
From Description Logics to
Satisfiability Modulo Theories

(and back?)

Roberto Sebastiani

Dept. of Information Science and Engineering, University of Trento, Italy

j.w.w.
Gilles Audemard, Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Anders

Franzén, Alberto Griggio, Tommi Junttila, Arthur Kornilowicz, Fausto Giunchiglia, Enrico
Giunchiglia, Silvio Ranise, Peter vanRossum, Stephan Schultz, Cristian Stenico, Armando

Tacchella, Silvia Tomasi, Michele Vescovi,...

The 23rd International Workshop on Description Logics (DL 2010)

Waterloo, Ontario, Canada, May 4-7th, 2010.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 1 / 84

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 2 / 84

From DL to SMT ...

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 3 / 84

From DL to SMT ...

Satisfiability Modulo Theories (SMT(T))

Satisfiability Modulo Theories (SMT(T))

is the problem of deciding the satisfiability of (typically quantifier-free)
formulas in some decidable first-order theory T .

Some theories of interest (e.g., for formal verification)

Equality and Uninterpreted Functions (EUF):
((x = y) ∧ (y = f (z))) → (g(x) = g(f (z)))

Difference logic (DL): ((x = y) ∧ (y − z ≤ 4)) → (x − z ≤ 6)

Linear arithmetic over the rationals (LA(Q)):
(Tδ → (s1 = s0 + 3.4 · t − 3.4 · t0)) ∧ (¬Tδ → (s1 = s0))

Linear arithmetic over the integers (LA(Z)):
(x := xl + 216xh) ∧ (x ≥ 0) ∧ (x ≤ 216 − 1)

Arrays: (i = j) ∨ read(write(a, i , e), j) = read(a, j)

Bit vectors: x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[8][3 : 0]

...Sebastiani () From DL to SMT (and back?) May 4th, 2010 4 / 84

From DL to SMT ...

From KSAT ... [Giunchiglia & Sebastiani CADE’96;KR’96]

function KSAT(ϕ, µ)
if (ϕ == ⊤) /* base */

then return KSATA(µ);
if (ϕ == ⊥) /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit */

then return KSAT(assign(l, ϕ), µ ∧ l);
l := choose-literal(ϕ); /* split */
return KSAT(assign(l, ϕ), µ ∧ l) or

KSAT(assign(¬l, ϕ), µ ∧ ¬l);

/* µ is
∧

i 21α1i ∧
∧

j ¬21β1j ∧ . . . ∧
∧

i 2mαmi ∧
∧

j ¬2mβmj ∧
∧

k Ak ∧
∧

h ¬Ah */
function KSATA(µ)

for each box index r ∈ {1...m} do
for each literal ¬2r βrj ∈ µ do

if not (KSAT(
∧

i αri ∧ ¬βrj ,⊤))
then return False;

return True;

Sebastiani () From DL to SMT (and back?) May 4th, 2010 5 / 84

From DL to SMT ...

From KSAT ... [Giunchiglia & Sebastiani CADE’96;KR’96]

function KSAT(ϕ, µ)
if (ϕ == ⊤) /* base */

then return KSATA(µ);
if (ϕ == ⊥) /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit */

then return KSAT(assign(l, ϕ), µ ∧ l);
l := choose-literal(ϕ); /* split */
return KSAT(assign(l, ϕ), µ ∧ l) or

KSAT(assign(¬l, ϕ), µ ∧ ¬l);

a DPLL-based procedure for Km/ALC
idea: DPLL as assignment enumerator instead of tableaux rules
recursive calls to DPLL over the modal depth
enhancements in KSAT [Giunchiglia & Sebastiani, KR’96,...], Fact
[Horrocks TABLEAUX’98;...], DLP [Patel-Schneider DL’98;...], *SAT
[Giunchiglia et al. JAR’00;...],...:
early-pruning, atom normalization, backjumping, memo-izing, ...

Sebastiani () From DL to SMT (and back?) May 4th, 2010 5 / 84

From DL to SMT ...

... to TSAT ... [Armando et al. ECP’99]

function TSAT(ϕ, µ)
if (ϕ == ⊤) /* base */

then return TSATW (µ);
if (ϕ == ⊥) /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit */

then return TSAT(assign(l, ϕ), µ ∧ l);
l := choose-literal(ϕ); /* split */
return TSAT(assign(l, ϕ), µ ∧ l) or

TSAT(assign(¬l, ϕ), µ ∧ ¬l);

a DPLL-based for disjunctive temporal constraints (DTC):
∧

i
∨

j(tij1 − tij2 ≤ cij), tx , cx ∈ Q

TSATW based on LPsolver (symplex)
v.0 built on top of KSAT C++ code of [Giunchiglia et al. KR’98]

outperformed previous tableau-based procedure for DTC
contemporarily, LPSAT for resource planning [Wolfman & Weld,

IJCAI’99]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 5 / 84

From DL to SMT ...

... to “modern” CDCL SMT solvers
[Audemard et al. CADE’02; Barret et al. CAV’02; de Moura et al. CADE’02; ...]

function T -DPLL(T -formula: ϕ, T -assignment & µ) {
status := T -preprocess(ϕ, µ, ϕp, µp); //ϕp ⇔ T 2B(ϕ)
while (1) { //µp ⇔ T 2B(µ)

T -decide_next_branch(µ, ϕp, µp);
while (1) {

status := T -deduce(ϕp, µp, ηp); //ηp ⇔ T 2B(η)
if (status == Sat)

res := T -solver(µ, η);
if (res==Sat)

return Sat;
if (status==Conflict || res==Unsat) {

blevel := T -analyze_conflict(ϕp , µp, ηp);
if (blevel == 0)

return Unsat;
else backtrack(blevel,ϕp , µp);

}
else break;

} } }

Sebastiani () From DL to SMT (and back?) May 4th, 2010 5 / 84

From DL to SMT ...

... to “modern” CDCL SMT solvers
[Audemard et al. CADE’02; Barret et al. CAV’02; de Moura et al. CADE’02; ...]

based on “modern” Conflict-Driven Clause-Learning DPLL solvers
[Silva & Sakallah’96; Moskewicz et al.’01; Een & Sörensson, SAT’03]

many theories (LA(Q), LA(Z), DL, UT VPI, AR, BV) and their
combinations

target FV (e.g., timed & hybrid systems, SW, HW RTL designs.,...)

many enhancements

Sebastiani () From DL to SMT (and back?) May 4th, 2010 5 / 84

Efficient SMT solving

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 6 / 84

Efficient SMT solving Modern SAT solvers

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 7 / 84

Efficient SMT solving Modern SAT solvers

Modern DPLL implementations
[Silva & Sakallah’96; Moskewicz et al.’01]

Conflict-Driven Clause-Learning (CDCL) DPLL solvers:

Non-recursive: stack-based representation of data structures

Efficient data structures for doing and undoing assignments
(e.g., two-watched-literal scheme)

Perform conflict-directed backtracking (backjumping) and learning

May perform search restarts

Dramatically efficient: solve industrial-derived problems with ≈ 107

Boolean variables and ≈ 107 − 108 clauses

Sebastiani () From DL to SMT (and back?) May 4th, 2010 8 / 84

Efficient SMT solving Modern SAT solvers

Stack-based representation of a truth assignment µ

stack partitioned into decision levels:

one decision literal
its implied literals
each implied literal tagged with the
clause causing its unit-propagation
(antecedent clause)

equivalent to an implication graph:
a node without incoming edges
represent a decision literal
the graph contains l1

c7−→ l ,...,ln
c7−→ l iff

c def
=

∨n
j=1 ¬li ∨ l is the antecedent clause

of l

representation of the dependencies
between literals in µ

implied literals

dec. level N

dec. level 1

dec. level 0

decision literal

. . .

. . .

.

. . .

. . .

l01

l02

l11

l12

l1

lN2

lN1

lN
CN1

C12

C11

C02

C01

CN2

Sebastiani () From DL to SMT (and back?) May 4th, 2010 9 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2

c2 : ¬A1 ∨ A3 ∨ A9

c3 : ¬A2 ∨ ¬A3 ∨ A4

c4 : ¬A4 ∨ A5 ∨ A10

c5 : ¬A4 ∨ A6 ∨ A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12

c8 : A1 ∨ A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Sebastiani () From DL to SMT (and back?) May 4th, 2010 10 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2

c2 : ¬A1 ∨ A3 ∨ A9

c3 : ¬A2 ∨ ¬A3 ∨ A4

c4 : ¬A4 ∨ A5 ∨ A10

c5 : ¬A4 ∨ A6 ∨ A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12

c8 : A1 ∨ A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ...}
(initial assignment)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 10 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2

c2 : ¬A1 ∨ A3 ∨ A9

c3 : ¬A2 ∨ ¬A3 ∨ A4

c4 : ¬A4 ∨ A5 ∨ A10

c5 : ¬A4 ∨ A6 ∨ A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12
√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1}
... (branch on A1)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 11 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4

c4 : ¬A4 ∨ A5 ∨ A10

c5 : ¬A4 ∨ A6 ∨ A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12
√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3}
(unit A2, A3)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 12 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10

c5 : ¬A4 ∨ A6 ∨ A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12
√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11, A12, A13, ..., A1, A2, A3, A4}
(unit A4)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 13 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A1¬A41, A12, A13, ..., A1, A2, A3, A4, A5, A6}
(unit A5, A6)=⇒ conflict

