

The 25th Canadian Conference on Computational Geometry

CCCG 2013

Waterloo, Ontario, Canada August 8-10, 2013

25th Canadian Conference on Computational Geometry, 2013

2

CCCG 2013, Waterloo, Ontario August 8–10, 2013

Preface
This volume contains the proceedings of the 25th Canadian Conference on Computational Geometry (CCCG’13), held in
Waterloo, Ontario on August 8-10, 2013. These papers are also available electronically at http://www.cccg.ca and at
http://cs.uwaterloo.ca/conferences/cccg2013.

We thank Patrick Nicholson and Wendy Rush for preparing the conference site. We also thank Greg Aloupis for sharing
his hard earned wisdom in organizing the two previous editions of CCCG, and Sebastian Collette and Peter Palfrader for
technical support in preparing these proceedings.

We are grateful to the Program Committee, and external reviewers, for the hard work they did. They thoroughly examined
all submissions and provided excellent feedback. Out of 81 papers submitted, 49 are contained in these proceedings, an
acceptance rate of 60%. We thank the authors of all submitted papers, all those who have registered, and in particular
Alla Sheffer, Sue Whitesides and Peter Widmayer for presenting plenary lectures.

Last but not least, we are grateful for sponsorship from the Fields Institute, the University of Waterloo and the Atlantic
Association for Research in the Mathematical Sciences (AARMS). Their financial support has helped us to cover many
costs as well as provide significant funding for travel to students, postdocs and invited speakers.

Alejandro López-Ortiz
Therese Biedl
Anna Lubiw

(Conference Organizers)

Copyrights of the articles in these proceedings are maintained by their respective authors. More information about this
conference and about previous and future editions is available online at

http://cccg.ca

3

25th Canadian Conference on Computational Geometry, 2013

Invited Speakers

Sue Whitesides University of Victoria
Alla Sheffer University of British Columbia
Peter Widmayer ETH Zürich

Program Committee

Peyman Afshani Aarhus University
Hee-Kap Ahn Pohang University of Science and Technology
Greg Aloupis Université Libre de Bruxelles
Boaz Ben-Moshe Ariel University
Mark de Berg TU Eindhoven
Therese Biedl University of Waterloo
Gruia Calinescu Illinois Institute of Technology
Jean Cardinal Université Libre de Bruxelles
Paz Carmi Ben-Gurion University of the Negev
Timothy M. Chan University of Waterloo
Mirela Damian Villanova University
Vida Dujmović McGill University
Adrian Dumitrescu University of Wisconsin-Milwaukee
Sándor Fekete TU Braunschweig
Akitoshi Kawamura University of Tokyo
Alejandro López-Ortiz, Chair University of Waterloo
Anna Lubiw University of Waterloo
Anil Maheshwari Carleton University
Lata Narayanan Concordia University
Belen Palop Universidad Valladolid
Michiel Smid Carleton University
Bettina Speckmann TU Eindhoven
Csaba Tóth University of Calgary and CSUN
Ryuhei Uehara Japan Advanced Institute of Science and Technology
Emo Welzl ETH Zürich
Norbert Zeh Dalhousie University

Organizing Committee

Therese Biedl, co-chair
Timothy Chan
Francisco Claude
Hella Hoffmann
Shahin Kamali
Alejandro López-Ortiz, co-chair
Anna Lubiw, co-chair
Daniela Maftuleac
Patrick Nicholson
Venkatesh Raman
Alejandro Salinger
Hamideh Vosoughpour
Gelin Zhou

4

CCCG 2013, Waterloo, Ontario August 8–10, 2013

Additional Reviewers

Luis Barba
Ahmad Biniaz
Ke Chen
Jean-Lou De Carufel
Erik D. Demaine
Martin Demaine
Matt Duckham
William Evans
Eli Fox-Epstein
Bernd Gärtner
Drik H.P. Gerrits
Anirban Ghosh
Arther van Goethem
Michael Hoffmann
Stefan Huber
Yoonho Hwang
Minghui Jiang
Pegah Kamousi
Matya Katz
Stephen Kiazyk
Sang-Sub Kim
Matias Korman
Marc van Kreveld
Vincent Kusters
Arthur Langerman
Wouter Meulemans
Pat Morin
Eunjin Oh
Dongwoo Park
Val Pinciu
Marcel Roeloffzen
Maria Saumell
Wanbin Son
Hans Raj Tiwary
Hamideh Vosoughpour
Sang Duk Yoon

5

25th Canadian Conference on Computational Geometry, 2013

Contents

Plenary talk - Thursday Aug. 8 9:00-10:00

Kinetic Data Structures on The Move
Sue Whitesides 11

Session 1A - Thursday Aug. 8 10:00-10:50

Weighted Straight Skeletons In The Plane
Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser and Peter Palfrader 13

Medial Residues of Piecewise Linear Manifolds
Erin Chambers, Tao Ju and David Letscher 19

Session 1B - Thursday Aug. 8 10:00-10:50

Morpion Solitaire 5D: a new upper bound 121 on the maximum score
Akitoshi Kawamura, Takuma Okamoto, Yuichi Tatsu, Yushi Uno and Masahide Yamato 25

Computational complexity and an integer programming model of Shakashaka
Erik D. Demaine, Yoshio Okamoto, Ryuhei Uehara and Yushi Uno 31

Session 2A - Thursday Aug. 8 11:15-12:30

One-Round Discrete Voronoi Game in R2 in Presence of Existing Facilities
Aritra Banik, Bhaswar Bhattacharya, Sandip Das and Satyaki Mukherjee 37

Zipper Unfoldability of Domes and Prismoids
Erik D. Demaine, Martin L. Demaine and Ryuhei Uehara 43

Map Folding
Rahnuma Islam Nishat and Sue Whitesides 49

Session 2B - Thursday Aug. 8 11:15-12:30

Partial Searchlight Scheduling is Strongly PSPACE-complete
Giovanni Viglietta 55

Set-Difference Range Queries
David Eppstein, Michael Goodrich and Joseph A. Simons 61

The Unified Segment Tree and its Application to the Rectangle Intersection Problem
David P. Wagner 67

6

CCCG 2013, Waterloo, Ontario August 8–10, 2013

Session 3A - Thursday Aug. 8 13:50-15:05

Covering Folded Shapes
Oswin Aichholzer, Greg Aloupis, Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Michael Hoffmann, Anna
Lubiw, Jack Snoeyink and Andrew Winslow 73

Unfolding Face-Neighborhood Convex Patches: Counterexamples and Positive Results
Joseph O’Rourke 79

Counting Triangulations Approximately
Victor Alvarez, Karl Bringmann, Saurabh Ray and Raimund Seidel 85

Session 3B - Thursday Aug. 8 13:50-15:05

Aggregate-Max Nearest Neighbor Searching in the Plane
Haitao Wang 91

Data structures for incremental extreme ray enumeration algorithms
Blagoy Genov 97

Fault Tolerant Clustering Revisited
Nirman Kumar and Benjamin Raichel 103

Open Problems Session

Open Problems from CCCG 2012
Joseph S. B. Mitchell 109

Plenary talk - Friday Aug. 9 9:00-10:00

Quantifying Design: the geometric properties behind designer choices and human perception
Alla Shaffer 115

Session 4A - Friday Aug. 9 10:00-10:50

Universal Point Sets for Planar Graph Drawings with Circular Arcs
Patrizio Angelini, David Eppstein, Fabrizio Frati, Michael Kaufmann, Sylvain Lazard, Tamara Mchedlidze, Monique
Teillaud and Alexander Wolff 117

Weighted Region Problem in Arrangement of Lines
Amin Gheibi, Anil Maheshwari and Jörg-Rüdiger Sack 123

Session 4B - Friday Aug. 9 10:00-10:50

Combinatorics of Beacon Routing and Coverage
Michael Biro, Jie Gao, Justin Iwerks, Irina Kostitsyna and Joseph S. B. Mitchell 129

Privacy by Fake Data: A Geometric Approach
Victor Alvarez, Erin Chambers and László Kozma 135

7

25th Canadian Conference on Computational Geometry, 2013

Session 5A - Friday Aug. 9 11:20-12:35

Stabbing Polygonal Chains with Rays is Hard to Approximate
Steven Chaplick, Elad Cohen and Gila Morgenstern 141

Heaviest Induced Ancestors and Longest Common Substrings
Travis Gagie, PawełGawrychowski and Yakov Nekrich 145

Maximum-Weight Planar Boxes in O(n2) Time (and Better)
Jérémy Barbay, Timothy M. Chan, Gonzalo Navarro and Pablo Pérez-Lantero 151

Session 5B - Friday Aug. 9 11:20-12:35

An Optimal Algorithm Computing Edge-to-Edge Visibility in a Simple Polygon
Mikkel Abrahamsen 157

Counting Carambolas
Maarten Löffler, André Schulz and Csaba Tóth 163

Cell-Paths in Mono- and Bichromatic Line Arrangements in the Plane
Oswin Aichholzer, Jean Cardinal, Thomas Hackl, Ferran Hurtado, Matias Korman, Alexander Pilz, Rodrigo Silveira,
Ryuhei Uehara, Birgit Vogtenhuber and Emo Welzl 169

Session 6A - Friday Aug. 9 14:05-15:45

Optimal Data Structures for Farthest-Point Queries in Cactus Networks
Prosenjit Bose, Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari and Michiel Smid 175

Cole’s Parametric Search Technique Made Practical
Michael Goodrich and Paweł Pszona 181

Polynomial Time Algorithms for Label Size Maximization on Rotating Maps
Yusuke Yokosuka and Keiko Imai 187

Drawing some 4-regular planar graphs with integer edge lengths
Timothy Sun 193

Session 6B - Friday Aug. 9 14:05-15:45

Hyperbanana Graphs
Christopher Clement, Audrey Lee-St.John and Jessica Sidman 199

Theta-3 is connected
Oswin Aichholzer, Sang Won Bae, Luis Barba, Prosenjit Bose, Matias Korman, André van Renssen, Perouz
Taslakian and Sander Verdonschot 205

How to Cover Most of a Point Set with a V-Shape of Minimum Width
Boris Aronov, John Iacono, Özgür Özkan and Mark Yagnatinsky 211

Computing Covers of Plane Forests
Luis Barba, Alexis Beingessner, Prosenjit Bose and Michiel Smid 217

8

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Session 7A - Friday Aug. 9 16:15-17:55

An Efficient Exact Algorithm for the Natural Wireless Localization Problem
Bruno Crepaldi, Pedro de Rezende and Cid de Souza 223

On k-Enclosing Objects in a Coloured Point Set
Luis Barba, Stephane Durocher, Robert Fraser, Ferran Hurtado, Saeed Mehrabi, Debajyoti Mondal, Jason Morrison,
Matthew Skala and Mohammad Abdul Wahid 229

On the Rectangle Escape Problem
Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Sadra Yazdanbod and Hamid Zarrabi-Zadeh 235

Grid Proximity Graphs: LOGs, GIGs and GIRLs
River Allen, Laurie Heyer, Rahnuma Islam Nishat and Sue Whitesides 241

Session 7B - Friday Aug. 9 16:15-17:55

Bounding the Locus of the Center of Mass for a Part with Shape Variation
Fatemeh Panahi and A. Frank van der Stappen 247

Geometric Separators and the Parabolic Lift
Donald R. Sheehy 253

How To Place a Point to Maximize Angles
Boris Aronov and Mark Yagnatinsky 259

Spanning Colored Points with Intervals
Payam Khanteimouri, Ali Mohades, Mohammad Ali Abam and Mohammad Reza Kazemi 265

Session 8A - Saturday Aug. 10 9:00-10:40

On Fence Patrolling by Mobile Agents
Ke Chen, Adrian Dumitrescu and Anirban Ghosh 271

Face-Guarding Polyhedra
Giovanni Viglietta 277

On k-Guarding Polygons
Daniel Busto, William Evans and David Kirkpatrick 283

Geometric Red-Blue Set Cover for Unit Squares and Related Problems
Timothy M. Chan and Nan Hu 289

Session 8B - Saturday Aug. 10 9:00-10:15

Convex hull alignment through translation
Michael Hoffmann, Vincent Kusters, Günter Rote, Maria Saumell and Rodrigo I. Silveira 295

Faster approximation for Symmetric Min-Power Broadcast
Gruia Calinescu 301

Planar Convex Hull Range Query and Related Problems
Nadeem Moidu, Jatin Agarwal and Kishore Kothapalli 307

Plenary talk - Saturday Aug. 10 11:00-12:00

What’s in a gaze? How to reconstruct a simple polygon from local snapshots
Peter Widmeyer 311

9

25th Canadian Conference on Computational Geometry, 2013

10

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Kinetic Data Structures on The Move

Sue Whitesides

University of Victoria, British Columbia, Canada

From its beginnings, computational geometry has studied problems concerning sets of points in the plane: which
pair is closest? For each point, what is the closest neighbor? What are good computational methods for computing
structures such as convex hulls, Voronoi diagrams, minimum spanning trees? When the points are moving, answering
such questions presents new challenges. The area of kinetic data structures emerged in the late 1990’s. Given today’s
ubiquity of smart mobile devices, problems on moving points and objects are all the more relevant to applications.
This talk reviews the topic, including some recent results.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

11

25th Canadian Conference on Computational Geometry, 2013

12

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Weighted Straight Skeletons In The Plane

Therese Biedl∗ Martin Held† Stefan Huber‡ Dominik Kaaser† Peter Palfrader†

Abstract

In this paper, we investigate the weighted straight skele-
ton from a geometric, graph-theoretical and combinato-
rial point of view. We start with a thorough defini-
tion, shed light on an ambiguity issue in the procedural
definition, and propose solutions. We investigate the
geometry of faces and the roof model and we discuss
in which cases the straight skeleton is connected. Fi-
nally, we show that the weighted straight skeleton of
even a simple polygon may be non-planar and may con-
tain cycles, and we discuss under which circumstances
the weighted straight skeleton still behaves similar to its
unweighted pendant.

1 Introduction

The straight-skeleton S(P) of a simple polygon P is a
skeleton structure that was introduced by Aichholzer
et al. [1] to computational geometry about 20 years
ago.1 Its definition is based on a wavefront propagation
process where the polygons edges move inwards with
unit speed. The straight skeleton, roughly speaking, is
the skeleton structure that results from the interference
patterns of the wavefront edges. Aichholzer and Au-
renhammer [2] later generalized the definition to pla-
nar straight-line graphs. Since their introduction a lot
of applications appeared in different research areas and
multiple algorithms to compute the straight skeleton are
known [8].

Eppstein and Erickson [6] were the first to men-
tion the weighted straight skeleton where the wavefront
edges may move with arbitrary but fixed speed. They
claim that their algorithm to compute the unweighted
straight skeleton in O(n8/5+ε) time and space also works,
without major changes, for weighted straight skeletons.
Weighted straight skeletons have many applications:
Barequet et al. [5] use weighted straight skeletons in or-
der to define the initial wavefront topology for straight
skeletons of polyhedra. Haunert and Sester [7] use the

∗David R. Cheriton School of Computer Science, University of
Waterloo, Waterloo, Ontario N2L 1A2, Canada. Supported by
NSERC. Research was done while the author was visiting Univer-
sität Salzburg. biedl@uwaterloo.ca
†Universität Salzburg, FB Computerwissenschaften, 5020

Salzburg, Austria. [held,dominik,ppalfrad]@cosy.sbg.ac.at
‡Institute of Science and Technology Austria, 3400 Kloster-

neuburg, Austria. stefan.huber@ist.ac.at
1Remarks on the history are given in [3].

weighted straight skeleton for topology-preserving area
collapsing in geographic maps. Laycock and Day [11]
and Kelly and Wonka [10] use weighted straight skele-
tons to model realistic roofs of houses. Aurenhammer [4]
investigated fixed-share decompositions of convex poly-
gons using weighted straight skeletons with specific pos-
itive weights.

Although algorithms, applications and even simple
implementations [9] of weighted straight skeletons were
published, only limited research was conducted on the
weighted straight skeleton per se. The only known re-
sults are that the simple definition based on wavefront
propagation may lead to ambiguities [10, 8] and that
the lower envelope characterization by Eppstein and Er-
ickson [6] does not apply. In this paper, we carefully
define weighted straight skeletons, shed light on the
ambiguity in the procedural definition, investigate ge-
ometric, graph-theoretical and combinatorial properties
of weighted straight skeletons, and compare those with
properties of unweighted straight skeletons. In particu-
lar, we show that weighted straight skeletons of simple
polygons may have cycles and crossings. Furthermore,
we investigate necessary conditions for the weights such
that the straight skeleton of a simple polygon is a planar
tree.

2 Preliminaries

The definition of the straight skeleton S(P) of a simple
polygon P is based on a so-called wavefront propagation
of P where all edges of P move inwards in parallel and
with unit speed. The wavefront, denoted by WP (t), for
small t has the shape of a mitered offset-curve of P . As
t increases, WP changes its topology. Such a change
is called an event: An edge event happens if an edge
e collapsed to zero length and vanishes. A split event
happens when a reflex wavefront vertex reaches a wave-
front edge e and splits the edge into parts. Either event
causes local changes in the topology of the wavefront.

The straight skeleton S(P) is defined by set of loci
traced out by the vertices of WP (t) for all t ≥ 0, see
Fig. 1. Additionally, some loci are added to the straight
skeleton in case of parallel edges as follows: (a) If two
parallel edge e, e′ that move in opposite direction be-
come overlapping during a split event, then the region
common to e and e′ is added to the straight skeleton,
while the region(s) that belongs to exactly one of them
remains in the wavefront. (b) If two parallel edges e, e′

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

13

25th Canadian Conference on Computational Geometry, 2013

Figure 1: The straight skeleton S(P) (blue) of the in-
put polygon P (bold) is defined by wavefronts (grey)
emanated by P .

that move in the same direction become adjacent during
an edge event, then their common endpoint is consid-
ered a vertex of the wavefront. We call this a ghost
vertex, which moves perpendicular to e and e′.2

Each wavefront vertex traces out an arc of S(P). As
wavefront vertices move along bisectors of edges of P ,
the arcs of S(P) are straight-line segments. Every event
of WP belongs to a locus where arcs of S(P) meet and
give rise to a node of S(P). See Figure 1 for an example.
The straight skeleton S(P) is interpreted as a graph,
and one can show that it is a tree [1]. Also, no two arcs
of the straight skeleton cross since the wavefront moves
inwards towards the unswept region. Hence S(P)∪P is
a planar straight-line graph. The inner faces of S(P)∪P
are called straight-skeleton faces.

For a polygon edge e, let the wavefront fragments of
e at time t, denoted e(t), be the union of segments of
WP (t) that originated from e; set e(t) may comprise
none, one, or many segments depending on whether e
participated in edge events and/or split events. We con-
sider segments in e(t) to be open line segments. Define
f(e) :=

⋃
t>0 e(t) to be the face of edge e ; this is the re-

gion that was swept by e during the propagation. One
can easily show that the faces of wavefront-edges are
in 1-1-correspondence with the straight-skeleton faces.
Also, f(e) is monotone with respect to the line through
e [1, 2], and its lower chain is convex [8]. Furthermore,
the boundary of each face f(e) corresponds to a cycle
in P ∪ S(P). 3

2.1 Roof models

Aichholzer et al. [1] introduced the roof model, which
is a handy way of interpreting the straight skeleton.

2One could also argue for omitting ghost vertices, hence effec-
tively merging e and e′ into one edge of the wavefront. But then,
even in the unweighted case, the straight skeleton is not always
connected.

3Aichholzer and Aurenhammer [2] extended the definition of
straight skeletons to planar straight line graphs. Then some arcs
are rays to infinity. We consider such arcs to meet at a node
located at infinity. Thus, the property even holds in this case.

e1
e2

e3

e1 e2
e3

(a) (b)

v v

Figure 2: The definition of straight skeletons is ambigu-
ous when two parallel wavefront edges with different
weights become adjacent.

One considers the wavefront propagation embedded in
three-space where the z-axis constitutes time. ThenWP

traces out a surface, namely the roof model T (P) :=⋃
t≥0WP (t)× {t}. Note that we can obtain S(P) from
T (P) by projecting the edges of T (P) onto the plane
R2 × {0}. Vice versa, we can obtain T (P) from S(P)
by lifting all nodes of S(P) by their orthogonal distance
to the respective input edges of P (i.e., the time when
they were swept by the wavefront). In other words,
T (P) gives us the means to investigate WP over its en-
tire lifespan.

The roof model is sometimes also called terrain model,
since T (P) is a terrain, i.e., any line parallel to the z-axis
intersects it in at most one point. As this property may
be violated for the weighted version of straight skele-
tons, we prefer the term “roof model”.

2.2 Weighted straight skeletons

The weighted straight skeleton differs from the straight
skeleton only in the speed σ(e) ∈ R \ {0} with which
edge e moves in the wavefront. We call σ the weight
function and σ(e) the weight of e. The wavefront moves
such that the fragments e(t) of e at time t are on the
line e + σ(e) · n(e), where e is the line through e, and
n(e) is the inward normal of e. We note that σ(e) is not
necessarily positive; for σ(e) < 0 edge e moves outward
with speed |σ(e)|.4

All other definitions that we gave for (unweighted)
straight skeletons, such as edge event, split event,
WP (t),S(P), e(t), f(e), T (P) carry over verbatim to
the weighted straight skeleton. (We use an additional
parameter σ in the names of these objects when we want
to emphasize that we are discussing the weighted ver-
sion.) The only exception to the “carrying over ver-
batim” is the change of topology during an edge event;

4One could expand the definition to zero weights, resulting
in stationary wavefront edges. The roof model is then still well-
defined, and the straight skeleton could be considered to be the
projection of the edge graph of the roof model onto the ground
plane. However, straight skeleton arcs may then degenerate into
points and faces of edges may be a line segment. We forbid zero-
weight edges here to avoid such degeneracies.

25th Canadian Conference on Computational Geometry, 2013

14

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

e1

e2

e3
e4

ej emei1 ei2 eik

f(ei1) f(ei2) f(eik)

` wik−1

f(em)

Figure 3: Multiple parallel wavefront edges become ad-
jacent when simultaneously reaching the line `.

here there exists one ambiguity that we discuss in detail
in Section 3.

While the definitions carry over, it is not at all clear
which of the properties of the straight skeleton (such
as planarity, tree, f(e) is monotone, f(e) corresponds
to faces) carries over to the weighted version. This is
the main topic of the paper, and will be discussed in
Section 4.

3 Ambiguity of definition

Presume that we have an edge event where edge e2 dis-
appears, leaving its adjacent edges e1 and e3 to become
adjacent with common endpoint v. See Fig. 2. Some
elementary computation shows that if γ is the angle
spanned by e1 and e3 (on the side that the wavefront
propagates to), and α1 is the angle between e1 and the
arc traced by v, then

cotα1 =
cos γ + σ(e3)

σ(e1)

sin γ
. (1)

However, this equation only holds for sin(γ) 6= 0, i.e.,
if e1 and e3 are not parallel. Worse, as γ monotonically
approaches π, we may obtain two different limit cases:

lim
γ↗π

α1 = 0 lim
γ↘π

α1 = π, (2)

see Fig. 2. Hence, as already alluded to by Kelly and
Wonka [10] and Huber [8], the definition of the weighted
straight skeleton is ambiguous whenever parallel wave-
front edges with different weights are adjacent. In case
σ(e1) = σ(e3) and γ = π, we obtain limγ→π cotα1 = 0
by de l’Hôpital’s rule, and hence α1 = π/2. Similarly
α1 = π/2 if σ(e1) = −σ(e3) and γ = 0. But in all other
cases, there is no unique definition of a straight skeleton.
Note that the situation can become even more compli-
cated if multiple parallel wavefront edges with different
weights become consecutive, as in Fig. 3.

We see a few canonical ways to resolve this situation:

• The wavefront edge(s) with maximum speed dom-
inate all involved events.

• The wavefront edge(s) with maximum absolute
speed dominate all involved events. In case of a
tie (e.g. one edge has speed +1, another one has
speed −1, and all others have speed in [−1,+1])
the inward-moving edge(s) win.

• The wavefront edge(s) with maximum absolute
speed dominate all involved events. In case of a
tie the outward-moving edge(s) win.

• Three more options are as above with “maximum”
replaced by “minimum”.

We will describe the first resolution in more detail, the
others are similar. Assume (as in Fig. 3) that at some
time line ` contains part of the wavefront; say a maximal
contiguous part of the wavefront on ` consists of vertices
and edges v0, e1, v1, . . . , em, vm (in order). Also assume
for now that e1, . . . , em all approach ` from the same
half-plane. Let ei1 , . . . , eik be those edges among them
that maximize σ(eij). We create, for j = 1, . . . , k − 1,
a ghost vertex wij halfway between vij and vij+1−1.
Then replace the wavefront between v0 and vm by edges
(v0, wi1), (wi1 , wi2), . . . , (wik−2

, wik−1
), (wik−1

, vm), i.e.,
edges ei1 , . . . , eik “take over” all other edges in this part
of the wavefront. Edges ei1 , . . . , eik continue to propa-
gate (they all had the same speed), while all other edges
in e1, . . . , em disappear.

If not all edges on ` approach from the same half-
plane, then any non-empty line segment that is common
to two edges in opposite direction becomes an arc of
the weighted straight skeleton. We otherwise proceed as
above: the edge(s) with the maximum speed “take over”
all other adjacent edges of the wavefront that reside on
`.

4 Properties of the straight skeletons

In what follows, we will assume there never are two
parallel edges of different weights that become consec-
utive during an edge event. Under this assumption the
weighted straight skeleton is uniquely defined. But as
we show now, even then many seemingly natural prop-
erties do not hold. Table 1 lists all results.

Lemma 1 There exists a simple polygon P with
weights chosen from {+1,−1}, such that S(P, σ) has
crossings and cycles.

Proof. The polygon is shown in Fig. 4. �

4.1 Terrains and crossings

We now want to show that if the weights are positive,
then the straight skeleton has no crossing. For this (and
other claims later) it will help to study when the roof
model T (P, σ) is a terrain.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

15

25th Canadian Conference on Computational Geometry, 2013

Simple polygon Polygon with holes
Property σ ≡ 1 σ positive σ arbitrary σ ≡ 1 σ positive σ arbitrary
S(P) is connected X [1] X (Lem. 12) X (Lem. 11) X (Lem. 12) X (Lem. 12) × (Lem. 9)
S(P) has no crossing X [1] X (Lem. 4) × (Lem. 1) X (Lem. 4) X (Lem. 4) × (Lem. 1)
f(e) is monotone w.r.t. e X [1] × (Lem. 8) × (Lem. 8) X (as in [1]) × (Lem. 8) × (Lem. 8)
bd f(e) is a simple polygon X [1] X (Lem. 6) × (Lem. 7) X (as in [1]) × (Lem. 5) × (Lem. 5)
T (P, σ) is z-monotone X [1] X (Lem. 2) × (Lem. 3) X (Lem. 2) X (Lem. 2) × (Lem. 3)
S(P) has n(S(P))− 1 + h arcs X [1] X (Lem. 13) × (Lem. 1) X (Lem. 13) X (Lem. 13) × (Lem. 1)

Table 1: Results for a simple polygon and a polygon with h holes.

Figure 4: S(P, σ) of a simple polygon P may have cross-
ings and cycles. A wavefront is shown in grey. All edges
have weight +1, except the two bold edges, which have
weight −1.

Lemma 2 Let P be a polygon (possibly with holes). If
σ(e) > 0 for all wavefront edges e, then the roof model
T (P, σ) is a terrain and its z-projection equals P .

Proof. Because the weights are all positive, the wave-
front edges emanated by P move towards the interior
of P . After each event of WP,σ the trajectories of the
newly born wavefront vertices hence point to the area
within P not yet swept by the wavefront. Hence, no
wavefront vertex can ever reach a locus that has al-
ready been swept as this vertex would have met another
wavefront edge before that and the vertex would have
been annihilated. Therefore the wavefront WP,σ stays
within P and no locus of P is swept more than once by
the wavefront. On the other hand, each locus of P is
swept at least once, since otherwise the boundary of the
unswept region would be the wavefront, and hence not
empty yet. �

Lemma 3 There exists a simple polygon such that if all
edges are assigned weights in {+1,−1}, T (P, σ) is not
a terrain.

Proof. The example shown in Fig. 4 contains loci that
are swept more than once and hence T (P, σ) is not a
terrain. In fact, it can be easily extended such that
some loci are swept an arbitrary number of times. �

Lemma 4 Let P be a polygon (possibly with holes). If
σ(e) > 0 for all wavefront edges e, then S(P, σ) has no
crossings.

Proof. This holds by Lemma 2, since the locus p of
any crossing must have been covered at least twice by
the wavefront. But then the line parallel to the z-axis
through p would intersect T (P, σ) twice. �

4.2 Faces of edges

We later want to argue that under some assumptions the
straight skeleton is connected. To do so, we first study
some properties of the faces of edges. Recall that f(e) =⋃
t>0 e(t), where e(t) are the open line segments that

result from edge e at time t. Clearly f(e) is connected
(no fragment of e suddenly appears during a wavefront
process) and its boundary bd f(e) consists of arcs of the
straight skeleton.

Lemma 5 There exists a polygon P with holes, with
weights chosen from {1, 3}, such bd f(e) is not a simple
polygon.

Proof. Polygon P is shown in Fig. 5 (include the dotted
features), with edge e the bottommost horizontal edge.
During the wavefront process, edge e gets split when
it meets the hole. But since e moves faster than the
edges of the hole, two fragments of e later re-combine.
According to our definition of straight skeleton, a ghost
vertex is created that traces the arc a in Fig. 5. The
boundary of f(e), viewed as a polygon, contains arc a
twice and is not simple. �

Lemma 5 used a polygon with holes. Whether for
simple polygons a similar situation can arise depends
on whether the weights are positive or not.

Lemma 6 Let P be a simple polygon and σ be an as-
signment of positive weights to the edges of P . Then
bd f(e) is a simple polygon for all wavefront-edges e.

Proof. (Sketch) Note that f(e) is an open, simply-
connected set: whenever a fragment splits, the pieces
never re-merge due to the ghost-vertices. Hence bd f(e)

25th Canadian Conference on Computational Geometry, 2013

16

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

is a weakly simple polygon, and the only way that it
could be not simple is by having a point p that is inci-
dent to three or more edges of the boundary of f(e), see
Fig. 5. This can only happen if two fragments s1, s2 in
e(t) become adjacent in the wavefront. By tracing from
s1 and s2 back to e while residing inside f(e), we can
find a closed Jordan curve C inside cl f(e) that encloses
a point outside cl f(e).

For positive weights the roof model T (P) projects to
P (Lemma 2), so C ⊂ cl f(e) ⊂ P . Since P is simple,
any point inside C also belongs to P . Since some point
inside C does not belong to cl f(e), therefore some other
face f(e′) is inside C. But by planarity (Lemma 4)
then the edge e′ of this face is inside C as well. Since
C contains no edges of P , therefore edge e′ cannot be
connected to the edges at the exterior face of P along
edges of P . So P has a hole, a contradiction. �

Lemma 7 There exists a simple polygon P with
weights chosen from {−1,+1,+3} such that bd f(e) is
not a simple polygon for an edge e of P .

Proof. The polygon is shown in Fig. 6. �

If the polygon is simple and all weights are the same,
then bd f(e) is simple, because f(e) is monotone with
respect to the line through e [1]. We note here that
f(e) need not be monotone if we allow weights. This
is already obvious from Fig. 5 and 6, but may happen
even for simple polygons and positive weights.

Lemma 8 There exists a simple polygon P with
weights chosen from {1, 3} such that for one wavefront
edge e face f(e) is not monotone with respect to the line
through e.

Proof. The face f(e′) in Fig. 5 (omit the dotted fea-
tures) is not monotone. �

e

f(e)

e′

f(e′)

a

Figure 5: A polygon with hole may have a non-simple
face. A simple polygon may have a non-monotone face.
The dotted features are caused by the hole. The bold
edges have weight 3, the others have weight 1.

e

f(e)

Figure 6: A simple polygon where face f(e) (shaded) has
a non-simple boundary. One wavefront is depicted by
dotted lines. The bold edges have weight 3 and the two
vertical edges that form the corridor have weight −1.
All other edges have weight 1. The arc between the two
corridor edges geometrically coincides with other arcs.

4.3 Connectivity

The unweighted straight skeleton S(P) of a polygon P
with holes is always connected. In fact, S(P) is even of
the same homotopy type as P . The weighted straight
skeleton, however, need not even be connected.

Lemma 9 There exists a polygon P with holes such
that S(P, σ) is not connected.

Proof. If all weights are negative then S(P, σ) resides
in each component of R2 \ P . �

The following lemma serves as a tool to prove con-
nectedness in the following. The lemma basically says
that straight-skeleton features that are connected via
the wavefront at any time are also connected within the
final straight skeleton.

Lemma 10 Let St(P, σ) denote the straight-skeleton
features traced by WP until time t. If two points p, q ∈
St(P, σ) are path-connected on St(P, σ) ∪WP,σ(t) then
they are path-connected on S(P, σ).

Proof. We prove this lemma by induction on the events
of WP in chronological order. We need to check that
connectivity is maintained despite the changes of WP

caused by an event. An event may simply remove a col-
lapsed edge of WP (t) (edge event), remove a collapsed
component of WP (t) (edge event), split a component of
WP (t) (split event), or merge components (split event).
In any case a straight-skeleton node v is created to which
arcs are incident that were traced by the vertices of each
involved component of the wavefront. However, even if
the wavefront is split into multiple components, each
components remains connected to v by at least one arc
that is traced by a vertex of each component. That is,

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

17

25th Canadian Conference on Computational Geometry, 2013

an event never disconnects a component from the node
that is created by the event.5 �

Lemma 11 S(P, σ) is connected for simple polygons P .

Proof. This holds even for negative weights as the ini-
tial wavefront of P consists of only one connected com-
ponent. (Recall that infinite arcs are incident to a node
at infinity.) �

Lemma 12 S(P, σ) is connected for polygons with
holes P and positive weights.

Proof. Consider the wavefront emanating from some
hole. At some point, it either merges with some other
wavefront during a split event; then the claim holds by
induction (and Lemma 11) since WP,σ then has fewer
components. Or it collapses during an edge event. But
this is impossible, since for positive weights the wave-
front of the hole moves towards the inside of P and
hence encloses ever more area. �

4.4 Bounds on the edges

It is well-known that for simple polygons, the straight
skeleton is a tree. It is not hard to verify that for positive
weights, also the weighted straight skeleton is a tree.
We show an even stronger statement, which bounds the
number of edges even in the presence of holes.

Lemma 13 Let P be a polygon with h holes, and let σ
be an assignment of positive weights to the edges of P .
Then S(P) has n(S(P)) + h− 1 arcs, where n(S(P)) is
the number of nodes of S(P) plus the number of vertices
of P .

Proof. By Lemma 2, T (P, σ) is a terrain that projects
to P . Denote by P the polyhedron that is enclosed by
T (P) and T (P) mirrored at the plane z = 0. Observe
that P is z-monotone as T (P) is z-monotone and its
z-projection is P . Hence P has exactly one handle for
each hole of P , so the genus of P is h.

Let n(P) (n(P), resp.) be the number of vertices of
P (P, resp.) and m(P) (m(P), m(S(P)), resp.) be the
number of edges/arcs of P (P, S(P), resp.). We have
n(P) = 2n(S) − n and m(P) = 2m(S) + n. Also note
that the number f(P) of faces of P is 2m(P) = 2n(P),
since every edge of P gives rise to one face of the roof
model, and hence two faces of P.

Since S(P) is connected by Lemma 12, so is the graph
of P and Euler’s formula applies. Since P has genus h,
therefore n(P) −m(P) + f(P) = 2 − 2h. This implies
2n(S) − n − 2m(S) − n + 2n = 2 − 2h, hence m(S) =
n(S)− 1 + h as desired. �

5Note that adding ghost vertices when fragments of the same
edge re-combine is crucial here, otherwise no arc would emanate
from the created skeleton node v.

5 Conclusion

In this paper, we studied properties of weighted straight
skeletons, and shows that many seemingly natural prop-
erties do not necessarily hold for it, especially if negative
weights are allowed. Hence caution must be used when
applying weighted straight skeletons. We suspect that
many of the applications have a special situation (e.g.
convex polygons [4] or weights defined in a special way
[5]) that imply that weighted straight skeletons behave
“just like” the unweighted ones, but this remains a topic
for future study.

References

[1] O. Aichholzer, D. Alberts, F. Aurenhammer, and
B. Gärtner. Straight Skeletons of Simple Polygons. In
Proc. 4th Internat. Symp. of LIESMARS, pages 114–
124, Wuhan, P.R. China, 1995.

[2] O. Aichholzer and F. Aurenhammer. Straight Skele-
tons for General Polygonal Figures in the Plane. In
A. Samoilenko, editor, Voronoi’s Impact on Modern
Science, Book 2, pages 7–21. Institute of Mathematics
of the National Academy of Sciences of Ukraine, Kiev,
Ukraine, 1998.

[3] O. Aichholzer, H. Cheng, S. Devadoss, T. Hackl, S. Hu-
ber, B. Li, and A. Risteski. What Makes a Tree a
Straight Skeleton? In Proc. 24th Canad. Conf. Com-
put. Geom.(CCCG’12), pages 267–272, Charlottetown,
P.E.I., Canada, Aug. 2012.

[4] F. Aurenhammer. Weighted Skeletons and Fixed-Share
Decomposition. Comput. Geom. Theory and Appl.,
40(2):93–101, July 2008.

[5] G. Barequet, D. Eppstein, M. T. Goodrich, and A. Vax-
man. Straight Skeletons of Three-Dimensional Polyhe-
dra. In Proc. 16th Annu. Europ. Symp. Algorithms,
pages 148–160, Karlsruhe, Germany, Sept. 2008.

[6] D. Eppstein and J. Erickson. Raising Roofs, Crash-
ing Cycles, and Playing Pool: Applications of a Data
Structure for Finding Pairwise Interactions. Discrete
Comput. Geom., 22(4):569–592, 1999.

