partition even though the ontology seemed well structured.
Furthermore, the robustness properties of the parts (e.g., under vocabulary ex-
tension) are not as well-understood as those of locality-based modules. However,
partitions share efficient computability with locality-based modules.

Another approach to GetStruct is described in [6]. It underlies the tool Mod-
Onto, which aims at providing support for working with ontology modules that
is similar to, and borrows intuitions from, software modules. This approach is
logic-based and a-posteriori but, to the best of our knowledge, it has not been ex-
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amined whether such modules provide coverage in the above sense. Furthermore,
ModOnto does not aim at obtaining all modules from an ontology.

Another procedure for partitioning an ontology is described in [7]. However,
this method only takes the concept hierarchy of the ontology into account and
can therefore not provide the strong logical guarantee of coverage.

Among the a-posteriori approaches to GetOne, some provide logical guaran-
tees such as coverage, and others do not. The latter are not of interest for this
paper. The former are usually restricted to DLs of low expressivity, where decid-
ing conservative extensions—which underly coverage—is tractable. Prominent
examples are the module extraction feature of CEL [8] and the system MEX [9].
However, we aim at an approach that covers DLs up to OWL 2.

There are a number of logic-based approaches to modularity that function
a-priori, i.e., the modules of an ontology have to be specified in advance by fea-
tures that are added to the underlying (description) logic and whose semantics
is well-defined. These approaches often support distributed reasoning; they in-
clude C-OWL [10], E-connections [11], Distributed Description Logics [12], and
Package-Based Description Logics [13]. Even in these cases, however, we may
want to understand the modular structure of the syntactically delineated parts.
Furthermore, with imposed structure, it is not always clear that that structure is
correct. Decisions about modular structure have to be taken early in the model-
ing which may enshrine misunderstandings. Examples were reported in [4], where
user attempts to capture the modular structure of their ontology by separating
the axioms into separate files were totally at odds with the analyzed structure.

Overview of the experiments and results. In the following, we will report
on experiments performed to extract all modules from several ontologies as a
first solution candidate for GetAll. We have considered three notions of modules
based on syntactic locality—they all provide coverage, but differ in the size of the
modules and in other useful properties of modules, see [14]—and extracted such
modules for all subsets of the terms in the respective ontology. At this stage, we
are mainly interested in module numbers rather than sizes or interrelations: the
main concern is whether the suspected combinatorial explosion occurs. In order
to test the latter, we have sampled subsets of each ontology and performed a full
modularization on each subontology, measuring the relation between module
number and subontology size for each ontology. We have also tried different
approaches to reduce the number of modules to the most “interesting” ones.

An extended version of this paper and additional material for the evaluation
of the experiments, such as spreadsheets and charts, are available online [15,16].

2 Preliminaries

Underlying description logics. We assume the reader to be familiar with
OWL and the underlying description logics (DLs) [17,18]. We consider an on-
tology to be a finite set of axioms, which are of the form C ⊑ D or C ≡ D,
where C, D are (possibly complex) concepts, or R ⊑ S, where R,S are (pos-
sibly inverse) roles. Since we are interested in the logical part of an ontology, we
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disregard non-logical axioms. However, it is easy to add the corresponding an-
notation and declaration axioms in retrospect once the logical part of a module
has been extracted. This is included in the publicly available implementation of
locality-based module extraction in the OWL API.3

Let NC be a set of concept names, and NR a set of role names. A signa-
ture Σ is a set of terms, i.e., Σ ⊆ NC ∪ NR. We can think of a signature
as specifying a topic of interest. Axioms that only use terms from Σ can be
thought of as “on-topic”, and all other axioms as “off-topic”. For instance,
if Σ = {Animal,Duck,Grass, eats}, then Duck ⊑ ∃eats.Grass is on-topic, while
Duck ⊑ Bird is off-topic.

Any concept or role name, ontology, or axiom that uses only terms from Σ is
called a Σ-concept, Σ-role, Σ-ontology, or Σ-axiom. Given any such object X,
we call the set of terms in X the signature of X and denote it with X̃.

Conservative extensions and locality. Conservative extensions (CEs) cap-
ture the above described encapsulation of knowledge. A CE-based module for a
signature Σ of an ontology O preserves all entailments η in O that can be for-
mulated using symbols Σ only. For more precise definitions, see e.g., [19,20,15].