Sebastiani () From DL to SMT (and back?) May 4th, 2010 14 / 84

Efficient SMT solving Modern SAT solvers

State-of-the-art backjumping and learning

Idea: when a branch µ fails,
(i) conflict analysis: find the conflict set η ⊆ µ by generating the

conflict clause C def
= ¬η via resolution from the falsified clause

(ii) learning: add the conflict clause C to the clause set
(iii) backjumping: backtrack to the highest branching point s.t. the

stack contains all-but-one literals in η, and then unit-propagate
the unassigned literal on C

=⇒ may climb up to many decision levels in the stack

if η (¬C) entirely assigned at level 0, then return unsat

Sebastiani () From DL to SMT (and back?) May 4th, 2010 15 / 84

Efficient SMT solving Modern SAT solvers

Conflict analysis: build a conflict clause by resolution

1. C := falsified clause (conflicting clause)

2. repeat
(i) resolve the current clause C with the antecedent clause of the

last unit-propagated literal l in C
until C verifies some given termination criteria

Sebastiani () From DL to SMT (and back?) May 4th, 2010 16 / 84

Efficient SMT solving Modern SAT solvers

Conflict analysis: build a conflict clause by resolution

1. C := falsified clause (conflicting clause)
2. repeat

(i) resolve the current clause C with the antecedent clause of the
last unit-propagated literal l in C

until C verifies some given termination criteria

criterium: decision

...until C contains only decision literals

¬A1 ∨ A2

¬A1 ∨ A3 ∨ A9

¬A2 ∨ ¬A3 ∨ A4

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.
︷ ︸︸ ︷

¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6)

¬A4 ∨ A10 ∨ A11
(A5)

¬A2 ∨ ¬A3 ∨ A10 ∨ A11
(A4)

¬A2 ∨ ¬A1 ∨ A9 ∨ A10 ∨ A11
(A3)

¬A1 ∨ A9 ∨ A10 ∨ A11
(A2)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 16 / 84

Efficient SMT solving Modern SAT solvers

Conflict analysis: build a conflict clause by resolution

1. C := falsified clause (conflicting clause)
2. repeat

(i) resolve the current clause C with the antecedent clause of the
last unit-propagated literal l in C

until C verifies some given termination criteria

criterium: 1st UIP

... until C contains only one literal assigned at current decision level
(1st UIP)

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.
︷ ︸︸ ︷

¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6)

¬A4
︸︷︷︸

1st UIP

∨A10 ∨ A11
(A5)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 16 / 84

Efficient SMT solving Modern SAT solvers

Conflict analysis: build a conflict clause by resolution

1. C := falsified clause (conflicting clause)

2. repeat
(i) resolve the current clause C with the antecedent clause of the

last unit-propagated literal l in C
until C verifies some given termination criteria

Note:

Equivalent to finding a partition in the implication graph of µ with all
decision literals on one side and the conflict on the other.

Note

ϕ |= C, so that C can be safely added to C.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 16 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

...

decision

1st UIP

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ Conflict set: {¬A10,¬A11, A4}, learn c10 := A10 ∨ A11 ∨ ¬A4

Sebastiani () From DL to SMT (and back?) May 4th, 2010 17 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2

c2 : ¬A1 ∨ A3 ∨ A9

c3 : ¬A2 ∨ ¬A3 ∨ A4

c4 : ¬A4 ∨ A5 ∨ A10

c5 : ¬A4 ∨ A6 ∨ A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12

c8 : A1 ∨ A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A10 ∨ A11 ∨ ¬A4

...
A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ backtrack up to A11 =⇒ {...,¬A9,¬A10,¬A11}

Sebastiani () From DL to SMT (and back?) May 4th, 2010 18 / 84

Efficient SMT solving Modern SAT solvers

Example

c1 : ¬A1 ∨ A2

c2 : ¬A1 ∨ A3 ∨ A9

c3 : ¬A2 ∨ ¬A3 ∨ A4

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12

c8 : A1 ∨ A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

c10 : A10 ∨ A11 ∨ ¬A4
√

...

¬A4

c9

c9

¬A4

A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ unit propagate ¬A4 =⇒ {...,¬A9,¬A10,¬A11, A4}...

Sebastiani () From DL to SMT (and back?) May 4th, 2010 19 / 84

Efficient SMT solving Modern SAT solvers

Learning – example

c1 : ¬A1 ∨ A2

c2 : ¬A1 ∨ A3 ∨ A9

c3 : ¬A2 ∨ ¬A3 ∨ A4

c4 : ¬A4 ∨ A5 ∨ A10

c5 : ¬A4 ∨ A6 ∨ A11

c6 : ¬A5 ∨ ¬A6

c7 : A1 ∨ A7 ∨ ¬A12

c8 : A1 ∨ A8

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
√

c10 : A9 ∨ A10 ∨ A11 ∨ ¬A1
√

c11 : A9 ∨ A10 ∨ A11 ∨ ¬A12 ∨ ¬A13
√

...

¬A9

¬A11

¬A10

¬A1¬A13

A12

¬A1
¬A13

c10

c10

¬A1

c11

c11

c11

c11

c10

¬A13
A7
A8

¬A1
A2
A3
A4
A5
A6

¬A10

¬A11

A12

A13

A1

¬A9

¬A9

¬A10

A12

¬A11

=⇒ Unit: {¬A1,¬A13}

Sebastiani () From DL to SMT (and back?) May 4th, 2010 20 / 84

Efficient SMT solving Modern SAT solvers

State-of-the-art backjumping and learning: intuitions

Backjumping: allows for climbing up to many decision levels in the
stack

intuition: “ go back to the oldest decision where you’d have done
something different if only you had known C”

=⇒ may avoid lots of redundant search

Learning: in future branches, when all-but-one literals in η are
assigned, the remaining literal is assigned to false by
unit-propagation:

intuition: “when you’re about to repeat the mistake, do the opposite
of the last step”

=⇒ avoids finding the same conflict again

Sebastiani () From DL to SMT (and back?) May 4th, 2010 21 / 84

Efficient SMT solving Modern SAT solvers

Drawbacks of Learning

Learning prunes drastically the search.
Problem: may cause a blowup in space
=⇒ techniques to drop learned clauses when necessary

according to their size
according to their activity.

Definition

A clause is currently active if it occurs in the current implication graph
(i.e., it is the antecedent clause of a literal in the current assignment).

Property (see, e.g., [Nieuwenhuis et al. JACM’06])

In order to guarantee correctness, completeness & termination of a
CDCL solver, it suffices to keep each clause until it is active.
=⇒ CDCL solvers require polynomial space

Sebastiani () From DL to SMT (and back?) May 4th, 2010 22 / 84

Efficient SMT solving Modern SAT solvers

Drawbacks of Learning

Learning prunes drastically the search.
Problem: may cause a blowup in space
=⇒ techniques to drop learned clauses when necessary

according to their size
according to their activity.

Definition

A clause is currently active if it occurs in the current implication graph
(i.e., it is the antecedent clause of a literal in the current assignment).

Property (see, e.g., [Nieuwenhuis et al. JACM’06])

In order to guarantee correctness, completeness & termination of a
CDCL solver, it suffices to keep each clause until it is active.
=⇒ CDCL solvers require polynomial space

Sebastiani () From DL to SMT (and back?) May 4th, 2010 22 / 84

Efficient SMT solving Modern SAT solvers

Building Proofs of Unsatisfiability in CDCL SAT solvers

recall: each conflict clause Ci learned is computed from the
conflicting clause Ci−k by backward resolving with the antecedent
clause of one literal

C1

C2

Ck

conflicting clause
︷︸︸︷

Ci−k
....

Ci−2

Ci−1

Ci
︸︷︷︸

conflict clause

each resolution (sub)proof can be easily tracked:
k i-k -> i-k-1
...
2 i-2 -> i-1
1 i-1 -> i

Sebastiani () From DL to SMT (and back?) May 4th, 2010 23 / 84

Efficient SMT solving Modern SAT solvers

Building Proofs of Unsatisfiability in CDCL SAT solvers

... in particular, if ϕ is unsatisfiable, the last step produces “false”
as conflict clause:

C1

C2

Ck

conflicting clause
︷︸︸︷

Ci−k
....

Ci−2

Ci−1

⊥

note: C1 = l , Ci−1 = ¬l for some literal l

C1, ..., Ck , and Ci−k can be original or learned clauses...

Sebastiani () From DL to SMT (and back?) May 4th, 2010 24 / 84

Efficient SMT solving Modern SAT solvers

Building Proofs of Unsatisfiability in CDCL SAT solvers

Starting from the previous proof of unsatisfiability, repeat recursively:
for every learned leaf clause Ci , substitute Ci with the resolution
proof generating it

until all leaf clauses are original clauses

C11

C1i1 C1i j1i

....
C1i C1j1

....
C1

C2

Ck1 Ckjk
....