[7] J.-H. Haunert and M. Sester. Area Collapse and Road
Centerlines Based on Straight Skeletons. GeoInformat-
ica, 12:169–191, 2008.

[8] S. Huber. Computing Straight Skeletons and Motorcycle
Graphs: Theory and Practice. Shaker Verlag, Apr. 2012.
ISBN 978-3-8440-0938-5.

[9] T. Kelly. http://code.google.com/p/campskeleton/.

[10] T. Kelly and P. Wonka. Interactive Architectural Mod-
eling with Procedural Extrusions. ACM Trans. Graph.,
30(2):14:1–14:15, Apr. 2011.

[11] R. Laycock and A. Day. Automatically Generating
Large Urban Environments Based on the Footprint
Data of Buildings. In Proc. 8th Symp. Solid Modeling
Applications, pages 346–351, Seattle, WA, USA, June
2003.

25th Canadian Conference on Computational Geometry, 2013

18

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Medial Residues of Piecewise Linear Manifolds

Erin W. Chambers∗ Tao Ju† David Letscher‡

Abstract

Skeleton structures of objects are used in a wide variety
of applications such as shape analysis and path plan-
ning. One of the most widely used skeletons is the me-
dial axis, which is a thin structure centered within and
homotopy equivalent to the object. However, on piece-
wise linear surfaces, which are one of the most common
outputs from surface reconstruction algorithms, natu-
ral generalizations of typical medial axis definitions may
fail to have these desirable properties. In this paper, we
propose a new extension of the medial axis, called the
medial residue, and prove that it is a finite curve net-
work homotopy equivalent to the original surface when
the input is a piecewise linear surface with boundary.
We also develop an efficient algorithm to compute the
medial residue on a triangulated mesh, building on pre-
viously known work to compute geodesic distances.

1 Introduction

The medial axis of an object is a skeletal structure orig-
inally defined by Blum [1]. It is the set of points having
more than one closest points (under the Euclidean dis-
tance metric) on the boundary of the object. The medial
axis is centered within the object, homology equivalent
to the object if it is an open bounded subset of Rn [6],
and (at least) one dimension lower than that of the ob-
ject. These properties make the medial axis ideal for
many applications including shape analysis and robotic
path planning.

We are interested in defining a similar skeletal struc-
ture on a surface S (with boundary) that inherits the
properties of the medial axis. Such a structure could
then be used for applications such as shape analysis of
surface patches as well as path planning in non-planar
domains. We are particularly interested in the case
when S is piecewise smooth, which is more represen-
tative of typical outputs of discrete surface reconstruc-
tion algorithms (e.g., triangulated meshes) than globally
smooth surfaces.

∗Department of Mathematics and Computer Science, Saint
Louis University, echambe5@slu.edu. Research supported in part
by NSF grant (CCF 1054779).

†Department of Computer Science and Engineering, Washing-
ton University in St. Louis, taoju@cse.wustl.edu. Research sup-
ported in part by NSF grant (IIS 0846072).

‡Department of Mathematics and Computer Science, Saint
Louis University, letscher@slu.edu.

A natural approach would be to replace the Euclidean
distances in the medial axis definition by geodesic dis-
tances over S [12]. Interestingly, as we will show in
this paper (Section 3), several equivalent definitions of
the medial axis may yield different structures when S
is only piecewise smooth, and none of these definitions
guarantees the two essential properties of the medial
axis, namely being homotopy equivalent to the original
surface and codimension one.

In this paper, we propose a new extension of the me-
dial axis onto a piecewise linear surface S with bound-
ary, which we call the medial residue (Section 4), and
prove that the structure is a finite curve network that
is always homotopy equivalent to S (Section 5). We
also describe a quadratic-time algorithm to compute
this structure on a piecewise flat surface with bound-
ary embedded in Euclidean space (Section 6).

2 Background and Definitions

We assume the reader is familiar with classical defini-
tions of manifold topology, which can be found in books
such as [5, 9, 2]. We shall only review definitions that
are specifically relevant to our work.

A piecewise linear surface is a 2-manifold (with
boundary) with a piecewise linear structure, whose pre-
sentation consists of a finite number of triangles glued
together along with an intrinsic distance metric on each
triangle that is a linear map. Our algorithmic results
work in a more restricted class of piecewise flat surface,
where the piecewise linear structure comes from an em-
bedding of a triangulation of M into R3, so that each
triangle will be isometric to a triangle in R2.

Given a vertex v of a piecewise linear surface which is
contained in more than two triangles, let {f1, f2, . . . , fk}
be the faces to which v belongs, where θi(v) is the inte-
rior angle of fi at vertex v. The total angle is the sum of
all of these angles, θ(p) =

∑
i θI(v). The curvature at v

is the value 2π−θ(p). A vertex is said to be convex, flat
or concave if its curvature is positive, zero or negative.

A curve (or path) is (the image of) a map p : [0, 1] →
M ; the length of the curve is generally the length of the
image in M . A curve is a geodesic if it is locally short-
est; in other words, no perturbation of the curve will
result in a shorter curve. On a piecewise linear surface,
geodesics and shortest paths are themselves piecewise
linear maps. We say a curve γ bisects a piecewise dif-
ferentiable curve X at time t if γ(t) ∈ X and the two

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

19

25th Canadian Conference on Computational Geometry, 2013

!

!

!

Figure 1: Left: Illustration of left and right curve angles.
Right: at a concave vertex p, there may be infinitely
many geodesic paths to the boundary (such as γ1, γ2, γ3)
sharing a common outgoing direction, but only one of
them (γ2) can be straight. Shaded region is the shadow
rooted at p, made up of points whose shortest paths to
the boundary go through p.

angles bounded by γ and the tangent of X at γ(t) are
equal. The curve angles θl and θr of a point p on a
piecewise linear curve γ are the two angles to the left
and right of the curve at p, where θl + θr is the total
vertex angle at that point p (see Figure 1 left).

A curve γ is considered straight if for each point p ∈ γ,
the left and right curve angles are equal. This defini-
tion was introduced by Polthier and Schmies [10]. It is
worth noting that Polthier and Schmies used the term
“straight geodesic”, and not simply straight. However,
their straight geodesics might in fact not be geodesic (for
example, it can go through a convex vertex). In this pa-
per, the term straight geodesic will be used to denote
a curve that is both straight and geodesic. Note that
although there may be infinitely many geodesic paths to
the boundary that go through a concave vertex p, only
one of them is straight (see Figure 1 right). We call the
region made up of points whose shortest paths to the
boundary go through p the shadow rooted at p (shaded
region in Figure 1 right).

3 The Medial Axis

Let X be a shape in Euclidean space. There are a va-
riety of equivalent ways in which the medial axis of X
could be defined. We will consider the following three:

1. Most commonly, the medial axis is defined as
the set of points without a unique closest point
on the boundary of the shape: MCP = {x ∈
X |! unique y ∈ ∂X with d(x, ∂X) = d(x, y)}

2. Alternatively, the medial axis is the set of points
without a unique shortest path to the boundary of
the shape: MSP = {x ∈ X | ∃ shortest paths γ1 #=
γ2 from x to ∂X}

3. The medial axis is also the set of points with-
out a unique direction for shortest paths to the
boundary of the shape. We say two paths γ1 and
γ2 with γ1(0) = γ2(0) start in the same direc-
tion if there exists some ε > 0 such that for all

Figure 2: Example where MCP (red) is not homotopy
equivalent to the surface (but MSP and MSPD are).

t < ε, γ1(t) = γ2(t) (or the curves can be repa-
rameterized so that this holds): MSPD = {x ∈
X | ∃ shortest paths γ1, γ2 from x to ∂X that do
not start in the same direction}

We note that the above definitions are all equiva-
lent when X is a smooth manifold in any dimension,
but when X is piecewise smooth, these three defini-
tions yield different structures. More precisely, if X is
any path metric space (where distances are realized by
shortest paths), then MCP ⊂ MSP and MSPD ⊂ MSP .
The fairly straightforward proof of this can be found in
the full version of this paper. More importantly, there
are situations where none of the three definitions sat-
isfy the desired properties of being one dimension lower
than and homotopy equivalent to X .

First, consider the heart-shaped surface in Figure 2,
which has an interior hole on top of a cylindrical pro-
trusion. Note that MCP excludes points like x in the
picture, which has a single closest point q on the bound-
ary (a C0 corner point) but two shortest paths to q that
go around the cylinder. As a result, MCP consists of
two disconnected components. On the other hand, x is
included in MSP and MSPD.

Next, consider the oval-shaped surface in Figure 3
(a). The surface has a concave vertex v with a large
negative curvature that happens to have two shortest
paths to two distinct boundary points (a non-generic
situation). Since each point in the shadow rooted at v
(shaded region in (b)) would have two distinct shortest
paths to the boundary, both MCP and MSP include
the 2-dimensional shadow region. On the other hand,
since any point in the shadow has a unique shortest
path direction (that follows the geodesic to v), the en-
tire shadow is excluded in MSPD, and MSPD has an
isolated vertex v that is disconnected from the rest of
MSPD.

4 The Medial Residue

We now define our structure, called the medial residue,
which is equivalent to existing definitions of the medial

25th Canadian Conference on Computational Geometry, 2013

20

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

!"# !$#

Figure 3: Top: a surface with a highly concave central
vertex (a) and a zoom-in view (b). Bottom: different
medial axis extensions (red): MCP and MSP are 2-
dimensional, MSPD has an isolated vertex, and MR is
1-dimensional and homotopy equivalent to the surface.

axis on a smooth manifold but possesses the desired
properties of homotopy equivalence and co-dimension
one on a piecewise linear surface. To make it clear that
we are considering surfaces and not arbitrary manifolds
from now on, we will use S instead of X to represent
the shape.

We note that our medial residue is well defined on
piecewise smooth manifolds, and that the majority of
our results hold in these settings. However, our proof
about homotopy and dimension holds only for piecewise
linear surfaces, although we conjecture that the proper-
ties hold in more general settings as well.

The starting point of our definition is MSPD, which
is more complete than MCP in our first example (Fig-
ure 2) and remains low dimension in the second example
(Figure 3). Our goal is to add low-dimensional compo-
nents to MSPD to restore the homotopy equivalence.
Observe that, in our second example, the disconnection
in MSPD takes place in the shadow rooted at a con-
cave vertex v ∈ MSPD, where the shortest paths from
a point x in the shadow to the boundary would agree
for some time and then diverge at v. Since we cannot
include the entire shadow, which is 2-dimensional, we
wish to keep one representative curve. A natural choice
of such curve would be one that is “centered” with re-
spect to the two diverging shortest paths at v. More
precisely,

Definition 1 The medial residue, MR consists of any
point x ∈ S such that either x ∈ MSPD or where there
are two distinct shortest paths from x to the bound-
ary, γ1 and γ2, parameterized by arc length, which
first intersect MSPD at v = γ1(t) = γ2(t) such that

!

!

!

!

"#!

!"# !$#

Figure 4: (a): illustration for the definition of a point
x ∈ MR \ MSPD. (b): a generic picture of MR at
a concave vertex with multiple shortest path directions
(solid line is MSPD and dotted lines are MR\MSPD).

γ = γ1([0, t]) = γ2([0, t]) is straight and bisects the an-
gle between the tangents of the two shortest paths from
v to the boundary that are nearest to γ on its left and
right side.

The definition for a point x ∈ MR \ MSPD is illus-
trated in Figure 4 (a). Note that, by definition, every
point on the common segment γ of the shortest paths
from x to the boundary is also included in MR\MSPD.
In fact, MR\MSPD consists of straight geodesics that
bisect shortest path directions at concave vertices of
MSPD. Figure 4 (b) gives a generic picture of MR at
a concave vertex of MSPD. The multiple shortest path
directions divide the local neighborhood of the vertex
radially into sectors. Each sector is bisected either by
a curve in MSPD (solid red line), if the sector’s inte-
rior angle is less than 2π, or otherwise by a curve in
MR \ MSPD (dotted red line).

Since any point in MR \ MSPD has two distinct
shortest paths, we have MSPD ⊂ MR ⊂ MSP . Since
both MSPD and MSP are equivalent when S is a
smooth manifold, this implies that our medial residue
is also equivalent to the other definitions we mentioned
earlier in a smooth manifold.

5 Medial Residue on Piecewise Linear Surfaces

In this section, we give sketches of proofs of Theo-
rem 2 and the related lemmas, showing that the me-
dial residue is homotopy equivalent to the original sur-
face; full proofs of each appear in the full version of this
paper. As previously mentioned, while we only prove
this for piecewise linear surfaces (the main focus of this
work), we conjecture that it also holds for piecewise
smooth surfaces and higher dimensional manifolds as
well.

Theorem 2 If S is a piecewise linear surface with
boundary then the medial residue of S is a finite graph
that is a deformation retract of S.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

21

25th Canadian Conference on Computational Geometry, 2013

To prove this theorem, we will construct a deforma-
tion retract by incrementally “eroding” from the bound-
ary, stopping at potentially interesting points along the
way. To begin this process, we must understand what
a neighborhood of the boundary of S looks like. Let
St = {x ∈ S | d(x, ∂S) ≥ t}; in other words, St is the
set of points whose distance from the boundary of S
is no less than t. The boundary of St is precisely the
points with distance t to ∂S.

Our first step is to prove that shortest paths to the
boundary are of finite complexity; in other words, they
cannot cross the triangulation an unbounded number
of times. If our PL surface is a flat embedding in R3,
this will follow easily since edges in the triangulation
are shortest paths (and no two shortest paths can cross
twice), but we must also have a bound for arbitrary PL
surfaces. We note that variants of the following proof
have been used in the normal surface community for at
least 20 years; however, we are unaware of any published
reference for such a bound on the number of possible
intersections, so we have included it for completeness.

Proposition 3 The number of intersections between
any shortest paths and the underlying triangulation of

an arbitrary PL-surface is ≤ |E|· 2π
δ ·maxe∈E

l(e)
ce

, where
δ is the minimum angle at any vertex of the triangula-
tion, l(e) is the length of the edge e, and c(e) is the
minimum distance between any pair of points on oppo-
site edges of the quadrilateral formed by the two faces
adjacent to an edge e.

Next, we want to understand what the boundary of
the surface looks like at each stage of the erosion pro-
cess. Locally, ∂St consists of a union of straight edges
and circular arcs. The straight edges correspond to
points whose shortest paths to the boundary do not pass
through a vertex of the triangulation, and the circular
arcs to points whose shortest paths pass through a ver-
tex. The previous proposition can be used to show that
there are finitely many arcs and lines segments in ∂St.

Lemma 4 Given a piecewise linear S, for all but
finitely many values of t, ∂St is a curve. In the cases
where ∂St is not a curve, ∂St is a graph.

Notice that MSPD consists of points that have mul-
tiple shortest paths directions to the boundary. The
above results allow us to bound the combinatorial types
of these shortest paths. The points equidistant from
the boundary in each shortest path direction are built
locally from lines segments and circular arcs. So in a
small neighborhood MSPD consists of the intersection
of two curves that are either lines or circles. Hence,
MSPD is built from lines, circles and parabolas. This
leads to the following result:

Lemma 5 If S is piecewise linear, then MSPD is a
finite graph.

Now we are ready to describe the deformation re-
tract, which immediately implies that MR is homotopy
equivalent to the original PL surface. We will build our
deformation retract based on an erosion process which
intuitively “pauses” at times {t1, . . . , tk}, where each ti
corresponds to one or more of these three possibilities:

1. There is a vertex v of the triangulation of S with
d(v, ∂S) = ti.

2. ∂Sti is not a disjoint union of curves but instead
forms a graph.

3. There is a vertex v of MSPD with d(v, ∂S) = ti.

The previous lemmas imply that the set of ti’s is fi-
nite. We will consider the sets Sti based on our level
sets at times {t1, . . . , tk} described above, as well as the
“slice” between two of our level sets, Ci = (Sti \ Sti+1).
The following lemma actually shows how we can con-
struct the deformation retract.

Lemma 6 For each ti, Sti+1 ∪ MR is a deformation
retract of Sti ∪ MR.

Proof. Consider the slice region Ci between two level
curves. One of several cases could occur depending on
what happens on the boundaries of this region, as illus-
trated in Figure 5.

The first case is that portions of the boundary ∂Sti

meet at a convex corner. This is shown in Figure 5(a),
where the shortest paths are shown on the left and the
deformation retract on the right. At such a corner point
v, there is a segment of MSPD going from ∂Sti to
∂Sti+1 , which bisects the convex corner at v. Short-
est paths from points on this segment hit ∂Sti near v.
The deformation retract follows these curves.

The second case is that portions of the boundary ∂Sti

meet at a concave corner, see Figure 5(b). Note that
the concave corner v must contain a shadow rooted at v
where there is a cone of shortest paths going through v.
By definition of MR, if v ∈ MR then the bisector of
the shadow will be in MR\MSPD. However, the defor-
mation retract cannot simply follow the shortest paths
exactly, as this would not be continuous at v; observe in
the figure that points near v are taken to opposite sides
of the bisector and do not move continuously. Instead,
very near this point, the deformation retract will take
points to either the bisector or the full shadow, as shown
on the right in Figure 5(b). Note that the reparameter-
ization continuously deforms points from ∂Sti onto the
union of ∂Sti+1 and MR.

In the third case, consider points v ∈ ∂Sti where the
∂Sti is smooth. A single shortest path passes through
v. If v /∈ MR, the deformation retract simply follows
this path backwards, as shown in Figure 5(c). Other-
wise, if v ∈ MR, there is a segment of a bisector in
MR that contains v and continues in a direction that

25th Canadian Conference on Computational Geometry, 2013

22

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

!"# !$# !%# !&#

Figure 5: The shortest paths (black arrows), medial residue (red lines) and deformation retract (blue arrows) at the
points in the slice region.

is perpendicular to ∂Sti . In this situation (as in the
second case above), the shortest paths cannot be used
as a deformation retract as it would not be continuous
at that v. However, a similar re-parameterization as in
the second case can be used in a local neighborhood of
this portion of MR to construct a deformation retract,
as shown in Figure 5(d).

Note that it is possible that ∂Sti is a graph, in which
case the deformation retract described in the three cases
above can be applied to individual components of Ci

that are incident to a point v ∈ ∂Sti .
!

Finally, to show that MR is a finite graph, we observe
that the set of concave vertices in MSPD and the set of
sectors around each such vertex are both finite on a PL
surface, which implies that MR \ MSPD consists of a
finite number of straight geodesic paths that bisect these
sectors. Together with our previous lemma that MSPD

is a finite graph, this completes the proof of Theorem 2.

6 Algorithm

We next give an overview of our algorithm to compute
the medial residue on a piecewise flat surface with trian-
gle faces in R3, a commonly used discretization in many
applications. (Further details of the algorithm can be
found in the full version of the paper.)

We first recall some essential properties of shortest
paths on a triangulated surface S [7, 4]. We assume the
boundary ∂S consists of vertices and edges of some tri-
angle faces. A shortest path p that connects any point

x ∈ S to the boundary ∂S originates either from a ver-
tex or an interior point of an edge. In the latter case, p
is orthogonal to that originating edge. The path p may
go through some vertex of S, and if it does, both the
left and right curve angles made by p at that vertex are
greater than or equal to π. Away from the vertices, p
is a straight line segment after unfolding the triangles
that p goes through onto a plane. We call the last vertex
visited by p before reaching x the root of p. If p does
not go through any vertex, the root is the originating
vertex or edge on ∂S. The last edge sequence of p is the
(possibly empty) sequence of edges that p goes through
between the root and x.

The starting point of our algorithm is a subdivision of
each triangle face into regions where the shortest paths
have a common combinatorial structure. Given a face
f , a root r (being either a vertex or edge), and an edge
sequence E, a cell is the set of points x ∈ f such that
some shortest path from x to ∂S has root r and last
edge sequence E. The curve segments that bound the
cells (including both interior segments on f and the seg-
ments on the edges of f) form a graph, which is called
the subdivision graph. The subdivision can computed
using an easy extension of existing methods [8, 7, 4] in
O(n2 log n) time and O(n2) space.

Given the subdivision graph, our algorithm first iden-
tifies a subset of the graph as MSPD, then adds in the
bisectors to form the complete MR. Both steps can be
done in O(n2) time and space, where n is the number
of triangles of the surface. The overall process, taking
into account the creation of the face subdivision, can be

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

23

25th Canadian Conference on Computational Geometry, 2013

done in O(n2 log n) time and O(n2) space. We assume
exact arithmetic is used to precisely compute distances
and angles.

6.1 Computing MSPD

First, we observe two relations between MSPD and a
subdivision graph:

Lemma 7 MSPD is a subset of the subdivision graph.

Lemma 8 Let h be a segment in the subdivision graph,
then either all interior points of h lie in MSPD or none
of them does.

The algorithm simply goes through each element (a ver-
tex or a segment open at its ends) of the subdivision
graph. For each element l, it picks an arbitrary point
x ∈ l and gathers shortest path directions at x by exam-
ining each incident cell of l. l is included in MSPD as
soon as two distinct shortest path directions are found.

Since computing the shortest path direction given a
cell takes constant time, the complexity of the algorithm
is proportional to the number of pairs of an element
and an incident cell, which is linear to the number of
elements in the subdivision graph. The algorithm uses
a data structure that maintains adjacency between cells
and subdivision graph elements, which is again linear to
the complexity of the graph. Hence computing MSPD

can be done in O(n2) time and O(n2) space.

6.2 Computing MR \ MSPD

We use a tracing algorithm to compute bisectors that
make up MR \ MSPD. For each sector bounded by
shortest path directions at some concave vertex v ∈
MSPD, we start tracing a straight and shortest path
from v in the bisecting direction of the sector. Tracing
proceeds in a cell-by-cell manner, creating straight line
segments within each cell and maintaining straightness
while marching to the next cell. Tracing ends when the
path hits a segment or vertex of the subdivision graph
that belongs to MSPD.

Tracing within a cell involves intersecting a line with
several low-degree algebraic curves. Since the intersec-
tion of a cell with a shortest path to the boundary is
a single line segment [8], tracing in a cell can be done
in time linear to the number of segments of the cell.
Marching from one cell to the next can be done in con-
stant time using an adjacency structure. To bound the
complexity of tracing all bisectors, the key is to observe
that each cell can contain a non-trivial portion of at
most one bisector. This is because only a cell whose
shortest paths to the boundary are rooted at some ver-
tex may contain a bisector rooted at the vertex, and the
angle made by any two bisectors rooted at a vertex is
at least 2π. So the total tracing time for all bisectors

is bounded by the sum of number of segments over all
cells, which is O(n2). Tracing uses O(n2) space since
it adds only a constant amount of additional data per
element of the subdivision graph.

References

[1] H. Blum. A transformation for extracting new de-
scriptors of form. Models for the Perception of
Speech and Visual Form, pages 362–80, 1967.

[2] Manfredo P. Do Carmo. Differential Geometry of
Curves and Surfaces. Prentice Hall, 1976.

[3] Jeff Erickson and Amir Nayyeri. Tracing com-
pressed curves in triangulated surfaces. In Pro-
ceedings of the 2012 symposuim on Computational
Geometry, SoCG ’12, pages 131–140, New York,
NY, USA, 2012. ACM.

[4] M. Fort and J.A. Sellares. Generalized source
shortest paths on polyhedral surfaces. In Proceed-
ings of the 23rd European Workshop on Computa-
tional Geometry, pages 186–189, March 2007.

[5] Allen Hatcher. Algebraic Topology. Cambridge Uni-
versity Press, 2002.

[6] André Lieutier. Any open bounded subset of Rn

has the same homotopy type as its medial axis.
Computer-Aided Design, 36(11):1029 – 1046, 2004.
Solid Modeling Theory and Applications.

[7] Joseph S. B. Mitchell, David M. Mount, and Chris-
tos H. Papadimitriou. The discrete geodesic prob-
lem. SIAM J. Comput., 16(4):647–668, August
1987.

[8] David Mount. Voronoi diagrams on the surface of
a polyhedron. Technical report, Dept. of Computer
Science, Univ. of Maryland, Baltimore, MD, 1985.

[9] James Munkres. Topology. Pearson, 2000.

[10] Konrad Polthier and Markus Schmies. Straight-
est geodesics on polyhedral surfaces. In ACM SIG-
GRAPH 2006 Courses, SIGGRAPH ’06, pages 30–
38, New York, NY, USA, 2006. ACM.

[11] Micha Sharir. Intersection and closest-pair prob-
lems for a set of planar discs. SIAM J. Comput.,
14(2):448–468, 1985.

[12] F.-E. Wolter and K.-I. Friese. Local and global ge-
ometric methods for analysis interrogation, recon-
struction, modification and design of shape. In Pro-
ceedings of the International Conference on Com-
puter Graphics, CGI ’00, pages 137–151, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

25th Canadian Conference on Computational Geometry, 2013

24

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Morpion Solitaire 5D: a new upper bound of 121 on the maximum score

Akitoshi Kawamura∗ Takuma Okamoto† Yuichi Tatsu† Yushi Uno§ Masahide Yamato†

Abstract

Morpion Solitaire is a pencil-and-paper game for a single
player. A move in this game consists of putting a cross
at a lattice point and then drawing a line segment that
passes through exactly five consecutive crosses. The
objective is to make as many moves as possible, starting
from a standard initial configuration of crosses. For one
of the variants of this game, called 5D, we prove an
upper bound of 121 on the number of moves. This is
done by introducing line-based analysis, and improves
the known upper bound of 138 obtained by potential-
based analysis.

Keywords: pencil-and-paper game, lattice points, line-
based analysis.

1 Introduction

Morpion Solitaire, also known as Join Five, is a game
played alone with a pencil and paper, and it is popular
in several countries [4]. A move in this game consists of
drawing a cross and a line segment on an infinite square
lattice. The line segment has to pass through exactly
five consecutive crosses including the one that has just
been placed. The objective is to make as many moves
as possible starting from a given initial configuration.
We call the number of moves the score. There are two
variants of this game according to how two line segments
can touch each other.

Demaine et al. [6] studied generalizations of the game
and their computational complexity, and show that a
generalized Morpion Solitaire is NP-hard and that its
maximum score is hard to approximate. Another target
of interest is the maximum scores or their lower and
upper bounds. Recently, computing maximum scores
was used as a test problem to evaluate the effectiveness
of the Monte-Carlo tree search method, which has been
attracting rising attention as a promising approach in
game programming [5, 9].

In this paper, we focus on the 5D variant of the
game, and show improved upper bounds on the maxi-
mum score. We first show that the known upper bound

∗Department of Computer Science, University of Tokyo,
Japan. kawamura@is.s.u-tokyo.ac.jp
†Graduate School of Science, Osaka Prefecture University,

Japan. {ss301002,sr301023,sr301036}@edu.osakafu-u.ac.jp
§Graduate School of Science, Osaka Prefecture University,

Japan. uno@mi.s.osakafu-u.ac.jp

2
1 3

Figure 1: The standard initial board layout for Morpion
Solitaire 5D and 5T, and an example of the first three moves.
Each cross placed in these moves is denoted by a number
surrounded by a circle. Move 3 is allowed in 5T (touching)
but not in 5D (disjoint).

of 138 can be improved to 136 by pushing on the ex-
isting potential-based approach. Next we introduce a
line-based approach and further improve the bound to
121. We also try to organize and present related re-
sults, since there are relatively few research papers on
this topic.

2 Rules and Records

2.1 Rules

Morpion Solitaire is played on an infinite square lattice.
Initially 36 crosses are drawn on lattice points so that
they form a large cross shape with edge length 4 as
shown in Figure 1. In this figure, a cross is denoted by
a circle. (In this paper, the length of a line segment
means the number of crosses covered by it.)

A move consists of the following two steps applied in
this order. The objective of this game is to maximize
the number of moves.

1. Draw a new cross on a lattice point which is empty
(no cross exists) on the current board.

2. Draw a segment of length 5 (called a line) that
passes through exactly five consecutive crosses in-
cluding the one drawn in step 1 of this move.
Here, the line can be drawn in either one of the
four directions, vertical, horizontal, or diagonal.
Two lines in the same direction may not overlap.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

25

25th Canadian Conference on Computational Geometry, 2013

There are two variants of this game depending on
whether two lines in the same direction can touch (5T)
or have to be disjoint (5D) (Figure 1). We mainly dis-
cuss about 5D in this paper.

When a line L passes a cross C, we say that L covers
the cross or the lattice point on which it is drawn. We
sometimes call a board after move N a board at move
N . Also we sometimes denote a cross and a line drawn
in move N by CN and LN , respectively.

2.2 Records

The above definition of the game can be extended to αD
and αT, where the lines have length α and the edges of
the large cross in the initial configuration have length
α − 1, however, the maximum scores are known for all
variants except α = 5. For 3T and 3D, the maximum
scores are not bounded, as there are sequences of moves
that can be repeated infinitely [6]. For 6T and 6D, we
can easily see that the maximum score is 12. For 4T
and 4D, there used to be gaps between the maximum
achieved scores and the upper bounds in the past, but
in 2007, 62 and 35 moves were achieved for 4T and
4D, respectively [7], and these scores were proved to be
optimal in 2008 [4].

Table 1 [4] shows the current maximum scores of 5T
and 5D. We briefly explain how the records of these two
variants have been developed.

5T. Bruneau achieved 170 in 1976 by hand [2]. In
2010, by computer, Akiyama, Komiya and Kotani [1]
used Monte-Carlo tree search to achieve 145 and 146,
which were still less than human’s record at that time.
From 2010 to 2011, also by computer, Rosin achieved
172, beating human’s record [3]. Rosin [9] improved the
record to 177 in 2011, and the current record is 178
[10]. An upper bound of 705 on the maximum score is
known [6].

5D. According to Demaine et al. [6], 68 moves was
achieved by hand in 1999. Cazenave [5] established 80
in 2008, and then Rosin [9] improved it to 82 in 2010,
both by computers. As for upper bounds, Demaine et
al. [6] showed 141 in 2006 [6] and Karjalainen showed
138 in 2011 [8].

Recent records of maximum scores of both 5T and
5D were obtained by computers. The framework used
for this was Monte-Carlo tree search or its extensions,

Table 1: Records on Morpion Solitaire 5T and 5D: their
maximum achieved scores and proven upper bounds.

game type best achieved score upper bound

5T 178 705
5D 82 138

which are known to produce excellent results in design-
ing computer programs, for example, for playing Shogi
or Go against humans.

Hereafter, in this paper, we focus only on 5D variant
and aim to improve the upper bound on its maximum
score, which is known to be 138.

3 Potential-based Analysis of Upper Bounds

The known upper bound of 138 on the maximum score
of Morpion Solitaire 5D is obtained by arguments us-
ing ‘potentials’. In this section, we explain potentials
and the related results, and then show that the upper
bound can be improved to 136 by a more detailed anal-
ysis based on this approach.

3.1 Preceding Research

The notion of potential in the analysis of Morpion Soli-
taire seems to have been originally introduced in folklore
discussions and was used by Demaine et al. [6]. The po-
tential of a cross on a board is the number of additional
lines that can cover it. Since a cross can be covered by
at most four lines (in the vertical, horizontal and two di-
agonal directions), the potential of a cross C is formally
given by

4− (number of lines that cover C).

We define the total potential of a board to be the sum
of the potentials of all crosses on that board.

Now we can observe the following three facts about
Morpion Solitaire 5D.

Observations

(i) The total potential of the initial board is 144.
(ii) The total potential decreases at least by 1 in every

move.
(iii) At any time, playing the next move requires at

least a total potential 4.

We have (i) because initially there are 36 crosses, each
of which has potential 4. We have (ii) because step 1 of
a move in 5D adds 4 to the total potential, and step 2
decreases the potential by 5.

Demaine et al. [6] showed the following upper bound
based on the above three observations.

Theorem 1 ([6]) The number of moves in Morpion
Solitaire 5D cannot exceed 141.

To see this, let M be the maximum score (the number
of moves). The total potential after M − 1 moves must
be at least 4, that is, 144− (M − 1) ≥ 4.

Karjalainen [8] improved this argument and obtained
the following result by showing that the total potential
at any time is at least 6.

Theorem 2 ([8]) The number of moves in Morpion
Solitaire 5D cannot exceed 138.

25th Canadian Conference on Computational Geometry, 2013

26

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

To see this, let M be the maximum score and consider
the last three moves. The crosses drawn in the last three
moves M , M − 1 and M − 2 are eventually covered by
one line, by at most two lines, and by at most three
lines, respectively. In other words, those crosses have
potentials 3, ≥ 2, and ≥ 1, respectively, at the end of
the game. This implies 144−M ≥ 6, and thus M ≤ 138.

3.2 Improvements

We next show some small improvements of maximum
scores in the framework of potential-based analysis. Our
improvements are obtained by focusing on the last four
moves. We denote the potential of a cross C on a board
by p(C).

Lemma 3 The sum of the potentials of the three
crosses that are drawn in the last three moves is greater
than or equal to 7.

Proof. Consider the board at move N . According to
the arguments for Theorem 2, p(CN) = 3, p(CN−1) ≥
2 and p(CN−2) ≥ 1 hold for crosses CN , CN−1 and
CN−2 at moves N , N −1 and N −2, respectively. Here,
p(CN) = 3, p(CN−1) = 2 and p(CN−2) = 1 cannot be
satisfied simultaneously. Suppose they can. Then line
LN−1 has to cover cross CN−2 as well as CN−1, and line
LN has to cover both crosses CN−2 and CN−1 as well
as cross CN , and this forces such two lines LN−1 and
LN to overlap. This contradicts the rules of Morpion
Solitaire, and thus p(CN) + p(CN−1) + p(CN−2) > 6
holds. ¤

Lemma 3 alone improves an upper bound to 137, and
we can save one more move.

Theorem 4 The number of moves in Morpion Solitaire
5D cannot exceed 136.

Proof. Let M be the maximum score, and consider a
board at move M − 1. First, we can see that in order
that move M is feasible, there exists a cross C other
than CM−1, CM−2 and CM−3 with p(C) ≥ 1. Then we
determine the total potential of board M − 1 by a case
analysis; whether line LM drawn in move M covers all
three crosses CM−1, CM−2 and CM−3, or not.

Case 1: line LM covers all crosses CM−1, CM−2 and
CM−3. In this case, three crosses CM−1, CM−2 and
CM−3 lie on a common lattice line. Since no two lines
can overlap, line LM−2 that covers CM−3 and line LM−1

that covers both CM−2 and CM−3 are not compatible.
Hence, p(CM−1) = p(CM−2) = p(CM−3) = 3 holds.
This, together with the fact that there exists a cross
C with p(C) ≥ 1 other than CM−1, CM−2 and CM−3

guarantees p(CM−1)+p(CM−2)+p(CM−3)+p(C) ≥ 10.
Case 2: line LM does not cover at least one of crosses

CM−1, CM−2 or CM−3. In this case, there must ex-
ist two different crosses C and C ′ with p(C) ≥ 1
and p(C ′) ≥ 1. Therefore, together with Lemma 3,

p(CM−1) + p(CM−2) + p(CM−3) + p(C) + p(C ′) ≥ 9
holds.

To put both cases together, the total potential of an
arbitrary board of move M − 1 is greater than or equal
to 9. That is, 144 − (M − 1) ≥ 9 holds, which implies
M ≤ 136. ¤

4 Line-based Analysis of Upper Bounds

In this section, we introduce a new approach for deriv-
ing better upper bounds, which we call the line-based
analysis. It is based on the relationship between the
number of lines on a board and the number of lattice
points they cover.

The following observation is easy but crucial.

Fact After N moves, there are N + 36 crosses and N
lines.

Let c(N) denote the minimum number of lattice points
that are covered by N lines of length 5 in an arbitrary
layout on a board (lattice plane). Then in order for a
board of move N to be feasible (realizable), it has to
satisfy that c(N) ≤ N + 36. Conversely, for N that
satisfies c(N) > N + 36, such a move N is infeasible.
Here, since this game proceeds move by move, if a board
of move N is infeasible then all boards of moves greater
than N are infeasible. Hence, these observations imply
the following property.

Property (Board Infeasibility Condition) If there
exists N that satisfies c(N) > N + 36, then an upper
bound on the maximum score is N − 1.

In the subsequent discussions, we derive new upper
bounds on the maximum score by fully utilizing this
property. In this case, however, since it is not easy to
obtain c(N) directly, we compute a lower bound c′(N)
on c(N), and we try to find N that satisfies the Board
Infeasibility Condition for that c′(N).

4.1 An Upper Bound of 132

Here, we count the number of lattice points covered by
lines by focusing on lines in one direction among four
that we draw arbitrarily. Then we have the following
lower bound on c(N).

Claim 5 For any move N , c(N) ≥ dN4 e × 5 holds.

Proof. Since we draw N lines in all, there is a direction
in which at least dN4 e lines are drawn. They cover at

least dN4 e × 5 lattice points. ¤
By Claim 5, we have the following upper bound.

Theorem 6 The number of moves in Morpion Solitaire
5D cannot exceed 132.

Proof. In case that N = 133, c(N) ≥ d 133
4 e × 5 =

170 holds according to the claim. On the other hand,
N+36 = 169 and this N satisfies the Board Infeasibility
Condition. ¤

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

27

25th Canadian Conference on Computational Geometry, 2013

Figure 2: Six lines in each of two directions cover at least 34 lattice points.

4.2 An Upper Bound of 121

In the previous arguments, to count the number of lat-
tice points covered by lines, we focused on the lines only
in one direction. By considering two directions, we will
obtain a tighter lower bound on c(N). We first prove a
technical lemma.

Lemma 7 Suppose that 5k+β (k ≥ 0; 5 > β ≥ 0) lines
of length 5 are drawn in each of two different directions
(among the possible four). Then they cover at least (5k+
β)× 5 + 5β − β2 lattice points.