Unfortunately, CEs are hard or even impossible to decide for many DLs, see
[21,19,14]. Therefore, approximations have been devised. We focus on syntactic
locality (here for short: locality). Locality-based modules can be efficiently com-
puted and provide coverage, that is, they capture all the relevant entailments,
but not necessarily only those [1,22]. Although locality is defined for the DL
SHIQ, it is straightforward to extend it to SHOIQ(D) (see [1,22]), and the
implementation of locality-based module extraction in the OWL API. We are
using the notion of locality from [14].

Definition 1. An axiom α is called syntactically ⊥-local (⊤-local) w.r.t. signa-
ture Σ if it is of the form C⊥ ⊑ C, C ⊑ C⊤, R⊥ ⊑ R (R ⊑ R⊤), or Trans(R⊥)
(Trans(R⊤)), where C is an arbitrary concept, R is an arbitrary role name,
R⊥ /∈ Σ (R⊤ /∈ Σ), and C⊥ and C⊤ are from Bot(Σ) and Top(Σ) as defined in
Figure 2 (a) (Figure 2 (b)).

It has been shown in [1] that M ⊆ O and all axioms in O \M being ⊥-local

(or all axioms being ⊤-local) w.r.t. Σ ∪ M̃ is sufficient for M to be a CE-based
module for Σ of O. The converse does not hold in general.

It is described in [1] how to obtain modules of O for ⊤- and ⊥-locality.
We are using the notions of ⊤-, ⊥-, ⊤⊥∗- and ⊥⊤∗-modules from [14, Def.
4]. That is, given an ontology O, a seed signature Σ and a module notion
x ∈ {⊤,⊥,⊤⊥∗,⊥⊤∗}, we denote the x-module of O w.r.t. Σ by x-mod(Σ,O). If
we do not specify x, we generally speak of a locality-based module. It is straight-
forward to show that ⊤⊥∗-mod(Σ,O) = ⊥⊤∗-mod(Σ,O) for each O and Σ. In
contrast, ⊤- and ⊥-modules do not have to be equal—in fact, the former are
usually larger than the latter. Through the nesting, ⊤⊥∗-mod(Σ,O) is always
contained in ⊤-mod(Σ,O) and ⊥-mod(Σ,O). Finally, we want to point out that,

for M = x-mod(Σ,O), neither Σ ⊆ M̃ nor M̃ ⊆ Σ needs to hold.

3 http://owlapi.sourceforge.net
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(a) ⊥-Locality

Let A⊥, R⊥ /∈ Σ, C⊥ ∈ Bot(Σ), C⊤

(i) ∈ Top(Σ), n̄ ∈ N \ {0}

Bot(Σ) ::= A⊥ | ⊥ | ¬C⊤ | C ⊓ C⊥ | C⊥ ⊓ C | ∃R.C⊥ | >n̄ R.C⊥ | >n̄ R⊥.C

Top(Σ) ::= ⊤ | ¬C⊥ | C⊤

1 ⊓ C⊤

2 | >0 R.C

(b) ⊤-Locality

Let A⊤, R⊤ /∈ Σ, C⊥ ∈ Bot(Σ), C⊤

(i) ∈ Top(Σ), n̄ ∈ N \ {0}

Bot(Σ) ::= ⊥ | ¬C⊤ | C ⊓ C⊥ | C⊥ ⊓ C | >n̄ R.C⊥

Top(Σ) ::= A⊤ | ⊤ | ¬C⊥ | C⊤

1 ⊓ C⊤

2 | >n̄ R⊤.C⊤ | >0 R.C

Figure 1. Syntactic locality conditions

The following property of locality-based modules has been shown in [1] for
x ∈ {⊥,⊤}. The transfer to nested modules is straightforward.

Proposition 2. Let O be an ontology, Σ,Σ′ be a signatures, x ∈ {⊥,⊤,⊤⊥∗};

let M = x-mod(Σ,O) and Σ ⊆ Σ′ ⊆ Σ ∪ M̃. Then x-mod(Σ′,O) = M.

Genuine modules. In order to limit the overall number of modules, we in-
troduce the notion of a genuine module. Intuitively, a given module M of an
ontology is fake if it can be partitioned into a set {M1, . . . ,Mn} of smaller
modules such that each “relevant” entailment of M follows from some Mi.