Ck

Ci−k1 Ci−kji−k

....
Ci−k

....
Ci−2

Ci−1

⊥

=⇒ we obtain a resolution proof of unsatisfiability for (a subset of) the
clauses in ϕ

Sebastiani () From DL to SMT (and back?) May 4th, 2010 25 / 84

Efficient SMT solving Modern SAT solvers

SAT under assumptions: SAT (ϕ, {l1, ..., ln})

Many SAT solvers allow for solving a CNF formula ϕ under a set of
assumption literals A def

= {l1, ..., ln} : SAT (ϕ, {l1, ..., ln})
SAT (ϕ, {l1, ..., ln}): same result as SAT (ϕ ∧

∧n
i=1 li)

idea:
l1, ..., ln “decided” at decision level 0 before starting the search
if backjump to level 0 on C def

= ¬η s.t. η ⊆ A, then return unsat
if the “decision” strategy for conflict analysis is used, then η is the
subset of assumptions causing the inconsistency

incremental calls SAT (ϕ,A1), ... , SAT (ϕ,An) without restarting

stack-based interface for {l1, ..., ln}
reuse of search (e.g. learned clauses) from call to call

Sebastiani () From DL to SMT (and back?) May 4th, 2010 26 / 84

Efficient SMT solving Modern SMT solvers

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 27 / 84

Efficient SMT solving Modern SMT solvers

Modern “lazy” SMT(T) solvers

A prominent “lazy” approach

a SAT solver is used to enumerate truth assignments µi for (the
Boolean abstraction of) the input formula ϕ

a theory-specific solver T -solver checks the T -consistency of the
set of T -literals corresponding to each assignment

Note: wrt. DPLL for modal logic, no nesting of DPLL calls

Built on top of modern CDCL solvers
benefit for free from all modern CDCL techniques
(e.g., Boolean preprocessing, backjumping & learning, restarts,...)
benefit for free from all state-of-the-art data structures and
implementation tricks (e.g., two-watched literals,...)

Many techniques to maximize the benefits of integration
(see [Sebastiani, JSAT’07])
Many lazy SMT tools available
(Ario, Barcelogic, CVC3, MathSAT, SATeen, Yices, Z3, . . .)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 28 / 84

Efficient SMT solving Modern SMT solvers

Basic schema: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

µp = {¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),

¬(2v2 − v3 > 2),¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}

=⇒ inconsistent in LA(Q) =⇒ backtrack

Sebastiani () From DL to SMT (and back?) May 4th, 2010 29 / 84

Efficient SMT solving Modern SMT solvers

Early pruning
[Giunchiglia & Sebastiani CADE’96; Armando et al. ECP’99]

Introduce a T -satisfiability test on intermediate assignments:
if T -solver returns unsat, the procedure backtracks.
=⇒ prunes drastically the search

SAT

SAT

SAT

SAT

SAT

SAT

SAT

SAT SAT

SAT SAT

SAT

SAT

SAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

Calls to T−Solve()

WITH EARLY−PRUNING

WITHOUT EARLY−PRUNING

different strategies for interleaving DPLL steps with T -solver calls

Sebastiani () From DL to SMT (and back?) May 4th, 2010 30 / 84

Efficient SMT solving Modern SMT solvers

Early pruning: example

ϕ = {¬(2v2 − v3 > 2) ∨ A1} ∧
{¬A2 ∨ (2v1 − 4v5 > 3)} ∧
{(3v1 − 2v2 ≤ 3) ∨ A2} ∧
{¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1} ∧
{A1 ∨ (3v1 − 2v2 ≤ 3)} ∧
{(v1 − v5 ≤ 1) ∨ (v5 = 5 − 3v4) ∨ ¬A1} ∧
{A1 ∨ (v3 = 3v5 + 4) ∨ A2}.

ϕp = {¬B1 ∨ A1} ∧
{¬A2 ∨ B2} ∧
{B3 ∨ A2} ∧
{¬B4 ∨ ¬B5 ∨ ¬A1} ∧
{A1 ∨ B3} ∧
{B6 ∨ B7 ∨ ¬A1} ∧
{A1 ∨ B8 ∨ A2}.

Suppose it is built the intermediate assignment:

µ′p = ¬B1 ∧ ¬A2 ∧ B3 ∧ ¬B5.

corresponding to the following set of T -literals

µ′ = ¬(2v2 − v3 > 2) ∧ ¬A2 ∧ (3v1 − 2v2 ≤ 3) ∧ ¬(3v1 − v3 ≤ 6).

If T -solver is invoked on µ′, then it returns unsat, and DPLL
backtracks without exploring any extension of µ′.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 31 / 84

Efficient SMT solving Modern SMT solvers

Early pruning: remark

Incrementality & Backtrackability of T -solvers

With early pruning, lots of incremental calls to T -solver:

T -solver (µ1) ⇒ Sat Undo µ4, µ3, µ2

T -solver (µ1 ∪ µ2) ⇒ Sat T -solver (µ1 ∪ µ′
2) ⇒ Sat

T -solver (µ1 ∪ µ2 ∪ µ3) ⇒ Sat T -solver (µ1 ∪ µ′
2 ∪ µ′

3) ⇒ Sat
T -solver (µ1 ∪ µ2 ∪ µ3 ∪ µ4) ⇒ Unsat ...

=⇒ Desirable features of T -solvers:
incrementality: T -solver(µ1 ∪ µ2) reuses computation of
T -solver(µ1) without restarting from scratch
backtrackability (resettability): T -solver can efficiently undo steps
and return to a previous status on the stack

=⇒ T -solver requires a stack-based interface

Sebastiani () From DL to SMT (and back?) May 4th, 2010 32 / 84

Efficient SMT solving Modern SMT solvers

T -Propagation [Armando et al.’99;Audemard et al.’02; Ganzinger et al. ’04]

strictly related to early pruning
important property of T -solver:

T -deduction: when a partial assignment µ is T -satisfiable, T -solver
may be able to return also an assignment η to some unassigned
atom occurring in ϕ s.t. µ |=T η.

E.g., if (v1 − v3 ≥ 2), (v2 = v3) ∈ µ and (v1 − v2 < 1) 6∈ µ and
occurs in ϕ, then T -solver can derive ¬(v1 − v2 < 1) from µ.
If so:

the literal η is then unit-propagated;
optionally, a T -deduction clause C := ¬µ′ ∨ η can be learned, µ′

being the subset of µ which caused the deduction (µ′ |=T η)
E.g.,¬(v1 − v3 ≥ 2) ∨ ¬(v2 = v3) ∨ ¬(v1 − v2 < 1)

=⇒ may prune drastically the search

Sebastiani () From DL to SMT (and back?) May 4th, 2010 33 / 84

Efficient SMT solving Modern SMT solvers

T -propagation: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B5

B8

B6

¬B1

=⇒ propagate ¬B3 [and learn the deduction clause B5 ∨ B1 ∨ ¬B3]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 34 / 84

Efficient SMT solving Modern SMT solvers

T -propagation: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B5

B8

B6

¬B1

µp = {¬B5, B8, B6,¬B1}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2)}

|=LA(Q) ¬(3v1 − 2v2 ≤ 3)
︸ ︷︷ ︸

¬B3

=⇒ propagate ¬B3 [and learn the deduction clause B5 ∨ B1 ∨ ¬B3]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 34 / 84

Efficient SMT solving Modern SMT solvers

T -propagation: example

ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B3

¬B5

B8

B6

¬B1

T -propagate

µp = {¬B5, B8, B6,¬B1}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2)}

|=LA(Q) ¬(3v1 − 2v2 ≤ 3)
︸ ︷︷ ︸

¬B3

=⇒ propagate ¬B3 [and learn the deduction clause B5 ∨ B1 ∨ ¬B3]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 34 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning
[Horrocks et al. ’98; Wolfman&Weld, ’99; Audemard et al.02]

Similar to Boolean backjumping & learning
important property of T -solver:

extraction of T -conflict sets: if µ is T -unsatisfiable,
then T -solver (µ) returns the subset η of µ causing
the T -inconsistency of µ (T -conflict set)

If so, the T -conflict clause C := ¬η is used to drive
the backjumping & learning mechanism of DPLL
=⇒ lots of search saved

the less redundant is η, the more search is saved

Definition: T -lemmas

Both T -deduction clauses and T -conflict clauses are
called T -lemmas since they are valid in T ¬l1 ∨ ¬l2 ∨ ¬l3 ∨ ¬l4 ∨ l5

l4

l3

l2

l1

l5

Sebastiani () From DL to SMT (and back?) May 4th, 2010 35 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning
[Horrocks et al. ’98; Wolfman&Weld, ’99; Audemard et al.02]

Similar to Boolean backjumping & learning
important property of T -solver:

extraction of T -conflict sets: if µ is T -unsatisfiable,
then T -solver (µ) returns the subset η of µ causing
the T -inconsistency of µ (T -conflict set)