Proof. We assume without loss of generality that the
two different directions are vertical and horizontal. We
color vertical lattice lines on the board periodically with
different five colors, and consider the situation where
5k+β lines are drawn arbitrarily along the vertical and
horizontal directions on that board. Notice here that
the number of lattice points covered by line is the same
in both the vertical and horizontal directions, that is
(5k + β)× 5. Then we can observe that

(i) in all the lattice points covered by lines drawn
in horizontal directions, there are exactly 5k + β
points colored in each one of five colors, and

(ii) if we classify the lattice points covered by vertical
lines by their colors, there are at least 5k+5 points
in some β colors out of five.

Therefore, at least β(5− β) out of 5k + 5 lattice points
are not covered by horizontal lines. Consequently, these
lines cover (5k + β)× 5 + β(5− β) lattice points. ¤

Figure 2 shows two different layouts of lines where
this lemma holds for k = 1. Moreover, Lemma 7 can be
generalized as follows for different lengths of lines.

Lemma 8 Suppose that kα+β (k ≥ 0;α > β ≥ 0) lines
of length α are drawn in each direction of two different
directions on board. Then they cover at least α(kα +
β) + βα− β2 lattice points.

In the following claim, we use Lemma 7 with β = 1.
That is, if we draw 5k + 1 lines in each of two different
directions, they cover at least (5k + 1) × 5 + 4 lattice
points.

Claim 9 For a move N , if N 6≡ 1 (mod 4) and dN4 e ≡
1 (mod 5), then c(N) ≥ dN4 e × 5 + 4.

Proof. If the maximum number of lines drawn in a
certain direction is greater than or equal to dN4 e + 1,
the number of lattice points covered by some line is
at least dN4 e × 5 + 5 and the statement trivially holds.
So suppose otherwise, that is, the maximum number
of lines drawn in one direction is equal to dN4 e. Since

N 6≡ 1 (mod 4), at least dN4 e lines are drawn in more

than one direction. Since this number dN4 e equals 5k+1
for some k by assumption, we can apply Lemma 7 to
conclude that the lines drawn in these two directions
cover at least dN4 e × 5 + 4 lattice points. This implies
the desired inequality. ¤

Using this fact, we obtain a new upper bound.

Theorem 10 The number of moves in Morpion Soli-
taire 5D cannot exceed 121.

Proof. When N = 122, since 122 ≡ 2 (mod 4) and
d 122

4 e = 1 (mod 5), the hypothesis of Claim 9 is satis-
fied, and thus c(122) ≥ 31 × 5 + 4 = 159. Since this
exceeds N + 36 = 158, we have the Board Infeasibility
Condition. ¤

4.3 Remarks

We mention that a similar argument to Claim 9 holds
when N 6≡ 1 (mod 4) and dN4 e ≡ 2 or 3 (mod 5). In
this case, if the maximum number of lines drawn in a
certain direction is dN4 e, the number of lattice points

covered by some line is at least dN4 e × 5 + 6. On the
other hand, if the maximum number of lines drawn in
a certain direction is equal to or greater than dN4 e+ 1,

that is at least dN4 e × 5 + 5. So putting these two cases

together, we have c(N) ≥ dN4 e×5+5. However, such N
that satisfies this hypothesis and the Board Infeasibility
Condition is at least 126, and thus we know that an
upper bound on the maximum score can be improved
to 125 at best.

We also note a limitation of this approach of trying
to use c(N): we cannot obtain an upper bound smaller
than 102 by proving the Board Infeasibility Condition.
This is because we have c(N) ≤ N +36 for all N ≤ 102.
Figure 3 proves this inequality for N = 102, and we can
also easily confirm that it holds for all smaller N .

25th Canadian Conference on Computational Geometry, 2013

28

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 3: 102 lines cover 138 lattice points.

5 Conclusion

Although the ultimate goal of this game is to achieve the
true maximum score, there are some other interesting
questions.

It is possible that some idea based on our line-based
analysis can further improve the upper bound on the
maximum score of 5D. For example, we may consider
more than two directions in those arguments. Also we
may somehow take the initial layout of 36 crosses into
account, which we did not in this paper.

We can also try to apply our line-based analysis to 5T.
There are variants of 5T called 5T+ and 5T++, defined
by relaxing the original rules about the relationship be-
tween the numbers of crosses and the lines; see Boyer’s
web page [4]. On this web page, he shows how to play
317 moves in the 5T++ variant, and expects that this
number may be the best possible (and hence may give
an upper bound for 5T). Our line-based approach may
help prove upper bounds close to this.

References

[1] H. Akiyama, K. Komiya and Y. Kotani. Nested
Monte-Carlo search with AMAF heuristic. Proc. In-
ternational Conference on Technologies and Appli-
cations of Artificial Intelligence (TAAI), pp. 172–
176 (2010).

[2] P. Berloquin. Mini-morpion et nouveaux problèmes
de dominos. Science and Vie, pp. 130–131 (1976).

[3] C. Boyer. Morpion Solitaire, le record est enfin
battu !, Science and Vie, pp. 144–147 (2010).

[4] C. Boyer. Morpion Solitaire. http://www.

morpionsolitaire.com/

[5] T. Cazenave. Nested Monte-Carlo search. Proc. 26th
International Joint Conference on Artificial Intelli-
gence, pp. 456–461 (2009).

[6] E. D. Demaine, M. L. Demaine, A. Langerman and
S. Langerman. Morpion Solitaire. Theory of Com-
puting Systems, 39(3), pp. 439–453 (2006).

[7] H. Hyyrö and T. Poranen. New heuristics for Mor-
pion Solitaire. http://www.sis.uta.fi/~tp54752/
pub/morpion-article.pdf (2007).

[8] P. Karjalainen. Bounding the upper limit of moves
in the game of Morpion Solitaire 5D. http://www.
morpionsolitaire.com/Karjalainen.pdf (2011).

[9] C. D. Rosin. Nested rollout policy adaptation for
Monte Carlo tree search. Proc. 27th International
Joint Conference on Artificial Intelligence, pp. 649–
654 (2011).

[10] C. D. Rosin. A new Morpion Solitaire record
via Monte-Carlo search. http://www.chrisrosin.
com/morpion/

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

29

25th Canadian Conference on Computational Geometry, 2013

30

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Computational complexity and an integer programming model of Shakashaka

Erik D. Demaine∗ Yoshio Okamoto† Ryuhei Uehara‡ Yushi Uno§

Abstract

Shakashaka is a pencil-and-paper puzzle proposed by
Guten and popularized by the Japanese publisher Nikoli
(like Sudoku). We determine the computational com-
plexity by proving that Shakashaka is NP-complete, and
furthermore that counting the number of solutions if
#P-complete. Next we formulate Shakashaka as an
integer programming (IP) problem, and show that an
IP solver can solve every instance from Nikoli’s website
within a second.

Keywords: integer programming, NP-completeness,
pencil-and-paper puzzle, Shakashaka

1 Introduction

The puzzle Shakashaka is one of many pencil-and-paper
puzzles (such as the famous Sudoku) popularized by
Japanese publisher Nikoli. Shakashaka was proposed
by Guten in 2008, and since then, has become one of
the main Nikoli puzzles.

An instance of Shakashaka consists of an m × n rect-
angular board of unit squares. Each square is either
white or black, and some black squares contain a num-
ber. A candidate solution to the puzzle consists of filling
in some of the white squares with a black half-square
(isosceles right triangle filling half the area) in one of
the four ways: , , , . We call such squares b/w
squares; white squares may also be left entirely white.
Each number in a black square specifies the number
of b/w squares that should be among four (vertically
or horizontally adjacent) neighbors of the black square.
(A black square without a number allows any number
of b/w neighbors.) The objective of the puzzle is to fill
the white squares in the given board while satisfying
the above constraints and so that the remaining white
area consists only of (empty) squares and rectangles.
An example of the puzzle Shakashaka in [1] is shown in
Figure 1(a), and its (unique) solution is given in Fig-
ure 1(b).

∗Computer Science and Artificial Intelligence Laboratory,
MIT, edemaine@mit.edu

†Graduate School of Informatics and Engineering, The Uni-
versity of Electro-Communications (UEC), okamotoy@uec.ac.jp

‡School of Information Science, JAIST, uehara@jaist.ac.jp
§Graduate School of Science, Osaka Prefecture University

(OPU), uno@mi.s.osakafu-u.ac.jp

(a)
2 1 0

2

1

21 1 2

2 2 0

4

(b)
2 1 0

2

1

21 1 2

2 2 0

4

Figure 1: An instance of the puzzle Shakashaka and its
solution ([1])

As mentioned in the literature [2], a lot of pencil-and-
paper puzzles have been shown NP-complete. However,
the computational complexity of Shakashaka has not yet
been studied. In this paper, we prove that Shakashaka
is NP-complete, by a reduction from planar 3SAT. Be-
cause our reduction preserves the number of solutions,
we also prove that counting the number of solutions to
a Shakashaka puzzle is #P-complete.

Next we show how to formulate Shakashaka as a 0-
1 integer programming problem (a linear programming
problem in which all variables are restricted to be 0 or
1). Although integer programming is one of Karp’s 21
NP-complete problems, there are many efficient solvers
from a practical point of view. For example, recent
solvers run around one billion times faster than those
from 1991 [3]. Therefore, once we can formulate a puzzle
as a 0-1 integer linear programming problem, we can
hope to use these solvers to solve the puzzle efficiently
in practice.

Some authors have proposed integer-programming
formulations of several puzzles before, mainly for the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

31

25th Canadian Conference on Computational Geometry, 2013

didactic purposes [4, 5, 6, 7, 8]. The formulation of
Shakashaka is not so straightforward because we have
to avoid forming nonrectangular orthogonal shapes or
nested rectangles. We show that our formulation char-
acterizes the constraints of Shakashaka. We also per-
form computational experiments, and observe that each
instance from Nikoli’s website can be solved within one
second.

2 Preliminaries

Let us begin with a formal definition of the puzzle
Shakashaka. An instance I of Shakashaka is a rectan-
gular board of size m × n. Each unit square is colored
either white or black. A black square may contain a
number i ∈ {0, . . . , 4}. A solution of the instance I is
a mapping from the set of white squares in I to the set
{ , , , , } satisfying the following conditions:

1. Each white square mapped to is left uncolored
(white), while each square mapped to , , ,
or is colored black and white as indicated (and
called a b/w square).

2. Each black square that contains the number i has
exactly i b/w squares among its four neighbors.

3. Each connected white area forms a white rectangle
(or square).

Computationally, Shakashaka is a decision problem:
for a given instance, does it have a solution? The count-
ing version of Shakashaka asks to compute the number
of distinct solutions to the given instance.

3 NP-completeness of Shakashaka

In this section, we prove the following theorem:

Theorem 1 Shakashaka is NP-complete.

The proof is by a reduction from planar 3SAT, one
of the well-known NP-complete problems [9]. Let F be
an instance of planar 3SAT. That is, F consists of a
set C = {C1, C2, . . . , Cm} of m clauses over n variables
V = {x1, x2, . . . , xn}, where each clause Ci consists of
three literals, and the graph G = (C ∪ V, E) is planar,
where E contains an edge {Ci, xj} if and only if literal
xj or x̄j is in the clause Ci.

Now we show a reduction from F to an instance I of
Shakashaka. The key idea is to use the pattern shown
in Figure 2. For the pattern in Figure 2(a), we have two
choices for filling the 2 × 2 white squares as shown in
Figure 2(b). Essentially, this works as a “wire” to prop-
agate a signal. We regard the 2 × 2 square containing
the four white unit squares in Figure 2(b) as represent-
ing “0,” and the big diamond containing four (different)
b/w squares in 2(b) as representing “1.” That is, the

(a)

(b)

1
1

1
1

or

1
1 1

1

1
11

1 1
1

1
1

1
11

1 1
1

1
1

Figure 2: Basic pattern

(a)

1

1

1

1

1 1 1 1

(b) (c)

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1

1

1

1

1 1 1 1

1

1 1

1 10

0

0

Figure 3: Variable gadget

“wire” pattern propagates a signal using the parity in
two different ways. Using the terminology of [2], we
need the gadgets of “variable,” “split,” “corner,” and
“clause.” We describe these gadgets one by one.

Variable gadget: Figure 3(a)1 shows the variable gad-
get. It is easy to see that we have two ways to fill the
pattern as in Figure 3(b–c). It can propagate its value
by the wire gadget as in the figure. It is also easy to
obtain the negation of the variable by taking the value
at the appropriate position of the wire.

Split gadget/corner gadget: Figure 4 shows the split
and corner gadgets. Using the split gadget, we can in-
crease the degree of the output of a variable gadget.

1Hereafter, each pattern is assumed to be surrounded by black
squares.

25th Canadian Conference on Computational Geometry, 2013

32

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

1

1

1 1

1

1

11

x

zy 1

1

1 1

1

1

11

x

zy1

1

1 1

1

1

11

x

zy

1

1

1 1

1

1

11

x

zy 1

1

1 1

1

1

11

x

zy1

1

1 1

1

1

11

x

zy

1

11 1 1

0

1

1

1 10

0 0

0 0 0

0

0

Figure 6: Feasible cases and infeasible case of a clause gadget

1

1
1

1 1

10

1

1 1

11

1
1

1
1 1

1 1
1

1 1

11

1
1

1
1

1
1

1
1

1
1

0

0 0 0

0 0 0

1

1 1

1

11wire

split

corner

Figure 4: Split and corner gadgets

1

1

1 1

1

1

11 1 1

1

1

1

1

1

1

x

z

y

Figure 5: Clause gadget

Clause gadget: Figure 5 shows the clause gadget for a
clause C = {x, y, z}. According to the values of x, y, z,
we have eight possible cases. Among them, only the
case x = y = z = 0 violates the condition of Shakashaka
(Figure 6).

The gadgets for wire, variable, split, and corner are
aligned properly because they are designed to fit into

1
1 1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

1

1

1

110 10

3 3

5

1 1

1 1

1

1 1

1 1

1 1

(a)

(b)

Figure 7: Parity gadget

a 3 × 3 square tiling. However, at a clause gadget, we
have to change the positions of wires to fit the gad-
get. To shift the position, we use a “parity” gadget
shown in Figure 7(a). Joining copies of the gadget in
a straightforward way, we can change the position of a
wire arbitrarily (Figure 7(b)). An example of a con-
struction of Shakashaka for the instance f = C1 ∨ C2,
where C1 = {x, ȳ, w} and C2 = {y, z̄, w̄} is depicted in
Figure 8.

It is easy to see that the resulting Shakashaka has
a solution if and only if the original formula F is sat-
isfiable. It is clear that the reduction can be done in
polynomial time, and Shakashaka is in the class NP.
Therefore, Shakashaka is NP-complete.

Our reduction is parsimonious, i.e., it preserves the
number of solutions. That is, the number of satisfy-
ing assignments to the original CNF formula is equal

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

33

25th Canadian Conference on Computational Geometry, 2013

1 1 1
1 1 1

1 1 1 1 1 1 1 1 1 1
1 1
1 1

1
1

1 1

1 1
1 1 1 111
1 1 11

1 1 1 1 1 1
1 1 1 1
1 1

1 1 1 1
1 1
1 1

1
1

1 1

1 1 1 1
1 11

1 1 1

1
1

1
1

1 1
1
1

1 1 1 1
1
1

1 1 1 1
1
1

1
1

1
1

1
1

z

C2

x C1

y

w

Figure 8: An example for C1 = {x, ȳ, w} and C2 =
{y, z̄, w̄}

to the number of solutions to the resulting instance
of Shakashaka. Because the counting version of pla-
nar 3SAT is #P-complete [10], we have the following
corollary:

Corollary 2 The counting version of Shakashaka is
#P-complete.

4 Integer Programming Formulation

We formulate Shakashaka in terms of a 0-1 integer pro-
gram. Recall that an instance I of Shakashaka consists
of a rectangular board of size m × n. We identify each
square by (i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , n} in the
natural way.

Variables: For each white square (i, j), we will use five
0-1 variables x[i, j,], x[i, j,], x[i, j,], x[i, j,], and
x[i, j,]. Exactly one these variables has value 1, and
the rest are 0, according to the following meaning:

x[i, j,] = 1 means that (i, j) remains white,
x[i, j,] = 1 means that (i, j) is filled with ,
x[i, j,] = 1 means that (i, j) is filled with ,
x[i, j,] = 1 means that (i, j) is filled with ,
x[i, j,] = 1 means that (i, j) is filled with .

We construct a linear system S(I) with the variables
x[i, j, ∗] such that the solutions of the instance I of
Shakashaka are in bijection with the solutions of S(I).
To this end, we set up five types of linear constraints as
described below.

Constraint A (at most one triangle in each white
square): In a solution to I, each white square either
remains white, or is filled with one of the four black
isosceles right triangles. We map this condition to the
following linear equality:

x[i, j,] + x[i, j,] + x[i, j,]

+x[i, j,] + x[i, j,] = 1 (1)

for each i and j where (i, j) is a white square.

Proposition 3 Let SA(I) be the linear system that con-
sists of Constraint A. Then any feasible solution of
SA(I) gives the mapping from each white square to ex-
actly one of , , , , or .

Constraint B (neighbors of black squares): Next we
look at the black squares (i, j). First we consider the
case that (i, j) contains no number. In this case, (i, j)
gives some restrictions to its white neighbors. For ex-
ample, suppose that (i−1, j) is white. Then, if (i−1, j)
is or , these two squares make a 45◦ white corner
between them. Thus (i − 1, j) must be , , or .
Hence, in this case, the equation (1) for (i−1, j) can be
replaced by

x[i − 1, j,] + x[i − 1, j,] + x[i − 1, j,] = 1 (2)

and we can fix x[i − 1, j,] = x[i − 1, j,] = 0.
On the other hand, when a black square (i, j) has a

number k, it must have k b/w squares as its neighbor.
This restriction is described by the following equation:

x[i − 1, j,] + x[i − 1, j,] + x[i + 1, j,]

+ x[i + 1, j,] + x[i, j − 1,] + x[i, j − 1,]

+ x[i, j + 1,] + x[i, j + 1,] = k, (3)

where x[i, j, ∗] is regarded as 0 if (i, j) is black. We also
fix x[i − 1, j,] = x[i − 1, j,] = x[i + 1, j,] = x[i +
1, j,] = x[i, j − 1,] = x[i, j − 1,] = x[i, j + 1,] =
x[i, j + 1,] = 0 to avoid the 45◦ white angle.

Constraint C (sequences of triangles): Next we turn
to the restrictions to make each connected white area a
rectangle. Suppose x[i, j,] = 1. In this case, the white
triangle at (i, j) can be orthogonal if and only if either
x[i, j +1,] = 1 or x[i+1, j +1,] = 1. Therefore, we
obtain the following constraint:

x[i, j,] ≤ x[i, j + 1,] + x[i + 1, j + 1,]. (4)

25th Canadian Conference on Computational Geometry, 2013

34

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Moreover, when x[i, j,] = x[i+1, j+1,] = 1, (i, j+1)
must remain white, or x[i, j+1,] = 1. (When (i, j+1)
is , we have a parity problem; we cannot enclose this
area by extending this pattern. The other cases are also
prohibited.) This implies the following constraint:

x[i, j,] + x[i + 1, j + 1,] ≤ x[i, j + 1,] + 1. (5)

We add the similar constraints for the other directions.
Then, we have the following proposition:

Proposition 4 Let SC(I) be the linear system that
consists of Constraints A, B, and C, and fix any feasible
solution of S(I). Then, each angle on the boundary of
each connected white area given by the mapping is 90◦.

Constraint D (exclusion of concave corners): By
Proposition 4, any feasible solution to Constraints A,
B, and C produces a pattern consisting of orthogonal
white polygons. However, this does not yet exclude
concave corners. By Equation 4, no b/w square forms
a part of a concave corner. Thus, a concave corner
may be produced by only white squares. Suppose that
x[i, j,] = x[i + 1, j,] = x[i, j + 1,] = 1. Then,
(i + 1, j + 1) must be or must remain white. Thus
we add the following constraints (for all possible direc-
tions):

x[i, j,] + x[i + 1, j,] + x[i, j + 1,]

≤ x[i + 1, j + 1,] + x[i + 1, j + 1,] + 2. (6)

We now have the following proposition:

Proposition 5 Let SD(I) be the linear system that
consists of Constraints A, B, C, and D, and fix any fea-
sible solution of S(I). Then every connected part of a
boundary of a white area is a convex orthogonal polygon,
i.e., a rectangle.

Constraint E (Exclusion of Nested White Rectangles):
The last problem is that the linear system so far may
produce nested rectangles. (Two rectangles are nested if
one properly contains another.) We suppose that both
of (i, j) and (i+k, j +k) are . Then, to avoid nesting,
we must have between them. That is, we must have

at (i + k′, j + k′) for some 0 < k′ < k. And it is
not difficult to see that this is a necessary and sufficient
condition to avoid nested rectangles. This observation
gives us the following constraint:

x[i, j,] + x[i + k, j + k,]

≤
∑

0<k′<k

x[i + k′, j + k′,] + 1. (7)

Combining all propositions and observations above,
we conclude the following:

2

2

2

2
2

2
2

2

2
2

2
2

2
2

2
2

n

n

Figure 9: An artificial example of the puzzle
Shakashaka.

Theorem 6 Let I be an instance of Shakashaka, and
S(I) be the linear system that consists of Constraints
A–E. Then, a feasible solution of S(I) gives a solution
to I, and vice versa.

5 Experimental Results

In this section, we describe our experimental results.
The IP solver we used is SCIP 3.0.0 [11]2 (Binary: Win-
dows/PC, 32bit, cl 16, intel 12.1: statically linked to
SoPlex 1.7.0, Ipopt 3.10.2,CppAD 20120101.3). The
machine we used was a laptop (Intel Core2 Duo
P8600@2.40GHz with RAM 4GB on Windows Vista
Business SP2). Each of the ten instances at nikoli.

com3 was solved in less than one second in our experi-
ments (Table 1).

We also looked at another instance at nikoli.com,
which was prepared for a competition. The board has
size 31 × 45, the level is Extreme, and the number of
white squares is 1230. A solution was obtained in 2.63
seconds.

The other examples are artificial ones (see Figure 9);
for each n = 1, 2, . . ., the board of size 2n × 2n consists
of 4×∑n−1

i=1 i = 2n(n−1) black squares, and 4× (n−1)
black squares contain the number 2 as shown in the
figure. Each of them has a unique solution. The exper-
imental results for the artificial ones for n = 2, 3, . . . , 40
are shown in Figure 10. For n = 40, the solution is ob-
tained in 19.86 seconds. A simple regression shows that
the computation time is roughly proportional to 1.18n.

6 Concluding Remarks

In this paper, we proved that Shakashaka is NP-
complete. In our reduction, the black squares contain

2http://scip.zib.de/
3http://www.nikoli.com/ja/puzzles/shakashaka/

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

35

25th Canadian Conference on Computational Geometry, 2013

Problem Size Level # of white squares Time (sec)

1 10 × 10 Easy 76 0.02
2 10 × 10 Easy 77 0.03
3 10 × 10 Easy 82 0.03
4 10 × 18 Easy 131 0.07
5 10 × 18 Medium 156 0.09
6 10 × 18 Medium 144 0.07
7 14 × 24 Medium 297 0.21
8 14 × 24 Hard 295 0.19
9 20 × 36 Hard 645 0.84
10 20 × 36 Hard 632 0.91

Table 1: Experimental results for the instances at nikoli.com

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40

size vs seconds

Figure 10: Seconds for the artificial examples (n =
2, 3, . . . , 40).

Figure 11: An instance of Shakashaka without numbers

only the number 1 (or remain blank). An interest-
ing question is to determine the computational com-
plexity of Shakashaka with no numbers in the black
squares. Figure 11 shows a nontrivial example, which
has a unique solution. There are two natural questions
in this Shakashaka puzzle. How many black squares are
required to have a unique solution in an m × n board?
Can this restricted Shakashaka be solved in polynomial
time?

References

[1] Nikoli, Shakashaka 1, vol.151, Pencil and Paper Puzzle
Series, Nikoli, Jan. 2012.

[2] R. A. Hearn and E. D. Demaine, Games, Puzzles, and
Computation, A K Peters Ltd., 2009.

[3] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T.
Berthold, R. E. Bixby, E. Danna, G. Gamrath, A. M.
Gleixner, S. Heinz, A. Lodi, H. D. Mittelmann, T. K.
Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter, “MI-
PLIB 2010,” Math. Program. Comput., vol.3, no.2, pp.
103–163, 2011.

[4] A. Bartlett, T. P. Chartier, A. N. Langville, and T. D.
Rankin, “Integer Programming Model for the Sudoku
Problem,” J. of Online Mathematics and its Applica-
tions, vol.8, Article ID 1798, 2008.

[5] R. A. Bosch, “Painting by Numbers,” Optima, vol.65,
pp.16–17, 2001.

[6] M. J. Chlond, “Classroom Exercises in IP Modeling:
Su Doku and the Log Pile,” INFORMS Transactions
on Education, vol.5, pp.77–79, 2005.

[7] W. J. M. Meuffles and D. den Hertog, “Puzzle—Solving
the Battleship Puzzle as an Integer Programming Prob-
lem,” INFORMS Transactions on Education, vol.10,
no.3, pp.156–162, 2010.

[8] L. Mingote and F. Azevedo, “Colored Nonograms: An
Integer Linear Programming Approach,” Proceedings
of EPIA 2009 LNAI vol. 5816, pp.213–224, Springer-
Verlag 2009.

[9] D. Lichtenstein, “Planar Formulae and Their Uses,”
SIAM J. on Computing, vol.11, no.2, pp.329–343, 1982.

[10] N. Creignou and M. Hermann, “Complexity of general-
ized satisfiability counting problems,” Information and
Computation, vol.125, pp.1–12, 1996.

[11] T. Achterberg, “SCIP: Solving Constraint Integer
Programs,” Mathematical Programming Computation,
vol.1, pp.1–41, 2009.

25th Canadian Conference on Computational Geometry, 2013

36

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

One-Round Discrete Voronoi Game in R2 in Presence of Existing Facilities

Aritra Banik∗ Bhaswar B. Bhattacharya† Sandip Das‡ Satyaki Mukherjee§

Abstract

In this paper we consider a simplified variant of the dis-
crete Voronoi Game in R2, which is also of independent
interest in competitive facility location. The game con-
sists of two players P1 and P2, and a finite set U of
users in the plane. The players have already placed two
sets of facilities F and S, respectively in the plane. The
game begins by P1 placing a new facility followed by P2
placing another facility, and the objective of both the
players is to maximize their own total payoffs. When
|F | = |S| = m, this corresponds to the last round of
the (m + 1)-round discrete Voronoi Game in R2. In
this paper we propose polynomial time algorithms for
obtaining optimal strategies of both the players under
arbitrary locations of the existing facilities F and S. We
show that the optimal strategy of P2, given any place-
ment of P1, can be found in O(n2) time, and the optimal
strategy of P1 can be found in O(n8) time.

1 Introduction

The main objective in any facility location problem is
to judiciously place a set of facilities serving a set of
users such that certain optimality criteria are satisfied.
Facilities and users are generally modeled as points in
the plane. The set of users (demands) is either discrete,
consisting of finitely many points, or continuous, that
is, a region where every point is considered to be a user.
We assume that the facilities are equally equipped in
all respects, and a user always avails the service from
its nearest facility. Consequently, each facility has its
service zone, consisting of the set of users that are served
by it. For a set U of users, finite or infinite, and a set F
of facilities, define for every f ∈ F , U(f, F) as the set
of users in U that are served by the facility f . In such
a scenario, when the users choose the facilities based on
the nearest-neighbor rule, the optimization criteria is to
maximize the cardinality or the area of the service zone
depending on whether the demand region is discrete or
continuous, respectively.

∗Advanced Computing and Microelectronics Unit, Indian Sta-
tistical Institute, Kolkata, India, aritrabanik@gmail.com
†Department of Statistics, Stanford University, USA,

bhaswar.bhattacharya@gmail.com
‡Advanced Computing and Microelectronics Unit, Indian Sta-

tistical Institute, Kolkata, India, sandipdas@isical.ac.in
§Indian Statistical Institute, Bangalore, India,

mail.satyaki.mukherjee@gmail.com

The game-theoretic analogue of such competitive
problems for continuous demand regions is a situation
where two players place two disjoint sets of facilities in
the demand region. A player p is said to own a part of
the demand region that is closer to the facilities owned
by p than to the other player, and the player which fi-
nally owns the larger area is the winner of the game.
The area a player owns at the end of the game is called
the payoff of the player. In the one-round game the
first player places m facilities following which the sec-
ond player places another m facilities in the demand
region. In the m-round game the two players place one
facility each alternately for m rounds in the demand
region.

Ahn et al. [1] studied a one-dimensional Voronoi
Game, where the demand region is a line segment. They
showed that when the game takes m rounds, the second
player always has a winning strategy that guarantees
a payoff of 1/2 + ε, with ε > 0. However, the first
player can force ε to be arbitrarily small. On the other
hand, in the one-round game with m facilities, the first
player always has a winning strategy. The one-round
Voronoi Game in R2 was studied by Cheong et al. [7],
for a square-shaped demand region. They proved that
for any placement W of the first player, with |W | = m,
there is a placement B of the second player |B| = m
such that the payoff of the second player is at least
1/2 + α, where α > 0 is an absolute constant and m
large enough. Fekete and Meijer [9] studied the two-
dimensional one-round game played on a rectangular
demand region with aspect ratio ρ. The Voronoi Game,
for which the underlying space is a graph, was consid-
ered by Bandyapadhyay et al. [3].

In the discrete regime, the possible demand set is gen-
erally modeled as a finite graph, and users and facilities
are restricted to lie on the nodes of the graph. As before,
the players alternately chose nodes (facilities) from the
graph, and all vertices (customers) are then assigned
to closest facilities based on the graph distance. The
payoff of a player is the number of customers assigned
to it. Dürr and Thang [8] showed that deciding the
existence of a Nash equilibrium for a given graph is NP-
hard. Recently, Teramoto et al. [13] studied the same
problem and considered following very restricted case:
the game arena is an arbitrary graph, the first player
occupies just one vertex which is predetermined, and
the second player occupies m vertices in any way. They

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

37

25th Canadian Conference on Computational Geometry, 2013

proved that in this strongly restricted discrete Voronoi
Game it is NP-hard to decide whether the second player
has a winning strategy. They also proved that for a
given graph G and the number r of rounds determining
whether the first player has a winning strategy on G
is PSPACE-complete. The discrete Voronoi Game for
path graphs was studied by Kiyomi et al. [10].

Recently, Banik et al. [4] considered the discrete
Voronoi Game where the universe is modeled as R, and
the distance between the users and the facilities are mea-
sured by their Euclidean distance. The problem consists
of a finite user set U ⊂ R, with |U | = n, and two players
Player 1 (P1) and Player 2 (P2) each having m = O(1)
facilities. At first, P1 chooses a set F1 ⊂ R of k facilities
following which P2 chooses another set F2 ⊂ R of m fa-
cilities, disjoint from F1. The payoff of P2 is defined as
the cardinality of the set of points in U which are closer
to a facility owned by P2 than to every facility owned by
P1. The payoff of P1 is the number of users in U minus
the payoff of P2. The objective of both the players is to
maximize their respective payoffs. The authors showed
that if the sorted order of the points in U along the line
is known, then the optimal strategy of P2, given any
placement of facilities by P1, can be computed in O(n)
time. Also, for m ≥ 2 the optimal strategy of P1 can
be computed in O(nm−λm) time, where 0 < λm < 1, is
a constant depending only on m. The discrete Voronoi
Game for polygonal domains were considered by Banik
et al. [5].

The discrete Voronoi Game when the user set consists
of a finite set of points in R2 poses a major challenge. To
the best of our knowledge, this problem has never been
addressed before, and answering rather simple questions
about this game is rather difficult. In this paper we con-
sider a simplified variant of the discrete Voronoi Game
in R2, which is also of independent interest in competi-
tive facility location. The game consists of two players
P1 and P2 and a finite set U of users in the plane.
Moreover, the two players have already placed a set of
facilities F and S, respectively, in the plane. The game
begins by P1 placing a new facility followed by P2 plac-
ing another facility. The objective of both the players
is to maximize their respective payoffs.

For any placement of facilities A by P1 and B by P2,
the payoff of P2, P2(A,B) is defined as the cardinality
of the set of points in U which are closer to a facility
owned by P2 than to every facility owned by P1, that is,
P2(A,B) = |⋃f∈B U(f,A ∪ B)|. Similarly, the payoff
of P1, P1(A,B) is |⋃f∈A U(f,A ∪ B)|, |U\P2(A,B)|.
Now, the One Round Discrete Voronoi Game in R2 in
Presence of Existing Facilities can be formally stated as
follows:

One Round Discrete Voronoi Game in R2 in Presence of
Existing Facilities: Given a set U of n users, and two
sets of facilities F and S owned by two competing

players P1 and P2, respectively, at first P1 chooses
a facility f1 following which P2 chooses another fa-
cility f2 such that

(a) maxf ′
2∈R2 |P2(F ∪{f1}, S∪{f ′2})| is attained at

the point f2.

(b) maxf∈R2 ν(f) is attained at the point f1, where
ν(f) = n−maxf ′

2∈R |P2(F ∪ {f}, S ∪ {f2})|.

The quantity ν(f1) is called the optimal payoff of P1
and f1 is the optimal strategy of P1.

In this paper we develop algorithms for the optimal
strategies of the two players in the above game. Here-
after, we shall refer to this version of the Voronoi Game
as Gn(F, S). Note that when |F | = |S| = m the sit-
uation described in the Gn(F, S) game is identical to
the last round of the (m + 1)-round discrete Voronoi
Game in R2. Therefore, this problem takes the first non-
trivial step towards solving the discrete Voronoi Game
problem in R2. Moreover, as mentioned before, this
problem is of independent interest in competitive facil-
ity location. In any growing economy the expansion
of the service zone is of utmost importance. However,
because of some implied constraint it is never possible
to place all your facilities at once. So it is of utmost
importance to find a strategy which will guide how to
place a set of facilities in a sequential manner, as the
market grows. The Gn(F, S) game is an instance of
such a problem. Imagine there are 2 competing compa-
nies are providing a service to a set of users in a city.
Suppose both these companies already have their re-
spective service centers located in different parts of the
city. Now, if both of them wish to open a new service
center with the individual goal to maximize their total
payoff, then the problem is an instance of the Voronoi
Game described above. Though the Gn(F, S) game, as
described above, has never been studied before, if both
F and S are empty, then it is a well-known fact that
optimal strategy of P1 in the Gn(F, S) game is at the
halfspace median of U [12], which can be computed in
O(n log3 n) time [11]. However when the sets F and S
are non-empty the problem becomes immensely more
complicated. In this paper we propose polynomial time
algorithms for obtaining optimal strategies of both the
players in the Gn(F, S) game.

The optimal strategy of P2, given any placement of
P1, is identical to the solution of the MaxCov problem
studied by Cabello et al. [6]. Suppose we are given
a set of users U , existing facilities F and S, and any
placement of a new facility f by P1. Let U1 ⊆ U denote
the subset of users that are served by P1, in presence
of F , S, and f . For every point u ∈ U1, consider the
nearest facility disk Cu centered at u and passes through
the facility in F ∪ {f} which is closet to u. Note that a
new facility s placed by P2 will serve any user u ∈ U1
if and only if s ∈ Cu. If C = {Cu|u ∈ U1}, the optimal

25th Canadian Conference on Computational Geometry, 2013

38

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

strategy for P2, given any placement f of P1, is to place
the new facility at a point where maximum number of
disks in C overlap. This is the problem of finding the
maximum depth in an arrangement of n disks, and can
be computed in O(n2) time [2].

Therefore, the main challenge in the Gn(F, S) game
lies in finding the optimal strategy of P1. In this pa-
per, we provide a complete characterization of the event
points and obtain a polynomial time algorithm for ob-
taining an optimal placement of P1:

Theorem 1 Given a set U of n users, two sets of fa-
cilities F and S owned by two competing players P1
and P2, respectively, the optimal strategy of P1 in the
Gn(F, S) game can be found in O(n8) time.

2 Understanding the Optimal Strategy of P1

In the Gn(F, S) game, we are given a set U of n users,
two sets of facilities F and S owned by two competing
players P1 and P2 respectively. Observe that the set of
facilities F and S will divide the set of users U into two
groups UF and US where UF is the set of users served
by the facilities placed by P1 and US is the set of users
served by the facilities placed by P2.

Let f be any new placement by P1. Denote the set
of users served by f , by UFS(f). More formally,

UFS(f) = {ui|d(ui, f) < d(ui, f
′),∀f ′ ∈ F ∪ S)}

Further let the users served by the set of facilities F and
S after placement of f be UF\f and US\f , that is,

UF\f =
⋃

f ′∈F
U(f ′, F ∪ S ∪ {f})

and
US\f =

⋃

f ′∈S
U(f ′, F ∪ S ∪ {f}).

Hence, any facility f by P1 will divide the set of users
into three disjoint sets UFS(f), UF\f and US\f . Now
any new placement s by P2 can serve a subset of users
from all these three sets. For any placement of facility
s by P2, let Uf (s) ⊂ UFS(f) be the set of users such
that for all ui ∈ Uf (s), d(ui, s) < d(ui, f). Similarly
define the set of users UF\f (s) ⊂ UF\f such that for all
uj ∈ UF\f (s), d(uj , s) < d(uj , fk) for all fk ∈ F .

Observe that for any placement f and s by P1 and
P2 respectively the payoff of P2 will be equal to

P2(F ∪ {f}, S ∪ {s}) = |US\f |+ |Uf (s)|+ |UF\f (s)|

For any placement of facility f by P1 define the effective
depth of f , δ(f) as

δ(f) = |US\f |+ max
s∈R2

(|Uf (s)|+ |UF\f (s)|)

The optimal strategy of P1 is to find a point f1 such that
δ(f1) = arg minf∈R2 δ(f), that is the point of minimum
effective depth. In order to do that we will subdivide
R2 into a polynomial many cells such that the effective
depth of all points in each cell is the same.

Figure 1: Arrangement of the set of circles CFS

Consider the set of circles CFS where each circle C ∈
CFS is centered at some user ui and passing through the
facility closest to ui among the set of facilities F ∪S (see
Figure 1 where facilities placed by P1 are shown in red
and the facilities placed by P2 shown in blue). Denote
the arrangement of the set of circles CFS by A(CFS).
We also include the lines joining any pair of users into
CFS .