Since the definition of relevance of an entailment within a module is still
in progress, we use a computable approximation, described in Definition 3. We
first introduce some useful notions. Let O be an ontology and M be the set
of all modules of O. An atomic concept C is called top-level for M (bottom-

level for M) if O |= A ⊑ C (O |= C ⊑ A) for all atomic concepts A ∈ M̃ . A
set {Σ1, . . . , Σn} of signatures is called M-almost pairwise disjoint if every two
signatures Σi, Σj with i 6= j are disjoint or share at most one symbol, which is
an atomic concept, and if the set of all these shared atomic concepts contains at
most one top-level and at most one bottom-level concept for M.

Definition 3. A module M ∈ M is fake if there exist modules M1, . . . ,Mn ∈
M such that M = M1 ⊎ · · · ⊎ Mn and the set {M̃1, . . . ,M̃n} is M-almost
pairwise disjoint. Otherwise M is called genuine.

In particular, if a module is fake, then it consists of disjoint modules whose
signatures almost disjoint. For example, in Koala, we have a fake module about
habitat that consists of a rainforest and a dryforest submodule, which only over-
lap in the term habitat and do not share any other terms and no axioms. Fake
modules are uninteresting because M being fake means that different seed sig-
natures of the Mi do not interact with each other. Given that often the overall
number of modules appears to grow exponentially with the size of the subonto-
logy, a natural question arising is whether this is only caused by the fact that
there are exponentially many fake modules.
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3 Description of the experiments

Ontologies. We performed the experiments on several existing ontologies that
we consider to be well designed and sufficiently diverse. We used Koala, Mere-

ology, University, People, miniTambis, OWL-S, Tambis and Galen, whose sizes
(axioms + terms) range from 42 + 25 to 4,528 + 3,161. See [15] for an overview
of sizes and expressivities as well as an explanation of the choice criteria.

Full modularization. Let O be the ontology to be modularized. Our goal is
to find all modules of O, i.e., to compute {x-mod(Σ,O) | Σ ∈ Õ}. In order to
keep track of the seed signatures, we seek an algorithm which, given O as input,
returns a representation of all pairs (Σ,M) with Σ ⊆ Õ and M = x-mod(Σ,O).

The most näıve procedure is to simply traverse through all seed signatures
Σ, extract the corresponding module and add it to the output. Since there are
exponentially many seed signatures, this is not feasible—even for Koala, 225

runs of even the easiest test is unrealistic. Fortunately, we have good reasons
to believe that there are significantly fewer modules than seed signatures in
realistic ontologies: first, Proposition 2 says that, given the locality-based module
M = x-mod(Σ,O), every seed signature Σ′ that extends Σ and is a subset of

Σ ∪ M̃ yields the same module M. Second, even if two seed signatures Σ and
Σ′ are not in such a relationship, the modules for Σ and Σ′ can still coincide.

It should be noted, however, that there are very simple families of ontolo-
gies that already have exponentially many genuine modules, for instance the
taxonomies Tn = {B ⊑ A} ∪ {Ci ⊑ B | i = 1, . . . , n}, or the ontologies
On = {Bi ⊑ A, Ci ⊑ Bi | i = 1, . . . , n} ∪ {Bi ⊑ ¬Bj | 1 6 i < j 6 n}.
More examples are given in [15]. However, we have not been able to construct
any example with exponentially many genuine modules for inferred concept hier-
archies of bounded width. In contrast, there are ontologies of arbitrary size that
have exactly one module or at most quadratically many modules. Thus, while
the worst case number of modules is high, it is not analytically impossible that
real ontologies would have a reasonable number of modules. Unfortunately, em-
pirically, as discussed in Section 4, this does not seem to be the case. We are not
aware of any systematic study about theoretically possible module numbers.

Since a module can have several seed signatures, we represent a module as a
pair consisting of M and the set S of all minimal seed signatures Σ for which M
is a module. Whenever a module for a new seed signature Σ′ is to be computed,
we first check whether Σ′ satisfies Σ ⊆ Σ′ ⊆ Σ ∪M̃ for some already extracted
module M and some associated minimal seed signature Σ. Only if this is not
the case, the module M′ = x-mod(Σ′,O) is computed. If M′ coincides with
some already extracted module M, then Σ′ is added to the set of minimal seed
signatures associated with M; otherwise the pair ({Σ′},M′) is added to the set
of extracted modules. This is performed by Algorithm 1, which calls Alg. 2. For
soundness and completeness of Algorithm 1 and optimizations, see [15].