If so, the T -conflict clause C := ¬η is used to drive
the backjumping & learning mechanism of DPLL
=⇒ lots of search saved

the less redundant is η, the more search is saved

Definition: T -lemmas

Both T -deduction clauses and T -conflict clauses are
called T -lemmas since they are valid in T ¬l1 ∨ ¬l2 ∨ ¬l3 ∨ ¬l4 ∨ l5

l4

l3

l2

l1

l5

Sebastiani () From DL to SMT (and back?) May 4th, 2010 35 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning: example
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

µp = {¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2),

¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}
η = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v1 − v5 ≤ 1)}
ηp = {¬B5, B8, B2}

Sebastiani () From DL to SMT (and back?) May 4th, 2010 36 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning: example
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

µp = {¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2),

¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}
η = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v1 − v5 ≤ 1)}
ηp = {¬B5, B8, B2}

Sebastiani () From DL to SMT (and back?) May 4th, 2010 36 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning: example
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

¬B2

¬A2

B3

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

µp = {¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}
µ = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v2 − v4 ≤ 6),¬(2v2 − v3 > 2),

¬(3v1 − 2v2 ≤ 3), (v1 − v5 ≤ 1)}
η = {¬(3v1 − v3 ≤ 6), (v3 = 3v5 + 4), (v1 − v5 ≤ 1)}
ηp = {¬B5, B8, B2}

Sebastiani () From DL to SMT (and back?) May 4th, 2010 36 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning: example (2)
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c′
8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ B1

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

c8: theory conflicting clause
︷ ︸︸ ︷

B5 ∨ ¬B8 ∨ ¬B2

c2
︷ ︸︸ ︷

¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3
︷ ︸︸ ︷

B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(¬A2)

cT
︷ ︸︸ ︷

B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1
︸ ︷︷ ︸

c′8: mixed Boolean+theory conflict clause

(B3)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 37 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning: example (2)
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c′
8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ B1

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

c′
8 : B5 ∨ ¬B8 ∨ B1

A1

B1

c8: theory conflicting clause
︷ ︸︸ ︷

B5 ∨ ¬B8 ∨ ¬B2

c2
︷ ︸︸ ︷

¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3
︷ ︸︸ ︷

B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(¬A2)

cT
︷ ︸︸ ︷

B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1
︸ ︷︷ ︸

c′8: mixed Boolean+theory conflict clause

(B3)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 37 / 84

Efficient SMT solving Modern SMT solvers

T -Backjumping & T -learning: example (2)
ϕ = ϕp =
c1 : ¬(2v2 − v3 > 2) ∨ A1

c2 : ¬A2 ∨ (v1 − v5 ≤ 1)
c3 : (3v1 − 2v2 ≤ 3) ∨ A2

c4 : ¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3v1 − 2v2 ≤ 3)
c6 : (v2 − v4 ≤ 6) ∨ (v5 = 5 − 3v4) ∨ ¬A1

c7 : A1 ∨ (v3 = 3v5 + 4) ∨ A2

c′
8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

c8 : (3v1 − v3 ≤ 6) ∨ ¬(v3 = 3v5 + 4) ∨ ...

true, false

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

B5 ∨ ¬B8 ∨ B1

B5 ∨ ¬B8 ∨ ¬B2

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

B1

A1

c′
8 : B5 ∨ ¬B8 ∨ B1

c8 : B5 ∨ ¬B8 ∨ ¬B2

¬B2

¬A2

B3

c8: theory conflicting clause
︷ ︸︸ ︷

B5 ∨ ¬B8 ∨ ¬B2

c2
︷ ︸︸ ︷

¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3
︷ ︸︸ ︷

B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(¬A2)

cT
︷ ︸︸ ︷

B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1
︸ ︷︷ ︸

c′8: mixed Boolean+theory conflict clause

(B3)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 37 / 84

Efficient SMT solving Modern SMT solvers

Pure-literal filtering [Giunchiglia et al.’99; Audemard et al.’02]

Property

If we have non-Boolean T -atoms occurring only positively [negatively]
in the original formula ϕ (learned clauses are not considered), we can
drop every negative [positive] occurrence of them from the assignment
to be checked by T -solver (and from the T -deducible ones).

increases the chances of finding a model

reduces the effort for the T -solver

eliminates unnecessary “nasty” negated literals
(e.g. negative equalities like ¬(3v1 − 9v2 = 3) in LA(Z) force
splitting: (3v1 − 9v2 > 3) ∨ (3v1 − 9v2 < 3)).

may weaken the effect of early pruning.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 38 / 84

Efficient SMT solving Modern SMT solvers

Pure literal filtering: example

ϕ = {¬(2v2 − v3 > 2) ∨ A1} ∧
{¬A2 ∨ (2v1 − 4v5 > 3)} ∧
{(3v1 − 2v2 ≤ 3) ∨ A2} ∧
{¬(2v3 + v4 ≥ 5) ∨ ¬(3v1 − v3 ≤ 6) ∨ ¬A1} ∧
{A1 ∨ (3v1 − 2v2 ≤ 3)} ∧
{(v1 − v5 ≤ 1) ∨ (v5 = 5 − 3v4) ∨ ¬A1} ∧
{A1 ∨ (v3 = 3v5 + 4) ∨ A2} ∧
{(2v2 − v3 > 2) ∨ ¬(3v1 − 2v2 ≤ 3) ∨ (3v1 − v3 ≤ 6)} learned

µ′ = {¬(2v2 − v3 > 2),¬A2, (3v1 − 2v2 ≤ 3),¬A1, (v3 = 3v5 + 4), (3v1 − v3 ≤ 6)}.

=⇒ Sat: v1 = v2 = v3 = 0, v5 = −4/3 is a solution
N.B. (3v1 − v3 ≤ 6) “filtered out” from µ′ because it occurs only
negatively in the original formula ϕ

Sebastiani () From DL to SMT (and back?) May 4th, 2010 39 / 84

Efficient SMT solving Modern SMT solvers

Other optimization techniques

Preprocessing literals

Static learning

T -deduced-literal filtering

Ghost-literal filtering

T -solver layering

T -solver clustering

...

(see [Sebastiani, JSAT’07])

Sebastiani () From DL to SMT (and back?) May 4th, 2010 40 / 84

Efficient SMT solving Theory Solvers and their combination

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 41 / 84

Efficient SMT solving Theory Solvers and their combination

T -solvers for theories of interest I

Equality and uninterpreted functions (EUF):
EX: {(x = y), (y = f (z)),¬(g(x) = g(f (z)))}
polynomial: O(n · log(n))
based of congruence closure data structures
[Detlefs et al JACM’05; Nieuwenhuis & Oliveras LPAR’03]

Difference logic (DL):
EX: {(x − y ≤ 0), (y − z ≤ 4), (z − x ≤ −5)}
polynomial: O(n · m)
variants of the Bellman-Ford shortest-path algorithm
[Nieuwenhuis & Oliveras CAV’05;Cotton & Maler SAT’06]

Linear arithmetic over the rationals (LA(Q)):
EX: {(s1 − s2 ≤ 5.2), (s1 = s0 + 3.4 · t − 3.4 · t0),¬(s1 = s0)}
polynomial
variants of the symplex LP algorithm
[Dutertre & Demoura CAV’06]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 42 / 84

Efficient SMT solving Theory Solvers and their combination

T -solvers for theories of interest II

Linear arithmetic over the integers (LA(Z)):
EX: {(x := xl + 216xh), (x ≥ 0), (x ≤ 216 − 1)}
NP-complete
combination of many techniques: simplex, branch&bound, cutting
planes, ... [Dutertre & Demoura CAV’06, Griggio SAT’10,...]

Arrays:
EX: {¬(i = j), read(write(a, i , e), j) = read(a, j)}
NP-complete
congruence closure (EUF) plus on-the-fly instantiation of array’s
axioms [Detlefs et al JACM’05; Goel et al. SMT’08,...]

Bit vectors:
EX: {(x[16][15 : 0] = (y[16][15 : 8] :: z[16][7 : 0]) << w[16][3 : 0]), ...}
NP-complete
combination of rewriting & simplification techniques with either:

final encoding into LA(Z)[Bruttomesso et. al CAVa’07;...]
final encoding into SAT [Brummaryer & Biere JSAT’09;...]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 43 / 84

Efficient SMT solving Theory Solvers and their combination

Lazy SMT for combined theories: SMT (
⋃

i Ti)

Problem: Many problems can be expressed as SMT problems only in
combination of theories

⋃

i Ti — SMT (
⋃

i Ti)

Sub
h

f

f
=

h

0

v0 v1 v3 v2 v6

v4 v8 v7

EQ67

v5RESET5

LE01

GE01 ≥

≥

LA(Z) : (GE01 ↔ (v0 ≥ v1)) ∧ (LE01 ↔ (v0 ≤ v1))∧
EUF : (v3 = h(v0)) ∧ (v4 = h(v1))∧
LA(Z) : (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
EUF or LA(Z) : (¬RESET5 → (v5 = v8))∧
EUF : (v6 = f (v2)) ∧ (v7 = f (v5))∧
EUF or LA(Z) : (EQ67 ↔ (v6 = v7)) ∧

Sebastiani () From DL to SMT (and back?) May 4th, 2010 44 / 84

Efficient SMT solving Theory Solvers and their combination

SMT (
⋃

i Ti) via Nelson-Oppen

Main idea

Combine two or more Ti -solvers into one (
⋃

i Ti)-solver via
Nelson-Oppen/Shostak (N.O.) combination procedure
[Nelson&Oppen TOCL 79; Shostak JACM 84]

based on the deduction and exchange of equalities between
shared variables/terms (interface equalities, eijs)

important improvements and evolutions
[Ruess & Shankar LICS01; Barrett et al., FroCoS’02; Detlefs et al. JACM05,...]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 45 / 84

Efficient SMT solving Theory Solvers and their combination

N.O.: example

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LA(Q) : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

Branch 1 Branch 2

¬RESET5

v0 = v1

v2 = v5

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v3 = v4

¬(v6 = v7)

v0 ≥ v1

v5 = 0

v0 = v1

v2 = v5

v3 = v4

v2 = v3 − v4

v0 ≥ v1

v5 = v8

v0 ≤ v1

v0 = v1

v3 = v4

v2 = v3 − v4

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v0 = v1

v3 = v4

¬(v6 = v7)

v0 ≤ v1

LA(Q)

EUF ∪ LA(Q)-Satisfiable!