For any placement of facility x by P1 and for any user
ui, let Ci(x) be the circle centered on ui and passing
though the facility closest to ui from the set of facilities
F ∪ S ∪ {x}. Consider all such circles C(x).

Let x and y be two points that belong to the same
cell of A(CFS) but δ(x) 6= δ(y). Now as x and y
belong to the same cell of A(CFS) therefore US\x =
US\y. That means for the placement of facilities x and
y, maxs∈R2(|Ux(s)| + |UF\x(s)|) 6= maxs∈R2(|Uy(s)| +
|UF\y(s)|).

Now observe that for any placement of facility x,
maxs∈R2(|Ux(s)| + |UF\x(s)|) denotes the maximum
number of circles among the set of circles C(x) that
can be pierced by a single point. Hence for each cell
λ ∈ A(CFS) if we can subdivide λ further such that in
each sub-cell of λ for all points x maximum number of
circles among the set of circles C(x) that can be pierced
by a single point remains fixed, then we are done.

Lemma 2 If x, y belong to some cell of A(CFS) with
δ(x) 6= δ(y), then there exist three users ui, uj , uk ∈
UFS(x)∪UF\x such that Ci(x)∩Cj(x)∩Ck(x) 6= ∅ and
Ci(y) ∩ Cj(y) ∩ Ck(y) = ∅ or vice versa.

Proof. Without loss of generality assume δ(x) > δ(y).
For any placement of facility f by P1, Uf be the max-
imum cardinality set of users served by P2. As x and
y belong to the same cell of A(CFS), Ux * UFS(x).
Also we can assume that the cardinality of Ux and Uy
is at least three. We shall prove this result by contra-
diction. Suppose that for every three users ui, uj , uk ∈

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

39

25th Canadian Conference on Computational Geometry, 2013

UFS(x)∪UF\x, such that Ci(x)∩Cj(x)∩Ck(x) 6= ∅ we
also have Ci(y) ∩ Cj(y) ∩ Ck(y) 6= ∅.

Therefore, for any three users ui, uj , uk ∈ Ux, Ci(x)∩
Cj(x) ∩ Ck(x) 6= ∅. By assumption, this implies
Ci(y) ∩ Cj(y) ∩ Ck(y) 6= ∅. Therefore, by Helly’s theo-
rem,

⋂
ui∈Ux

Ci(y) 6= ∅, which means that the number
of users that can be served by P2 by placing one facil-
ity from the set of users UFS(y) ∪ UF\y is at least |Ux|.
Therefore, δ(y) ≥ |Ux|+ |US\y| = |Ux|+ |US\x| = δ(x),
which is a contradiction and the result holds. �

In light of lemma 2 we define, for each triplet of users
ui, uj , uk ∈ U , and any placement of facility x ∈ R2 by
P1, the indicator variable,

βijk(x) =

{
1 if Ci(x) ∩ Cj(x) ∩ Ck(x) 6= ∅
0 otherwise

Let β(x) be the 3-dimensional array with cardinality
|U |×|U |×|U | where each cell βijk(x) is defined as above.
From Lemma 2 and the above definition, the following
observation is immediate.

Observation 1 If x, y belong to the same cell of
A(CFS) and the two arrays β(x) and β(y) are equal in
every coordinate, then δ(x) = δ(y).

Our next goal is to tessellate A(CFS) into a finer set
of cells such that for any two points x and y on the
same cell β(x) = β(y). This implies that for any three
users ui, uj , uk ∈ U , either Ci(x)∩Cj(x)∩Ck(x) 6= ∅ or
Ci(x)∩Cj(x)∩Ck(x) = ∅, for all points x in a fixed finer
cell of the tessellation. Observation 1 would then imply
that for all points in a cell the effective depth remains
constant. Hence, by checking each cell once we can find
the point with minimum effective depth.

Therefore, for each cell of A(CFS), we want a further
subdivision such that for every point x in the fixed sub-
divided cell Ci(x)∩Cj(x)∩Ck(x) 6= ∅, for every triplet
of users ui, uj , uk ∈ U . Note that for any placement x
by P1 and a user u ∈ U\US\x, either u is served by x or
by some existing facility in F . The following definition
distinguishes these two cases:

Definition 2.1 Given any placement x by P1 and a
user u ∈ U\US\x, the circle C(x) is called an old circle
if it is centered at u and passes through some facility
fj ∈ F , where fj be the facility closest to u among the
set of facilities F ∪ {x}, that is, u ∈ UF\x. The circle
C(x) is called a new circle if it is centered at u and
passes through x, that is u ∈ UFS(x).

For every three fixed users ui, uj , uk ∈ U and a fixed
point x ∈ R2, denote by Nijk(x) the subset of the
circles in {Ci(x), Cj(x), Ck(x)}, which are new. For
S ⊆ {ui, uj , uk}, define the following sets:

Γijk(S) = {x ∈ R2 : Ci(x) ∩ Cj(x) ∩ Ck(x) = ∅ and

Ca(x) ∈ Nijk(x) if ua ∈ S}

Moreover, for z ∈ {0, 1, 2, 3}, let Γzijk =⋃
S:|S|=z Γijk(S), where the union is taken over all

sets S ⊆ {ui, uj , uk} such that |S| = z.

Lemma 3 Let Da be the circle centered at ua pass-
ing through the facility in F ∪ S closest to ua, for
a ∈ 1, 2, . . . n. Then for three fixed users ui, uj , uk ∈ U ,
we have

(a) Γijk(∅) = (Di ∪Dj ∪Dk)c.

(b) For S = {ui, uj , uk}, Γijk(S) is the interior of the
triangle formed by ui, uj and uk.

(c) For S = {uk}, Γijk(S) is the interior of the circle
centered at uk and passing through the point in Di∩
Dj closest to uk.

Proof. It is easy to show (a) and (b) from the defini-
tions.

For proving (c), let pc be the point in Di∩Dj which is
closer to uk. Hence, for all points p in the open disk D,
centered at uk and passing through pc, Ci(x) ∩Cj(x) ∩
D = ∅, and for all points p outside the open disk D,
pc ∈ Ci(x) ∩ Cj(x) ∩ D. Therefore, if S = {uk}, then
Γijk(S) = D. �

As it turns out, when S consists of 2 elements then the
sets Γijk(S) has a complicated geometric structure. The
following lemma provides a complete characterization of
the set Γijk(S) where |S| = 2.

Lemma 4 For S = {ui, uj}, Γijk(S) is an open set
bounded by O(1) circular arcs and line segments. As a
consequence, the boundary of Γijk(S) can be computed
in constant time.

We prove this lemma in the next section. Then using
Lemma 3 and Lemma 4 we show how the proof of The-
orem 1 can be completed.

3 Proof of Lemma 4 and Theorem 1

In this section we prove Lemma 4. The proof is rather
technical, and requires careful analysis of the geometry
of the points. Using this lemma, we then complete the
proof of Theorem 1.

3.1 Proof of Lemma 4

In this section we will characterize Γijk(S) for S =
{ui, uj} and will complete the proof of Lemma 4. Hence
given three users, say ui, uj and uk we want to charac-
terize the set of points Γijk(S) for S = {ui, uj} such
that for any point x in Γijk(S) if P1 places a facility
at x, two circles Ci(x) and Cj(x) will pass through x
and Ck(x) will pass through some other facility and

25th Canadian Conference on Computational Geometry, 2013

40

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Ci(x) ∩ Cj(x) ∩ Ck(x) = ∅. For notational simplic-
ity, throughout this section we shall denote the region
Γijk(S) as X and Ck(x) as C. It can be shown that
X is bounded and open. In the following lemma, we
characterize the boundary of X. The proof is involves
standard geometric arguments, and can be found in the
full version of the paper.

Lemma 5 Any point p belongs to the boundary of X,
∂(X) if and only if Ci(p)∩Cj(p)∩C is a singleton set.

�

From Lemma 5 we know that ∂(X) is the set of points
p such that Ci(p) ∩ Cj(p) ∩ C is a singleton set. Next
we will find all such points. Observe that there can be
two cases.

Case 1: Suppose the intersection of any two of the three
circles, Ci(p), Cj(p) and C is single point, say x,
and the third circle contains x. Now suppose we
want to find the set of points p such that Ci(p) ∩
C is a single point and Cj(p) contains that point.
Let the point closest to ui in C be pi. Now the
set of points for which Ci(p) ∩ C is a single point
is the circle Ci(pi) and for all point p ∈ Ci(pi),
Ci(p)∩C = {pi}. But the circle Cj(p) must contain
pi. Hence the set of points p such that Ci(p) ∩
C is a single point and Cj(p) contains that point,
is Ci(pi)\Cj(pi) (see Figure 2). Similarly we can
find the points p such that Cj(p) ∩ C is a single
point and Ci(p) contains that point. Set of points
p for which Ci(p) ∩ Cj(p) is a single point is the
set of points on the line segment joining ui and uj ,
[ui, uj]. But C must contain the point p. Hence the
set of points for which Ci(p)∩Cj(p) is a single point
and C contains that point, is equal to [ui, uj] ∩ C
(see Figure 3).

ui uj

pi pj

C

Figure 2: ∂(X) when Ci(p) ∩ C is a single point

Case 2: The intersection of any two of the three cir-
cles is not a singleton, but Ci(p) ∩ Cj(p) ∩ C is
a singleton set. For any point p, define pr to be
the reflection of p on the line joining ui and uj .
Observe that for any point p, the circle Ci(p) and
Cj(p) intersects at points p and pr. Hence, if for
any point p, Ci(p) ∩ Cj(p) ∩ C is a singleton, then
Ci(pr)∩Cj(pr)∩C is also a singleton. Now, we want

ui uj

C

Figure 3: ∂(X) when Ci(p)∩Cj(p) is a single point and
C contains that point

to find the set of points p such that none of the pair-
wise intersections of the three circles Ci(p), Cj(p)
and C are singletons, but Ci(p) ∩ Cj(p) ∩ C is a
singleton set. Observe that p or pr must belong to
the boundary of C. Without loss of generality we
will find the set of points p on the boundary of C
such that Ci(p)∩Cj(p)∩C is a singleton set. Now
consider the line `i, joining ui and the center of C
(see Figure 4). Observe that for any point p on the
boundary of C, C and Ci(p) will intersect at p and
p−1 where p−1 is the reflection of p with respect to
the line `i. Suppose that among p and p−1, p−1 is
closer to uj . In that case Ci(p)∩Cj(p)∩C is not a
singleton because p−1 belongs to Ci(p)∩Cj(p)∩C.
Hence all the points on one side of `i are not in
∂(X). Similarly consider the line `j , joining uj and
the center of C. All the points in one side of `j is
also not in ∂(X). Remaining points are shown in
bold in Figure 4. It can be also shown that any
point p on on the region shown in Figure 4 is in
∂(X).

ui uj

pi
pj

C

Cr

ℓi lj

p

p−1

Figure 4: ∂(X) when the intersections of none of the
two circles are singletons, but Ci(p) ∩ Cj(p) ∩ C is a
singleton set.

This completes the proof of Lemma 4. The structure
of X in the cases where the line joining ui and uj does
not intersects C, and intersects C, are shown in Figure
5 and Figure 6, respectively.

3.2 Proof of Theorem 1

In this section using Lemma 3 and Lemma 4 we com-
plete the proof of Theorem 1. Recall, from Section 2,
the definition of Γzijk, for S ⊆ {ui, uj , uk}, and z ∈
{0, 1, 2, 3}. We now define Γz = {Γzijk : ui, uj , uk ∈ U}.
Consider the tessellation of the plane induced by the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

41

25th Canadian Conference on Computational Geometry, 2013

ui uj

pi
pj

C

Cr

Figure 5: X when the line joining ui and uj does not
intersect C.

ui uj

pi
pj

C

Cr

Figure 6: X when the line joining ui and uj intersects
C.

collection of the sets Γz, for z ∈ {0, 1, 2, 3} and CFS .
From Lemma 3 we know that CFS and Γ0 consists of
O(n) circles, and Γ3 consists O(n2) lines (set of lines
passing through each pair of users in U). Lemma 3 also
shows that Γ1 consists of O(n3) circles. From Lemma
4 we know for S ⊆ {ui, uj , uk}, with |S| = 2, Γijk(S)
is an open set bounded by O(1) circular arcs and line
segments. Therefore, Γ2 also consists of O(n3) circles
and line segments. Hence, the arrangement generated
by Γz, for z ∈ {0, 1, 2, 3} and CFS consists of O(n3) cir-
cles and line segments. The effective depth of any cell
in this tessellation is constant. Moreover, the effective
depth of a cell is the maximum depth in an arrange-
ment of a set of O(n) circles, which can be computed in
O(n2) time [2]. Hence, by checking the effective depth
of all the O(n6) cells, the minimum effective depth can
be obtained in O(n8) time. Thus, the optimal strategy
of P1 in the Gn(F, S) game can be found in O(n8) time.

References

[1] Hee-Kap Ahn, Siu-Wing Cheng, Otfried Cheong,
Mordecai J. Golin, and René van Oostrum. Com-
petitive facility location: the Voronoi game. Theor.
Comput. Sci., 310(1-3):457–467, 2004.

[2] Boris Aronov and Sariel Har-Peled. On approxi-
mating the depth and related problems. SIAM J.
Comput., 38(3):899–921, 2008.

[3] Sayan Bandyapadhyay, Aritra Banik, Sandip Das,
and Hirak Sarkar. Voronoi game on graphs. In
Subir Kumar Ghosh and Takeshi Tokuyama, edi-
tors, WALCOM, volume 7748 of Lecture Notes in
Computer Science, pages 77–88. Springer, 2013.

[4] Aritra Banik, Bhaswar B. Bhattacharya, and
Sandip Das. Optimal strategies for the one-round

discrete Voronoi game on a line. Journal of Combi-
natorial Optimization, pages 1–15, 2013, to appear.

[5] Aritra Banik, Sandip Das, Anil Maheshwari, and
Michiel H. M. Smid. The discrete voronoi game in
a simple polygon. In Ding-Zhu Du and Guochuan
Zhang, editors, COCOON, volume 7936 of Lec-
ture Notes in Computer Science, pages 197–207.
Springer, 2013.

[6] Sergio Cabello, José Miguel Dı́az-Báñez, Stefan
Langerman, Carlos Seara, and Inmaculada Ven-
tura. Facility location problems in the plane based
on reverse nearest neighbor queries. European
Journal of Operational Research, 202(1):99–106,
2010.

[7] Otfried Cheong, Nathan Linial, and Sariel Har-
peled. The one-round Voronoi game. In Discrete
Comput. Geom, pages 97–101, 2002.

[8] Christoph Dürr and Nguyen Kim Thang. Nash
equilibria in voronoi games on graphs. In Lars
Arge, Michael Hoffmann, and Emo Welzl, editors,
ESA, volume 4698 of Lecture Notes in Computer
Science, pages 17–28. Springer, 2007.

[9] Sándor P. Fekete and Henk Meijer. The one-round
Voronoi game replayed. Comput. Geom., 30(2):81–
94, 2005.

[10] Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Ue-
hara. Voronoi game on a path. IEICE Transac-
tions, 94-D(6):1185–1189, 2011.

[11] S. Langerman and W. Steiger. Optimization in ar-
rangements. Proc. 20th International Symposium
on Theoretical Aspects of Computer Science, pages
50–61, 2003.

[12] J. Matoušek. Computing the center of planar point
sets. Computational Geometry: Papers from the
DIMACS Special Year, pages 221–230, 1991.

[13] Sachio Teramoto, Erik D. Demaine, and Ryuhei
Uehara. Voronoi game on graphs and its complex-
ity. In Sushil J. Louis and Graham Kendall, editors,
CIG, pages 265–271. IEEE, 2006.

25th Canadian Conference on Computational Geometry, 2013

42

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Zipper Unfolding of Domes and Prismoids

Erik D. Demaine∗ Martin L. Demaine∗ Ryuhei Uehara†

Abstract

We study Hamiltonian unfolding—cutting a convex
polyhedron along a Hamiltonian path of edges to unfold
it without overlap—of two classes of polyhedra. Such
unfoldings could be implemented by a single zipper, so
they are also known as zipper edge unfoldings. First we
consider domes, which are simple convex polyhedra. We
find a family of domes whose graphs are Hamiltonian,
yet any Hamiltonian unfolding causes overlap, making
the domes Hamiltonian-ununfoldable. Second we turn
to prismoids, which are another family of simple con-
vex polyhedra. We show that any nested prismoid is
Hamiltonian-unfoldable, and that for general prismoids,
Hamiltonian unfoldability can be tested in polynomial
time.

Keywords: edge unfolding, Hamiltonian-unfolding, zip-
per unfolding, paper folding, dome, prismoid.

1 Introduction

A common way to make a polyhedron from paper is to
fold and glue a planar polygonal shape, called a net of
the polyhedron. The characterization of polyhedra and
their nets has been investigated since Dürer used nets
to represent polyhedra in his 1525 book (see [DO07,
O’R11]). One long-standing open problem is whether
every convex polyhedron can be developed into a flat
nonoverlapping polygonal shape by cutting only along
its edges. Such a development is called an edge unfolding
of the polyhedron. So far, very special classes of edge-
unfoldable convex polyhedra are known: polyhedra of at
most six vertices [DiB90], pyramids, prisms, prismoids,
and domes [O’R01, DO07, O’R08].

In any edge unfolding, the cut edges produce a span-
ning tree of the graph representing the combinatorial
structure of the convex polyhedron. One possible ap-
proach to the open problem is to restrict the cutting
spanning tree to be a simple path. Because the path
should visit (or cut) every vertex exactly once, the cut-
ting edges produce a Hamiltonian path along the edges
of the polyhedron. This restricted type of edge unfold-
ing is called a Hamiltonian unfolding [DDL+10]. From
an industrial point of view, such an unfolding can be re-

∗Computer Science and Artificial Intelligence Laboratory,
MIT, {edemaine,mdemaine}@mit.edu

†School of Information Science, JAIST, uehara@jaist.ac.jp

Figure 1: Zipper folding bags (Top: Spiral
Wristlets (http://www.cathayana.com/su13.htm). Bot-
tom: ZipIt Monster (http://www.zipitstore.com))

alized by a zipper, and there are several products based
on this idea (Figure 1).

From the graph-theoretical point of view, the Hamil-
tonian unfolding problem is related to the Hamilto-
nian path problem on a graph representing the ver-
tices and the edges of the polyhedron. More pre-
cisely, if a polyhedron is Hamiltonian-unfoldable, then
its corresponding graph must have a Hamiltonian path.
Recently, Demaine et al. [DDL+10] found that all
Archimedean solids are Hamiltonian-unfoldable. On the
other hand, a rhombic dodecahedron does not have a
Hamiltonian-unfolding because its corresponding graph
has no Hamiltonian path [DDL+10]. As far as the
authors know, all Hamiltonian-ununfoldable polyhedra
have been proved in this combinatorial way, by showing
that their corresponding graphs are not Hamiltonian.

On the other hand, the difficulty of edge unfolding
convex polyhedron comes from the fact that we have

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

43

25th Canadian Conference on Computational Geometry, 2013

no general strategy to check whether its development
causes an overlap no matter how it is cut along its edges.
That is, to solve the open problem negatively, we have
to find a convex polyhedron that causes an overlap by
edge unfolding along any spanning tree. In this sense,
a natural question arises: is there a convex polyhedron
whose corresponding graph has a Hamiltonian path, yet
any Hamiltonian unfolding causes overlap?

Our results. Our first result is an affirmative answer
to the natural question. We show a family of convex
polyhedra, which are simple domes, such that an over-
lap occurs in every Hamiltonian unfolding. Each of our
domes has many Hamiltonian paths on its correspond-
ing graph. Thus we can say that a graph-theoretic ap-
proach is not enough to tackle the open problem even
for quite simple convex polyhedra.

Extending this result, for any fixed integer k, we show
that there exists a family of domes that cannot be edge-
unfolded by any cutting tree of degree at most k. That
is, we show that, if the degree of the spanning tree of
cuts is bounded, there exist infinitely many convex poly-
hedra that cannot be edge-unfolded. Hamiltonian un-
foldings are the special case when the degree bound k
is 2.

Next we turn to prismoids; a prismoid is the con-
vex hull of two parallel convex polygons whose corre-
sponding angles are equal. If one of these polygons
contains the other in the projection orthogonal to the
parallel planes, then the prismoid is nested. We give
positive results about prismoids. First we show that
any nested prismoid can be unfolded by a Hamiltonian
unfolding. This result is based on band unfolding of
nested prismoids developed in [ADL+08]. Second we
show how to determine whether a general prismoid can
be Hamiltonian-unfolded in polynomial time. This re-
sult is based on counting of the number of Hamiltonian
paths of a general prismoid. We conjecture that any
(general) prismoid can be Hamiltonian-unfolded, but
this problem remains unsolved.

2 Hamiltonian-Ununfoldable Dome

For any integer n ≥ 3, a dome is a convex polyhedron
that consists of a (convex) polygonal base, and n (con-
vex) polygonal sides, each of which shares a distinct
edge with the base (see, e.g., [DO07]).

First we state a technical lemma.

Lemma 1 For a positive integer n, let θ = 2π
n . Let T

be an isosceles triangle with apex angle θ. Two arms of
T are of unit length. We place eight copies of T as in
Figure 2, where bold edges are shared by two triangles.
Then the triangles T4 and T8 overlap for any n > 12.

T6
T5

T7
T8

T1 T2
T3

T4

A

B

C

D

O(0,0)

Figure 2: Overlapping triangles

Proof. We put the origin O = (0, 0) on the apex of T5,
and the y axis on the line joining the apices of T1 and T5.
Let A and B be the apices of T1 and T4, respectively.
Then we can compute

A =
(
0, 2 sin θ

2

)
, B =

(
2 sin θ

2 sin 2θ, 2 sin θ
2 (1 − cos 2θ)

)
.

On the other hand, let C be the furthest base angle
point of T8 from T5. Then we have

C =
(
cos 7θ

2 , sin 7θ
2

)
.

Now consider the intersection point D on two lines AB
and OC. (Precisely, two lines containing AB and OC.)
Then both T4 and T8 contain the point D if |OD| < 1.
By a simple computation, we obtain

D =

(
2 sin θ

2

cot 2θ + cot 7θ
2

,
2 sin θ

2 tan 2θ

tan 2θ + tan 7θ
2

)

and hence |OD|2 equals

4 sin2 θ
2

(
1

(
(cot 2θ + cot 7θ

2

)2 +
tan2 2θ

(tan 2θ + tan 7θ
2)2

)
,

which is less than 1 for any n > 12. �

Theorem 2 There exists an infinite sequence of domes
that are Hamiltonian-ununfoldable.

Proof. For each integer n > 1, we construct a dome
D(n) as follows. The base B(n) is a regular 2n-gon.

25th Canadian Conference on Computational Geometry, 2013

44

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

c

q1

q2

q3

p1

p2

p3

p4

p5

p6

Figure 3: The top view of D(3)

Let p1, p2, . . . , p2n be the vertices of B(n). The dome
D(n) has an apex c that is on the central perpendicular
of B(n). The height of c is very small. We put a small
circle C centered at c, and put n points q1, q2, . . . , qn

on C such that these points form a regular n-gon. To
simplify, we assume that the height of c and the radius of
C are almost 0. Then we join and make edges {p2i−1, qi}
and {p2i, qi} for each i = 1, 2, . . . , n. We rotate the circle
C so that each triangle qip2i−1p2i is an isosceles triangle.
We also join c to the qi for each i = 1, 2, . . . , n. Figure 3
shows the top view of the dome D(n) for n = 3. Now we
show that D(n) is Hamiltonian-ununfoldable for n > 12.

Suppose that D(n) is Hamiltonian-unfoldable by cut-
ting along edges in P . Then P is a Hamiltonian path on
D(n). For vertex v we use degP (v) to denote the num-
ber of edges incident to v in P . That is, degP (v) = 1
for two endpoints and degP (v) = 2 for the other vertices
because P is a Hamiltonian path. Thus degP (c) is one
or two, and almost all vertices qi have degP (qi) = 2.
This implies that for almost all vertices qi, the path
(p2i−1, qi, p2i) is a part of P . That is, most isosceles tri-
angles will be flipped along their base lines like petals
of a flower.

We have two cases. First, we suppose that c is
an endpoint of P . Without loss of generality, we
can assume that the path (c, q1, p1) is in P . Then,
because c has no other cut except along (c, q1), P
contains all subpaths (p2i−1, qi, p2i) with 1 < i ≤
n (except i = 1). Then we have only two pos-
sible ways to make a Hamiltonian path. One is
(c, q1, p1, p2n, qn, p2n−1, . . . , p4, q2, p3, p2), and the other
one is (c, q1, p1, p2, p3, q2, p4, . . . , p2n−1, qn, p2n).

The first subcase is illustrated in Figure 4(b) and (c).
We first cut along the dotted path in Figure 4(b). Then
we flip the lid, which consists of all pentagons and one

p
1 p

2
p
3

p1 p
2

p
3

(a)

(b)

(c)

Figure 4: One possible development of D(12)

triangle p1p2q1 (Figure 4(c)). Now the other triangles
have to be flipped, however, the gray triangles overlap
with the lid by Lemma 1 if the circle C and the height of
the dome are sufficiently small and n > 12. Therefore,
we cannot develop in this case without overlap. The
second subcase is easier: one triangle closer to the lid
again overlaps the flipped lid. Therefore, when c is an
endpoint of P , every development causes an overlap.

Now we turn to the next case: c is not an end-
point of P . We now assume that the path (qi, c, q1, p1)
is in P without loss of generality for some i. When
qi is an endpoint, almost the same argument as the
first case works. If qi = q2 or qi = qn, one of two
petals overlaps, but in other cases, two petals again
overlap the flipped lid. Therefore, we consider the
case (pj , qi, c, q1, p1), where j = 2i − 1 or j = 2i. If
we remove the vertices {pj , qi, c, q1, p1} from the graph
obtained from the dome D(n), it is easy to see that
the graph is disconnected into two parts. We call
the graph induced by {p2, p3, . . . , pj−1, q2, q3, . . . , qi−1}
the right graph, and the other graph induced by
{pj+1, pj+1, . . . , p2n, qi+1, . . . , qn} the left graph. Then,
clearly, P consists of three parts; Pr for the right graph,
Pl for the left graph, and the subpath (pj , qi, c, q1, p1)
joining Pr and Pl. Now we take the larger graph P ′ be-
tween Pr and Pl, apply the same argument as the first
case on P ′ with (pj , qi, c, q1, p1), and again obtain an
overlap. �

In the Hamiltonian unfolding, each vertex has degree
at most 2 on the cutting path. This can be generalized
to any integer k ≥ 2:

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

45

25th Canadian Conference on Computational Geometry, 2013

k

n-k
k

k

>5 triangles

p

p’

q

q’

Figure 5: Maximum degree bounded case

Theorem 3 For any positive integer k ≥ 2, there exists
an infinite number of domes that are edge-ununfoldable
when the maximum degree of the cutting tree at each
vertex is bounded at most k.

We note that all vertices of the dome D(n) have de-
gree 3 except the central vertex c. That is, the cutting
tree in Theorem 3 has only one vertex of degree greater
than 3.

Proof. We consider the dome D(n) for any n > 6k.
Let T be any spanning tree of D(n) with maximum
degree at most k. We show that the development of
D(n) by cutting the edges in T causes an overlap. By
definition, the central vertex c has degree at most k.
Let Tc be the subtree of T induced by the vertices
{c} ∪ NT (c) ∪ NT (NT (c)), where NT (v) is the neighbor
set of v on T , and NT (NT (c)) = ∪q∈NT (c)NT (q). Then,
Tc has at most 2k leaves because each qi may have two
leaves from p2i−1 and p2i in Tc. However, by the ex-
pected value argument, we have at least (n − k)/k > 5
consecutive triangles on the boundary of the base be-
tween two leaves p and p′ of Tc (Figure 5). They are
cut along T as was done in the proof of Theorem 2.
Precisely, all pentagons between p and p′ form a lid,
and it is then flipped at one boundary edge, say {q, q′}
(Figure 5). When the triangles between p and p′ are
flipped, two triangles sharing q and q′ (gray triangles in
Figure 5) will overlap with the lid by Lemma 1. �

3 Hamiltonian-Unfoldability of a Prismoid

A prismoid is a convex hull of two parallel convex poly-
gons with matching angles. If one of these polygons
contains the other in the projection orthogonal to the
parallel planes, the prismoid is nested. In a nested pris-
moid, the larger polygon is called the base and the other
polygon is called the top. In general prismoids, we arbi-
trary name the two parallel convex polygons base and
top. The other surface is called the band. Because the
top and base have matching angles with parallel edges,
the band consists of trapezoids.

a1 a2

a3

a4

an-1

an

b1 b2

b3

b4

bn

bn-1

Figure 6: Hamiltonian-unfolding of a nested prismoid
(1): (a1, b1) is the edge allowing us to unfold the band,
and b3b4 is the first “acute” edge from b1b2.

a1 a2

a3

a4

an-1

an

b3

b4

bn

bn-1

a’1 a’2
a’3

a’n-1

a’n

b1 b2
b’1

b’2

a’’1a’’2

Lt

Lb

t1t2

t4

t3At

Ab

a’4

b’n

b’n-1

a"n-1

a"n

a"3

a"4

>90

Figure 7: Hamiltonian-unfolding of a nested prismoid
(2): the top and the band is fliped and separated from
the base by the lines Lt and Lb, respectively.

3.1 Nested Prismoid

Theorem 4 Any nested prismoid has a Hamiltonian
unfolding.

Proof. In [ADL+08], it is shown that the band of any
nested prismoid can be unfolded. That is, the band has
at least one edge (not included in base and top) such
that by cutting along the edge and unfolding continu-
ously all faces of the band can be placed into a plane
without intersection. Let the top and base polygons
be Pt = (a1, a2, . . . , an) and Pb = (b1, b2, . . . , bn), and
suppose that the edge (a1, b1) allows us to unfold the
band.

Then our Hamiltonian unfolding consists of
(bi+1, bi+2, . . . , bn, b1, a1, an, an−1, . . . , a3, a2, b2, b3, . . . , bi)

25th Canadian Conference on Computational Geometry, 2013

46

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

for some i with i ≥ 2 (Figure 6). The index i is the
first index such that the total turn angle from the

vector
−−→
b1b2 to the vector

−−−→
bibi+1 is greater than 90◦.

(Intuitively, the vertex bi+1 is the first vertex coming
back to b1. We note that i can be n.) We fix the base
in the plane. Then the unfolding can be regarded as
two “flipping” (Figure 7): one is the flipping of the
top along the axis (b1, b2) with the trapezoid a1a2b2b1

as a hinge, and the other one is the flipping of the
band (except the trapezoid a1a2b2b1) along the axis
(bi, bi+1) with the trapezoid aiai+1bi+1bi as a hinge.
Let P ′

t = (a′
1, a

′
2, . . . , a

′
n) be the flipped top, and Q =

(b′
2, . . . , b

′
i−1, bi, bi+1, b

′
i+2 . . . , b′

n, b′
1, a

′′
1 , a′′

n, . . . , a′′
3 , a′′

2)
be the flipped band (except the trapezoid b1b2a

′
2a

′
1).

Let Lt and Lb be the line segments that contain b1b2

and bibi+1, respectively.

Now we prove that the Hamiltonian unfolding causes
no overlap. We define the area At as the union of the
rays ` perpendicular to Lt such that the endpoint of ` is
on Lt and ` has a nonempty intersection with the flipped
top (the left gray area in Figure 7). Let t1 and t2 be the
rightmost and the leftmost points on Lt, respectively.
For Lb and the flipped band, we also define Ab in a
similar way. Let t3 be the point on Lb closest to Lt.
Then, it is easy to see that the flipped top is included
in At and the flipped band is included in Ab.

We will show that Ab is above the line Lt, and hence
At and Ab are separated by Lt. We have two cases. The

first case is that the angle between the vector
−−→
b1b2 and

the vector
−−−→
bibi+1 is less than 180◦ as in Figure 7. This

case is easy; the point t3 closest to Lt is the intersection
of Lb and the perpendicular to Lb that passes through
b′
1 or b′

2. In the worst case, t3 is at t1. In this case, At

and Ab have an intersection at this point, but this is
the only point shared by At and Ab. Thus we can see
that the Hamiltonian unfolding causes no overlap. Next

we assume that the angle between the vector
−−→
b1b2 and

the vector
−−−→
bibi+1 is greater than 180◦. In the case, we

can use a symmetric argument at the point bi+1. The
worst case is that bi+1 = bn and t3 is at t2. Although
At and Ab can have an intersection at this point, the
Hamiltonian unfolding itself causes no overlap. �

3.2 General Prismoid

Theorem 5 The number of Hamiltonian paths in a
prismoid of 2n vertices is n3 + 2n2 for even n, and
n3 + 2n2 − n for odd n.

Proof. Let Pt = (a1, a2, . . . , an) and Pb =
(b1, b2, . . . , bn) be the top and base polygons of the
prismoid, respectively. We assume that ai and bi are
joined by an edge for each 1 ≤ i ≤ n. The key
observation is that, once we add (ai−1, ai, bi, bi+1) or
(ai−1, ai, bi, bi−1) as a subpath of a Hamiltonian path,

x y z

x y
bs

ai

bi

ai

bi

(a)

(b)

bs

Figure 8: Two possible types of Hamiltonian paths in a
prismoid

the graph is separated into two parts at the edge {ai, bi}.
Thus we have at most one consecutive zig-zag pattern
(ai−1, ai, bi, bi+1, ai+1, ai+2, bi+2, . . .) in a Hamiltonian
path. The remaining part is filled by two paths in two
different ways. The possible patterns are depicted in
Figure 8 (the bold arrow indicates the start point of
the zig-zag pattern from the vertex bs). The first one
(Figure 8(a)) divides the remaining part into two parts,
say, the left and right part. Each of them is filled by
a bending path. In the second one (Figure 8(b)), one
of two subpaths spans the vertices in Pt, and the other
subpath spans the vertices in Pb. (Thus the length of
the zig-zag pattern is odd.)

Now we count the number of possible Hamiltonian
paths on the prismoid. We first assume that the unique
zig-zag pattern starts from (bs−1, bs, as, as+1) as in Fig-
ure 8. Then the number of possible combinations of the
first case (Figure 8(a)) is the number of partitions of n
into three parts of size x ≥ 0, y ≥ 0, and z ≥ 0 with
x + y + z = n, which is equal to

(
n+1

2

)
. On the other

hand, the number of possible combinations of the second
case (Figure 8(b)) is the number of partitions of n into
two parts of size x ≥ 0 and (odd) y ≥ 0 with x + y = n,
which is equal to bn/2c. Thus we have

(
n+1

2

)
+ bn/2c

Hamiltonian paths in the case. We have n ways to
choose bs, and we have the other case that the unique
zig-zag pattern starts from (as−1, as, bs, bs+1). There-
fore, we have 2n(

(
n+1

2

)
+ bn/2c) Hamiltonian paths on

the prismoid. �

Corollary 6 Hamiltonian-unfoldability of a prismoid
can be determined in polynomial time. Moreover, all
Hamiltonian-unfolding can be enumerated in polynomial
time.

Proof. We can check each cut along a Hamiltonian
path in the prismoid to see if it gives us a nonoverlap-

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

47

25th Canadian Conference on Computational Geometry, 2013

ping unfolding. By Theorem 5, the number of Hamil-
tonian paths in the prismoid is O(n3). Thus we can
test all possible Hamiltonian unfoldings in polynomial
time. �

4 Conclusion

Some simple families of polyhedra that are edge-
unfoldable were presented in [DO07]. Among them,
it is easy to see that pyramids and prisms are also
Hamiltonian-unfoldable, by so-called “band unfolding”.

As we saw, any nested prismoid is Hamiltonian-
unfoldable, and the Hamiltonian unfoldability of a gen-
eral prismoid can be tested in polynomial time. We con-
jecture that all prismoids are Hamiltonian-unfoldable.
It is worth mentioning that Aloupis showed in his the-
sis [Alo05] that the band of any prismoid (without top
and bottom) can be unfolded. But a naive idea to at-
tach the top and bottom to the unfolded band does
not work; there are nested prismoids that cause over-
lap in any band unfolding [O’R12]. Since Hamiltonian-
unfolding is more flexible than band unfolding, we may
avoid overlapping for such prismoids.

A generalization of prismoids are prismatoids: a pris-
matoid is the convex hull of any two parallel convex
polygons. Theorem 5 cannot be extended to pris-
matoids because some prismatoids have exponentially
many Hamiltonian paths; see Figure 9.

Figure 9: The side profile of a prismatoid that has ex-
ponentially many Hamiltonian paths

Acknowledgements

The first and second authors were supported in part
by NSF ODISSEI grant EFRI-1240383 and NSF Ex-
pedition grant CCF-1138967. This work was initiated
when the third author was visiting MIT, and discussed
at the 28th Bellairs Winter Workshop on Computational
Geometry, co-organized by Erik D. Demaine and God-
fried Toussaint, held on February 22–29, 2013, in Ho-
letown, Barbados. We thank the other participants of
that workshop for providing a stimulating research en-
vironment.

References

[ADL+08] Greg Aloupis, Erik D. Demaine, Stefan Langer-
man, Pat Morin, Joseph O’Rourke, Ileana
Streinu, and Godfried Toussaint. Edge-unfolding

nested polyhedral bands. Computational Geom-
etry, 39:30–42, 2008.

[Alo05] Greg Aloupis. Reconfigurations of Polygonal
Structure. PhD thesis, School of Computer Sci-
ence, McGill University, January 2005.

[DDL+10] Erik D. Demaine, Martin L. Demaine, Anna Lu-
biw, Arlo Shallit, and Jonah L. Shallit. Zipper
unfoldings of polyhedral complexes. In CCCG
2010, pages 219–222, 2010.