Sampling via subsets. In preliminary testing it soon became apparent that
even our optimized algorithm would not reasonably terminate on even fairly
small ontologies. Since we have a search space exponential in the size of the
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Algorithm 1 Extract all x-modules

1: Input: an ontology O with signature Õ
2: Output: a set M = {(S1,M1), . . . , (Sn,Mn)}

of all x-modules of O,
associated with their sets of
minimal seed signatures (SSigs)

3: {Start : extract x-modules for all singleton SSigs}
4: M← ∅
5: for all t ∈ Õ do

6: M← extract x-module of O w.r.t. {t}
7: call integrate(M, {t},M)
8: end for

9: {Extension: iteratively add single terms to SSigs}
10: while M contains (S,M) with marked Σ ∈ S do

11: (S,M)← some elem. of M with marked Σ ∈ S
12: Σ ← some marked element of S

13: for all t ∈ Õ \ (Σ ∪ M̃) do

14: M′ ← extract x-module of O w.r.t. Σ ∪ {t}
15: call integrate(M, Σ ∪ {t},M′)
16: end for

17: unmark Σ in (S,M)
18: end while

19: return M

Algorithm 2

integrate(M, Σ,M)

for all (S ′,M′) ∈M
′ do

if M =M′ then

S ′ ← S ′ ∪ {Σ}
mark Σ in (S ′,M′)
return

end if

end for

M←M ∪ ({Σ},M)
mark Σ in ({Σ},M)
return

ontology and potentially exponentially many modules, it was not clear whether
the problem was that our algorithm was not sufficiently optimized (so that the
search space dominated) or that the output was impossible to generate. Since
it is pointless to try to optimize an algorithm for a function whose output is
exponentially large in the size of the typical input, it is imperative to determine
whether real-world ontologies do have an exponential number of modules. This
last question is one goal of the experiments described in this paper.

In order to test the hypothesis that real-life ontologies have an exponential
number of modules, we have sampled subsets of different sizes from the ontologies
considered. By fully modularizing each of these subsets, we can draw conclusions
about the asymptotic relation between its size and the number of modules ob-
tained. Randomly generated subsets would tend to contain unrelated axioms,
taken out of the context in which they have been included by the ontology
developers. Since unrelated axioms, or ontologies with many unrelated terms,
generally yield many modules, it would be harder to justify the hypothesis that
real-world ontologies tend to have significantly less than exponentially many
modules if we used arbitrary, less coherent subsets.

We have therefore chosen to let each subset be a module for a randomly
generated signature—although we are aware that such subsets are more modular
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than necessary because ontologies are not normally developed modularly. But
this is not a problem: it can only cause us to understate the number of modules.

We have sampled 10 signatures of each size between 0 and a threshold of 50
(or ontology’s signature size if that was smaller). In some cases where the subset
sizes were not optimally distributed (e.g., when small subsets were missing), we
sampled 30 signatures of each size. For these signatures, we have extracted the
⊤⊥∗-modules, excluding duplicates, and ordered them by size. Then we have
fully modularized all subsets in descending order, aborting when a single modu-
larization took longer than a preset timeout of 20, 60 or 600 minutes, see Section
4 for an explanation of that choice. For each subset, we counted the number of
all modules and of its genuine modules. See [15] for computer specifications.

4 Results

Module numbers for full modularization. Figure 2 shows the full modular-
ization of Koala and Mereology for the module types ⊤, ⊥ and ⊤⊥∗. In the case
of ⊤⊥∗, we also determined genuine modules, denoted by ⊤⊥∗

g. In addition to the
number of modules, we have listed the runtime and four aggregations of module
sizes, where “size” refers to the number of logical axioms. Since the number of
axioms is a syntax-dependent measure, we plan to include other measures, such
as the number of terms and the sum of the sizes of all axioms, in future work.