EUF EUF LA(Q)

〈eij-deduction〉

〈eij-deduction〉 〈eij-deduction〉

〈eij-deduction〉〈eij-deduction〉

RESET5

EUF -conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v5)) → ⊥
LA(Q)-deduction : ((v2 = v3 − v4) ∧ (v5 = 0) ∧ (v3 = v4)) → (v2 = v5)
EUF -deduction : ((v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 = v1)) → (v3 = v4)
LA(Q)-deduction : ((v0 ≥ v1) ∧ (v0 ≤ v1)) → (v0 = v1)
=⇒
EUF ∪ LA(Q)-conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v3 − v4)∧

(v5 = 0) ∧ (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 ≥ v1)) → ⊥.Sebastiani () From DL to SMT (and back?) May 4th, 2010 46 / 84

Efficient SMT solving Theory Solvers and their combination

SMT (
⋃

i Ti) via Delayed Theory Combination (DTC)

Main idea

Delegate to DPLL part/most of the (possibly very expensive) reasoning
effort on interface equalities previously due to the Ti -solvers
(eij -deduction, case-split). [Bozzano et al. CAV05, Inf.&Comp. 06; LPAR06]

based on Boolean reasoning on interface equalities via DPLL (+
T -propagation)
important improvements and evolutions
[Dutertre&deMoura SMT-COMP’06; Barret et al. LPAR’06; DeMoura&Bjorner,

SMT’07;...]
feature wrt N.O. [Bozzano et al. CAV05, Inf.&Comp.06, LPAR06, AI&Math09]

do not require (possibly expensive) deduction capabilities from
Ti -solvers
[with non-convex theories] case-splits on eij ’s handled by DPLL

generate Ti -lemmas with interface equalities
=⇒ backjumping & learning from eij -reasoning

Sebastiani () From DL to SMT (and back?) May 4th, 2010 47 / 84

Efficient SMT solving Theory Solvers and their combination

DTC: example

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LA(Q) : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

....

LA(Q)-unsat
C01

C01 : (µ′
LA(Q)) → (v0 = v1)

C34 : (µ′
EUF ∧ (v0 = v1)) → (v3 = v4)

C25 : (µ′′
LA(Q) ∧ (v5 = 0) ∧ (v3 = v4)) → (v2 = v5)

C67 : (µ′′
EUF ∧ (v2 = v5)) → (v6 = v7)

¬(v3 = v4)

¬(v2 = v5)

(v3 = v4)

(v2 = v5)

C67

C25

C34

¬e′
ij

LA(Q)-unsat

(v0 = v1)

(v5 = 0)

EUF-unsat

¬RESET5

(v5 = v8)

¬eij”

EUF-unsat

µEUF :
{(v3 = h(v0)), (v4 = h(v1)),¬(v6 = v7),
(v6 = f (v2)), (v7 = f (v5))}

Search for an assignmentµ

propositionally satisfyingϕ

Search oneij ’s:
check theT1 ∪ T2-
satisfiability ofµ

RESET5

¬(v0 = v1)

µLA(Q) :
{(v0 ≥ v1), (v0 ≤ v1),
(v2 = v3 − v4)}

Sebastiani () From DL to SMT (and back?) May 4th, 2010 48 / 84

Beyond Solving: advanced SMT functionalities

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 49 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 50 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Building (Resolution) Proofs of T -Unsatisfiability

Resolution proof of T -unsatisfiability

Very similar to building proofs with plain SAT:

resolution proofs whose leaves are original clauses and T -lemmas
returned by the T -solver (i.e., T -conflict and T -deduction clauses)

built by backward traversal of implication graphs, as in DPLL

Sub-proofs of T -lemmas can be built in some T -specific
deduction framework if requested

Important for:

certifying T -unsatisfiability results

computing unsatisfiable cores

computing interpolants

Sebastiani () From DL to SMT (and back?) May 4th, 2010 51 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Building Proofs of T -Unsatisfiability: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧

(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

(x = 1 ∨ x = 0 ∨ A2)

(x = 0 ∨ A1 ∨ A2)

(x = 0 ∨ ¬(x = 1) ∨ A1)

(y = 2 ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LA(Z)

(A2 ∨ ¬(y < 0)) (¬A2 ∨ y = 1)

(¬(y < 0) ∨ y = 1)

(A1 ∨ A2)(¬A1 ∨ y = 2)

(¬(y = 1) ∨ ¬(y < 0))LA(Z)

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LA(Z)

(¬(x = 0) ∨ A2)

(x = 1 ∨ ¬(x = 0) ∨ A2)

relevant original clauses, irrelevant original clauses, T -lemmas

Sebastiani () From DL to SMT (and back?) May 4th, 2010 52 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

Extraction of T -unsatisfiable cores

The problem

Given a T -unsatisfiable set of clauses, extract from it a (possibly
small/minimal/minimum) T -unsatisfiable subset (T -unsatisfiable core)

wide literature in SAT

Despite some implementations, substantially no literature on the
topic for SMT (apart from [Cimatti et al. SAT’07])
We recognize three approaches:

Proof-based approach (CVClite, MathSAT):
byproduct of finding a resolution proof
Assumption-based approach (Yices):
use extra variables labeling clauses, as in the plain Boolean case
Lemma-Lifting approach [Cimatti et al. SAT’07]:
use an external (possibly-optimized) Boolean unsat-core extractor

Sebastiani () From DL to SMT (and back?) May 4th, 2010 53 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The proof-based approach to T -unsat cores

Idea (adapted from [Zhang & Malik SAT’03])

Unsatisfiable core of ϕ:

in SAT: the set of leaf clauses of a resolution proof of
unsatisfiability of ϕ

in SMT(T): the set of leaf clauses of a resolution proof of
T -unsatisfiability of ϕ, minus the T -lemmas

implemented in MathSAT and CVC3

Sebastiani () From DL to SMT (and back?) May 4th, 2010 54 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The proof-based approach to T -unsat cores: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧

(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

(x = 1 ∨ x = 0 ∨ A2)

(x = 0 ∨ A1 ∨ A2)

(x = 0 ∨ ¬(x = 1) ∨ A1)

(y = 2 ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LA(Z)

(A2 ∨ ¬(y < 0)) (¬A2 ∨ y = 1)

(¬(y < 0) ∨ y = 1)

(A1 ∨ A2)(¬A1 ∨ y = 2)

(¬(y = 1) ∨ ¬(y < 0))LA(Z)

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LA(Z)

(¬(x = 0) ∨ A2)

(x = 1 ∨ ¬(x = 0) ∨ A2)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 55 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The assumption-based approach to T -unsat cores

Let ϕ be
∧n

i=1 Ci s.t. ϕ inconsistent.

Idea (adapted from [Lynce & Silva SAT’04])

1 each clause Ci in ϕ is substituted by ¬Si ∨ Ci , s.t. Si fresh
“selector” variable

2 the resulting formula is checked for satisfiability under the
assumption of all Si ’s

3 final conflict clause at dec. level 0:
∨

j ¬Sj

=⇒{Cj}j is the unsat core

extends straightforwardly to SMT(T).

implemented in YICES and in MATHSAT

Sebastiani () From DL to SMT (and back?) May 4th, 2010 56 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The assumption-based approach to T -unsat cores:
Example

(S1 → (x = 0 ∨ ¬(x = 1) ∨ A1)) ∧ (S2 → (x = 0 ∨ x = 1 ∨ A2)) ∧
(S3 → (¬(x = 0) ∨ x = 1 ∨ A2)) ∧ (S4 → (¬A2 ∨ y = 1)) ∧

(S5 → (¬A1 ∨ x + y > 3)) ∧ (S6 → y < 0) ∧
(S7 → (A2 ∨ x − y = 4)) ∧ (S8 → (y = 2 ∨ ¬A1)) ∧ (S9 → x ≥ 0)

Conflict analysis (Yices 1.0.6) returns:

¬S1 ∨ ¬S2 ∨ ¬S3 ∨ ¬S4 ∨ ¬S6 ∨ ¬S7 ∨ ¬S8,

corresponding to the unsat core in red.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 57 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The lemma-lifting approach to T -unsat cores

Idea [Cimatti et al. SAT’07]

(i) The T -lemmas Di are valid in T
(ii) The conjunction of ϕ with all the T -lemmas D1, . . . , Dk is

propositionally unsatisfiable: T 2B(ϕ ∧ ∧n
i=1 Di) |= ⊥.