[DiB90] Julie DiBiase. Polytope Unfolding. Undergradu-
ate thesis, Smith College, 1990.

[DO07] Erik D. Demaine and Joseph O’Rourke. Geo-
metric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, 2007.

[O’R01] Joseph O’Rourke. Unfolding prismoids without
overlap. Unpublished manuscript, May 2001.

[O’R08] Joseph O’Rourke. Unfolding polyhedra.
http://cs.smith.edu/∼orourke/Papers/PolyUnf0.pdf,
July 2008.

[O’R11] Joseph O’Rourke. How to Fold It: The Mathe-
matics of Linkage, Origami and Polyhedra. Cam-
bridge University Press, 2011.

[O’R12] Joseph O’Rourke. Unfolding prismatoids as con-
vex patches: counterexample and positive re-
sults. arXiv:1205.2048v1, May 2012.

25th Canadian Conference on Computational Geometry, 2013

48

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Map Folding

Rahnuma Islam Nishat∗ Sue Whitesides ∗†

Abstract

A crease pattern is an embedded planar graph on a piece
of paper. An m×n map is a rectangular piece of paper
with a crease pattern that partitions the paper into an
m×n regular grid of unit squares. If a map has a config-
uration such that all the faces of the map are stacked on
a unit square and the paper does not self-intersect, then
it is flat foldable, and the linear ordering of the faces is
called a valid linear ordering. Otherwise, the map is
unfoldable. In this paper, we show that given a linear
ordering of the faces of an m × n map, we can decide in
linear time whether it is a valid linear ordering, which
improves the quadratic time algorithm of Morgan. We
also define a class of unfoldable 2 × n mountain-valley
patterns for every n ≥ 5.

1 Introduction

A piece of paper is a connected polygon in R2, with or
without holes. A paper has a light side and a dark side.
A crease pattern is an embedded planar graph on a piece
of paper. Each edge of a crease pattern that is not on
the boundary of the paper is called a crease. The crease
pattern divides the surface of the paper into a set of
bounded regions called faces. Each face is bounded by
a set of creases and possibly by part of the boundary of
the paper. Each crease is incident to exactly two faces.
A vertex of a crease pattern is an endpoint of a crease
that is not on the boundary of the paper.

If a crease pattern partitions a rectangular piece of
paper without holes into an m × n regular grid of unit
squares, then the piece of paper is called an m × n grid
paper or an m × n map. A crease pattern on an m × n
map is called an m × n crease pattern. When we fold
a piece of paper with a given crease pattern, we are
restricted to fold the paper only along the creases. A
crease can be folded either as a mountain or as a valley.
A mountain fold folds the paper such that the two faces
incident to the crease touch each other on the dark side
after the fold. Similarly, a valley fold folds the paper
such that the two faces incident to the crease touch each
other on the light side after the fold.

∗Department of Computer Science, University of Victoria, BC,
Canada, rnishat@uvic.ca, sue@uvic.ca

†Supported by an NSERC Discovery Grant and the Univer-
sity of Victoria. Results here appear in the first author’s MSc
thesis [9].

A mountain-valley assignment is a many-to-one func-
tion from the creases in a crease pattern to a label set
{M,V }. A mountain-valley pattern is a crease pat-
tern together with a mountain-valley assignment. Fig-
ure 1(a) shows a mountain-valley pattern on a 3×3 map.
The valley creases are denoted by triple-dot dashed
(red) lines and the mountain creases are denoted by
dashed (blue) lines.

v0,1 v0,2v0,0
v0,3

v1,0 v1,1 v1,2 v1,3

v3,0
v3,2v3,1 v3,3

v2,0
v2,1 v2,2 v2,3

f0,0 f0,1 f0,2

f1,0 f1,2f1,1

f2,0
f2,1 f2,2

V

V

V

V

V

M

M

M

M

M

M

M

(b)(a)

Figure 1: (a) A mountain-valley pattern on a 3×3 map.
(b) A 3×3 map with crease pattern C, where the vertices
of C are shown as black disks and the dummy vertices
are shown as red disks.

Hull [4] gave upper and lower bounds on the number
of flat foldable mountain-valley assignments on a single-
vertex crease pattern on a disk. Researchers have also
been interested in combinatorial problems in origami.
Justin [5] enumerated a number of unfoldable mountain-
valley patterns on 2×5, 2×6 and 2×7 maps. Uehara [11]
showed that any mountain-valley 1 × n pattern is flat
foldable, and gave new upper and lower bounds on the
number of flat folded states for that case. Jack Edmonds
posed the following open problem in 1997 [3].

Open Problem: What is the complexity of deciding
whether an m × n map with a given mountain-valley
pattern is flat foldable?

In an attempt to answer the above question, Arkin
et al. [1] introduced “simple folding” techniques. They
showed that any flat foldable 1D mountain-valley pat-
tern is flat foldable using simple folding. Recently, Mor-
gan [8] has given an O(n9) algorithm for 2×n mountain-
valley patterns and an exponential time algorithm for
m × n mountain-valley patterns. Bern and Hayes [2]
proved that both the flat foldability and the assigned flat
foldability problems are NP-complete. The flat foldabil-
ity problem asks whether a paper with a given crease

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

49

25th Canadian Conference on Computational Geometry, 2013

pattern has a final flat folded state, where the creases are
not necessarily labeled and the crease pattern is “locally
flat foldable”. In an assigned flat foldability problem,
each crease is labeled either mountain or valley.

In this paper, we give an exponential time algorithm
to determine whether a given m × n mountain-valley
pattern is flat foldable. We also investigate the com-
binatorial properties of mountain-valley patterns. The
main results of the paper are as follows.

In Section 3, we show that given a linear ordering
of the faces of an m × n mountain-valley pattern, we
can decide in linear time whether it is a valid linear
ordering or not. In Section 4, we give an exponential
time algorithm to decide flat foldability of an m × n
mountain-valley pattern. In Section 5, we show that
there is an unfoldable 2×n mountain-valley pattern for
each and every n ≥ 5 and define a class of unfoldable
2 × n mountain-valley patterns for every n ≥ 5.

2 Preliminaries

In this section, we define the terminology used through-
out the paper. We also mention some previous results
that we use.

Let P be a piece of paper. Let C be a crease pattern
on P such that P is flat foldable with respect to C. Let
v be a vertex of C. Suppose we draw any circle r around
v such that no other vertex of C is on r or inside r. Since
P is flat foldable with respect to C, the disk bounded by
r is also flat foldable. The following results are known
for a crease pattern on a disk with a single vertex v at
the center of the disk.

Lemma 1[7] The difference between the number of
creases with the label mountain and the number of
creases with the label valley meeting at v is 2.

Let P be a map with crease pattern C. It easily fol-
lows from Lemma 1 that each vertex of C must have
either three mountain creases and one valley crease or
three valley creases and one mountain crease incident
to it when P is flat foldable. If the conditions stated
in Lemma 1 is satisfied for all the vertices in C, we say
that the crease pattern C is locally flat foldable.

A fragment of P is a subset of faces of C that form
a connected rectangular region (without a hole). A flat
folded state of P is a stack of disjoint fragments of P that
are parallel to each other, connected along the creases
of C, and such that the union of all the fragments is
P . Each fragment in the stack is called a layer. A final
flat-folded state of P is a flat folded state where each
layer consists of exactly one face of C. If P has a final
flat-folded state, then P is flat foldable. A final flat-
folded state of P is also called a final flat-folded state of
C. Figure 2 shows an example of a flat folded state of
a 6 × 8 map.

l4

l3

l2

l1

Figure 2: A flat folded state of P with four layers l1, l2, l3
and l4.

A vertex of C is an endpoint of a crease of C that is not
on the boundary of the paper. A vertex of P is either
an endpoint of a crease or a corner of the boundary of
P . We call a vertex of P that is not a vertex of C a
dummy vertex. Figure 1(b) shows the vertices of a 3×3
map.

We denote by fi,j a face of C that has the vertices
vi,j , vi+1,j , vi,j+1, vi+1,j+1 on its boundary as shown in
Figure 1(b). For each face fi,j of C, we associate the
creases (vi,j , vi+1,j) (left side of the unit square), where
0 < j < n, and (vi,j , vi,j+1) (top of the unit square),
where 0 < i < m, to fi,j . The creases associated with
each face are shown in Figure 1(b).

A column cj of C is a set of m faces
f0,j , f1,j , . . . , fm−1,j , where 0 ≤ j ≤ n − 1. A
row ri of C is a set of n faces fi,0, fi,1, . . . , fi,n−1,
where 0 ≤ i ≤ m − 1. The creases associated with a
column cj are the creases associated with the faces in
cj . Similarly, the creases associated with a row ri are
the creases associated with the faces in ri.

2.1 Checkerboard Pattern

Let us assume that P is flat foldable and let L be the
linear ordering of the faces of C in a final flat folded state
Sf of P . Without loss of generality we assume that the
face f0,0 is facing light side up in Sf and the vertex v0,0

is incident to the top-left corner of the unit square on
which the faces are stacked. It is easy to observe that
the faces that share an edge with f0,0 must face dark
side up. In a similar way, if a face fi,j , 0 ≤ i ≤ m − 1
and 0 ≤ j ≤ n−1, is facing light side (respectively, dark
side) up, then all the faces that share an edge with fi,j

must face dark side (respectively, light side) up. So the
faces of C form a checkerboard pattern, where the color
of a face f depends on which side of f must face up in
any final flat folded state of P (under our assumption),
as shown in Figure 4(a).

2.2 Butterflies

A butterfly B is a pair of faces f, f ′ of C incident to the
same crease e. We call f and f ′ the wings of B and the
crease e the hinge of B. A pair of butterflies is a set of
two butterflies B1 and B2 with no wing in common.

25th Canadian Conference on Computational Geometry, 2013

50

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Let S be any flat folded state of P and let B1, B2

be a pair of butterflies such that the wings of B1, B2

lie above the same unit square u on the XY -plane and
the hinges of B1, B2 lie above the same edge of u. Let
the wings of B1 and B2 be f1, f

′
1 and f2, f

′
2, respec-

tively. Here, f1 and f2 denote the lower wings and f ′
1

and f ′
2 denote the upper wings of their respective but-

terflies. Then the ordering of the four wings from bot-
tom to top must be one of the following: (f1, f

′
1, f2, f

′
2),

(f2, f
′
2, f1, f

′
1), (f2, f1, f

′
1, f

′
2) or (f1, f2, f

′
2, f

′
1), as shown

in Figure 3(a)–(d), respectively. Note that the ordering
of the wings cannot be (f1, f2, f

′
1, f

′
2) or (f2, f1, f

′
2, f

′
1)

as P would self-intersect. If the order of the wings is
as in Figure 3(a) or (b), we say that B1 and B2 stack.
Otherwise, we say that B1 and B2 nest.

(a) (b)

(c) (d)

1f2f

2f 1f

Figure 3: A pair of butterflies B1, B2, where (a) B2 is
stacked on B1, (b) B1 is stacked on B2, (c) B1 nests in
B2, and (d) B2 nests in B1.

If P is flat foldable, then there exists a final flat folded
state of P where all the faces of C lie above a unit square
u on the XY -plane. Since we assume that in any final
flat folded state (if one exists) of P , v0,0 is incident to
the top-left corner of u, the horizontal creases in row ri,
0 ≤ i ≤ m−1, lie above the top edge of u when i is even.
We call the butterflies that have these creases as hinges
the north butterflies. Similarly, the horizontal creases
in row ri, 0 ≤ i ≤ m − 1, lie above the bottom edge of
u when i is odd. We call butterflies with these hinges
the south butterflies. The vertical edges in column cj ,
0 ≤ j ≤ n−1, lie above the left edge of u when j is even
and they lie above the right edge of u when j is odd. We
call butterflies with those hinges the west butterflies and
the east butterflies, respectively. A pair of butterflies B1

and B2 is called a pair of twin butterflies if both of them
are north or south or east or west butterflies.

2.3 Directed Network

Let B be a butterfly of P with hinge e and wings f, f ′.
Since f and f ′ are adjacent faces, exactly one of them
has light side up in the checkerboard pattern. Without
loss of generality, we assume that f has the light side
up. Then the label of e (mountain or valley) determines

the ordering of f and f ′. If e has the label mountain,
then f (the face with the light side up) comes above
f ′ (the face with dark side up). We denote the order-
ing by f ≺ f ′, where ≺ means ‘comes above’. On the
other hand, if e has the label valley, then the ordering
is f ′ ≺ f . The labels of all the creases give a directed
network (of the faces) of C. For example, Figure 4(a)
shows a 2 × 2 mountain-valley pattern. The creases

e1

e3e2

e4

f0,0
f0,1

f1,0 f1,1

f0,0 f0,1

f1,1f1,0

(a) (b)

Figure 4: (a) A 2 × 2 mountain-valley pattern, and (b)
the directed network.

e1, e2, e3 and e4 impose the following directed network.
(See Figure 4(b).) f1,1 is facing light side up and f1,0

is facing dark side up. Since e4 has the label valley,
then f1,0 ≺ f1,1. f0,0 is facing light side up and f1,0 is
facing dark side up. Since e2 has the label mountain,
then f0,0 ≺ f1,0. f0,1 is facing dark side up and f0,0 is
facing light side up. Since e1 has the label mountain,
then f0,0 ≺ f0,1. In a similar way, f1,1 ≺ f0,1.

Since f0,0 comes above all other faces, it must be the
topmost face. Similarly, the bottommost face must be
f0,1. In fact, in this particular example, the directed
network gives a unique candidate for a valid linear order-
ing of the faces of C, which is L = (f0,0, f1,0, f1,1, f0,1)
from top to bottom. Notice that the directed network
in Figure 4(c) is a directed acyclic graph (DAG).

We claim that the directed network of any flat fold-
able m × n mountain-valley pattern must be a DAG.
Our approach is independent of, but similar to [8].

Lemma 2 Let C be an m×n mountain-valley pattern.
If C is flat foldable, then its directed network N is a
directed acyclic graph.

3 Recognizing Valid Linear Orderings

In this section, we give an algorithm to decide whether
a given linear ordering of the faces of a mountain-valley
pattern C is a valid linear ordering of C.

Here is an outline of our algorithm, which is essen-
tially the method of [8]. Let L be any linear ordering of
the faces of C. For each pair of twin butterflies B1, B2

in C, we check whether B1, B2 nest, stack or intersect in
L. If they either stack or nest, then we check whether
the ordering of the wings of B1 and B2 satisfies the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

51

25th Canadian Conference on Computational Geometry, 2013

ordering in the directed network. If each pair of twin
butterflies satisfies the ordering in the directed network
and does not intersect, then L is a valid linear ordering.
Otherwise, it is not a valid linear ordering.

We now prove the correctness the algorithm.

Theorem 3 Let P be an m×n map with the mountain-
valley pattern C. Let L be a linear ordering of the faces
of C. Then L is a valid linear ordering if and only if (a)–
(b) hold: (a) every pair of twin butterflies either stacks
or nests in L (i.e., satisfies the Butterfly Condition),
and (b) L satisfies the directed network N of C.

Proof. We first assume that L is a valid linear ordering
of C. Then Conditions (a) and (b) must hold. There-
fore, we assume that Conditions (a) and (b) hold. We
first decompose P into m×n distinct unit squares, where
each square is a face of C. Each of these squares has a
light side and a dark side. We stack these squares on a
unit square u according to the linear ordering L. The
checkerboard pattern of C decides for each face whether
it faces dark or light side up. For each north butterfly
B in P , we join its two wings (along the hinge of B)
such that its hinge lies above the top edge of u. Since
any two north butterflies either nest or stack, there will
be no intersection of butterflies. We join the wings of
the south, east and west butterflies along the bottom,
right and left edge of u in a similar way. In this way, we
construct a final flat folded state Sf of P and L is the
linear ordering of the faces of C in Sf . Therefore, L is
a valid linear ordering. �

We now calculate the running time of the algorithm.

Theorem 4 The running time of the algorithm above is
O(m2n2). With a careful implementation, the running
time can be reduced to O(mn) which is linear in the size
of the input.

Proof. Since there are O(m2n2) pairs of twin but-
terflies, and it takes O(1) time to check whether a
pair of twin butterflies intersect and whether the or-
der of the wings of each butterfly satisfies the ordering
given by the directed network, the total running time is
O(m2n2) × O(1) = O(m2n2).

We now show a careful implementation to reduce the
time complexity. We first check for each pair of north
butterflies whether they intersect or not. We take a
two dimensional array M [0 . . .m − 1][0 . . . n − 1] and a
stack S[1 . . . mn]. At first the stack is empty and each
of the entries in M is 0. We preprocess M based on
the directed network of C, and M remains unchanged
during the processing of the faces. Here are the rules
for preprocessing M .

For each 1 ≤ i ≤ m − 2, where i is odd, and for each
0 ≤ j ≤ n − 1, we do the following:

- If fi,j faces light side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled moun-
tain, then set M [i+1, j] = 1. This means that the face
fi,j must occur in L before the face fi+1,j .

- If fi,j faces dark side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled moun-
tain, then set M [i, j] = 1.

- If fi,j faces light side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled valley,
then set M [i, j] = 1.

- If fi,j faces dark side up in the checkerboard pattern of
C and the crease between fi,j , fi+1,j is labeled valley,
then set M [i + 1, j] = 1.

We now take the faces in the order given by L and
process them as follows. Let the current face be fx,y. If
x < 1, or x > m−2 and m is even, then it is not a wing
of a north butterfly. Therefore, we proceed to the next
face in L. Otherwise, it is the wing of a north butterfly
and we examine M [x, y].

- If M [x, y] = 0, then it is the wing of a butterfly that
occurs before the other wing. Push the face fx,y to S.

- If M [x, y] = 1, the other wing of the corresponding
butterfly is already in the stack. In this case, we check
the top of the stack. If the topmost face in the stack is
fx+1,y (x is odd) or fx−1,y (x is even), then we pop the
topmost face and proceed to the next face. Otherwise,
there is an intersection, and hence L is not a valid
linear ordering.

We stop when either we detect an intersection or we
reach the end of L. Therefore, checking for intersection
among the north butterflies takes O(mn) time. Simi-
larly we check the south, west and east butterflies. The
running time of the algorithm is 4 × O(mn) = O(mn),
linear in the size of the input linear ordering. �

4 Enumerating Valid Linear Orderings

In this section, we sketch the outline of an exponential-
time exact algorithm to enumerate all the valid linear
orderings (if any exist) of an m × n mountain-valley
pattern C. Note that the existance of a valid linear
ordering of C proves that C is flat foldable.

Since C is a mountain-valley pattern, there is a unique
directed network N of C. We assume that N is a di-
rected acyclic graph; otherwise C is not flat foldable
by Lemma 2. We now enumerate all the linear or-
derings of the faces of C using the algorithm of [10],
which takes constant amortized time; i.e., the total run-
ning time of the algorithm is O(e(N)), where e(N) is
the number of linear orderings generated by the al-
gorithm from the partial order N . We can decide
whether a linear ordering is a valid linear ordering in

25th Canadian Conference on Computational Geometry, 2013

52

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

O(mn) time. From Theorem 1.1 of [6], we know that
e(N) ≤ 2mn(log(mn)−H(N)) ≤ 2mnlog(mn) = O(mnmn)
, where H(N) ≤ log mn is the entropy function of N .
Therefore, enumerating all valid linear orderings takes
O(mn) × O(mnmn) = O(mnmn+1) time.

5 Unfoldable Maps

In this section, we define a class χn of unfoldable 2 × n
mountain-valley patterns, n ≥ 5. Note that any 2 × n
mountain-valley pattern is flat foldable when n ≤ 4. We
first show a subclass Sn of unfoldable 2 × n mountain-
valley patterns, for every n ≥ 5. We then observe that
any map with an unfoldable pattern (i.e., a pattern in
Sn) as a fragment is unfoldable. Using this result, we
define the class χn, which includes Sn as a subclass.

Let P be a 2×n map with a mountain-valley pattern
C. By definition, there are n horizontal creases. We call
each of these creases a spinal crease and collectively we
call these creases the spine. We call the n − 1 vertical
creases above the spine the upper ribs and the remaining
creases the lower ribs. We denote the upper ribs in C by
u1, u2, . . . , un−1 from left to right. Similarly, the lower
ribs are denoted by l1, l2, . . . , ln−1 from left to right, and
the spinal creases are denoted by s1, s2, . . . , sn from left
to right. A pair of upper and lower ribs {ui, li} incident
to the same vertex is called a pre-spine fold if they both
have mountain or valley label.

We now define the subclass Sn of unfoldable 2 × n,
n ≥ 5, mountain-valley patterns. Let C be a pattern for
Sn that satisfies the following (a)–(d).

(a) C is locally flat foldable.

(b) There are exactly two pre-spine folds {u2, l2} and
{un−2, ln−2}.

(c) All the upper ribs receive the same label.

(d) s3 receives the opposite label of the upper ribs.

The upper ribs of C can be labeled either mountain
or valley. Without loss of generality we assume that the
upper ribs of C receive the label mountain as shown in
Figure 5. Consequently, all the lower ribs of C except
l2 and ln−2 must be labeled valley. Since {u2, l2} and
{un−2, ln−2} are the pre-spine folds, l2 and ln−2 receive
the same label mountain as u2 and un−2. The spinal
creases s4, . . . sn−2 must all be labeled the same as s3,
which according to requirement (s) must be labeled val-
ley. To preserve local flat foldability, the other spinal
creases s1, s2, sn−1, sn must be labeled mountain (oppo-
site to the label of s3).

The following lemma shows that C is unfoldable.

Lemma 5 Let C be a 2 × n mountain-valley pattern in
Sn, n ≥ 5. Then C is unfoldable.

...

...

Figure 5: An unfoldable 2× n mountain-valley pattern.

Proof. (Sketch of proof) We show the case when n is
odd. The case when n is even is similar. Let Li be
a candidate for a valid linear ordering of the faces in
the columns c0, . . . , ci of C, 0 ≤ i ≤ n − 1. From the
directed network of C, L3 = f0,0 ≺ f1,0 ≺ f1,1 ≺ f1,2 ≺
f0,2 ≺ f0,3 ≺ f1,3 ≺ f0,1 is the unique candidate for the
case i = 3. We show that for each 4 ≤ i ≤ n − 3, when
n > 5, the following (a)–(c) hold.

(a) Li is the only candidate,

(b) the order of the faces f0,i, f1,i, f0,i−2 and f0,i−1 in
Li is f0,i−2 ≺ f1,i ≺ f0,i ≺ f0,i−1, when i is even,
and f0,i−1 ≺ f0,i ≺ f1,i ≺ f0,i−2, when i is odd, and

(c) the faces f0,i, f1,i, f0,i−2 and f0,i−1 are consecutive
as a set (i.e., they appear together, with no other
faces lying between the extremal faces in this set).

We first construct the unique candidate Ln−3 (for n = 5,
Ln−3 is L3). We then show that we cannot avoid self-
intersection of the paper when constructing Ln−2 from
Ln−3.

f0,n−3

f1,n−2

f0,n−2 f0,n−1

f1,n−1f1,n−3

sn−1sn−2 sn

un−1

ln−1ln−2

un−2un−3

ln−3

...

...

(a) (b)

...

...

Figure 6: (a) The checkerboard pattern of the last three
columns cn−3, . . . , cn−1 of C, when n is odd and (b) the
directed network of C.

When n is odd, f0,n−3 ≺ f0,n−2 from Figure 6(b).
By the conditions (a)–(c) above, f0,n−5 ≺ f1,n−3 ≺
f0,n−3 ≺ f0,n−4 in Ln−3 (since n − 3 is even) and
these four faces are consecutive. If f0,n−4 ≺ f0,n−2,
then the linear ordering f0,n−5 ≺ f0,n−3 ≺ f0,n−4 ≺
f0,n−2 causes intersection between the east butterflies
un−4 and un−2 (since n is odd, n − 4 and n − 2 are
odd and hence the butterflies un−4, un−2 are east but-
terflies). Therefore, f0,n−2 ≺ f0,n−4 and the linear
ordering of the faces f0,n−3, f0,n−2, f0,n−4 in Ln−2 is
f0,n−3 ≺ f0,n−2 ≺ f0,n−4. Since there is a directed
path from f0,n−1 to f0,n−3 in the directed network,
f0,n−1 ≺ f0,n−3. We then have to place f0,n−1 some-
where above f0,n−3. But any such placement will have

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

53

25th Canadian Conference on Computational Geometry, 2013

the linear ordering f0,n−1 ≺ f0,n−3 ≺ f0,n−2 ≺ f0,n−4,
and thus cause intersection between the west butterflies
un−3 and un−1 (the indices of the ribs are even since
n is odd and hence the butterflies are west butterflies).
Therefore, there is no valid linear ordering of C. �

We claim that any mountain-valley pattern that has
an unfoldable fragment is also unfoldable.

Lemma 6 Let C be an m×n mountain-valley pattern.
Let C′ be a fragment of C. If C′ is not flat foldable, then
C is not flat foldable.

We now define a class χn of unfoldable 2×n mountain-
valley patterns, where n ≥ 5. We say a pattern belongs
to χn if and only if C satisfies the following (a)–(d).

(a) C is locally flat foldable.

(b) There are exactly two pre-spine folds {ui, li} and
{uj , lj}, where 2 ≤ i < j ≤ n − 2.

(c) All the upper ribs receive the same label and all the
lower ribs except ui, uj receive the label opposite to
the upper ribs.

(d) si+1 receives the opposite label of the upper ribs.

We now show that every member of χn is unfoldable.

Theorem 7 Let C be a 2 × n mountain-valley pattern
in χn, where n ≥ 5. Then C is unfoldable. Furthermore,
membership in χn can be tested in linear time.

Proof. Let i = 2 and j = n − 2. Then C ∈ Sn, and
hence the pattern is unfoldable by Lemma 5. Therefore,
we assume that C /∈ Sn. Let C′ be the fragment of
C with the faces in the columns ci−2, . . . , cj+1. Then
C′ ∈ Sx, where x = j−i+4. Therefore, C′ is unfoldable
by Lemma 5. Since a fragment of C is unfoldable, C is
unfoldable by Lemma 6.

We can check in O(n) time whether all the upper
ribs receive the same label (i.e., Condition (c) is satis-
fied) by scanning from left to right. We can check in
O(n) time whether C is locally flat foldable (i.e., Con-
dition (a) is satisfied) by checking the creases incident
to each of the n − 1 vertices of C. If Conditions (a) and
(c) are satisfied, we check in O(n) time whether there
are exactly two pre-spine folds (Condition (b)) and get
the index i for the leftmost pre-spine fold {ui, li}. If
Conditions (a)–(c) are satisfied, then it takes O(1) time
to check whether the label of si+1 is opposite to the
label of the upper ribs (Condition (d)). Therefore, it
takes O(n) + O(n) + O(n) + O(1) = O(n) time to check
whether C is a member of χn. �

6 Conclusion

In this paper, we introduced the concepts of butter-
flies, checkerboard patterns and directed networks. Us-
ing these tools, we gave a linear time algorithm to rec-
ognize a valid linear ordering and an exponential time

algorithm to decide flat foldability of an m×n mountain-
valley pattern. We also have identified a class of unfold-
able 2×n mountain-valley patterns. It remains open to
characterize all the unfoldable 2 × n mountain-valley
patterns. It is also open to solve Edmonds’ open prob-
lem for m × n maps.

References

[1] Esther M. Arkin, Michael A. Bender, Erik D. De-
maine, Martin L. Demaine, Joseph S. B. Mitchell,
Saurabh Sethia, and Steven S. Skiena. When can
you fold a map? Computational Geometry : The-
ory and Applications, 29:23–46, September 2004.

[2] Marshall Bern and Barry Hayes. The complex-
ity of flat origami. In Proceedings of the 7th
annual ACM-SIAM symposium on Discrete algo-
rithms (SODA 1996), SODA 1996, pages 175–183.
Society for Industrial and Applied Mathematics,
1996.

[3] Erik D. Demaine and Joseph O’Rourke. Geometric
Folding Algorithms: Linkages, Origami, Polyhedra.
Cambridge University Press, New York, NY, USA,
2007.

[4] Thomas Hull. Counting mountain-valley assign-
ments for flat folds. Ars Combinatorica, 67, 2003.

[5] Jacques Justin. Aspects mathematiques du pliage
de papier (mathematical aspects of paper fold.
In H. Huzita, editor, 1st International Meeting
of Origami Science and Scientific Origami, pages
263–277, 1989.

[6] Jeff Kahn and Jeong Han Kim. Entropy and sort-
ing. In Proceedings of the 24th annual ACM sympo-
sium on Theory of computing (STOC 1992), pages
178–187. ACM, 1992.

[7] Kunihiko Kasahara and Toshie Takahama.
Origami for the Connoisseur. Japan Publications
Inc., 1987.

[8] Tom Morgan. Map folding. Master’s thesis, Mas-
sachusetts Institute of Technology, June 2012.

[9] Rahnuma Islam Nishat. Map folding. Master’s the-
sis, University of Victoria, BC, Canada, April 2013.

[10] Gara Pruesse and Frank Ruskey. Generating lin-
ear extensions fast. SIAM Journal on Computing,
23(2):373–386, 1994.

[11] Ryuhei Uehara. Stamp foldings with a given
mountain-valley assignment. In ORIGAMI 5,
pages 585–597. CRC Press, 2011.

25th Canadian Conference on Computational Geometry, 2013

54

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Partial Searchlight Scheduling is Strongly PSPACE-Complete

Giovanni Viglietta∗

Abstract

The problem of searching a polygonal region for an
unpredictably moving intruder by a set of stationary
guards, each carrying an orientable laser, is known as
the Searchlight Scheduling Problem. Determin-
ing the computational complexity of deciding if the
polygon can be searched by a given set of guards is a
long-standing open problem.

Here we propose a generalization called the Partial
Searchlight Scheduling Problem, in which only a
given subregion of the environment has to be searched,
as opposed to the entire area. We prove that the
corresponding decision problem is strongly PSPACE-
complete, both in general and restricted to orthogonal
polygons where the region to be searched is a rectangle.

Our technique is to reduce from the “edge-to-edge”
problem for nondeterministic constraint logic machines,
after showing that the computational power of such ma-
chines does not change if we allow “asynchronous” edge
reversals (as opposed to “sequential”).

1 Introduction

Previous work. The Searchlight Scheduling
Problem (SSP), first studied in [3], is a pursuit-evasion
problem in which a polygon has to be searched for a
moving intruder by a set of stationary guards. The in-
truder moves unpredictably and continuously with un-
bounded speed, and each guard carries an orientable
searchlight, emanating a 1-dimensional ray that can
be continuously rotated about the guard itself. The
polygon’s exterior cannot be traversed by the intruder,
nor penetrated by searchlights. The intruder is caught
whenever it is hit by a searchlight. Because the in-
truder’s location is unknown until it is actually caught,
each guard has to sway its searchlight according to a
predefined schedule. If the guards always catch the in-
truder, regardless of its path, by following their sched-
ules in concert, they are said to have a search schedule.

SSP is the problem of deciding if a given set of guards
has a search schedule for a given polygon (possibly with
holes). The computational complexity of this decision
problem has been only marginally addressed in [3], but
has later gained more attention, until in [2] the space of

∗School of Computer Science, Carleton University, Ottawa
ON, Canada, viglietta@gmail.com.

all possible schedules has been shown to be discretizable
and reducible to a finite graph, which can be explored
systematically to find a search schedule, if one exists.
Since the graph may have double exponential size, this
technique easily places SSP in 2-EXP. Whether SSP is
NP-hard or even in NP is left in [2] as an open problem.

More recently, in [5, 7], the author studied the com-
plexity of a 3-dimensional version of SSP, in which the
input polygonal environment is replaced by a polyhe-
dron, and the 1-dimensional rays become 2-dimensional
half-planes, which rotate about their boundary lines.
This variation of SSP is shown to be strongly NP-hard.

Our contribution. In the present paper we take a
further step along this line of research, by introduc-
ing the Partial Searchlight Scheduling Problem
(PSSP), in which the guards content themselves with
searching a smaller subregion given as input. That is,
a search schedule should only guarantee that the given
target region is eventually cleared, either by catching
the intruder or by confining it outside. We prove that
PSSP is strongly PSPACE-complete, both for general
polygons and restricted to orthogonal polygons in which
the region to be searched is a rectangle.

To prove that PSSP is a member of PSPACE, we do
a refined analysis of the discretization technique of [2].
To prove PSPACE-hardness, we give a reduction from
the “edge-to-edge” problem for nondeterministic con-
straint logic machines, discussed in [1]. Another contri-
bution of this paper is the observation that the nonde-
terministic constraint logic model of computation stays
essentially the same if we allow “asynchronous” moves,
as opposed to “sequential” ones.

An earlier version of this paper has appeared in [4],
and most of the material is also contained in the author’s
Ph.D. thesis [6].

2 Preliminary observations

An instance of PSSP is a triplet (P, G, T), where P is
a polygon, possibly with holes, G is a finite set of point
guards located in P or on its boundary, and T ⊆ P is
a target polygonal region. The question is whether the
guards in G can turn their lasers in concert, from a fixed
starting position and following a finite schedule, so as
to guarantee that in the end any intruder that moves in
P and tries to avoid lasers is necessarily not in T .

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

55

25th Canadian Conference on Computational Geometry, 2013

We remark that SSP �P PSSP trivially, in that in
SSP we have T = P always. One feature of SSP that
is not preserved by this generalization is what we call
the time reversal invariance property. In SSP, a given
schedule successfully searches P if and only if reversing
it with respect to time also searches P. In contrast, this
is not the case with PSSP, and Figure 1(a) shows a sim-
ple example. The dark target region can be cleared only
if the guard turns its searchlight clockwise, as indicated
by the arrow. If the searchlight is turned counterclock-
wise instead, the intruder can first hide in the protected
area on the left, then come out and safely reach the tar-
get region. Protected areas like this one, that cannot be
searched because they are invisible to all guards, provide
a constant source of recontamination, and will be exten-
sively used in our main PSPACE-hardness reduction
(see Lemma 4).

(a) (b)

Figure 1: Two instances of PSSP

A search heuristic called one-way sweep strategy was
described in [3] for SSP restricted to simple polygons,
and later extended to polygons with holes in [8]. An in-
teresting consequence of this heuristic is that, if a set of
guards lies on the boundary of a simple polygon, and no
point in the polygon is invisible to all guards, then there
is a schedule that successfully searches the whole poly-
gon. However, such property does not straightforwardly
generalize to PSSP, as Figure 1(b) illustrates. Here we
have a simple polygon with a guard on the boundary
that can see the whole target region. But, because there
are protected areas on both sides, the target region is
unsearchable, no matter in which direction the guard
turns it searchlight.

As it turns out, adding just another guard anywhere
on the boundary of the polygon in Figure 1(b) makes
the target region searchable. For example, if the second
guard is placed on the top-right corner, it can orient its
laser downward, thus “closing” the right protected area,
and allowing the first guard to search the target region
as in Figure 1(a). On the other hand, if the second
guard is placed on the boundary of any protected area,
then the whole polygon is visible to the guards, and
therefore we know that it can be entirely searched.

3 NCL machines and asynchrony

Our PSPACE-hardness reduction is based on a model
of computation called nondeterministic constraint logic,
whose definition and main properties are detailed in [1].
Here we extend the basic model by introducing asyn-
chrony, and showing that its computational power stays
the same.

Basic NCL machines. Consider an undirected 3-
connected 3-regular planar graph, whose vertices can
be of two types: AND vertices and OR vertices. Of the
three edges incident to an AND vertex, one is called its
output edge, and the other two are its input edges. Such
a graph is (a special case of) a nondeterministic con-
straint logic machine (NCL machine). A legal configu-
ration of an NCL machine is an orientation (direction)
of its edges, such that:

• for each AND vertex, either its output edge is di-
rected inward, or both its input edges are directed
inward;

• for each OR vertex, at least one of its three incident
edges is directed inward.

A legal move from a legal configuration to another con-
figuration is the reversal of a single edge, in such a way
that the above constraints remain satisfied (i.e., such
that the resulting configuration is again legal).

Given an NCL machine with two distinguished edges
ea and eb, and a target orientation for each, we consider
the problem of deciding if there exist legal configura-
tions A and B such that ea has its target orientation
in A, eb has its target orientation in B, and there is a
sequence of legal moves from A to B. In a sequence of
moves, the same edge may be reversed arbitrarily many
times. We call this problem Edge-to-Edge for Non-
deterministic Constraint Logic machines (EE-
NCL).

A proof that EE-NCL is PSPACE-complete is
given in [1], by a reduction from True Quantified
Boolean Formula. By inspecting that reduction, we
may further restrict the set of EE-NCL instances on
which we will be working. Namely, we may assume that
ea 6= eb, and that in no legal configuration both ea and
eb have their target orientation.

Asynchrony. For our main reduction, it is more conve-
nient to employ an asynchronous version of EE-NCL.
Intuitively, instead of “instantaneously” reversing one
edge at a time, we allow any edge to start reversing
at any given time, and the reversal phase of an edge
is not “atomic” and instantaneous, but may take any
strictly positive amount of time. It is understood that
several edges may be in a reversal phase simultaneously.
While an edge is reversing, its orientation is undefined,

25th Canadian Conference on Computational Geometry, 2013

56

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

hence it is not directed toward any vertex. During the
whole process, at any time, both the above constraints
on AND and OR vertices must be satisfied. We also
stipulate that no edge is reversed infinitely many times
in a bounded timespan, or else its orientation will not
be well-defined in the end. With these extended notions
of configuration and move, and with the introduction of
“continuous time”, EE-NCL is now called Edge-to-
Edge for Asynchronous Nondeterministic Con-
straint Logic machines (EE-ANCL).

Despite its asynchrony, such new model of NCL ma-
chine has precisely the same power of its traditional syn-
chronous counterpart.

Theorem 1 EE-NCL = EE-ANCL.

Proof. Obviously EE-NCL ⊆ EE-ANCL, because
any sequence of moves in the synchronous model triv-
ially translates into an equivalent sequence for the asyn-
chronous model.