Koala Mereology

⊤ ⊥ ⊤⊥∗ ⊤⊥∗

g ⊤ ⊥ ⊤⊥∗ ⊤⊥∗

g

#Modules 12 520 3,660 2,143 40 552 1952 272

Time [s] 0 1 9 34 0 6 158 158
Min size 29 6 0 0 18 0 0 0
Avg size 35 27 23 23 26 25 20 22
Max size 42 42 42 42 40 40 40 38
Std. dev. 4 6 6 6 6 7 8 8

⊤⊥∗

g = genuine ⊤⊥∗ modules. “Size” = number of logical axioms.

Figure 2. Full modularization of Koala and Mereology

For both ontologies, the number of modules increases from ⊤- via ⊥- to
⊤⊥∗ modules as expected: as mentioned before, ⊤-modules tend to be bigger,
and therefore more modules coincide in this case. However, ⊤-modules are too
coarse-grained: most of them comprise almost the whole ontology, and all have
a size of at least 29 (69% of Koala) or 18 (41% of Mereology).

The extracted ⊥-modules yield a more fine-grained picture, although all their
sizes for Koala are still above 6 (14%). We already pay for this with an increase in
the number of modules by a factor of more than 43 (Koala) and 14 (Mereology).
With ⊤⊥∗, smaller modules are included, but for the price of another increase
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in module numbers by a factor of 7 (Koala) and 3.5 (Mereology). For a more
fine-grained modularization, we also pay with an increased extraction time. See
[15] for comments on the observed differences between Koala and Mereology.

Attempts to fully modularize ontologies larger than Koala and Mereology with
the described algorithm did not succeed. We cancelled each such computation
after several hours, when thousands of modules have been extracted.

Although Koala and Mereology have much fewer modules than the theoretical
upper bound of 225, we still get too many for (regular) inspection by ontology
users. We have therefore tried two more ways to reduce their modules to fewer
“interesting” ones. Both approaches showed no significant impact, see [15].

Module numbers for subset sampling. After carrying out the subset sam-
pling technique described in Section 3, we are strongly convinced that most of
the ontologies examined exhibit the feared exponential behavior. Figure 3 shows
scatterplots of the number of ⊤⊥∗ modules (genuine ⊤⊥∗ modules) versus the size
of the subset for People and Koala. Each chart shows an exponential trendline,
which is the least-squares fit through the data points by using the equation
m = cebn, where n is the size of the subset, m is the number of modules, e is
the base of the natural logarithm, and c, b are constants. This equation and the
corresponding determination coefficient (R2 value) are given beneath each chart.
Spreadsheets with the underlying data, as well as spreadsheets and charts for
the other ontologies, can be found at [16]. The R2 values and trendline equations
for the examined ontologies are summarized in Figure 4, where we also included
the estimated number of modules for the full ontology as per the equation, the
timeout used and the overall runtime.
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Figure 3. Numbers of modules versus subset sizes for Koala and People

The scatterplots and determination coefficients for the first six ontologies in
Figure 4 provide strong evidence that the number of modules depends exponen-
tially on the size of the subset.

Weight analysis for Koala. Even if we consider only genuine modules, there
are ontologies that have exponentially many of them. In order to focus on even
fewer, “interesting” modules, we have devised the measures cohesion and pulling
power. Thy are based on the number of seed signatures (SSigs) of a module M

and the number of terms in M̃. An SSig Σ of M is called minimal (MSSig) if
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Confidence Trendline equation Estimate Timeout Runtime
Ontology R2

m R2
g m g m g [min] [min]

People .95 .95 both 2 · 10−13e.41n 106 106 20 148
Mereology .87 .94 1.2e.16n 1.1e.13n 103 102 — 4
Koala .90 .88 .45e.21n .50e.19n 103 103 — 4
Galen .94 .86 1.2e.24n 1.6e.16n NaN NaN 60 288
University .84 .83 1.7e.19n 1.6e.14n 104 103 20 354
OWL-S .82 .84 .0027e.17n .0032e.16n 1017 1017 60 73

Tambis .75 .70 1.1e.22n 1.4e.13n 1058 1033 600 681
miniTambis .47 .52 2.6e.18n 2.5e.14n 1014 1010 600 963

m, g ⊤⊥∗ modules, genuine ⊤⊥∗ modules
R2

m, R2
g Determination coefficient of fitted trendlines

Estimate Module numbers for full ontology as per trendline
NaN Estimate is larger than 10142

Figure 4. Witnesses for exponential behavior

there is no signature Σ′ ⊂ Σ that is an SSig of M. If we ignore terms not present
in the module, we speak of a real MSSig for M: this is a signature Σ′ = Σ ∩M̃
where Σ is an MSSig for M. Let r, s,m be the number of real MSSigs for M,
the size of the smallest MSSig for M, and the size of M̃.