Boolean unsat−core:

Refinement:Boolean abstraction:

Result:Input clauses:

Boolean_Unsat_Core_Extractor

T 2B({C1, . . . , Cn, D1, . . . , Dk})

Lazy_SMT_Solver

{D1, . . . , Dk}
StoredT -Lemmas:

{D′
1, . . . , D′

j }

T 2B({C′
1, . . . , C′

m, D′
1, . . . , D′

j })

T -valid clauses:

T 2B B2T

sat/unsat{C1, . . . , Cn}
T -unsat core:
{C′

1, . . . , C′
m}

Implemented in MathSAT [Cimatti et al. SAT’07]

interfaces with an external Boolean Unsat-core Extractor

=⇒benefits for free of all state-of-the-art size-reduction techniquesSebastiani () From DL to SMT (and back?) May 4th, 2010 58 / 84

Beyond Solving: advanced SMT functionalities Proofs and unsatisfiable cores

The lemma-lifting approach to T -unsat cores: example

(x = 0 ∨ ¬(x = 1) ∨ A1) ∧ (x = 0 ∨ x = 1 ∨ A2) ∧ (¬(x = 0) ∨ x = 1 ∨ A2)∧

(¬A2 ∨ y = 1)∧(¬A1∨x+y > 3)∧(y < 0)∧(A2∨x−y = 4)∧(y = 2 ∨ ¬A1)∧(x ≥ 0),

1 The SMT solver generates the following set of LA(Z)-lemmas:

{(¬(x = 1) ∨ ¬(x = 0)), (¬(y = 2) ∨ ¬(y < 0)), (¬(y = 1) ∨ ¬(y < 0))}.

2 The following formula is passed to the external Boolean core
extractor

(B0 ∨ ¬B1 ∨ A1) ∧ (B0 ∨ B1 ∨ A2) ∧ (¬B0 ∨ B1 ∨ A2)∧

(¬A2 ∨ B2) ∧ (¬A1 ∨ B3) ∧ B4 ∧ (A2 ∨ B5) ∧ (B6 ∨ ¬A1) ∧ B7∧

(¬B1 ∨ ¬B0) ∧ (¬B6 ∨ ¬B4) ∧ (¬B2 ∨ ¬B4)

which returns the unsat core in red.
3 The unsat-core is mapped back, the three T -lemmas are removed

=⇒ the final T -unsat core (in red above).
Sebastiani () From DL to SMT (and back?) May 4th, 2010 59 / 84

Beyond Solving: advanced SMT functionalities Interpolants

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 60 / 84

Beyond Solving: advanced SMT functionalities Interpolants

Computing (Craig) Interpolants in SMT

Craig Interpolant

Given an ordered pair (A, B) of formulas such that A ∧ B |=T ⊥, a
Craig interpolant is a formula I s.t.:

a) A |=T I,

b) I ∧ B |=T ⊥,

c) I � A and I � B.

“I � A” meaning that all uninterpreted (in T) symbols in I occur in A.

Very important in many FV applications
A few works presented

Afaik, very few tools publicly available: FOCI [McMillan, TCS’05],
CLP-prover [Rybalchenko & Sofronie-Stokkemans, VMCAI’07], MathSAT
[Cimatti et al. TACAS’08, TOCL’10]
Others (Zap [Ball et al. LPAR’05], Lifter [Kroening & Weissenbaker
FMCAD’07]) are not available

Sebastiani () From DL to SMT (and back?) May 4th, 2010 61 / 84

Beyond Solving: advanced SMT functionalities Interpolants

A General Algorithm [Pudlak JSL’97; McMillan CAV’03,TCS’05,CAV’06]

Algorithm: Interpolant generation for SMT(T)

(i) Generate a resolution proof of T -unsatisfiability P for A ∧ B.
(ii) Foreach T -lemma ¬η in P, generate an interpolant I¬η for (η \ B, η ↓ B).

(iii) For every original leaf clause C in P, set IC
def
= C ↓ B if C ∈ A, and IC

def
= ⊤ if C ∈ B.

(iv) For every inner node C of P obtained by resolution from C1
def
= p ∨ φ1 and

C2
def
= ¬p ∨ φ2, set IC

def
= IC1 ∨ IC2 if p does not occur in B, and IC

def
= IC1 ∧ IC2

otherwise.
(v) Output I⊥ as an interpolant for (A, B).

“η \B” [resp. “η ↓ B”] is the set of literals in η whose atoms do not [resp. do] occur in B.

optimized versions for the purely-propositional case

row 2. only place where T comes in to play

=⇒ Reduced to the problem of finding an interpolant for two sets of
T -literals

Sebastiani () From DL to SMT (and back?) May 4th, 2010 62 / 84

Beyond Solving: advanced SMT functionalities Interpolants

Example: interpolation algorithms for difference logic

A graph-based algorithm [Cimatti et al. TACAS’07, TOCL’10]

A def
= {

Chord : (0≤x1−x3+1)
︷ ︸︸ ︷

(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3), (0 ≤ x4 − x5 − 1)}

B def
= {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)}. −1

−10

1

0

1

A
B

x1 x5

x2

x3

x4

=⇒ Interpolant: (0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 − x5 − 1) (still in D.L.)
An inference-based algorithm [McMillan TCS’05]

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)

COMB (0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)

COMB (0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

COMB (0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

COMB (0 ≤ x1 − x3 + x4 − x5)

=⇒ Interpolant: (0 ≤ x1 − x3 + x4 − x5) (not in D.L., and weaker).

Sebastiani () From DL to SMT (and back?) May 4th, 2010 63 / 84

Beyond Solving: advanced SMT functionalities All-SMT

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 64 / 84

Beyond Solving: advanced SMT functionalities All-SMT

All-SAT/All-SMT

All-SAT: enumerate all truth assignments satisfying ϕ

All-SMT: enumerate all T -satisfiable truth assignments
propositionally satisfying ϕ

used in FV for computing predicate abstraction:
PredAbs{P1,...,Pn}(ϕ)

def
= ∃v.(ϕ(v) ∧ ∧

i Pi ↔ γi(v))

Idea [Lahiri et al, CAV’06; Cavada et al. FMCAD’07]

Each time a T -satisfiable assignment {l1, ..., ln} is found, print it and
perform conflict-driven backjumping using

∨

i ¬li as conflicting clause.

Remark

To guarantee correctness, completeness & termination it suffices to
keep each clause

∨

i ¬li only as long as it is active in the implication
graph (see, e.g., [Lahiri et al., CAV’06; Nieuwenhuis et al. JACM’06])
=⇒ All-SAT/All-SMT requires storing a polynomial amount of clauses.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 65 / 84

Beyond Solving: advanced SMT functionalities All-SMT

All-SAT/All-SMT

All-SAT: enumerate all truth assignments satisfying ϕ

All-SMT: enumerate all T -satisfiable truth assignments
propositionally satisfying ϕ

used in FV for computing predicate abstraction:
PredAbs{P1,...,Pn}(ϕ)

def
= ∃v.(ϕ(v) ∧ ∧

i Pi ↔ γi(v))

Idea [Lahiri et al, CAV’06; Cavada et al. FMCAD’07]

Each time a T -satisfiable assignment {l1, ..., ln} is found, print it and
perform conflict-driven backjumping using

∨

i ¬li as conflicting clause.

Remark

To guarantee correctness, completeness & termination it suffices to
keep each clause

∨

i ¬li only as long as it is active in the implication
graph (see, e.g., [Lahiri et al., CAV’06; Nieuwenhuis et al. JACM’06])
=⇒ All-SAT/All-SMT requires storing a polynomial amount of clauses.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 65 / 84

Beyond Solving: advanced SMT functionalities All-SMT

All-SAT/All-SMT

All-SAT: enumerate all truth assignments satisfying ϕ

All-SMT: enumerate all T -satisfiable truth assignments
propositionally satisfying ϕ

used in FV for computing predicate abstraction:
PredAbs{P1,...,Pn}(ϕ)

def
= ∃v.(ϕ(v) ∧ ∧

i Pi ↔ γi(v))

Idea [Lahiri et al, CAV’06; Cavada et al. FMCAD’07]

Each time a T -satisfiable assignment {l1, ..., ln} is found, print it and
perform conflict-driven backjumping using

∨

i ¬li as conflicting clause.

Remark

To guarantee correctness, completeness & termination it suffices to
keep each clause

∨

i ¬li only as long as it is active in the implication
graph (see, e.g., [Lahiri et al., CAV’06; Nieuwenhuis et al. JACM’06])
=⇒ All-SAT/All-SMT requires storing a polynomial amount of clauses.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 65 / 84

... and back to DL?