For the opposite inclusion, we show how to “serialize”
a legal sequence of moves for an asynchronous NCL ma-
chine going from a legal configuration A to configuration
B in a bounded timespan, in order to make it suitable
for the synchronous model. An asynchronous sequence
is represented by a set

S = {(em, sm, tm) | m ∈M},

where M is a set of “edge reversal events”, em is an edge
with a reversal phase starting at time sm and terminat-
ing at time tm > sm. For consistency, no two reversal
phases of the same edge may overlap.

Because no edge can be reversed infinitely many
times, S must be finite. Hence we may assume that
M = {1, · · · , n}, and that the moves are sorted ac-
cording to the (weakly increasing) values of sm, i.e.,
1 6 m < m′ 6 n =⇒ sm 6 sm′ . Then we consider the
serialized sequence

S′ = {(em,m,m) | m ∈M},

and we claim that it is valid for the synchronous model,
and that it is equivalent to S.

Indeed, each move of S′ is instantaneous and atomic,
no two edges reverse simultaneously, and every edge is
reversed as many times as in S, hence the final configu-
ration is again B (provided that the starting configura-
tion is A). We still have to show that every move in S′

is legal. Let us do the first m edge reversals in S′, for
some m ∈M , starting from configuration A, and reach-
ing configuration C. To prove that C is also legal, con-
sider the configuration C ′ reached in the asynchronous
model at time sm, according to S, right when em starts
its reversal phase (possibly simultaneously with other
edges). By construction of S′, every edge whose direc-
tion is well-defined in C ′ (i.e., every edge that is not in

a reversal phase) has the same orientation as in C. It
follows that, for each vertex, its inward edges in C are
a superset of its inward edges in C ′. By assumption on
S, C ′ satisfies all the vertex constraints, then so does
C, a fortiori. �

Corollary 2 EE-ANCL is PSPACE-complete. �

4 PSPACE-completeness of PSSP

To prove that PSSP belongs to PSPACE we use the
discretization technique of [2], and to prove that PSSP
is PSPACE-hard we give a reduction from EE-ANCL.

Membership. Due to Savitch’s theorem, it suffices to
show that PSSP belongs to NPSPACE.

Lemma 3 PSSP ∈ NPSPACE.

Proof. As detailed in [2], a technique known as exact
cell decomposition allows to reduce the space of all pos-
sible schedules to a finite graph G. Each searchlight has
a linear number of critical angles, which yield an overall
partition of the polygon into a polynomial number of
cells. In the discretized search space, searchlights take
turns moving, and can stop or change direction only at
critical angles. Thus, a vertex of G encodes the status of
each cell (either contaminated or clear) and the critical
angle at which each searchlight is oriented.

As a consequence, G can be navigated nondetermin-
istically by just storing one vertex at a time, which re-
quires polynomial space. Notice that deciding if two
vertices of G are adjacent can be done in polynomial
time: an edge in G represents a move of a single search-
light between two consecutive critical angles, and the
updated status of each cell can be easily evaluated. In-
deed, cells’ vertices are intersections of lines through
input points, hence their coordinates can also be effi-
ciently stored and handled as rational expressions in-
volving the input coordinates.

Now, in order to verify that a path in G is a witness
for SSP, one checks if the last vertex encodes a status
in which every cell is clear. But the very same cell
decomposition works also for PSSP: the analysis in [2]
applies even if just a subregion of the polygon has to be
searched, and a path in G is a witness for PSSP if and
only if its last vertex encodes a status in which every
cell that has a non-empty intersection with the target
subregion is clear. �

Hardness. For the PSPACE-hardness part, we first
give a reduction in which the target region to be cleared
is an orthogonal hexagon. Then, in Section 5 we will
explain how to modify our construction, should we insist
on having a rectangular (hence convex) target region.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

57

25th Canadian Conference on Computational Geometry, 2013

Lemma 4 EE-ANCL �P PSSP restricted to orthog-
onal polygons.

Proof. We show how to transform a given asyn-
chronous NCL machine G with two distinguished edges
ea and eb into an instance of PSSP.

A rough sketch of our construction is presented in
Figure 2. All the vertices of G are placed in a row (a),
and are connected together by a network of thin cor-
ridors (b), turning at right angles, representing edges
of G. (Although G is 3-regular, only a few of its edges
are sketched in Figure 2.) Each subsegment of a corri-
dor is a thin rectangle, containing a subsegment guard
in the middle (not shown in Figure 2). Two subseg-
ments from different corridors may indeed cross each
other like in (c), but in such a way that the crossing
point is far enough from the ends of the two subseg-
ments and from the two subsegment guards (so that
no subsegment guard can see all the way through an-
other subsegment). All the vertices of G and all the
joints between consecutive subsegments (i.e., the turn-
ing points of each corridor) are connected via extremely
thin pipes (d) to the upper area (e), which contains the
target region (shaded in Figure 2).

ANDANDAND OROR

(a)

(b)
(c)

(d)

(e)

(g)(f)

(d)

Figure 2: Construction overview

Two corridors (f) and (g) also reach the upper area,
and they correspond to the distinguished edges of G, ea
and eb, respectively. That is, if ea = {u, v}, and the
target orientation of ea is toward v, then the corridor
corresponding to ea connects vertex u in our construc-
tion to the upper area (e), rather than to v. The same
holds for eb. Indeed, observe that we may assume that
ea and eb are reversed only once (respectively, on the
first and last move) in a sequence of moves that solves
EE-ANCL on G. As a consequence, contributions to
vertex constraints given by distinguished edges oriented
in their target direction may be ignored.

Each pipe turns at most once, and contains one pipe
guard in the middle, lying on the boundary. Notice
that straight pipes never intersect corridors, but some
turning pipes do. Figure 3 shows a turning pipe, with
its pipe guard (a) and an intersection with a corri-
dor (b) (proportions are inaccurate). The intersection
guards (c) separate the pipe from the corridor with their

lasers (dotted lines in Figure 3), without “disconnect-
ing” the pipe itself. Although a pipe narrows every time
it crosses a corridor, its pipe guard can always see all the
way through it, because it is located in the middle. The
small nook (d) is unclearable because no guard can see
its bottom, hence it is a constant source of recontami-
nation for the target region (e), unless the pipe guard is
covering it with its laser. (Each straight pipe also has a
similar nook.)

(a)

(b)

(c)

(d)

(e)

(c)

(c)

(c)

Figure 3: Intersection between a pipe and a corridor

In our construction, corridor guards implement edge
orientations in G: whenever all the subsegment guards
in a corridor connecting vertices u and v have their
lasers oriented in the same “direction” from vertex u
to vertex v, it means that the corresponding edge {u, v}
in G is oriented toward v.

Figure 4 shows an OR vertex. The three subseg-
ment guards from incoming corridors (a) can all “cap”
pipe (b) with their lasers, and nook (c) guarantees that
the pipe is recontaminated whenever all three guards
turn their lasers away.

(a)

(b)
(c)

(a)

(a)

Figure 4: OR vertex

AND vertices are implemented as in Figure 5. The
two subsegment guards (a) correspond to input edges,
and are able to cap one pipe (e) each, whereas guard (c)
can cover them both simultaneously. But that leaves
pipe (d) uncovered, unless it is capped by guard (b),
which belongs to the corridor corresponding to the out-
put edge. Again, uncovered pipes are recontaminated

25th Canadian Conference on Computational Geometry, 2013

58

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

by unclearable nooks (f).

(e)

(a)(a)

(e) (d)

(b)

(c)

(f)

(f)

Figure 5: AND vertex

Joints between consecutive subsegments of a corridor
may be viewed as OR vertices with two inputs, shaped
like in Figure 4, but without the corridor coming from
the left.

Finally, Figure 6 shows the upper area of the con-
struction, reached by the distinguished edges ea and eb
(respectively, (a) and (b)), and by all the pipes (c). The
guard in (d) can cap all the pipes, one at a time, and
its purpose is to clear the left part of the target region,
while the small rectangle (e) on the right will be cleared
by the guard in (f). The two pipes (g) implement ad-
ditional OR vertices with two inputs, and prevent (d)
and (f) from acting, unless the respective distinguished
edges are in their target orientations. Nook (h) will
contaminate part of the target region, unless (d) is aim-
ing down. Nooks (i) prevent area (e) from staying clear
whenever guard (f) is not aiming up. The guard in (j)
separates the two parts of the target region with its
laser, so that they can be cleared in two different mo-
ments.

(a) (b)

(c)(c)

(d) (e)

(f)

(h)

(g) (g)

(j)

(i)

Figure 6: Target region

Suppose G is a solvable instance of EE-ANCL. Then
we can “mimic” the transition from configuration A to
configuration B (see Section 3) by turning subsegment
guards. Specifically, if edge e = {u, v} in G changes
its orientation from u to v, then all the subsegment
guards in the corridor corresponding to e turn their
lasers around, one at a time, starting from the guard
closest to u. Before this process starts, each pipe has
one end capped by some subsegment guard, and in par-
ticular pipe (g) on the left of Figure 6 is capped by the

guard in (a). Hence, guard (d) is free to turn and cap all
the pipes one by one, stopping for a moment to let each
pipe’s internal guard clear the pipe itself (which now has
both ends capped) and cover its nook (see Figure 3). As
a result, the left part of the target region can be cleared
by rotating (d) clockwise, from right to down. Then the
subsegment guards start rotating as explained above,
until configuration B is reached. If done properly, this
keeps all the pipes capped and clear, thus preventing
the left part of the target region from being recontam-
inated. (Note that it makes a difference whether we
turn a subsegment guard clockwise or counterclockwise:
sometimes, only one direction prevents the recontami-
nation of the pipe that the guard is capping.) When B
is reached, guard (f) can turn up to clear (e) and finally
solve our PSSP instance.

Conversely, suppose that G is not solvable. Observe
that rectangle (e) in Figure 6 has to be cleared by
guard (f) as a last thing, because it will be recontam-
inated by nooks (i) as soon as (f) turns away. On the
other hand, whenever a pipe has both ends uncapped
by external guards, some portion of the target region
necessarily gets recontaminated by some nook, regard-
less of where the pipe guard is aiming its laser. But
guard (d) can cap just one pipe at a time and, while it
does so, nook (h) keeps some portion of the target re-
gion contaminated. Thus, the entire process must start
from a configuration A in which all the pipes’ lower ends
are simultaneously capped by subsegment guards, and
guard (d) is free to turn (i.e., ea is in its target orienta-
tion). From this point onward, no pipe’s lower end may
ever be uncapped (i.e., legality must be preserved), oth-
erwise the target region gets recontaminated, and the
process has to restart. Finally, a configuration B must
be reached in which guard (f) is free to turn up (i.e.,
eb is in its target orientation). By assumption this is
impossible, hence our PSSP instance is unsolvable. �

By putting together Lemma 3 and Lemma 4, we im-
mediately obtain the following:

Theorem 5 Both PSSP and its restriction to orthog-
onal polygons are strongly PSPACE-complete. �

The term “strongly” is implied by the fact that all the
vertex coordinates generated in the PSPACE-hardness
reduction of Lemma 4 are numbers with polynomially
many digits (or can be made so through tiny adjust-
ments that do not compromise the validity of the con-
struction).

5 Convexifying the target region

We can further improve our Theorem 5 by making the
target region in Lemma 4 rectangular.

Our new target region has the same width as the pre-
vious one, and the height of rectangle (e) in Figure 6. In

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

59

25th Canadian Conference on Computational Geometry, 2013

order for this to work, we have to make sure that some
portion of the target region is “affected” by each con-
taminated pipe that is not capped by guard (d), no mat-
ter where all the pipe guards are oriented. To achieve
this, we make pipes reach the upper area of our con-
struction at increasing heights, from left to right, in a
staircase-like fashion.

(a)

(b)

(d)

(c)

Figure 7: Rectangular target region

Assume we already placed pipe (a) in Figure 7, and
we need to find the correct height at which it is safe to
connect pipe (b). First we find the rightmost intersec-
tion (c) between a laser emanating from the pipe guard
of (a) and the lower border of the target region. Then
we set the height of pipe (b) so that it is capped by
guard (d) when it aims slightly to the right of (c). This
is always feasible, provided that pipes are thin enough,
which is obviously not an issue.

After we have set all pipes’ heights from left to right,
the construction is complete and the proof of Lemma 4
can be repeated verbatim, yielding:

Theorem 6 Both PSSP and its restriction to orthogo-
nal polygons with rectangular target regions are strongly
PSPACE-complete. �

6 Further research

There are several promising directions for future re-
search. We suggest a few.

We could simplify PSSP by asking if there exists a
neighborhood of a given point, no matter how small,
that is clearable. Let this problem be called PSSP?.
In contrast with PSSP, here we do not have a polygo-
nal target region, but we are interested just in the sur-
roundings of a point. It is easy to show that PSSP? �P

PSSP: clearing a small-enough neighborhood of a point
is equivalent to clearing the cells whose topological clo-
sure contains the point (cf. the proof of Lemma 3).
The author proved in [6] that a 3-dimensional version
of PSSP? is PSPACE-hard, even restricted to or-
thogonal polyhedra. Our question is whether PSSP?

is PSPACE-hard (hence PSPACE-complete) for 2-
dimensional polygons, as well.

Similarly, we may investigate the complexity of PSSP
on other restricted inputs, such as simply connected

polygons, or target regions coinciding with the whole en-
vironment. The latter is in fact SSP, whose complexity
has been mentioned in Section 1 as an interesting long-
standing open problem. Although the author proved
that a 3-dimensional version of SSP is NP-hard [5],
determining the true complexity of either version still
seems a deep problem. Recall that, in our PSPACE-
hardness reduction of Lemma 4, we repeatedly used re-
gions that are visible to no guard, and hence can never
be cleared. As a matter of fact, this is a remarkably
effective way to force the recontamination of other ar-
eas whenever certain conditions are met. However, this
expedient is of no use in a reduction for SSP (trivially,
if the guards cannot see the whole polygon, they cannot
search it), and cleverer tools have to be devised for this
problem.

Other interesting variations of SSP involve the ad-
dition of new environmental elements, such as mirrors,
which specularly reflect lasers; transparent walls, which
can be traversed by lasers but not by the intruder; and
curtains, which can be traversed by the intruder but
block lasers. To the best of our knowledge, none of
these elements has ever been studied in connection with
SSP.

References

[1] R. A. Hearn and E. D. Demaine. PSPACE-completeness
of sliding-block puzzles and other problems through the
nondeterministic constraint logic model of computation.
Theoretical Computer Science, vol. 343, pp. 72–96, 2005,
special issue “Game Theory Meets Theoretical Com-
puter Science”.

[2] K. J. Obermeyer, A. Ganguli, and F. Bullo. A com-
plete algorithm for searchlight scheduling. International
Journal of Computational Geometry and Applications,
vol. 21, pp. 101–130, 2011.

[3] K. Sugihara, I. Suzuki, and M. Yamashita. The search-
light scheduling problem. SIAM Journal on Computing,
vol. 19, pp. 1024–1040, 1990.

[4] G. Viglietta. Partial searchlight scheduling is strongly
PSPACE-complete. In Proceedings of the 28th European
Workshop on Computational Geometry, pp. 101–104, As-
sisi (Italy), 2012.

[5] G. Viglietta. Searching polyhedra by rotating half-
planes. International Journal of Computational Geom-
etry and Applications, vol. 22, pp. 243–275, 2012.

[6] G. Viglietta. Guarding and searching polyhedra.
Ph.D. Thesis, University of Pisa, 2012.

[7] G. Viglietta and M. Monge. The 3-dimensional search-
light scheduling problem. In Proceedings of the 22nd
Canadian Conference on Computational Geometry,
pp. 9–12, Winnipeg (Canada), 2010.

[8] M. Yamashita, I. Suzuki, and T. Kameda. Searching a
polygonal region by a group of stationary k-searchers.
Information Processing Letters, vol. 92, pp. 1–8, 2004.

25th Canadian Conference on Computational Geometry, 2013

60

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Set-Difference Range Queries

David Eppstein ∗ Michael T. Goodrich † Joseph A. Simons ‡

Abstract

We introduce the problem of performing set-difference
range queries, where answers to queries are set-theoretic
symmetric differences between sets of items in two ge-
ometric ranges. We describe a general framework for
answering such queries based on a novel use of data-
streaming sketches we call signed symmetric-difference
sketches. We show that such sketches can be realized
using invertible Bloom filters (IBFs), which can be
composed, differenced, and searched so as to solve set-
difference range queries in a wide range of scenarios.

1 Introduction

Efficiently identifying or quantifying the differences be-
tween two sets is a problem that arises frequently in
applications, for example, when clients synchronize the
calendars on their smart phones with their calendars
at work, when databases reconcile their contents after
a network partition, or when a backup service queries
a file system for any changes that have occurred since
the last backup. Such queries can be global, for in-
stance, in a request for the differences across all data
values for a pair of databases, or they can be localized,
requesting differences for a specific range of values of
particular interest. For example, clients might only
need to synchronize their calendars for a certain range of
dates or a pair of databases may need only to reconcile
their contents for a certain range of transactions. We
formalize this task by a novel type of range searching
problem, which we call set-difference range queries.

We assume a collection X of sets {X1, X2, . . . , XN},
containing data items that are each associated with a
geometric point and with a member of universe, U , of
size U = |U|. A set-difference range query is specified
by the indices of a pair of data sets, Xi and Xj , and by a
pair of ranges, R1 and R2, which are each a constant-size
description of a set of points such as a hyper-rectangle,
simplex, or half-space. The answer to this set-difference
range query consists of the elements of Xi and Xj whose
associated points belong to the rangesR1 andR2 respec-
tively, and whose associated elements in U are contained
in one of the two data sets but not both. Thus, we
preprocess X so that given ranges, R1 and R2, and

∗Dept. of Comp. Sci., U. of CA, Irvine, eppstein(at)uci.edu
†Dept. of Comp. Sci., U. of CA, Irvine, goodrich(at)uci.edu
‡Dept. of Comp. Sci., U. of CA, Irvine, jsimons(at)uci.edu

(a) (b)

Figure 1: Illustrating the set-difference range query
problem. The images in (a) and (b) have four major
differences, three of which are inside the common query
range. The image (a) is a public-domain engraving of
an astronomer by Albrecht Dürer, from the title page
of Messahalah, De scientia motus orbis (1504).

two sets, X1 and X2, we can quickly report (or count)
the universe elements in the set-theoretic symmetric
difference (R1∩X1) 4 (R2∩X2). The performance goal
in answering such queries is to design data structures
having low space and preprocessing requirements that
support fast set-difference range queries whose time
depends primarily on the size of the difference, not the
number of items in the range (see Figure 1). Examples
of such scenarios include the following.

• Each set contains readings from a group of sensors
in a given time quantum (e.g., see [3]). Researchers
may be interested in determining which sensor val-
ues have changed between two time quanta in a
given region.

• Each set is a catalog of astronomical objects in
a digital sky survey. Astronomers are often in-
terested in objects that appear or disappear in a
given rectangular region between pairs of nightly
observations. (E.g., see [22].)

• Each set is an image taken at a certain time and
place. Various applications may be interested in
pinpointing changes that occur between pairs of im-
ages (e.g., see [18]), which is something that might
be done, for instance, via two-dimensional binary
search and repeated set-difference range queries.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

61

25th Canadian Conference on Computational Geometry, 2013

Query Type Query Time Space

Orthogonal: Standard [5] O(logd−1 n) O(n logd−1 n)

SD fixed m O(m · logd n) O(m · n logd−1 n)

SD variable m O(m · logd n) O(n logd n)

SD size est. O(logd+1 n logU) O(n logd n logU)

Simplex: Standard [17] O(n1−1/d(log n)O(1)) O(n)
SD fixed m O(m · n1−1/d(log n)O(1)) O(m · n)
SD variable m O(m · n1−1/d(log n)O(1)) O(n log log n)
SD size est. O(n1−1/d(log n)O(1) logU) O(n log n logU)

Stabbing: Standard [4] O(log n) O(n log n)
SD fixed m O(m · log n) O(m · n log n)
SD variable m O(m · log n) O(n log n)

SD size est. O(log2 n logU) O(n log n logU)
Partial Sum: Standard1 O(1) O(n)

SD fixed m O(m) O(m · n)
SD variable m O(m) O(n2)
SD size est. O(log n logU) O(n log n logU)

Table 1: The results labeled “Standard” are previously known results for each data structure. Results labeled “SD”
indicate bounds for set-difference range queries. Here d is the dimension of the query, m is the output size, and we
assume the approximation factor (1± ε) and failure probability δ are fixed.

1.1 Related Work

We are not aware of prior work on set-difference range
queries. However, Suri et al. [20] consider approximate
range counting in data streams. Shi and JaJa [19]
present a data structure for range queries indexed at
a specific time for data that is changing over time,
achieving polylogarithmic query times. If used for set-
difference range queries, however, their scheme would
not produce answers in time proportional to the output
size. For a survey of general schemes for range searching
data structures, see Agarwal [1].

1.2 Our Results

We provide general methods for supporting a wide class
of set-difference range queries by combining signed-
symmetric difference sketches with any canonical group
or semigroup range searching structure. Our methods
solve range difference queries where the two sets being
compared may be drawn from the same or different
data sets, and may be defined by the same or different
ranges. In our data structures, sets are combined in the
multiset model : two data items may be associated with
the same element of U , and if they belong to the same
query range they are considered to have multiplicity
two, while if they belong to the two different query
ranges defining the set difference problem then their
cardinalities cancel. The result of a set difference query
is the set of all elements whose total cardinality defined
in this way is nonzero.

Our data structures are probabilistic and return the

1 Using a standard solution to the partial sum problem.

correct results with high probability. Our running times
depend on the size of the output, but only weakly
depend on the size of the original sets. In particular,
we derive the results shown in Table 1 for the follow-
ing range-query problems (see the full version of this
article [11]for details):

• Orthogonal: Preprocess a set of points in Rd such
that given a query range defined by an axis-parallel
hyper rectangle, we can efficiently report or esti-
mate the size of the set of points contained in the
hyper-rectangle

• Simplex: Preprocess a set of points in Rd such that
given a query range defined by a simplex in Rd, we
can efficiently report or estimate the size of set of
points contained in the simplex

• Stabbing: Preprocess a set of intervals such that
given a query point x, we can efficiently report or
estimate the size of the subset which intersects x.

• Partial Sum: Preprocess a grid of total size O(n)
(e.g. an image with n pixels, or a d dimensional ar-
ray with O(n) entries for any constant d) such that
given a query range defined by a hyper-rectangle on
the grid, we can efficiently report or estimate the
sum of the values contained in that hyper-rectangle.

2 The Abstract Range Searching Framework

In order to state our results in their full generality it is
necessary to provide some general definitions from the
theory of range searching (e.g., see [1]).

A range space is a pair (X,R) where X is a universe
of objects that may appear as data in a range searching

25th Canadian Conference on Computational Geometry, 2013

62

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

problem (such as the set of all points in the Euclidean
plane) and R is a family of subsets of X that may be
used as queries (such as the family of all disks in the
Euclidean plane). A range searching problem is defined
by a range space together with an aggregation function
f that maps subsets of X to the values that should be
returned by a query. For instance, in a range reporting
problem, the aggregation function is the identity; in a
range counting problem, the aggregation function maps
a subset of X to its cardinality. A data structure for
the range searching problem must maintain a finite set
Y ⊂ X of objects, and must answer queries that take
a range r ∈ R as an argument and return the value
f(r ∩ Y). The goal of much research in range searching
is to design data structures that are efficient in terms
of their space usage, preprocessing time, update time
(if changes to Y such as insertions and deletions are
allowed), and query time. In particular, it is generally
straightforward to answer a query in time O(|Y |), by
testing each member of Y for membership in the query
range r; the goal is to answer queries in an amount of
time that may depend on the output size but that does
not depend so strongly on the size of the data set.

A range searching problem is said to be decomposable
if there exists a commutative and associative binary
operation ⊕ such that, for any two disjoint subsets A
and B of X, f(A∪B) = f(A)⊕ f(B). In this case, the
operation ⊕ defines a semigroup.

Many range searching data structures have the fol-
lowing form, which we call a canonical semigroup range
searching data structure: the data structure stores the
values of the aggregation function on some family F
of sets of data values, called canonical sets, with the
property that every data set r ∩ Y that could arise in a
query can be represented as the disjoint union of a small
number of canonical sets r1, r2, . . . , rK . To answer
a query, a data structure of this type performs this
decomposition of the query range into canonical sets,
looks up the values of the aggregation function on these
sets, and combines them by the ⊕ operation to yield
the query result. Note that this is sometimes called a
decomposition scheme. For instance, the order-statistic
tree is a binary search tree over an ordered universe in
which each node stores the number of its descendants
(including itself) in the tree, and it can be used to
quickly answer queries that ask for the number of data
values within any interval of the ordered universe. This
data structure can be seen as a canonical semigroup
range searching data structure in which the aggregation
function is the cardinality, the combination operation ⊕
is integer addition, and the canonical sets are the sets
of elements descending from nodes of the binary search
tree. Every intersection of the data with a query interval
can be decomposed into O(log n) canonical sets, and so
interval range counting queries can be answered with

this data structure in logarithmic time.
When the combination operation ⊕ has additional

properties, they may sometimes be used to obtain
greater efficiency. In particular, if ⊕ has the structure
of a group, then we may form a canonical group range
searching data structure. Again, such a data structure
stores the values of the aggregation function on a family
of sets of data values, but in this case it represents the
query value as an expression (±f(r1))⊕ (±f(r2))⊕· · · ,
where the canonical sets ri and their signs are chosen
with the property that each element of the query range
r belongs to exactly one more positive set than negative
set. Again, in the interval range searching problem, one
may store with each element its rank, the number of
elements in the range from −∞ to that element, and
answer a range counting query by subtracting the rank
of the right endpoint from the rank of the left endpoint.
In this example, the ranks are not easy to maintain
if elements are inserted and deleted, but they allow
interval range queries to be answered by combining only
two canonical sets instead of logarithmically many.

2.1 Signed Symmetric-Difference Sketches

Suppose that we want to represent an input set S in
space sub-linear in the size of S such that we can
compute some function f(S) on our compressed repre-
sentation. This problem often comes up in the stream-
ing literature, and common solutions include dimen-
sion reduction (e.g. by a Johnson-Lindenstrauss trans-
form [15]) and computing a sketch of S (e.g. Count-Min
Sketch [9]).

A sketch σS of a set S is a randomized compressed
representation of S such that we can approximately and
probabilistically compute f(S) by evaluating an appro-
priate function f ′(σS) on the sketch σS . This construct
also comes up when handling massive data data sets,
and in this context the compressed representation is
sometimes called a synopsis [14].

A sketch algorithm σ is called linear if it has a group
structure. That is, there exist two operators ⊕ and 	
on sketches σ such that given two multi-sets S and T ,

σS]T = σS ⊕ σT and σS\T = σS 	 σT

where] and \ are the multi-set addition and subtrac-
tion operators respectively.

For our results, we define two different types of linear
sketches. A Signed Symmetric-Difference Reporting
(SDR) sketch is a linear sketch that supports a function
report: given a pair of sketches σS and σT for two sets
S and T respectively, probabilistically compute S \ T
and T \ S using only information stored in the sketches
σS and σT in O(1+m) time, where m is the cardinality
of the output. A Signed Symmetric-Difference Cardi-
nality (SDC) sketch is a linear sketch that supports

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

63

25th Canadian Conference on Computational Geometry, 2013

a function count: given a pair of sketches σS and
σT for two sets S and T respectively, probabilistically
approximate |S 4 T | using only information stored in
the sketches σS and σT in time linear in the size of the
sketches.

3 Main Results

The main idea of our results is to represent each canoni-
cal set by an SDR or an SDC sketch. We implement our
signed symmetric-difference counting sketches using a
linear sketch based on the frequency moment estimation
techniques of Thorup and Zhang [21]. We implement
our signed symmetric-difference reporting sketches via
an invertible Bloom filter (IBF), a data structure in-
troduced for straggler detection in data streams [10].
IBFs can be added and subtracted, giving them a group
structure and allowing an IBF for a query range to be
constructed from the IBFs for its constituent canonical
sets. The difference of the IBFs for two query ranges
is itself an IBF that allows the difference elements to
be reported when the difference is small. To handle set
differences of varying sizes we use a hierarchy of IBFs of
exponentially growing sizes, together with some special
handling for the case that the final set difference size is
larger than the size of some individual canonical set.

Further details of the SDR and SDC sketches are
given in later sections. In this section, we assume the
existence of SDR and SDC sketches as defined above in
order to prove the following three theorems which are
the crux of our results listed in Table 1

Theorem 1: Suppose that a fixed limit m on the cardi-
nality of the returned set differences is known in advance
of constructing the data structure, and our queries must
either report the difference if it has cardinality at most
m, or otherwise report that it is too large. In this
case, we can answer set-difference range queries with
probability at least 1 − ε for any range space that can
be modeled by a canonical group or semigroup range
searching data structure. Our solution stores O(m)
words of aggregate information per canonical set, uses
a combination operation ⊕ that takes time O(m) per
combination, and allows the result of this combination
to be decoded to yield the query results in O(m) time. If
the data structure is updated, the aggregate information
associated with each changed canonical set can itself be
updated in constant time per change.

Proof. See [11] �

Theorem 2: Suppose that we wish to report set dif-
ferences that may be large or small, without the fixed
bound m, in a time bound that depends on the size
of the difference but that may depend only weakly on
the size of the total data set. In this case, we can

answer range difference queries with probability at least
1 − ε for any range space that can be modeled by
a canonical group or semigroup range searching data
structure. Our solution stores a number of words of
aggregate information per canonical set that is O(1)
per element of the set, uses a combination operation
⊕ that takes time O(m) (where m is the cardinality of
the final set-theoretic difference) and allows the result
of this combination to be decoded to yield the query
results in O(m) time. If the data structure is updated,
the aggregate information associated with each changed
canonical set can itself be updated in logarithmic time
per change.

Proof. See [11]. �

Theorem 3: Suppose that we wish to report the cardi-
nality of the set difference rather than its elements, and
further that we allow this cardinality to be reported
approximately, within a fixed approximation ratio that
may be arbitrarily close to one. In this case, we can
answer range difference queries with probability at least
1 − ε for any range space that can be modeled by
a canonical group or semigroup range searching data
structure. Our solution stores a number of words of
aggregate information per canonical set that has size
O(log n logU), uses a combination operation ⊕ that
takes time O(log n logU) and allows the result of this
combination to be decoded to yield the query results in
O(log n logU) time.

Proof. See [11]. �

4 Invertible Bloom Filters

We implement our SDR sketches using the invertible
Bloom filter (IBF) [10], a variant of the Bloom filter [6]
for maintaining sets of items that extends it in three
crucial ways that are central to our application. First,
like the counting Bloom filter [7, 13], the IBF allows
both insertions and deletions, and it allows the number
of inserted elements to far exceed the capacity of the
data structure as long as most of the inserted elements
are deleted later. Second, unlike the counting Bloom
filter, the IBF allows the elements of the set to be
listed back out. And third, again unlike the counting
Bloom filter, the IBF allows false deletions, deletions of
elements that were never inserted, and again it allows
the elements involved in false deletion operations to be
listed back out as long as their number is small. These
properties allow us to represent large sets as small IBFs,
and to quickly determine the elements in the symmetric
difference of the sets, as we now detail.

For the remainder of this paper, we assume without
loss of generality that each element x is an integer. An

25th Canadian Conference on Computational Geometry, 2013

64

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

IBF supports several simple algorithms for item inser-
tion, deletion, and membership queries; for a review of
these basic details of the IBF see [11].

In addition, we can take the difference of one IBF,
A, with a table TA, and another one, B, with table TB ,
to produce an IBF, C, with table TC , representing their
signed difference, with the items in A\B having positive
signs for their cell fields in C and items in B \A having
negative signs for their cell fields in C (we assume that
C is initially empty). This simple method is also shown
in [11].

Finally, given an IBF, which may have been produced
either through insertions and deletions or through a
subtract operation, we can list out its contents by
repeatedly looking for cells with counts of +1 or −1
and removing the items for those cells if they pass a
test for consistency. This method therefore produces a
list of items that had positive signs and a list of items
that had negative signs, and is shown in [11]In the case
of an IBF, C, that is the result of a subtract(A,B,C)
operation, the positive-signed elements belong to A \B
and the negative-signed elements belong to B \A.

4.1 Analysis

In this section, we extend previous analyses [10, 12] to
bound the failure probability for the functioning of an
invertible Bloom filter to be less than a given parameter,
ε > 0, which need not be a constant (e.g., its value could
be a function of other parameters).

Theorem 4: Suppose X and Y are sets with m ele-
ments in their symmetric difference, i.e., m = |X 4 Y |,
and let ε > 0 be an arbitrary real number. Let A
and B be invertible Bloom filters built from X and Y ,
respectively, such that each IBF has λ ≥ k + dlog ke
bits in its gSum field, i.e., the range of g is [1, 2λ),
and each IBF has at least 2km cells, where k >
dlog(m/ε)e + 1 is the number of hash functions used.
Then the listItems method for the IBF C resulting from
the subtract(A,B,C) method will list all m elements of
X 4 Y and identify which belong to X \ Y and which
belong to Y \X with probability at least 1− ε.

Proof. [11]. �

To avoid infinite loops, we make a small change to
listItems, forcing it to stop decoding after m items
have been decoded regardless of whether there remain
any decodable cells. This change does not affect the
failure probability and with it the running time is always
O(mk).

5 Frequency Moment Estimation

We implement our SDC sketches using frequency mo-
ment estimation techniques. Let x be a vector of length

U , and suppose we have a data stream of length m,
consisting of a sequence of updates to x of the form
(i1, v1), . . . , (im, vm) ∈ [U]× [−M,M] for some M > 0.
That is, each update is a pair (i, v) which updates the
ith coordinate of x such that xi → xi + v.

The frequency moment of a data stream is given by

Fp =
∑

i∈[U]

xpi = ‖x‖pp.

Since the seminal paper by Alon et al. [2], frequency
moment estimation has been an area of significant re-
search interest. Indeed the full literature on the subject
is too rich to survey here. Instead, see e.g. the recent
work by Kane et al. [16] and the references therein.
Kane et al. [16] gave algorithms for estimating Fp,
p ∈ (0, 2). Their algorithm requires O(log2(1/δ)) time
per update and O(δ−2 log(mM)) space. However, faster
results are known for estimating the second frequency
moment F2 with constant probability. Thorup and
Zhang [21] and Charikaret al. [8] independently improve
upon the original result of Alon et al. [2], to achieve an
optimal O(1) update time using O(δ−2 log(mM)) space.

Given a sparse vector X of length m with coordinates
bounded by [−M,M], we can estimate ‖X‖22 by treat-
ing it as a data stream and running the algorithm of
Thorup and Zhang. The algorithm computes a sketch
SX of X, of size O(δ−2 logmM) such that ‖SX‖22 is
within a factor of O(1 ± δ) of ‖X‖22 with constant
probability. We can improve the probability bound
to any arbitrary O(1 − ε) by running the algorithm
O(log(1/ε)) times independently to produce O(log(1/ε))
independent sketches SXi, and taking the median of
‖SXi‖pp. This strategy takes O(log(1/ε)) time to process
each non-zero element in X, and the space required is
O(δ−2 log(1/ε) log(mM)).

Furthermore, each sketch is linear, and therefore we
can estimate the frequency moment of the difference
of two sparse vectors X and Y by subtracting their
sketches; ‖SX − SY ‖22 is within a O(1 ± δ) factor
of ‖X − Y ‖22 with constant probability, and we can
maintain O(log(1/ε)) independent sketches to achieve
probability O(1− ε).

Now, suppose we want to estimate the Hamming
distance between two sets. We treat each set as a sparse
bit-vector and use the fact that the Hamming distance
between two bit vectors is equivalent to the squared
Euclidean distance, which is just the second frequency
moment of the difference of the vectors. Then we can
apply the above strategy for sparse vectors to produce
O(log(1/ε)) sketches for each set in O(log(1/ε)) time per
element, and we subtract all O(log 1/ε) pairs of sketches
in O(δ−2 log(1/ε) logU) time. Finally we compute the
second frequency moment of each sketch and take the
median over all estimations in O(log 1/ε) time.

We summarize this strategy in the following theorem.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

65

25th Canadian Conference on Computational Geometry, 2013

Theorem 5: Let 0 < ε < 1 and 0 < δ < 1 be arbitrary
real numbers. Given two sets, X and Y , taken from a
universe of size U , we can compute an estimate m̂ such
that

(1− δ)|X 4 Y | ≤ m̂ ≤ (1 + δ)|X 4 Y |,

with probability 1 − ε, using a sketch of size
O(δ−2 log(1/ε) logU) The preprocessing time, includ-
ing the time required to initialize the sketch is
O(δ−2 log(1/ε) logU+(|Y |+ |X|) log(1/ε)) and the time
to compute the estimate m̂ is O(δ−2 log(1/ε) logU).

References

[1] P. K. Agarwal. Range Searching. In J. E.
Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages
575–598. CRC Press, Inc., 1997.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147,
1999.

[3] M. Basseville. Detecting changes in signals and
systems—A survey. Automatica, 24(3):309–326,
1988.

[4] J. L. Bentley. Solution to Klee’s Rectangle
Problem. Unpublished manuscript, 1977.

[5] J. L. Bentley and J. B. Saxe. Decomposable
searching problems I. Static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980.

[6] B. H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[7] F. Bonomi, M. Mitzenmacher, R. Panigrahy,
S. Singh, and G. Varghese. An improved
construction for counting Bloom filters. In Proc.
14th Eur. Symp. on Algorithms, volume 4168 of
LNCS, pages 684–695. Springer-Verlag, 2006.

[8] M. Charikar, K. Chen, and M. Farach-Colton.
Finding frequent items in data streams. In
P. Widmayer, F. T. Ruiz, R. M. Bueno,
M. Hennessy, S. Eidenbenz, and R. Conejo,
editors, ICALP, volume 2380 of Lecture Notes in
Computer Science, pages 693–703. Springer, 2002.