The cohesion of M measures how strongly the terms in M are held together,
as indicated by the number of seed signatures for M. More precisely, the cohesion
of M is defined to be the ratio r/s. The pulling power of M measures how many
terms are needed in an MSSig to “pull” all terms into M that we find there. We
define the pulling power of M to be the ratio m/s.

As a first draft, we define the weight of a module M to be the product of
its cohesion and pulling power: w = r·m

s2 . We computed the weight of all 3660
modules of Koala. The 11 heaviest modules and their set differences yield a
partition of almost the whole ontology into 10 parts, each of which consists of
terms that intutively form a topic (subconcepts included): Animal; Person and
isHardWorking; Student; Parent; Koala and Marsupial; TasmanianDevil; Quokka;
Habitat; Degree; Gender. These topics reflect the core parts of the ontology. Ax-
ioms that do not occur among the heaviest modules tend to be those that we in-
tuitively would call less important for the ontology, e.g., RainForest ⊑ Forest.The
first 11 (34) modules cover 39 (42) out of all 42 logical axioms.

The next step will be to refine this measure and apply it to more ontologies
and to find ways to extract heavy-weight modules separately.

5 Discussion and outlook

The fundamental conclusion is clear: the number of modules, even when we
restrict our attention to genuine modules, is exponential in the size of the on-
tology for real ontologies. Our most reasonable estimates of the total number
of modules in small to midsize ontologies (i.e., anything over 100 axioms) show
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that full modularization is practically impossible. As we are computing local-
ity based modules, which tend to be larger than conservative extension based
modules, our results give us a lower bound on the number of modules.

It is, of course, possible that there are principled ways to reduce the target
number of modules. We could use a coarser approximation, though that would
be hard to justify on logical grounds. Attempts to use “less minimal” modules
or to heuristically merge modules have exhibited bad behavior, with a strong
tendency to collapse to very few modules that comprise most of the ontology.

We believe that this conclusion is robust, even with the failure of our experi-
ments on Tambis and miniTambis to uncover exponential behavior. As we said in
Section 4, our expectation is that a longer timeout will reveal the problematic
behavior. We also suspect a connection between the relatively low number of
modules for these two ontologies and the fact that they have a large number of
unsatisfiable concepts. For details, see [15]. The ratio between genuine and fake
modules can be seen as a measure of axiomatic richness, at least indicating how
strongly the axioms in the ontology connect its terms: the fewer of its modules
are fake, the more “mutually touching” its terms are.

Attempts at estimating the module number statistically were unhelpful too.
We could randomly draw a small number of seed signatures, compute their mod-
ules and use that number to estimate the number of all modules. We convinced
ourselves using elementary stochastics that we cannot get a confident estimate
by sampling only a small proportion of all seed signatures. See [15] for details.

While the outcome of the experiments is discouraging from the point of view
of using the complete modularization in order to analyze the ontology, it does
suggest several interesting lines of future work. First, we have already seen sev-
eral features of ontologies that correlate well with a large or small number of
modules. However, except for the phenomenon seen in Mereology, we do not
have a verified explanation. Thus, for example, we need to get a precise picture
of the relationship between justificatory and modular structure. Second, even if
we cannot compute all modules, we may be able to compute a better approx-
imation of their number. Given that signature sampling did not seem to help,
we intend to explore sources of module number increase or reduction, such as
the shape of the inferred concept hierarchy and patterns of axioms. Methodolo-
gically, it seems that artificial ontologies should be used, e.g., for confirmation
of the relationship between justificatory structure and module number. Third,
our preliminary experiments aimed at computing heavy weight ontologies are
promising: our weights seem to capture nicely the cohesion and pulling power
of a module, and the resulting heavy modules seem to correlate nicely with top-
ics. We are currently investigating whether it is possible to compute all heavy
modules without computing all modules, and also looking into a suitable notion
of building blocks of modules. The latter concept is closely related to fake and
genuine modules, which we are also investigating in more detail.
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