Outline

1 From DL to SMT ...

2 Efficient SMT solving
Modern SAT solvers
Modern SMT solvers
Theory Solvers and their combination

3 Beyond Solving: advanced SMT functionalities
Proofs and unsatisfiable cores
Interpolants
All-SMT

4 ... and back to DL?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 66 / 84

... and back to DL?

Back to DL?

Conjecture

SAT & SMT technology may be exploited for DL reasoning

Sebastiani () From DL to SMT (and back?) May 4th, 2010 67 / 84

... and back to DL?

Back to DL?

Conjecture

SAT & SMT technology may be exploited for DL reasoning

Some work: (joint work with Michele Vescovi)

satisfiability in Km/ALC via SAT encoding
[Sebastiani & Vescovi SAT’06;JAIR’09]

against all odds, competitive!

Axiom pinpointing in EL+ via Horn-SAT and All-SMT
[Sebastiani & Vescovi CADE’09]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 67 / 84

... and back to DL?

Back to DL?

Conjecture

SAT & SMT technology may be exploited for DL reasoning

Some work: (joint work with Michele Vescovi)

satisfiability in Km/ALC via SAT encoding
[Sebastiani & Vescovi SAT’06;JAIR’09]

against all odds, competitive!

Axiom pinpointing in EL+ via Horn-SAT and All-SMT
[Sebastiani & Vescovi CADE’09]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 67 / 84

... and back to DL?

Back to DL?

Conjecture

SAT & SMT technology may be exploited for DL reasoning

Some work: (joint work with Michele Vescovi)

satisfiability in Km/ALC via SAT encoding
[Sebastiani & Vescovi SAT’06;JAIR’09]

against all odds, competitive!

Axiom pinpointing in EL+ via Horn-SAT and All-SMT
[Sebastiani & Vescovi CADE’09]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 67 / 84

... and back to DL?

Back to DL?

Conjecture

SAT & SMT technology may be exploited for DL reasoning

Some work: (joint work with Michele Vescovi)

satisfiability in Km/ALC via SAT encoding
[Sebastiani & Vescovi SAT’06;JAIR’09]

against all odds, competitive!

Axiom pinpointing in EL+ via Horn-SAT and All-SMT
[Sebastiani & Vescovi CADE’09]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 67 / 84

... and back to DL?

Motivation: Axiom pinpointing in EL+

EL+ is able to represent widely-used (and often huge) bio-medical
ontologies like: GENEONTOLOGY, NCI,
(the majority of) GALEN and SNOMED-CT

Operations:
infer subsumption relations from an ontology T (classification)
identify the reasons of these relations (axiom pinpointing):
Find minimal sets of axioms (MinAs) in T which generate a
subsumption relation C ⊑ D

Example: Debugging ontologies

Find minimal sets of axioms (MinAs) in SNOMED-CT which generates
the undesired fact that Amputation-of-Finger is a sub-concept of
Amputation-of-Arm.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 68 / 84

... and back to DL?

The logic EL+

Concept definitions

Syntax Semantics
top ⊤ ∆I

conjunction X ⊓ Y XI ∩ Y I

existential restriction ∃r .X { x ∈ ∆I | ∃y ∈ ∆I : (x , y) ∈ rI

∧ y ∈ XI }

where CI ⊆ ∆I , for every concept name C
and rI ⊆ ∆I × ∆I , for every role name r

Axioms

Syntax Semantics
general concept inclusion (GCI) X ⊑ Y XI ⊆ Y I

role inclusion (RI) r1 ◦ · · · ◦ rn ⊑ s rI1 ◦ · · · ◦ rIk ⊆ sI

Sebastiani () From DL to SMT (and back?) May 4th, 2010 69 / 84

... and back to DL?

Normal Form

It is convenient to establish and work with the following normal form
of the input TBox (ontology):

Normal Form for an EL+ TBox

C1 ⊓ ... ⊓ Ck ⊑ D k ≥ 1
C ⊑ ∃r .D

∃r .C ⊑ D
r1 ◦ · · · ◦ rn ⊑ s n ≥ 1

with C1, . . . , Ck , D concept names, and r1, . . . , rn, s role names

Every EL+ TBox T can be turned into a normalized TBox
T ′ which is a conservative extension of T
T ′ is linear w.r.t. T and can be computed in linear time

Sebastiani () From DL to SMT (and back?) May 4th, 2010 70 / 84

... and back to DL?

Reasoning tasks in EL+

Concept Subsumption (polynomial) Given two concepts X and Y ,
Y subsumes X wrt. the TBox T , written X ⊑T Y , if XI ⊆ Y I

for every model I of T
Classification (polynomial) Find all the possible pairwise concept

subsumption relations for all the concept names of a given TBox

one-nMinA (polynomial) Find a (possibly non-minimal) set S ⊆ T
(written nMinA) for C ⊑T D s.t. C ⊑S D

one-MinA (polynomial) Single axiom pinpointing (one-MinA):
find one minimal axiom set (written MinA) for a given subsumption
relation C ⊑T D

all-MinAs (output-exponential) Enumerate all the possible MinAs
for the given subsumption relation C ⊑T D

Sebastiani () From DL to SMT (and back?) May 4th, 2010 71 / 84

... and back to DL?

Concept Subsumption and Classification

Polynomial-time algorithm [Baader et al. IJCAI’05, KI’07] for the
classification of a normalized EL+ TBox T :

Completion rules of concept subsumption algorithm

Sub. assertions (∈ A) TBox’s axiom (∈ T) Ass. added to A
X ⊑ C1, X ⊑ C2 C1 ⊓ C2 ⊑ D X ⊑ D
X ⊑ C C ⊑ ∃r .D X ⊑ ∃r .D
X ⊑ ∃r .E , E ⊑ C ∃r .C ⊑ D X ⊑ D
X ⊑ ∃r .D r ⊑ s X ⊑ ∃s.D
X ⊑ ∃r1.E1, E1 ⊑ ∃r2.D r1 ◦ r2 ⊑ s X ⊑ ∃s.D

The algorithm starts with an initial set of assertions
A = {ai ∈ T | ai is a GCI} ∪ {C ⊑ C} ∪ {C ⊑ ⊤}
Applies a rule only if it extends A
Stops when no more rules are applicable

Sebastiani () From DL to SMT (and back?) May 4th, 2010 72 / 84

... and back to DL?

Axiom Pinpointing in EL+, Baader et al’s algorithms

Build a propositional formula φC⊑D on {s[axj] | axj axiom of T }, whose
minimal valuations are all the MinAs for C ⊑T D

φC⊑D is worst-case exponential wrt. the size of the ontology
[Baader et al. KI’07]

[Baader et al. KI’07] Modify the classification algorithm to compute one
nMinA for C ⊑ D

then Linear-search/Binary-search minimization algorithm to
obtain one MinA (succeed on GALEN, not on SNOMED)

[Baader et al. KR-MED’08] Devised a novel algorithm which, extracting
reachability modules from the ontology, succeed in finding MinAs on
SNOMED-CT

...

Sebastiani () From DL to SMT (and back?) May 4th, 2010 73 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: φT

let A be the set of GCI or RI axioms or inferred assertions from T
(e.g., those obtained by Baader et al’s classification)
let EL+2sat(ai) be the following definite Horn clause:

EL+2sat(ai)

ai EL+2sat(ai)

C1 ⊓ C2 ⊑ D p[C1] ∧ p[C2] → p[D]

C ⊑ ∃r .D p[C] → p[∃r .D]

∃r .C ⊑ D p[∃r .C] → p[D]

s.t. each p[X] is uniquely-associated to each normalized concept X

Proposition

C ⊑T D iff φT
def
=

∧

ai∈A
EL+2sat(ai) is unsatisfiable under the

assumptions {p[C],¬p[D]}

Sebastiani () From DL to SMT (and back?) May 4th, 2010 74 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: φall
T

let s[ai] be a selector variable univocally associated to ai , ∀ai ∈ A
We build (only once!) definite Horn formula φall

T
φall
T contains the definite Horn clauses:

s[ai] → EL+2sat(ai)

for each ai ∈ A
φall
T contains the definite Horn clause:

(s[a1][∧s[a2]] ∧ s[ax]) → s[a]

for each a1, [a2,]a ∈ A, ax ∈ T s.t. {a1, [a2,]ax} =⇒ a is an
instantiation of a completion rule

φall
T polynomial: |φall

T | = Θ(|A|2 · |T |)

Remark

φall
T encodes all the possible ways of inferring every subsumption

relation from T
Sebastiani () From DL to SMT (and back?) May 4th, 2010 75 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: one-MinA

Proposition

C ⊑S D iff φall
T is unsatisfiable under the assumptions

{p[C],¬p[D]} ∪ {s[axi]|axi ∈ S}, for every S ⊆ T

Note: it is possible to “select” any subset S of T
φall
T is Horn

=⇒ each satisfiability check requires only one run of unit-propagation

=⇒ linear in the number of clauses involved in the unit-propagation

DPLL returns a conflict clause
∨

axj∈S
¬s[axj] ∨¬p[C] ∨p[D]

s.t. S ⊆ T is an nMinA for C ⊑T D, i.e. C ⊑S D
=⇒ is refined into a MinA from a linear iteration of the process