[9] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and
its applications. J. Algorithms, 55(1):58–75, April
2005.

[10] D. Eppstein and M. T. Goodrich. Straggler
Identification in Round-Trip Data Streams via
Newton’s Identities and Invertible Bloom Filters.
IEEE Trans. on Knowledge and Data
Engineering, 23:297–306, 2011.

[11] D. Eppstein, M. T. Goodrich, and J. A. Simons.
Set-difference range queries. Arxiv report,
arXiv:1306.3482 [cs.DS], June 2013.

[12] D. Eppstein, M. T. Goodrich, F. Uyeda, and
G. Varghese. What’s the difference? Efficient set
reconciliation without prior context. In Proc.
SIGCOMM, 2011.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293, 2000.

[14] P. B. Gibbons and Y. Matias. Synopsis data
structures for massive data sets. In R. E. Tarjan
and T. Warnow, editors, SODA, pages 909–910.
ACM/SIAM, 1999.

[15] D. M. Kane and J. Nelson. Sparser
johnson-lindenstrauss transforms. In D. Randall,
editor, SODA, pages 1195–1206. SIAM, 2012.

[16] D. M. Kane, J. Nelson, E. Porat, and D. P.
Woodruff. Fast moment estimation in data
streams in optimal space. In L. Fortnow and S. P.
Vadhan, editors, 43rd ACM Symp. on Theory of
Computing (STOC), pages 745–754, 2011.

[17] J. Matoušek. Efficient partition trees. Discrete
Comput. Geom., 8(3):315–334, October 1992.

[18] R. Radke, S. Andra, O. Al-Kofahi, and
B. Roysam. Image change detection algorithms: a
systematic survey. IEEE Trans. Image
Processing, 14(3):294–307, March 2005.

[19] Q. Shi and J. JaJa. A new framework for
addressing temporal range queries and some
preliminary results. Theor. Comput. Sci.,
332(1-3):109–121, February 2005.

[20] S. Suri, C. D. Tóth, and Y. Zhou. Range counting
over multidimensional data streams. Discrete
Comput. Geom., 36(4):633–655, 2006.

[21] M. Thorup and Y. Zhang. Tabulation based
4-universal hashing with applications to second
moment estimation. In J. I. Munro, editor,
SODA, pages 615–624. SIAM, 2004.

[22] D. G. York, J. Adelman, J. John E. Anderson,
S. F. Anderson, et al. The Sloan digital sky
survey: technical summary. The Astronomical
Journal, 120(3):1579, 2000.

25th Canadian Conference on Computational Geometry, 2013

66

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

The Unified Segment Tree and its Application to the Rectangle Intersection
Problem

David P. Wagner∗

Abstract

In this paper we introduce a variation on the multidi-
mensional segment tree, formed by unifying different in-
terpretations of the dimensionalities of the levels within
the tree. Nodes in the resulting d-dimensional structure
can have up to d parents and 2d children. In order to
better visualize these relationships we introduce a di-
amond representation of the data structure. We show
how the relative positions of the nodes within the dia-
mond determine the possible intersections between their
representative regions. The new data structure adds the
capability to detect intersections between rectangles in
a segment tree. We use this to solve the “Rectangle
Intersection Problem” with a more straightforward al-
gorithm than has been used previously.

1 Introduction

The Segment Tree is a classic data structure from com-
putational geometry which was introduced by Bentley
in 1977 [1]. It is used to store a set of line segments, and
it can be queried at a point so as to efficiently return a
list of all line segments which contain the query point.

The data structure has numerous applications. For
example, in its early days it was used to list all pairs
of intersecting rectangles from a list of rectangles in the
plane [2], to report all rectilinear line segments in the
plane which intersect a query line segment [9], and to
report the perimeter of a set of rectangles [12]. More
recently the segment tree has become popular for use in
pattern recognition and image processing [7].

Vaishnavi described one of the first higher dimen-
sional segment trees in 1982 [8]. Introducing his two-
dimensional segment tree as a self-described “segment
tree of segment trees”, he attached an “inner segment
tree”, representing one dimension, to every node of an
“outer segment tree”, representing another dimension,
and used this for the purpose of storing rectangles in
the plane. A point query would then return a list of all
rectangles containing the point. The recursive nature of
this data structure meant that it could be generalized
to arbitrary dimensions. This has been the standard
model for high dimensional segment trees ever since.

∗Department of Electronics Engineering, Hanyang University,
dwagndwagn@gmail.com

In this paper, we describe a variation on the higher
dimensional segment tree. In two dimensions, this new
data structure is formed by merging the two segment
trees which would be formed from different choices for
the dimensions of the inner and outer segment trees.
Our purpose in introducing this variation is not to show
that it is faster for a particular application, but rather
that it supports an additional operation, namely the
detection of rectangle intersections, while retaining the
structure and functionality of a segment tree.

In the following sections, we will define the data struc-
ture, and show a useful way to visualize it. We introduce
several new definitions as they apply to this variation of
data structure. We further show some relationships be-
tween the nodes, and the regions those nodes represent.

Finally, we demonstrate that the data structure can
be used to solve the “Rectangle Intersection Problem”.
Existing methods to solve this problem have either in-
volved using range trees, storing d-dimensional rectan-
gles as 2d-dimensional points [3], or sweep planes, pro-
cessing a lower dimensional problem across the sweep
[4]. We think that our new data structure represents
a more natural way to store this data, and it allows a
greatly simplified rectangle intersection algorithm.

2 Segment Tree Properties

In later sections, we will refer to several well known
properties of a one-dimensional segment tree. We list
them here for the conveniece of the reader.

Property 1 A segment tree storing n segments has a
height of O(log n).

Property 2 A segment stored in a segment tree is split
into a canonical representation of O(log n) subsegments,
each of which is stored at a different node of the tree.

Property 3 The ancestors of the nodes of the canon-
ical representation of a segment consist of, at most,
O(log n) nodes.

Property 4 O(log n) time is required to insert a seg-
ment or to query a point in a segment tree.

Property 5 If two distinct nodes each store a segment
in a segment tree, and one node is a descendant of the
other, then the segment of the descendant node is com-
pletely contained within segment of the ancestor node.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

67

25th Canadian Conference on Computational Geometry, 2013

Property 6 If two distinct nodes each store a segment
in a segment tree, and neither node is an ancestor of
the other, then the two segments are disjoint.

The next property is perhaps less well known, but it
follows directly from the previous two properties.

Property 7 Two line segments stored at any two nodes
in a segment tree are either disjoint, or one is completely
contained in the other.

3 Two-dimensional Segment Trees

Here we introduce a number of definitions relating to
the Unified Segment tree. We begin with a description
of the two-dimensional segment tree given by Vaishnavi
in 1982 [8]. Although we will focus primarily on two
dimensions hereafter, almost every concept we will de-
scribe generalizes into arbitrary dimensions.

Construction of the Vaishnavi segment tree begins
with a single one-dimensional segment tree, called the
“outer segment tree”, which represents divisions of the
plane along one of the two axes. Attached to every node
of this outer segment tree, is an “inner segment tree”,
representing further subdivisions along the other axis.

Note that the choice of axis for the outer segment
tree could have been either the x-axis or the y-axis.
Although this choice is arbitrary, it has a great effect
on the organization of the data structure. Therefore, let
us give different names to the different data structures
resulting from this choice.

Definition 1 (xy-segment tree) Let the xy-segment
tree be the Vaishnavi two-dimensional segment tree
whose outer segment tree divides the plane along the x-
axis, and whose inner segment trees further divide these
regions along the y-axis.

Definition 2 (yx-segment tree) Let the yx-segment
tree be the Vaishnavi two-dimensional segment tree
whose outer segment tree divides the plane along the y-
axis, and whose inner segment trees further divide these
regions along the x-axis.

A rectangle inserted into a two-dimensional segment
tree is first divided into subrectangles along one axis,
and then further subdivided along the other axis. These
subrectangles are then stored in the nodes of the tree,
and if necessary any ancestors of these nodes are cre-
ated. We show here that the order of these two axes
does not affect the set of subrectangles.

Theorem 1 A rectangle inserted into an xy-segment
tree and into a yx-segment tree will be stored as an
equivalent set of subrectangles in the each tree.

Proof. Upon insertion into an xy-segment tree, a rect-
angle is first divided along the x-axis, and then along the
y-axis. In the yx-segment tree the order of these axes is
reversed. The canonical subdivisions are the same, re-
gardless of the order in which the two axes are chosen.
Therefore subrectangles created and stored in each of
the trees are the same. �

Multiple rectangles inserted into a segment tree are
stored independently of each other. So this leads to the
following corollary.

Corollary 2 A set of rectangles inserted into an xy-
segment tree and into a yx-segment tree will be stored
as an equivalent set of subrectangles each tree.

Now we define the Unified Segment Tree in two di-
mensions based on these two structures.

Definition 3 (Unified Segment Tree (in 2 dimen-
sions)) Define the unified segment tree storing a set of
rectangles in the plane to be the data structure created
by the following procedure:

1. Create an xy-segment tree and a yx-segment tree,
and insert the same set of rectangles into both.

2. Merge the root of every inner segment tree with the
node of the outer segment tree to which it is at-
tached, so that they are considered to be one node.

3. Merge any two nodes in the xy-segment tree and
the yx-segment tree which represent the same region
of the plane, so that they become one node. By
Corollary 2 they would contain the same data.

4. Add all the possible ancestors to any node which is
missing any of its possible ancestors. (Ancestors in
this data structure are defined later.)

We note several features of the new data structure
which are not normally associated with segment trees.
First, a node may have up to two parents, one from
the xy-segment tree and one from the yx-segment tree.
Second, a node may have up to four children, two nodes
each from the xy-segment tree and from the yx-segment
tree. Finally, the new data structure is technically no
longer a tree, as it may contain cycles.

4 Parents, Children, Ancestors, Descendants

In order to accommodate the features of the new data
structure, we must create new definitions of previously
well-defined concepts such as parent and child.

Definition 4 (x-child) Let an x-child of a node be
either of the two nodes representing the regions created
when the original node’s representative region is divided
in half along the x-axis.

25th Canadian Conference on Computational Geometry, 2013

68

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

A node can have a left x-child, and a right x-child.

Definition 5 (x-parent) Let the x-parent relation-
ship be the inverse of the x-child relationship.

Definition 6 (x-ancestor) Let an x-ancestor be any
node which can be reached by following a series of x-
parent relationships.

Definition 7 (x-descendant) Let an x-descendant
be any node which can be reached by following a series
of x-child relationships.

Analogous definitions exist for y-child, y-parent, y-
ancestor, and y-descendant.

In addition to x-ancestors, y-ancestors, x-descendants
and y-descendants, we define additional nodes to be sim-
ply ancestors and descendants.

Definition 8 (Ancestor) Let an ancestor of a node
be any node which can be reached by following a series
of x-parent and/or y-parent relationships.

Definition 9 (Descendant) Let a descendant of a
node be any node which can be reached by following a
series of x-child and/or y-child relationships.

Some additional properties can be seen from these
definitions

Property 8 The x-parent of the y-parent of a node is
the same node as the y-parent of its x-parent.

Property 9 The x-children of the y-children of a node
are the same nodes as the y-children of its x-children.

5 Visualization

We find it useful to visualize the unified segment tree
as a diamond, where the root of the data structure is
at the top of the diamond. We divide the diamond into
units, such that all nodes representing a rectangle of the
same shape and size are located in the same unit.

The two x-children of any node appear in the same
unit below and to the left of their x-parent. The two
y-children of any node appear in the same unit below
and to the right of their y-parent. Thus, each horizontal
row of the diamond has double the number of nodes per
unit, as the row above it. See Figure 1.

It is possible to see the xy-segment tree and the yx-
segment tree embedded in the diamond representation
of the unified segment tree. See Figure 2.

Using this visualization, the ancestors of a node ap-
pear in the diamond shaped region above the node. The
descendants appear in the diamond shaped region be-
low the node. See Figure 3. The number of ancestors
can be bounded as follows.

y−child

y−parentx−parent

x−child

1

2 2

444

8

16 16 16

3232

64

888

shorter

taller wider

narrower

(a) (b)

root root

Figure 1: (a) A diamond-shaped visualization of par-
ent child relationships, and the number of nodes in each
unit of the diamond. (b) The rectangles which are rep-
resented by the nodes in each unit of the diamond.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

(b)(a)

Figure 2: (a) The xy-segment tree embedded into the
unified segment tree. (b) The yx-segment tree embed-
ded into the unified segment tree.

Theorem 3 A node has at most one ancestor per unit
of the diamond.

Proof. Assume there are two ancestors of a node within
the same unit. These two nodes must represent rect-
angles of the same shape and size, because they are
within the same unit. The representative rectangles
must contain a common point, since the nodes have
a common descendant. The representative rectangles
must not partially overlap, by Property 7 of Segment
Trees. Therefore, the rectangles, and the nodes repre-
senting them, must be the same. �

We think it is interesting that the nodes taken from
the central vertical column of the diamond form a quad
tree, while the central column and a neighboring column
form a k-D tree. See Figure 4 for a depiction of this.

6 Relationships between Nodes

The relative positions of the nodes within a unified seg-
ment tree determine the possible intersections between
the rectangular regions they represent. We examine
that relationship here.

Theorem 4 A node is a descendant of another node,
if and only if it represents a rectangle that falls entirely
within the rectangle represented by the ancestor node.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

69

25th Canadian Conference on Computational Geometry, 2013

Ancestors y−ancestors x−
an
ce
st
or
s

Descendants x−
de
sc
en
da
nt
s y−descendants

(a) (b)

Figure 3: (a) The location of the ancestors and de-
scendants of a node within the diamond. (b) The lo-
cation of x-ancestors, y-ancestors, x-descendants, and
y-descendants within the diamond.

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

(b)(a)

Figure 4: (a) A k-D tree embedded in the unified seg-
ment tree. (b) A quad tree embedded in the unified
segment tree.

Proof. First, consider two nodes in the segment tree,
one of which is a descendant of the other. The rectan-
gle represented by the descendant was formed by suc-
cessively subdividing the rectangle represented by the
ancestor. Therefore, the rectangle represented by a de-
scendant falls entirely within the rectangle represented
by any of its ancestors.

Next, consider two rectangles represented by two dif-
ferent nodes of the tree, such that one rectangle falls
entirely within the other. Follow the x-parents of the
node representing the smaller rectangle, until a node is
found which has the same size in the x direction as the
larger rectangle. This must have the same x-coordinates
as the larger rectangle, otherwise Property 7 would be
violated. From there, follow y-parents until a node is
found which has the same size in the y direction. This
node must have the same y-coordinates as the larger
rectangle, for the same reason. Therefore it must be the
node which represents the larger rectangle, and the node
representing the smaller rectangle must be a descendant
of the node representing the larger rectangle. �

Theorem 5 Two nodes can have a common ancestor
which is an x-ancestor of one node and a y-ancestor of
the other, if and only if their representative rectangles
completely cross over each other, one in the x direction,
and the other in the y direction (see Figure 5).

Figure 5: Possible intersections between rectangles rep-
resented by nodes in a unified segment tree.

Figure 6: Impossible intersections between rectangles
represented by nodes in a unified segment tree.

Proof. Consider any two nodes, having a common an-
cestor which is an x-ancestor of one and a y-ancestor of
the other. The rectangle represented by the common an-
cestor of the two nodes can be formed by expanding one
of the original two rectangles in the x direction, or by
expanding the other in the y direction. Therefore, the
rectangle of the ancestor must be completely spanned
in y direction by the first rectangle, and completely
spanned in the x direction by the other. Therefore the
two rectangles must completely cross each other.

Next, consider two nodes which represent rectan-
gles that completely cross over each other. The small-
est rectangle enclosing both original rectangles can be
found by expanding one rectangle in the x-direction
or by expanding the other rectangle in the y-direction.
Therefore, the enclosing rectangle is represented by an
x-ancestor of one of the original nodes, and a y-ancestor
of the other node. �

Theorem 6 Two rectangles which are represented by
nodes in a unified segment tree may only intersect in
one of two ways. Either one rectangle can be completely
inside of the other, or the two rectangles can completely
cross over each other, one in the x direction, and the
other in the y direction.

Proof. By enumerating the possible rectangle intersec-
tions, we can see that all other intersections would vio-
late Property 7. See Figures 5 and 6 for a visual depic-
tion of the possible and impossible intersections. �

7 Analysis

Here we analyze the performance of the unified segment
tree, showing bounds on its size, and on the running
time of the standard segment tree operations.

Theorem 7 After the insertion of n rectangles into a
unified segment tree, the deepest x-descendant of the root
and the deepest y-descendant of the root have a maxi-
mum depth of O(log n).

25th Canadian Conference on Computational Geometry, 2013

70

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Proof. Recall that the unified segment tree was created
from an xy-segment tree, and a yx-segment tree. The
outer segment trees of these two trees exactly comprise
the x-descendants and the y-descendants of the root.
By Property 1, these two trees can have a maximum
height of O(log n). �

Corollary 8 Any node in a unified segment tree can
have a maximum of O(log n) x-ancestors and a maxi-
mum of O(log n) y-ancestors.

Theorem 9 Any node in a two-dimensional unified
segment tree can have a maximum of O(log2n) ances-
tors.

Proof. A node can have a maximum of O(log n) x-
ancestors, and each of these nodes can have a maximum
of O(log n) y-ancestors. All ancestors can be reached
along one of these routes. �

Theorem 10 The canonical representation of a rect-
angle in a two-dimensional segment tree is comprised of
a maximum of O(log2 n) subrectangles.

Proof. Any rectangle is decomposed into a maximum
of O(log n) regions in the x direction by Property 2 of
Segment Trees. Each of these regions is further subdi-
vided into a maximum of O(log n) subregions in the y
direction. �

Theorem 11 All nodes representing the canonical sub-
regions of a rectangle have a maximum of O(log2 n) an-
cestors in a two-dimensional unified segment tree.

Proof. The limit on the number of the ancestors of
the canonical representation exists because there can
be no more than 16 ancestors of a given shape. Con-
sider that there are 17 ancestors of a particular shape
in the tree. By Property 7, these shapes cannot over-
lap in their x-coordinates, or their y-coordinates, unless
the coordinates are the same. Since there are 17 dis-
tinct sets of x and y-coordinates, there must be at least
5 distinct pairs of x-coordinates, or 5 distinct pairs of
y-coordinates. Assume, without loss of generality that
there are 5 distinct pairs of x-coordinates. Consider
the node representing the middle of these 5 pairs of co-
ordinates. The x-parent of the node representing this
rectangle must be located entirely within the original
rectangle. Therefore there is no reason to include the
middle rectangle, or any of its descendants in the canon-
ical representation. �

Corollary 12 Insertion of a rectangle into a two-
dimensional segment tree requires O(log2 n) time.

Corollary 13 A two-dimensional unified segment tree
requires O(n log2 n) space to store n rectangles.

Theorem 14 A point query of a two-dimensional uni-
fied segment tree returns the list of enclosing rectangles
in O(log2 n+k) time where k is the number of rectangles
reported.

Proof. A point is represented in a unified segment tree
at the deepest node. All enclosing rectangles are rep-
resented by O(log2 n) ancestors of this node. Thus it
is sufficient to report all rectangles stored in all ances-
tors. �

8 Higher Dimensions

Most every aspect of the unified segment tree can be
generalized into arbitrary dimensions in a straightfor-
ward way. In d dimensions, each node can have up to
d parents, 2d children, and O(logd n) ancestors. Inser-
tion requires O(logd n) time. Query requires O(logd +k)
time, where k is the number of results reported. The
entire data structure occupies O(n logd n) space.

9 The Rectangle Intersection Problem

The rectangle intersection problem is a classic problem
dating back to the early days of computational geom-
etry. The problem has been studied by many authors,
and numerous variations have been inspired [5, 6].

Although multiple definitions of the “rectangle inter-
section problem” have appeared in the literature, we use
this definition. Store a set of n axis-parallel rectangles
so that a rectangle query will efficiently report all rect-
angles from the set which intersect the query rectangle.

Edelsbrunner and Maurer gave one of the first gen-
eral purpose algorithms solving this problem in 1981
[4]. Their method involves storing the rectangles in a
combination of segment trees and range trees, and these
are queried to detect four kinds of intersections between
rectangles. In higher dimensions, they sweep across the
problem, solving a lower dimensional problems during
the sweep, and thereby giving an overall solution that
is recursive by dimension.

Edelsbrunner demonstrated two further methods to
solve the problem in 1983 [3]. The first of these involves
storing the d-dimensional rectangle in a 2d-dimensional
range tree, and performing an appropriate range query.
For the second, a data structure called the “rectangle
tree” is developed, and this is queried similarly to the
range tree.

Here we show yet another way to solve this problem
using an augmented version of our unified segment tree.
Our method does not claim a speedup over the previ-
ous methods. However, we feel the unified segment tree
uses a more natural representation of the data than the
range tree or rectangle tree. Additionally, given the ma-
chinery that we have already developed in this paper,
the algorithm is quite straightforward.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

71

25th Canadian Conference on Computational Geometry, 2013

9.1 Augmenting the Unified Segment Tree

For the purpose of supporting a rectangle intersection
operation, we augment each node of the unified segment
tree with the following additional data:

• A list of rectangles in all descendants of the node.

• A list of rectangles in all x-descendants of the node.

• A list of rectangles in all y-descendants of the node.

Thus a node of a two-dimensional augmented segment
tree contains the following information.

struct NODE {

struct NODE * xparent, yparent;

struct NODE * leftxchild, rightxchild;

struct NODE * leftychild, rightychild;

Segment storedHere[];

Segment storedInDescendants[];

Segment storedInXDescendants[];

Segment storedInYDescendants[];

}

When a segment is inserted, its identifier must be
inserted into all canonical nodes, and all ancestors of
the canonical nodes, in the appropriate lists. In two
dimensions, this does not affect the asymptotic running
time of the insert operation. However, in d dimensions,
there can exist 2d separate lists, so an alternate method
of storage may be desirable if d is large.

9.2 Rectangle Query Algorithm

A rectangle query operation returns a list of all rectan-
gles which intersect the given query rectangle. Our algo-
rithm for rectangle query first divides the query rectan-
gle into its canonical regions. It then performs a query
on each rectangle individually, reporting the union of
the rectangles found.

Note that the same rectangle might be found in mul-
tiple places, so care must be taken to avoid reporting
duplicates, if that is undesirable. If duplicates are re-
ported this may adversely affect the running time by a
polylogarithmic factor.

Recall from Theorem 6 that rectangles can only in-
tersect if one is completely inside the other, or if they
completely cross over each other, one in each dimen-
sion. Therefore, it is sufficient to report the rectangles
described in Theorems 4 and 5.

This gives us the following straightforward algorithm,
which is performed on each node representing a subrect-
angle of canonical subdivision of the query rectangle:

1. Report all rectangles stored in ancestors of the
node.

2. Report all rectangles stored in the descendant list
of the node.

3. Report all rectangles stored in the x-descendant list
of a y-ancestor of the node.

4. Report all rectangles stored in the y-descendant list
of an x-ancestor of the node.

This information is available in the ancestors of the
canonical nodes of the query rectangles. So only
O(log2 n) nodes need to be accessed. Again care must
be taken to avoid reporting duplicates.

Acknowledgments.

The author is grateful to Stefan Langerman and John
Iacono for their helpful discussions.

References

[1] J. L. Bentley. Solutions to Klee’s rectangle problems.
Technical report, Carnegie-Mellon University, 1977.

[2] J. L. Bentley and D. Wood. An optimal worst
case algorithm for reporting intersections of rectan-
gles. IEEE Transactions on Computers, C-29(7):571–
577, July 1980.

[3] H. Edelsbrunner. A new approach to rectangle inter-
sections - part I. International Journal of Computer
Mathematics, 13:209–219, 1983.

[4] H. Edelsbrunner and H. A. Maurer. On the intersection
of orthogonal objects. Inform. Process. Lett., 13:177–
181, 1981.

[5] V. Kapelios, G. Panagopoulou, G. Papamichail, S. Sir-
makessis, and A. Tsakalidis. The ‘cross’ rectangle prob-
lem. The Computer Journal, 38(3):227–235, 1995.

[6] H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic rect-
angular intersection with priorities. In Proceedings of
the thirty-fifth annual ACM symposium on Theory of
computing, STOC ’03, pages 639–648, New York, NY,
USA, 2003. ACM.

[7] G. Racherla, S. Radhakrishnan, and B. J. Oommen. En-
hanced layered segment trees: a pragmatic data struc-
ture for real-time processing of geometric objects. Pat-
tern Recognition, 35(10):2303–2309, 2002.

[8] V. K. Vaishnavi. Computing point enclosures. IEEE
Transactions on Computers, C-31:22–29, 1982.

[9] V. K. Vaishnavi and D. Wood. Rectilinear line segment
intersection, layered segment trees, and dynamization.
Journal of Algorithms, 3:160–176, 1982.

[10] M. van Kreveld and M. Overmars. Concatenable seg-
ment trees. In Proceedings of the 6th Annual Symposium
on Theoretical Aspects of Computer Science, pages 493–
504, 1989.

[11] M. van Kreveld and M. Overmars. Union-copy data
structures and dynamic segment trees. Journal of the
ACM, 40:635–652, 1993.

[12] P. M. B. Vitanyi and D. Wood. Computing the perime-
ter of a set of rectangles. Technical Report TR 79-CS-
23, McMaster University, 1979.

25th Canadian Conference on Computational Geometry, 2013

72

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Covering Folded Shapes

Oswin Aichholzer∗ Greg Aloupis† Erik D. Demaine‡ Martin L. Demaine‡ Sándor P. Fekete§

Michael Hoffmann¶ Anna Lubiw‖ Jack Snoeyink∗∗ Andrew Winslow†

Abstract

Can folding a piece of paper flat make it larger? We
explore whether a shape S must be scaled to cover
a flat-folded copy of itself. We consider both single
folds and arbitrary folds (continuous piecewise isome-
tries S → R2). The underlying problem is motivated
by computational origami, and is related to other cov-
ering and fixturing problems, such as Lebesgue’s uni-
versal cover problem and force closure grasps. In addi-
tion to considering special shapes (squares, equilateral
triangles, polygons and disks), we give upper and lower
bounds on scale factors for single folds of convex objects
and arbitrary folds of simply connected objects.

1 Introduction

In this paper, we consider cov-

Figure 1: From
Wu’s diagram.

ering all possible folded versions
of a given shape by a scaled copy
of the shape itself, with the ob-
jective of keeping the scale factor
as small as possible. We explore how folds can make
an origami model larger, in the sense that Joseph Wu’s
one-fold stegosaurus1 cannot be covered by a copy of
the square from which it is folded.

Problems of covering a family of shapes by one

∗Institute for Software Technology, TU Graz, Inffeldgasse
16b/II, A-8010 Graz, Austria, oaich@ist.tugraz.at. Partially
supported by the ESF EUROCORES programme EuroGIGA—
CRP ‘ComPoSe’, Austrian Science Fund (FWF): I648-N18.
†Dept. Computer Science, Tufts Univ., 161 College Ave.,

Medford, MA 02155, USA, aloupis.greg@gmail.com,awinslow@
cs.tufts.edu. Partially supported by NSF grant CBET-0941538.
‡Computer Science and Artificial Intelligence Laboratory,

MIT, 32 Vassar St., Cambridge, MA 02139, USA, {edemaine,

mdemaine}@mit.edu.
§Computer Science, TU Braunschweig, Mühlenpfordtstr. 23,

38106 Braunschweig, Germany, s.fekete@tu-bs.de
¶Institute of Theoretical Computer Science, ETH Zürich, Uni-

versitätstrasse 6, 8092 Zürich, Switzerland, hoffmann@inf.ethz.
ch. Partially supported by the ESF EUROCORES programme
EuroGIGA, CRP GraDR and SNF Project 20GG21-134306.
‖David R. Cheriton School of Computer Science, Univ. Water-

loo, Waterloo, ONT N2L 3G1, Canada, alubiw@uwaterloo.ca
∗∗Department of Computer Science, University of North Car-

olina, Chapel Hill, NC 27599, USA, snoeyink@cs.unc.edu. Par-
tially supported by an NSF grant.

1An origami joke. http://www.josephwu.com/Files/PDF/

stegosaurus.pdf

minimum-cost object have a long tradition in geom-
etry. The classical prototype is Lebesgue’s universal
cover problem from 1914 [10], which asks for a planar
convex set of minimum area that can cover any planar
set of diameter at most 1; Brass and Sharifi [3] give the
best upper and lower bounds, but a gap remains. A
similar question, also with a gap, is Moser’s worm prob-
lem [9, 11], which asks for a convex set of minimum
area that can cover any planar curve of length 1. As re-
ported in [3] and the book by Brass, Moser, and Pach [2,
Chapter 11.4], there is a large family of well-studied, but
notoriously difficult problems parameterized by

• the family of sets to be covered,
• the sets allowed as covers,
• the size measure to be minimized, and
• the allowed transformations.

In this paper we consider a given shape S, which is a
region of the plane that is a simply connected (no holes)
closed 2-manifold with boundary (every interior point
has a disk neighborhood and every boundary point a
half-disk). A shape S may possess more specific prop-
erties: e.g., it may be convex, a (convex or non-convex)
polygon, a disk, a square, or an equilateral triangle.

We denote by cS, for c > 0, the family of copies of S
that have been scaled by c, and then rotated, reflected,
and translated. We consider upper and lower bounds on
the smallest constant c such that, for any F obtained
by folding S, some member of cS contains or covers F .
Let us be more specific about folding.

A single fold of S with line ` reflects one or more
connected components of the difference S \ ` across `.
Let F1(S) denote the family of shapes that can be gen-
erated by a single fold of S. An arbitrary fold of S is
a continuous, piecewise isometry from S → R2, which
partitions S into a finite number of polygons and maps
each rigidly to the plane so that the images of shared
boundary points agree. The key property that we will
use is that the length of any path in S equals the length
of its image in R2. Let F(S) denote the family of all
images of arbitrary folds of S.

The single fold and arbitrary fold are two simple no-
tions of flat folding that avoid concerns of layering and
fold order. Note that any upper bound that we prove
for arbitrary folds applies to single folds, too. And, al-
though the image of an arbitrary fold need not be the
result of single folds, our lower bounds happen to be

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

73

25th Canadian Conference on Computational Geometry, 2013

limits of finite sequences of single folds. Our results
apply to 3-d folded shapes if covering is understood to
mean covering the orthogonal projection to the plane.

Throughout this paper, we consider origami covers:

Definition 1 For a given shape S and c > 0, cS is an
origami cover of S if any member of F(S) can be covered
by some member of cS. The origami cover factor of S
is the smallest such c, which may be ∞:

c∗(S) = inf{c | cS is a origami cover of S}.
Analogously, c1S is a 1-fold origami cover of S if any

member of F1(S) can be covered by c1S; and
c∗1(S) = inf{c | cS is a 1-fold cover of S}.

Questions of whether folding can increase area or
perimeter have been considered before. It is clear that
folding a piece of paper introduces overlap, so area can
only decrease. On the other hand, the perimeter of
a rectangle or square can be greater in a folded than
an unfolded state—known as Arnold’s ruble note or
the Margulis napkin problem [1, 7]. Folding techniques
that increase perimeter, like rumpling and pleat-sinking,
make very small but spiky models that are easily cov-
ered by the original paper shape, however.

Before we explore single folds in the next section,
let us recall some common geometric parameters of a
shape S and make one general observation.

For a given shape S, an incircle, Cr, is a circle of
maximum radius (the inradius r) contained in S. Sim-
ilarly, the circumcircle, CR, is the circle of minimum
radius (the circumradius) that contains S. For a non-
convex shape S, we instead measure geodesic distances
within S, i.e., the distance between two points is the
length of a shortest path in S between the points. A
geodesic diameter is a path within S that attains the
maximum distance D between two points of S. A
geodesic center is a point in S that minimizes the max-
imum distance (the geodesic radius R) to all points
of S. For convex shapes the geodesic radius R is also
the circumradius. Jung’s theorem in the plane says√

3R ≤ D ≤ 2R, with the equilateral triangle and circle
giving the two extremes [12, ch. 16].

For any folded state of S, these parameters give an
upper bound on the origami cover factor.

Lemma 2 Any shape S with inradius r and geodesic
radius R has an origami cover factor c∗(S) ≤ R/r.
Proof. Place any folded state F ∈ F(S) in the plane
so that the image of a geodesic center is at the origin.
Choose a member of (R/r)S with an incircle center at
the origin. Because no path in F can be more than R
from the origin, the scaled incircle covers F . �

2 Single Folds

In this section we explore the 1-fold cover factor c∗1(S),
giving general bounds for convex S and for polygons,

and the exact values for equilateral triangles, squares,
and a family derived from disks.

2.1 Convex shapes

For a convex set S, there is a lower bound for the 1-fold
cover factor c∗1(S) that is within a constant factor of the
upper bound given by Lemma 2.

Theorem 3 Let S be a convex shape with inradius r
and circumradius R. Then κR/r ≤ c∗(S) ≤ R/r for an
appropriate constant κ = ((

√
5− 1)/2)5/2 ≈ 0.300283.

Proof. The upper bound is from Lemma 2.
For the lower bound, consider the center p∗ of the

R-circle CR that contains S. Because R is smallest
possible, the set of points where the boundary of CR
touches S, T := ∂CR ∩ S, must contain at least two
points, and no open halfplane through p∗ can contain
all of T . If |T | = 2, then these two points t1 and t2 must
lie on a diameter of CR; if |T | > 2, there must be two
points t1, t2 ∈ T that form a central angle ∠(t1, p

∗, t2)
in [2

3π, π]. Thus, for any ϕ ∈ [0, 2
3π], we can perform a

single fold along a line through p∗ that maps t2 to t′2
such that the central angle ∠(t1, p

∗, t′2) is ϕ.

rϕ

ϕ

p∗

t′2t1

R

R cos(ϕ/2)

R sin(ϕ/2)

Figure 2: Parameters for calculating the 1-fold cover
factor for convex S.

Now, after folding, consider a cover of the three points
t1, p

∗, t′2 by cS for some c > 0. As each member of cS is
convex, in covering the triangle ∆(t1, p

∗, t′2), it also cov-
ers the largest circle C∆ contained in ∆(t1, p

∗, t′2); let
rϕ be the radius of this circle, see Figure 2. Using ele-

mentary geometry we obtain rϕ = R
2

sin(ϕ)
1+sin(ϕ/2) , which is

maximized at ϕ = 2 arctan
(
((
√

5−1)/2)1/2
)
≈ 76.345◦,

giving rϕ = κR as the radius of C∆. Because the largest
circle covered by cS has radius cr, and C∆ is covered
by cS, we conclude that c ≥ κR/r. �

2.2 Cover factors for specific polygons

In this section we determine c∗1(S) when S is an equi-
lateral triangle or a square. These two cases illustrate
analysis techniques that could in theory be extended
to other polygons, except that the number of cases ex-
plodes, especially for non-convex shapes.

25th Canadian Conference on Computational Geometry, 2013

74

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

An important subproblem is to fix the folded shape
F and compute, for the given shape S, the smallest c
such that cS covers F . With four degrees of freedom for
translation, rotation, and scaling, we expect that four
first-order contacts between the boundaries of S and F
will define the minimum c. In polygons, these will be
four pairs consisting of a vertex of F and an edge of
S that it lies on. A enclosing triangle, therefore, has
some edge touching two vertices of F [5, Lemma 2];
a enclosing square either has some edge touching two
vertices or each edge touching one [4].

In the full paper we say more about how these
structural characterizations support the use of rotating
calipers to compute minimum enclosing shapes. (E.g.,
an appealing direct construction of the square through
four points, which is unique when it exists, is the so-
lution to problem 20 in Kovanova and Radul’s list of
“Jewish problems” [6]: for points A,B,C,D in ccw or-
der, construct BD′ perpendicular and of equal length
to AC; If D′ 6= D, then two sides of the square must be
parallel to DD′.) In what follows we show that the folds
that define c∗1(S) (that maximize the minimum scale
factor) are characterized by having multiple equal-sized
enclosing shapes.

2.2.1 Equilateral triangle

The example that establishes the maximum 1-fold cover
factor of an equilateral triangle is nicely symmetric.

Theorem 4 The 1-fold cover factor of an equilateral
triangle, c∗1(4), is 4/3.

Proof. Let S be the triangle of side length 2 with ver-
tices (±1, 0) and (0,

√
3). We begin by showing that any

single fold can be covered by scaling to at most 4/3.
By symmetry, we may assume that we fold along a

line y = mx + b that intersects both edges incident on
(0,
√

3); let P be the image of this vertex in the folded
state S′ ∈ F1(S). Consider three cases for the location
of the image P and the resulting minimum enclosing
equilateral triangle, depicted in Figure 3.

τ2

τ3

τ1

P

P

P

b
θ

Figure 3: Cases for enclosing triangle depending on P .
Point P ∈ τ3 should be below P ∈ τ2, but then small
triangles mentioned in the proof are even harder to see.

First, suppose that P is on or above the x-axis. By
symmetry, we may assume that P lies in the wedge

formed by extending both edges of S incident on ver-
tex (−1, 0) to rays from (−1, 0). Because P has dis-
tance at most 2 from (−1, 0), scaling S about (−1, 0)
by 2/

√
3 < 4/3 creates an enclosing equilateral trian-

gle τ1.

Second, suppose that the image P = (px, py) has
−
√

3/3 ≤ py ≤ 0. Consider the enclosing triangle τ2
obtained by scaling S about (0,

√
3) until the horizon-

tal edge touches P . The scale factor for this triangle is√
3−py√

3
= 1− py/

√
3 ≤ 4/3.

Finally, suppose that P = (px, py) has py ≤ −
√

3/3.
From the previous case, the scale factor for enclosing
triangle τ2 is 1 − py/

√
3 ≥ 4/3. So instead consider an

enclosing triangle τ3 with an edge e along the fold line,
which we can parameterize by its y-intercept b ≤

√
3/3

and angle from horizontal θ. Draw perpendiculars to
e through vertices (±1, 0) to form two small 30-60-90
triangles. Edge e is composed of the short sides of these
triangles plus the projection of the base edge of S, so e
has length (2 + 2b/

√
3) cos θ. Thus, the scale factor of

triangle τ2 is (1 + b/
√

3) cos θ ≤ 4/3 cos θ ≤ 4/3.