(a SAT-based variant of [Baader et al. KI’07])

Sebastiani () From DL to SMT (and back?) May 4th, 2010 76 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: one-MinA

Proposition

C ⊑S D iff φall
T is unsatisfiable under the assumptions

{p[C],¬p[D]} ∪ {s[axi]|axi ∈ S}, for every S ⊆ T

Note: it is possible to “select” any subset S of T
φall
T is Horn

=⇒ each satisfiability check requires only one run of unit-propagation

=⇒ linear in the number of clauses involved in the unit-propagation

DPLL returns a conflict clause
∨

axj∈S
¬s[axj] ∨¬p[C] ∨p[D]

s.t. S ⊆ T is an nMinA for C ⊑T D, i.e. C ⊑S D
=⇒ is refined into a MinA from a linear iteration of the process

(a SAT-based variant of [Baader et al. KI’07])

Sebastiani () From DL to SMT (and back?) May 4th, 2010 76 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: one-MinA

Proposition

C ⊑S D iff φall
T is unsatisfiable under the assumptions

{p[C],¬p[D]} ∪ {s[axi]|axi ∈ S}, for every S ⊆ T

Note: it is possible to “select” any subset S of T
φall
T is Horn

=⇒ each satisfiability check requires only one run of unit-propagation

=⇒ linear in the number of clauses involved in the unit-propagation

DPLL returns a conflict clause
∨

axj∈S
¬s[axj] ∨¬p[C] ∨p[D]

s.t. S ⊆ T is an nMinA for C ⊑T D, i.e. C ⊑S D
=⇒ is refined into a MinA from a linear iteration of the process

(a SAT-based variant of [Baader et al. KI’07])

Sebastiani () From DL to SMT (and back?) May 4th, 2010 76 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: all-MinAs

Idea

Adapt the all-SMT technique [Lahiri et al. CAV’06] to enumerate all the
minimal countermodels of φall

T under the assumptions {p[C],¬p[D]}

Basic All-SMT schema:

1. A CDCL solver enumerates a complete set of assignments µk on
{s[axi] | axi ∈ T } ∪ {p[C], p[D]} satisfying a formula ϕ (initially ⊤)

2. The one-MinA (DPLL-based) procedure is the T -solver:

checks the unsatisfiability of φall
T assuming µk ∪ {p[C],¬p[D]}

if unsatisfiable, produces iteratively a minimal axiom set

3. The (negation of the) computed MinA/model µk is used as
conflicting clause by the top-level solver

some optimizations described in [Sebastiani & Vescovi CADE’09]

Sebastiani () From DL to SMT (and back?) May 4th, 2010 77 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: remarks

The size of φall
T and the time to compute it is worst-case polynomial

Once loaded, φall
T can be reused

for different queries C ⊑ D
for different sub-ontologies S ⊆ T

remark

all-SMT require polynomial space

can be used to enumerate MinAs up to a time-out

Sebastiani () From DL to SMT (and back?) May 4th, 2010 78 / 84

... and back to DL?

Preliminary Experimental Results [Sebastiani & Vescovi CADE’09]

Classification and Subsumption:
Ontology NOTGALEN GENEONT. NCI FULLGALEN SNOMED09

prim. concepts 2748 20465 27652 23135 310075
orig. axioms 4379 20466 46800 36544 310025
norm. axioms 8740 29897 46800 81340 857459
role names 413 1 50 949 62
role axioms 442 1 0 1014 12
Size (var#/cls#)
φT 5.4e3/1.8e4 2.2e4/4.2e4 3.2e4/4.7e4 4.8e4/7.3e5 5.3e5/8.4e6
φone
T 2.3e4/2.7e4 5.5e4/5.4e4 7.8e4/4.7e4 7.3e5/1.4e6 8.4e6/1.6e7

φall
T (po)

1.7e5/2.2e5 2.1e5/2.6e5 2.9e5/3.0e5 5.3e6/1.2e7 2.6e7/8.4e7

Encode time
φT 0.65 2.37 2.98 35.28 3753.04
φone
T 2.06 4.15 6.19 68.94 4069.84

φall
T (po)

1.17 1.56 2.37 178.41 198476.59

Load time
φT 0.11 0.37 1.01 1.93 21.16
φone
T 0.18 0.55 1.17 5.95 59.88

Subsumpt. (105)
φT 0.00002 0.00002 0.00003 0.00003 0.00004
φone
T 0.00003 0.00002 0.00003 0.00004 0.00008

Sebastiani () From DL to SMT (and back?) May 4th, 2010 79 / 84

... and back to DL?

Preliminary Experimental Results [Sebastiani & Vescovi CADE’09]

Axiom Pinpointing:

Ontology NOTGAL. GENEO. NCI FULLGAL. SNOMED09
nMinA φone

T (on 5000) 0.00012 0.00027 0.00042 0.00369 0.05938
MinA φone

T (on 100)
- Load time 0.175 0.387 0.694 6.443 63.324
- Extract time 0.066 0.082 0.214 0.303 3.280
- DPLL Search time 0.004 0.004 0.002 0.010 0.093
MinA φall

T (po)
(on 100)

- Load time 1.061 1.385 1.370 39.551 150.697
- DPLL Search time 0.023 0.027 0.036 0.331 0.351
allMinA φall

T (po)
(on 30)

- 50% #MinA- time 1- 1.50 1- 1.76 4- 1.79 3- 53.40 15- 274.70
- 90% #MinA- time 2- 1.59 4- 2.11 6- 1.86 9- 63.61 32- 493.61
- 100% #MinA- time 2- 1.64 8- 2.79 9- 2.89 15- 150.95 40- 588.33

Sebastiani () From DL to SMT (and back?) May 4th, 2010 80 / 84

... and back to DL?

Axiom pinpointing in EL+ via All-SMT: Discussion

Encoding phase expensive (but done only once forever)

Formula loading can be done only once per session

Once the formula is loaded, DPLL time for solving concept
subsumption and one nMinA is negligible

The all-MinAs procedure allows for enumerating MinAs for
SNOMED-CT ad libitum (remarkably MinAs are mainly found
in the very first part of the search)

significant improvements in a recent version (unpublished yet)

Sebastiani () From DL to SMT (and back?) May 4th, 2010 81 / 84

... and back to DL?

Conclusions

SAT: CDCL solvers very powerful

key ingredient for SMT solvers
may be exploited in DL reasoning as well?

SMT solvers
SMT = SAT + T -solver: idea coming for DL
since then, lots of improvements and techniques
can ideas from SMT be mapped back to DL?

SAT & SMT: not only solving
lots of advanced functionalities: proofs, unsat cores, interpolants,
(cost-minimization, ...)
can they be exploited for DL reasoning tools?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 82 / 84

... and back to DL?

Conclusions

SAT: CDCL solvers very powerful

key ingredient for SMT solvers
may be exploited in DL reasoning as well?

SMT solvers
SMT = SAT + T -solver: idea coming for DL
since then, lots of improvements and techniques
can ideas from SMT be mapped back to DL?

SAT & SMT: not only solving
lots of advanced functionalities: proofs, unsat cores, interpolants,
(cost-minimization, ...)
can they be exploited for DL reasoning tools?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 82 / 84

... and back to DL?

Conclusions

SAT: CDCL solvers very powerful

key ingredient for SMT solvers
may be exploited in DL reasoning as well?

SMT solvers
SMT = SAT + T -solver: idea coming for DL
since then, lots of improvements and techniques
can ideas from SMT be mapped back to DL?

SAT & SMT: not only solving
lots of advanced functionalities: proofs, unsat cores, interpolants,
(cost-minimization, ...)
can they be exploited for DL reasoning tools?

Sebastiani () From DL to SMT (and back?) May 4th, 2010 82 / 84

Links & References

Links

a course on SAT & SMT:
http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED10/

survey papers:

Lintao Zhang and Sharad Malik, “The Quest for Efficient Boolean
Satisfiability Solvers.”
Proc. CAV’02, LNCS, number 2404, Springer, 2002.
Roberto Sebastiani: "Lazy Satisfiability Modulo Theories".
Journal on Satisfiability, Boolean Modeling and Computation, JSAT.
Vol. 3, 2007. Pag 141–224, c©IOS Press.
Roberto Sebastiani, Armando Tacchella "SAT Techniques for Modal
and Description Logics". Part II, Chapter 25, The Handbook of
Satisfiability. 2009. c©IOS press.
Clark Barrett, Roberto Sebastiani, Sanjit Seshia, Cesare Tinelli
"Satisfiability Modulo Theories". Part II, Chapter 26, The Handbook
of Satisfiability. 2009. c©IOS press.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 83 / 84

http://disi.unitn.it/~rseba/DIDATTICA/SAT_BASED10/

Links & References

c©Warner Bros. Inc.

Sebastiani () From DL to SMT (and back?) May 4th, 2010 84 / 84

	From DL to SMT ...
	Efficient SMT solving
	Modern SAT solvers
	Modern SMT solvers
	Theory Solvers and their combination

	 Beyond Solving: advanced SMT functionalities
	Proofs and unsatisfiable cores
	Interpolants
	All-SMT

	... and back to DL?
	Links & References