These cases show that c∗1(4) ≤ 4/3, and also reveal
necessary conditions for equality: the fold line angle
θ = 0 and intercept b =

√
3/3, so P = (0,−

√
3/3). To

show that these are sufficient, we must check one more
candidate for enclosing triangle.

Consider τ4, with edge inci-

τ4

30◦

2
√
3
3

α

β

30◦

Figure 4: Not a min
enclosing triangle.

dent to P = (0,−
√

3/3) and
(−1, 0). The length of this edge
is the sum of sides of two 30-
60-90 triangles, marked α and
β in Figure 4. The scale factor
(α + β)/2 =

√
3/9 + 2

√
3/3 =

7
√

3/9 > 4/3. Thus, τ4 is not
a minimum enclosing triangle,
and c∗1(4) = 4/3, as determined
by τ2 and τ3.

This completes the proof. �

2.2.2 Square

For squares, the optimal fold is astonishingly complex,
and is neither symmetric, nor rational. For the unit
square [0, 1]2, the vertex (0, 1) folds to a location whose
y coordinate is the root of a degree twelve polynomial:
Φ(x) = 40x12 + 508x11 + 1071x10 + 930x9 − 265x8 −
1464x7 − 1450x6 − 524x5 + 58x4 + 76x3 + 3x2 − 6x− 1.
This polynomial will arise because the optimal fold has
three distinct minimum enclosing squares. Let ρ denote
the largest (and only positive) real root of Φ(x), which
is approximately 1.105224.

Let S = {(x, y) : 0 ≤ x, y ≤ 1} denote the axis-
parallel unit square and consider some F ∈ F1(S) such
that F 6= S. Note that F is a simple polygon that is
uniquely determined (up to symmetry) by a fold line `.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

75

25th Canadian Conference on Computational Geometry, 2013

Proposition 5 The polygon F can be covered by S, un-
less fold line ` intersects S in the relative interior of two
opposite sides.

Proof. If ` does not intersect the interior of S then
F ∼= S. Otherwise ` intersects ∂S in exactly two points.
If these points lie on adjacent sides of S, then folding
along ` reflects the triangle formed by these sides and `
inside the portion of the square S on the opposite side
of `. Therefore, F can be covered by S. �

We are interested in a fold line ` that maximizes the
smallest enclosing square of F . Using symmetry with
Proposition 5, we can assume:
(1) the line ` intersects both horizontal sides of S (else

rotate by 90◦);
(2) the slope of ` is negative (else reflect vertically);
(3) ` intersects the top side of S left of the mid-

point (1/2, 1) (else rotate by 180◦).
If we imagine F as the result of folding the part of S to
the left of ` over to the right, then we can parameterize
` by the image P = (px, py) of the top left corner (0, 1)
of S under this fold. Under the above assumptions, a
line ` that passes (almost) through (1/2, 1) and (1, 0)
would maximize py. Therefore 0 < px < 4/5 and so

1 < py <
√

2px − px2 + 1 < 7/5.
Denote the two points of intersection between ` and

∂S by B = (bx, 0) and T = (tx, 1) and denote the image
of the bottom-left corner (0, 0) of S under the fold across
` by Q = (qx, qy). If qx > 1, then the convex hull CH(F)
of F is the hexagon B, (1, 0), Q, (1, 1), P, T , else Q does
not appear on ∂(CH(F)) and it is only a pentagon. Note
that in any case the width of F in the y-direction is
greater than one, whereas the width in the x-direction
is less than one.

For a given P = (px, py), we have

` : y = − px
py − 1

x+
px

2 + py
2 − 1

2(py − 1)
,

T =
(px2 + (py − 1)2

2px
, 1
)
,

B =
(px2 + py

2 − 1

2px
, 0
)
, and

Q =
(px(px

2 + py
2 − 1)

px2 + (py − 1)2
,

(px
2 + py

2 − 1)(py − 1)

px2 + (py − 1)2

)
.

What does a smallest enclosing square σ of F look
like? For the upper bound on the cover factor we con-
sider three enclosing squares (Figure 5).
σ1 is the smallest axis-parallel enclosing square, which

has points B and (1, 0) on the bottom side, P on
the top, T on the left, and no point on the right.

σ2 has points P and (1, 1) on one side, B on the oppo-
site side, and T on a third side.

σ3 has points B, (1, 0), (1, 1), and T appearing in this
order, each on a different side of σ3.

σ1

P

T

B (1, 0)

σ2

P

T

B

(1, 1)

σ3

T

B

(1, 1)

(1, 0)

`2

`′2

`3

`′3

Figure 5: Three minimum enclosing squares for F .

Theorem 6 The 1-fold cover factor of a square, c∗1(�),
is ρ, the real root of the degree twelve polynomial Φ.

Proof. The effort goes into showing that, for each
folded shape F , one of the three enclosing squares σi,
i ∈ {1, 2, 3}, as defined above, has side length at most ρ.

Denote the side length of a square σ by |σ|. For a start
it is easy to see that |σ1| = py < 7/5, which provides a
first upper bound.

For σ2 we have to consider the distance d(B, `2),
where `2 is the line through P and (1, 1) and the dis-
tances d((1, 0), `′2) and d(Q, `′2), where `′2 is the line or-
thogonal to `2 through T . Noting that

d(B, `2) =

∣∣px2py + py
3 + px

2 − 2pxpy − py2 − py + 1
∣∣

2px
√

(px − 1)2 + (py − 1)2

d((1,0), `′2) =

∣∣py2px + px
3 − py2 − 3px

2 + 2py + px − 1
∣∣

2px
√

(px − 1)2 + (py − 1)2
,

it can be checked that the former dominates the latter
for py ≤ 1

2 (1+
√

4px − 4px2 + 1) and that d((1, 0), `′2) >

py for 1
2 (1 +

√
4px − 4px2 + 1) < py <

√
2px − px2 + 1

(and so |σ1| ≤ |σ2| in such a case). Exactly the same
holds if d((1, 0), `′2) is replaced by

d(Q, `′2) =
|N1|

2px(1 + (px − py)2)
√

(px − 1)2 + (py − 1)2
,

where N1 = px
5 + 2px

3py
2 + pxpy

4 − px
4 − 2px

3py −
2pxpy

3 + py
4 − 4px

2py − 4py
3 + 4px

2 + 2pxpy + 6py
2 −

px−4py+1. This verifies that σ2 is enclosing, with side
length |σ2| = d(B, `2).

For σ3 we consider a line `3 : y = m(x − 1) through
(1, 0), for some m > 0 and the orthogonal line `′3 : y =
(m+ 1−x)/m through (1, 1). If σ3 is a smallest enclos-
ing square, then d(T, `3) = d(B, `′3). For our range of
parameters, the only solution is

m =
px

2 + py
2 − 1

px2 + (py − 1)2
,

which yields

|σ3| = d(T, `3) =

√
2|N2|

4px
√
D2

,

25th Canadian Conference on Computational Geometry, 2013

76

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

where N2 = px
4 + 2px

2py
2 + py

4 − 4px
3 − 2px

2py −
4pxpy

2−2py
3+4pxpy+2py−1 and D2 = px

4+2px
2py

2+
py

4 − 2px
2py − 2py

3 + 2py
2 − 2py + 1.

Because we choose the smallest square among σ1, σ2,
and σ3, the claim certainly holds for |σ1| = py ≤ ρ.

It can be checked that |σ2| ≤ ρ, for all P with

ρ < py <
√

2px − px2 + 1, except for a small region
R. This region R is bounded from below by the line
y = ρ and from above by the curve γ : |σ2| = ρ (the
branch of this curve that lies in {(x, y) : ρ ≤ y <
1
2 (1 +

√
4x− 4x2 + 1}). The curve γ intersects the line

y = ρ at two points, whose x-coordinates are approx-
imately 0.67969 and 0.77126, respectively. The more
interesting of these two is the first point of intersection,
which can be described exactly as the smallest positive
real root xρ of the polynomial 40x12−116x11−1045x10+
4756x9−10, 244x8 +7260x7−8392x6−184x5 +620x4−
160x3 + 1088x2 − 192x + 256. For the fold defined by
P = (xρ, ρ) we have |σ1| = |σ2| = |σ3| = ρ, while for
all other points in R the corresponding value for |σ3| is
strictly less than ρ.

It can also be checked that |σ3| < ρ, for any P

with py > ρ and 1
2 (1 +

√
4px − 4px2 + 1) < py <√

2px − px2 + 1 (above we committed to using σ2 only

if py ≤ 1
2 (1 +

√
4px − 4px2 + 1)).

Altogether it follows that min{|σi| : i ∈ {1, 2, 3}} ≤
ρ ≈ 1.105224446, as claimed.

Using rotating calipers, one can verify that all other
enclosing squares are larger, giving the equality. �

2.2.3 Polygons and single folds

In the full paper we prove that any polygon (a fi-
nite cyclic sequence of vertices and edges with no self-
intersections) can be made larger with a single fold. The
following lemma is in contrast to observations in Section
3.2 for disks and a family of shapes related to disks.

Lemma 7 For every plane polygon P , the 1-fold cover
factor, c∗1(P), is greater than 1.

The idea of the proof is to look for finite sets of struc-
tures in P that, if not destroyed by folding, can be cov-
ered only by members of that set. For example, the set
of diameters in a polygon is finite because the maximum
distance D is realized by pairs of vertices, and any di-
ametral pair still at distance D in the folded state F
must be covered by a diameter of P , possibly itself.

For a quick example, consider the class of polygons P
in which there exist vertices that participate in two or
more diametral pairs. (E.g., for odd n, every vertex of a
regular n-gon.) Choose as our structure two diametral
pairs, pq and qr, that minimize θ = ∠pqr. Fold along a
line trisecting θ, reflecting qr to create qr′ in the folded
shape F . This modified structure has angle ∠pqr′ = θ/3

between two diameters; by minimality of θ, it cannot be
covered by P .

The proof repeatedly identifies classes of polygons by
structures found in the neighborhoods of diameters, un-
til every polygon is in some class. Modifications to these
structures show that c∗1(P) > 1 for all polygons.

3 Arbitrary Folds

3.1 Simply connected shapes

In this section we show that, for a simply connected
shape S, there is a lower bound for the origami cover
factor c∗(S) that is within a constant factor of the upper
bound given by Lemma 2.

Theorem 8 Let S be a simply connected shape with
inradius r, geodesic radius R, and geodesic diameter
D. Then κR/r ≤ D/(2πr) ≤ c∗(S) ≤ R/r for κ =√

3/(2π) ≈ 0.27566.

Proof. Again, the upper bound is from Lemma 2. The
basic idea for the lower bound is to find a path in S
that can be folded into a large circle, which must then
be covered by a scaled copy of the incircle of S. Here,
for brevity, we use a path of length D, the geodesic
diameter.

Figure 6: For Theorem 8, folding inflection edges to
make a generalized spiral, then crimping to approximate
a circle that must be covered by the incircle.

A generalized spiral is a simply connected region com-
posed of consistently orientable plane patches having a
distinguished shortest path γ that follows the bound-
ary and never turns to the left. A generalized spiral
may overlap itself if projected onto a plane, but we can
think of it as embedded in a covering space of the plane.

Ordinarily, a diameter path γ will alternate between
sequences of left turns and right turns at boundary
points; a portion of the path between opposite turns is a
line segment that we can call an inflection edge. We can
simply fold along every inflection edge, gluing doubled
layers along these edges, to turn γ into a path that goes
only straight or to the right. Folding any non-boundary

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

77

25th Canadian Conference on Computational Geometry, 2013

edges creates a generalized spiral with path γ. These
folds are along lines of the geodesic path, so γ remains
a shortest path between its endpoints.

We fold the generalized spiral into a left-turning circle
with circumference approaching the length of γ. If we
sweep a paired point and normal vector along γ, we
can think of painting a portion of the generalized spiral
with fibers that each start on γ and grow orthogonal to
a local tangent (because γ is a shortest path) and that
are disjoint (because the sweep in position and angle is
monotonic). We construct a circle whose circumference
is arbitrarily close to the length of γ by crimp folds
that align successive fibers of γ with the circle center.
Figure 6 shows an example. It does not matter how far
the fibers extend towards or beyond the circle; in order
to cover the boundary of the circle, the inradius r must
be scaled to the circle radius, which is D/(2π). �

3.2 Disks with bumps

Because the radius of a disk is simultaneously the inra-
dius and the geodesic radius, Lemma 2 implies that the
cover factor of a disk, c∗(©), is 1. It is interesting to
note that there are other shapes S with c∗(S) = 1; here
is one simple family.

In a unit disk centered at C with a chord AB, choose
a point D between C and the midpoint of AB. Add
the disk centered at D of radius |AD|. Thus, we have a
family of shapes Sd,e, parameterized by two distances,
d = |CD| and e = distance from C to chord AB, satis-
fying 0 < d ≤ e < 1. See Figure 7.

A B

C

D

S 1
2 ,

2
3

e d

A B

C

D

S√
2

2 ,
√

2
2

A B

C

D

S0.8356,0.8356

Figure 7: Shapes Sd,e with c∗(Sd,e) = 1.

Lemma 9 The shape Sd,e, with 0 < d ≤ e < 1, has
origami cover factor c∗(Sd,e) = 1.

Proof. Shape Sd,e is the union of a unit disk centered
at C and a disk centered at D whose radius we denote r.
Note that by construction the boundaries of the disks
intersect at A and B. This shape also covers all disks
of radius r that are centered between C and D.

Now, in an arbitrary folded state S′d,e, consider the
locations of these centers, C ′ and D′. Placing a unit
disk centered at C ′ and a radius r disk centered at D′

will cover all points of S′d,e. Because |C ′D′| ≤ |CD|,
this pair of disks will be covered by placing a copy of

Sd,e with C at C ′ and D on the ray
⇀
C ′D′. �

Choose any d ∈ (0, 1) and for all e ∈ [d, 1) shape Sd,d
covers Sd,e, so these extremal members of the family
have AB as the diameter of the smaller disk. Just for
the sake of curiosity, the example with d = e =

√
2/2

minimizes the ratio of inradius to circumradius, R/r =
(1 + sin θ + cos θ)/2 ≈ 0.8284, and the example with
d ≈ 0.8356 minimizes the fraction of the circumcircle
covered, (π(1 + sin2 θ) + sin 2θ − θ)/(πR2) ≈ 0.7819.

4 Open Problems

The most interesting questions are whether c∗(4) =
c∗1(4) and c∗(�) = c∗1(�), and whether we can com-
pletely characterize those shapes with origami or 1-fold
cover factor of unity.
Acknowledgments: This work began at the 28th Bel-
lairs Workshop, March 22-29, 2013. We thank all other
participants for the productive and positive atmosphere,
in particular Godfried Toussaint for co-organizing the
event. We thank the CCCG reviewers for detailed and
helpful comments.

References

[1] V. I. Arnold. Problem 1956–1. In Arnold’s Problems.
Springer, Berlin, 2005.

[2] P. Brass, W. O. J. Moser, and J. Pach. Research Prob-
lems in Discrete Geometry. Springer, 2005.

[3] P. Brass and M. Sharifi. A lower bound for Lebesgue’s
universal cover problem. Int. J. Comput. Geometry
Appl., 15(5):537–544, 2005.

[4] S. Das, P. P. Goswami, and S. C. Nandy. Smallest
k-point enclosing rectangle and square of arbitrary ori-
entation. Inform. Process. Lett., 94(6):259–266, 2005.

[5] N. A. A. DePano and A. Aggarwal. Finding restricted
k-envelopes for convex polygons. In Proc. 22nd Allerton
Conf. on Comm., Ctrl, & Comp, pages 81–90, 1984.

[6] T. Khovanova and A. Radul. Jewish problems. http:

//arxiv.org/abs/1110.1556v2, Oct. 2011.

[7] R. J. Lang. Origami Design Secrets: Mathematical
Methods for an Ancient Art. A. K. Peters, 2003.

[8] X. Markenscoff, L. Ni, and C. H. Papadimitriou. The
geometry of grasping. Internat. J. Robot. Res., 9(1),
Feb. 1990.

[9] R. Norwood, G. Poole, and M. Laidacker. The worm
problem of Leo Moser. Discrete & Computational Ge-
ometry, 7:153–162, 1992.

[10] J. Pál. Über ein elementares Variationsproblem. Math.-
fys. Medd., Danske Vid. Selsk., 3(2):1–35, 1920.

[11] C. Panraksa, J. E. Wetzel, and W. Wichiramala. Cov-
ering n-segment unit arcs is not sufficient. Discrete &
Computational Geometry, 37(2):297–299, 2007.

[12] H. Rademacher and O. Toeplitz. The Enjoyment of
Mathematics. Dover, 1990.

25th Canadian Conference on Computational Geometry, 2013

78

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Unfolding Face-Neighborhood Convex Patches:
Counterexamples and Positive Results

Joseph O’Rourke∗

Abstract

We address unsolved problems of unfolding polyhedra in
a new context, focusing on special convex patches—disk-
like polyhedral subsets of the surface of a convex poly-
hedron. One long-unsolved problem is edge-unfolding
prismatoids. We show that several natural strategies
for unfolding a prismatoid can fail, but obtain a pos-
itive result for “petal unfolding” topless prismatoids,
which can be viewed as particular convex patches. We
also show that the natural extension of an earlier result
on face-neighborhood convex patches fails, but we ob-
tain a positive result for nonobtusely triangulated face-
neighborhoods.

1 Introduction

Define a convex patch as a connected subset of faces of
a convex polyhedron P, homeomorphic to a disk. A
convex patch is convexly curved in 3D, but its bound-
ary need not be convex: it could be quite “jagged.” I
propose studying edge-unfolding of convex patches to
simple (non-overlapping) polygons in the plane, as pre-
sumably easier versions of the many unsolved convex-
polyhedron unfolding problems. (Here, edge-unfolding
cuts only edges of P; we leave that understood until the
final discussion.) Toward this end, I study here special
convex patches, various face-neighborhoods, and obtain
several positive and negative results.

Face Neighborhoods. Let F be a face of a con-
vex polyhedron P. There are two natural “face-
neighborhoods” of F : the edge-neighborhood Ne(F),
F together with every face of P that shares an edge
with F , and the vertex-neighborhood Nv(F), F together
with every face incident to a vertex of F .1 Clearly,
Nv(F) ⊇ Ne(F). A “dome” polyhedron P is one with a
“base face” B such that Ne(B) = P. Domes were earlier
proved to unfold without overlap [6, p. 323ff]. Pincu [12]
subsequently proved that Ne(F) unfolds without over-
lap for any F , generalizing the dome result. Both the

∗Department of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. orourke@cs.smith.edu. This is a revision
of [10]. Omitted proofs are in the full version.

1This is my own terminology. Ne(F) is called the “face-
neighborhood” in [7].

dome and the edge-neighborhood unfoldings are what
I am now calling “petal unfoldings,” described next in
the context of prismatoids.

Prismatoids and Prismoids. A prismatoid is the con-
vex hull of two convex polygons A (above) and B (base),
that lie in parallel planes. Despite its simple structure,
it remains unknown whether or not every prismatoid
has a non-overlapping edge-unfolding, a narrow special
case of what has become known as Dürer’s Problem:
whether every convex polyhedron has a non-overlapping
edge-unfolding [6, Prob. 21.1] [11].

If A and B are angularly similar with their edges par-
allel, then all lateral faces are trapezoids. Such a poly-
hedron is called a prismoid. These special prismatoids
are known to edge-unfold without overlap [6, p. 322].

Band and Petal Unfoldings. There are two natural
unfoldings of a prismatoid. A band unfolding cuts one
lateral edge and unfolds all lateral faces connected in
band, leaving A and B attached each by one uncut edge
to opposite sides of the band (see, e.g., [2]). Aloupis
showed that the lateral cut-edge can be chosen so that
the band alone unfolds [1], but I showed that, neverthe-
less, there are prismoids such that every band unfolding
overlaps [8]. The example, Fig. 1, is repeated here, as
it plays a role in the closing discussion (Sec. 4). Note

a
6

a
4

a
5

a
2

a
3

a
1

b
6

b
4

b
5

b
2

b
3

b
1

A

Figure 1: A convex patch with no band unfolding.

that this example also establishes that not every edge-
neighborhood patch of a face of P has a band unfolding:
Ne(A) has no band unfolding.

The second natural unfolding of a prismatoid is a

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

79

25th Canadian Conference on Computational Geometry, 2013

petal unfolding.2 The three positive results mentioned
above are all via petal unfoldings: the dome unfolding,
the prismoid unfolding, and Pincu’s edge-neighborhood
patch unfolding. Thus Fig. 1 without its base, which
is a edge-neighborhood patch, can be petal-unfolded:
simply cut each lateral edge aibi. We henceforth con-
centrate on petal unfoldings (until the final Sec. 4).

New Results. Given the collection of partial results
and unsolved problems reviewed above, it is natu-
ral to explore petal unfoldings of vertex-neighborhood
patches. Our results are as follows:

1. Define a topless prismatoid as one with A removed;
so it is a special (non-jagged) vertex-neighborhood
Nv(B). We prove that every topless prismatoid
whose lateral faces are triangles has a petal unfold-
ing without overlap (Thm. 7). This shows that, in
some sense, placing the top A is an obstruction to
unfolding prismatoids.

2. Via a counterexample polyhedron P (Fig. 8), we
show that not every vertex-neighborhood patch
Nv(F) has a non-overlapping petal unfolding.

3. However, if P is non-obtusely triangulated, Nv(F)
does have a non-overlapping petal unfolding for ev-
ery face of P (Thm. 8).

4. This leads to a non-overlapping unfolding of a re-
stricted class of prismatoids (Cor. 9).

I am hopeful that the main proof technique—obtaining
a result for flat patches and then lifting into z > 0—will
lead to further results.

We conclude in Section 4 with a conjecture that not
every edge-neighborhood has a non-overlapping “zipper
unfolding.”

2 Topless Prismatoid Petal Unfolding

Let P be a prismatoid, and assume all lateral faces are
triangles, the generic and seemingly most difficult case.
Let A = (a1, a2, . . .) and B = (b1, b2, . . .). Call a lateral
face that shares an edge with B a base or B-triangle,
and a lateral face that shares an edge with A a top or
A-triangle. A petal unfolding cuts no edge of B, and
unfolds every base triangle by rotating it around its B-
edge into the base plane. The collection of A-triangles
incident to the same bi vertex—the A-fan AFi—must
be partitioned into two groups, one of which rotates
clockwise (cw) to join with the unfolded base triangle
to its left, and the other group rotating counterclock-
wise (ccw) to join with the unfolded base triangle to its
right. Either group could be empty. Finally, the top A
is attached to one A-triangle. So a petal unfolding has

2Called a “volcano unfolding” in [6, p. 321].

choices for how to arrange the A-triangles, and which
A-triangle connects to the top.

It remains possible that every prismatoid has a petal
unfolding: so far I have not been able to find a coun-
terexample. Now we turn to our main result: every
topless prismatoid has a petal unfolding. An example
of a petal unfolding of a topless prismatoid is shown in
Fig. 2.

Figure 2: Unfolding of a topless prismatoid. A-fans are
lightly shaded.

Even topless prismatoids present challenges. For ex-
ample, consider the special case when there is only one
A-triangle between every two B-triangles. Then the
only choice for placement of the A-triangles is whether
to turn each ccw or cw. It is natural to hope that ro-
tating all A-triangles consistently ccw or cw suffices to
avoid overlap, but this can fail. A more nuanced ap-
proach would turn each A-triangle so that its (at most
one) obtuse angle is not joined to a B-triangle, but this
can fail also.

The proof that topless prismatoids have petal unfold-
ings follows this outline:

1. An “altitudes partition” of the plane exterior to the
base unfolding (petal unfolding of Ne(B)) is defined
and proved to be a partition.

2. It is shown that both P and this partition vary in
a consistent manner with respect to the separation
z between the A- and B-planes.

3. An algorithm is detailed for petal unfolding the A-
triangles for the “flat prismatoid” P(0), the limit
of P(z) as z → 0, such that these A-triangles fit
inside the regions of the altitude partition.

4. It is proved that nesting within the partition re-
gions remains true for all z.

2.1 Altitude Partition

We use ai and bj to represent the vertices of P, and
primes to indicate unfolded images on the base plane.

Let Bi = 4bibi+1a
′
j be the i-th base triangle. Say

that B∪ = B ∪ (
⋃

iBi) is the base unfolding, the petal

25th Canadian Conference on Computational Geometry, 2013

80

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

unfolding of Ne(B) without any A-triangles. The alti-
tude partition partitions the plane exterior to B∪.

Let ri be the altitude ray from a′j along the altitude
of Bi. Finally, define Ri to be the region of the plane
incident to bi, including the edges of the Bi−1 and Bi

triangles incident to bi, and bounded by ri−1 and ri.
See Fig. 3.

b
1

b
3

a'
1

a'
2

b
2

a'
4

a'
5

a'
3

b
4

b
5

r
1

r
2

r
4

r
5

r
3

B

R
4

R
1

B
1

B
4

B
2

B
3

B
5

Figure 3: Partition exterior to B∪ by altitude rays ri.
Here both A and B are pentagons; in general there
would not be synchronization between the bi and ai in-
dices. The A-triangles are not shown.

Lemma 1 No pair of altitude rays cross in the base
plane, and so they define a partition of that plane exte-
rior to the base unfolding B∪.

Our goal is to show that the A-fan AFi incident to bi
can be partitioned into two groups, one rotated cw, one
ccw, so that both fit inside Ri.

2.2 Behavior of P(z)

We will use “(z)” to indicate that a quantity varies with
respect to the height z separating the A- and B-planes.

Lemma 2 Let P(z) be a prismatoid with height z.
Then the combinatorial structure of P(z) is indepen-
dent of z, i.e., raising or lowering A above B retains
the convex hull structure.

We will call P(0) = limz→0 P(z) a flat prismatoid.
Each lateral face of P(0) is either an up-face or a down-
face, and the faces of P(z) retain this classification in
that their outward normals either have a positive or a
negative vertical component.

Lemma 3 Let P(z) be a prismatoid with height z, and
B∪(z) its base unfolding. Then the apex a′j(z) of each
B′i(z) triangle 4bibi+1a

′
j(z) in B∪(z) lies on the fixed

line containing the altitude of B′i(z).

Thus the vertices a′j(z) of the base unfolding “ride
out” along the altitude rays ri as z increases (see ahead
to Fig. 6 for an illustration). Therefore the combina-
torial structure of the altitude partition is fixed, and
Ri only changes geometrically by the lengthening of the
edges bia

′
j and bi+1a

′
j and the change in the angle gap

κbi(z) at bi.

2.3 Structure of A-fans

Henceforth we concentrate on one A-fan, which we al-
ways take to be incident to b2, and so between B1 =
4b1b2a1 and B2 = 4b2b3ak. The a-chain is the chain
of vertices a1, . . . , ak. Note that the plane in R3 con-
taining face B1 of P supports A at a1, and the plane
containing B2 supports A at ak. Let β = β2 be the base
angle at b2: β = ∠b1b2b3. We state here a few facts true
of every A-fan.

1. An a-chain spans at most “half” of A, i.e., a portion
between parallel supporting lines to A (because β >
0).

2. If an A-fan is unfolded as a unit to the base plane,
the a-chain consists of convex, reflex, and convex
portions, any of which may be empty. So, excluding
the first and last vertices, the interior vertices of the
chain have convex angles, then reflex, then convex.

3. Correspondingly, an A-fan consists of down-faces
followed by up-faces followed by down-faces, where
again any (or all) of these three portions could be
empty.

4. All four possible combinations of up/down are pos-
sible for the B1 and B2 triangles.

The second fact above is not so easy to see. The in-
tuition is that there is a limited amount of variation
possible in an a-chain. It is the third fact that we will
use essentially; it will become clear shortly.

2.4 Flat Prismatoid Case Analysis

How the A-fan is proved to sit inside its altitude re-
gion R for P(0) depends primarily on where b2 sits with
respect to A, and secondarily on the three B-vertices
(b1, b2, b3). Fig. 4 illustrates one of the easiest cases,
when b2 is in C, the convex region bounded by the a-
chain and extensions of its extreme edges. Then all the
A-faces are down-faces, the a-chain is convex, one of the
two B-faces is a down-face (B2 in the illustration), and
we simply leave the A-fan attached to that B down-face.

A second case occurs when b2 is on the reflex side of
A. An instance when both B-triangles are down-faces
is illustrated in Fig. 5. Now the A-fan consists of down-
faces and up-faces, the up-faces incident to the reflex
side of the a-chain. These up-faces must be flipped in

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

81

25th Canadian Conference on Computational Geometry, 2013

a
1

b
2

r
1

r
2

C

a
2

a
3

a
5

a
4

a
6
=a

k

R

b
3
=b

1

B
2

Figure 4: Case 1b. Here we have illustrated b1 = b3 to
allow for the maximum a-chain extent.

the unfolding, reflected across one of the two tangents
from b2 to A. A key point is that not always will both
flips be “safe” in the sense that they stay inside the al-
titude region. Fortunately, one of the two flips is always
safe:

(a) (b)

a1

a2
a3

a1

a2
a3

a5

a4

a6=ak a6=ak

B1

B2

B1

B2

b2
b2

a'3

a'5

a'4

a'6

a'5 a'4

Figure 5: Case 2a. The A-triangles between the tan-
gents b2 to a3 and b2 to a6 are up-faces. (a) shows the
up-faces flipped over the left tangent b2a6, and (b) when
flipped over the right tangent b2a3.

Lemma 4 Let b2 have tangents touching as and at of
A. Then either reflecting the enclosed up-faces across
the left tangent, or across the right tangent, is “safe” in
the sense that no points of a flipped triangle falls outside
the rays r1 or rk.

The remaining cases are minor variations on those illus-
trated, and will not be further detailed.

2.5 Nesting in P(z) regions

The most difficult part of the proof is showing that the
nesting established above for P(0) holds for P(z). A
key technical lemma is this:

Lemma 5 Let 4b, a1(z), a2(z) be an A-triangle, with
angles α1(z) and α2(z) at a1(z) and a2(z) respectively.
Then α1(z) and α2(z) are monotonic from their z = 0
values toward π/2 as z →∞.

(b)
a1

a2

a4
a3

b2

b1

a''1a
k

a
t

a
x

a
t
(z)

a
x
(z)

a''1(z)

a
k
(z)

a'1

a'1(z)

α
t

A'
st
(z)

(a)
a1

B2
B1

b2

b1

b3

a''1a
k

r1
r2

a
t

a
x

B'1

a'1

A'
st

a'2(z)

a'3(z)

L
x

A
x
(z)

α
t

Figure 6: (a) z = 0. 4ataxak encloses the convex sec-
tion, and 4a1b2at encloses the reflex section. (b) z > 0.
Reflex angle αt(z) decreases as z increases.

I should note that it is not true, as one might
hope, that the apex angle at b of that A-triangle,
∠a1(z), b, a2(z), shrinks monotonically with increasing
z, even though its limit as z → ∞ is zero. Nor is the
angle gap κb(z) necessarily monotonic. These nonmono-
tonic angle variations complicate the proof.

Another important observation is that the sorting of
bai edges by length in P(0) remains the same for all
P(z), z > 0. More precisely, let |bai| > |baj | for two
lateral edges connecting vertex b ∈ B to vertices ai, aj ∈
A in P(0). Then |bai(z)| > |baj(z)| remains true for all
P(z), z > 0.

For the nesting proof, I will rely on a high-level de-
scription, and one difficult instance. At a high level,
each of the convex or reflex sections of the a-chain are
enclosed in a triangle, which continues to enclose that
portion of the a-chain for any z > 0 (by Fact 1, Sec. ??).
The reflex enclosure is determined by the tangents from
b2 to A: 4asb2at. So then the task is to prove these (at
most three) triangles remain within R(z). Fig. 6 shows

25th Canadian Conference on Computational Geometry, 2013

82

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

a case where there is both a convex and a reflex sec-
tion. Were there an additional convex section, it would
remain attached to B1(z) and would not increase the
challenge.

Lemma 6 If the a-chain consists of a convex and a
reflex section, and the safe flip (by Lemma 4) is to a
side with a down-face (B2 in the figure), then AF ′(z) ⊂
R(z): the A-fan unfolds within the altitude region for
all z.

I have been unsuccessful in unifying the cases in the
analysis, despite their similarity. Nevertheless, the con-
clusion is this theorem:

Theorem 7 Every triangulated topless prismatoid has
a petal unfolding.

It is natural to hope that further analysis will lead to
a safe placement of the top A (which, alas, might not
fit into any altitude-ray region).

3 Unfolding Vertex-Neighborhoods

We now return to arbitrary face-neighborhoods. As
mentioned previously, Pincu proved that the petal un-
folding of Ne(B) avoids overlap for any face B of a
convex polyhedron. Here we show that the vertex-
neighborhood Nv(B) does not always have a non-
overlapping petal unfolding, even when all faces in the
neighborhood are triangles.

A portion of the a 9-vertex example P that estab-
lishes this negative result is shown in Fig. 7. The b1b3
edge of B lies on the horizontal xy-plane. The vertices
{b2, a1, a2, c1, c2} all lie on a parallel plane at height z,
with b2 directly above the origin: b2 = (0, 0, z).

All of Nv(B) is shown in Fig. 8. The structure in
Fig. 7 is surrounded by more faces designed to minimize
curvatures at the vertices bi of B. Finally, P is the
convex hull of the illustrated vertices, which just adds
a quadrilateral “back” face (p1, c1, c2, p3) (not shown).

The design is such that there is so little rotation possi-
ble in the cw and ccw options for the triangles incident
to vertex b2 of B, that overlap is forced: see Figs. 9,
10, and 11. The thin 4b2a1a2 overlaps in the vicin-
ity of a1 if rotated ccw, and in the vicinity of a2 is cw
(illustrated).

One can identify two features of the polyhedron just
described that lead to overlap: low curvature vertices
(to restrict freedom) and obtuse face angles (at a1 and
a2) (to create “overhang”). Both seem necessary ingre-
dients. Here I pursue excluding obtuse angles:

Theorem 8 If P is nonobtusely triangulated, then for
every face B, Nv(B) has a petal unfolding.

b
1

b
3

a
1

c
2

a
2

c
1

b
2

z

B

A
1

A
2

W
1

W
2

W
3

Figure 7: Faces of P in the immediate vicinity of B.

p
1

p
3

b
1

B

Figure 8: All faces incident to Nv(B), and one more,
the purple quadrilateral (a1, c1, c2, a2). The red vectors
are normal to B and to 4b1p1c1.

b
1

b
3

a
1

c
2

a
2

c
1

p
1

p
3

b
2

Figure 9: Complete unfolding of all faces incident to B.

b
1

b
3

a
1

c
2

a
2

c
1

b
2

Figure 10: Zoom of Fig. 9.

a
2

A
2

B

0.8º

2.8º

Figure 11: Zoom of Fig. 10 in vicinity of a2 overlap.
The angle gap at b3 is 0.8◦, and the gap at b2 is 2.8◦.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

83

25th Canadian Conference on Computational Geometry, 2013

A nonobtuse triangle is one whose angles are each
≤ π/2. It is known that any polygon of n vertices has
a nonobtuse triangulation by O(n) triangles, which can
be found in O(n log2 n) time [3]. Open Problem 22.6 [6,
p. 332] asked whether every nonobtusely triangulated
convex polyhedron has an edge-unfolding. One can view
Theorem 8 as a (very small) advance on this problem.3

A little more analysis leads to a petal unfolding of a
(very special) class of prismatoids (including their tops):

Corollary 9 Let P be a triangular prismatoid all of
whose faces, except possibly the base B, are nonobtuse
triangles, and the base is a (possibly obtuse) triangle.
Then every petal unfolding of P avoids overlap.

It seems quite possible that this corollary still holds with
B an arbitrary convex polygon, but the proof would
need significant extension.

4 Discussion

I believe that unfolding convex patches may be a fruitful
line of investigation. For example, notice that the edges
cut in a petal unfolding of a vertex-neighborhood of a
face form a disconnected spanning forest rather than a
single spanning tree. One might ask: Does every convex
patch have an edge-unfolding via a single spanning cut
tree? The answer is no, already provided by the banded
hexagon example in Fig. 1. For such a tree can only
touch the boundary at one vertex (otherwise it would
lead to more than one piece), and then it is easy to run
through the few possible spanning trees and show they
all overlap.

The term zipper unfolding was introduced in [5] for
a non-overlapping unfolding of a convex polyhedron
achieved via Hamiltonian cut path. They studied zip-
per edge-paths, following edges of the polyhedron, but
raised the interesting question of whether or not every
convex polyhedron has a zipper path, not constrained
to follow edges, that leads to a non-overlapping unfold-
ing. This is a special case of Open Problem 22.3 in [6,
p. 321] and still seems difficult to resolve.

Given the focus of this work, it is natural to specialize
this question further, to ask if every convex patch has
a zipper unfolding, using arbitrary cuts (not restricted
to edges). I believe the answer is negative: a version
of the banded hexagon shown in Fig. 12, a bottomless
prismoid, has no zipper unfolding. My argument for
this is long and seems difficult to formalize, so I leave the
claim as a conjecture. It would constitute an interesting
contrast to the recent result that all “nested” prismoids
have a zipper edge-unfolding [4].

3It can also be used to slightly improve Pincu’s “fewest nets”
result for this class of polyhedra.

Figure 12: The banded hexagon with a thin band.

References

[1] G. Aloupis. Reconfigurations of Polygonal Structures.
PhD thesis, McGill Univ., Sch. Comput. Sci., 2005.

[2] G. Aloupis, E. D. Demaine, S. Langermann, P. Morin,
J. O’Rourke, I. Streinu, and G. Toussaint. Edge-
unfolding nested polyhedral bands. Comput. Geom.
Theory Appl., 39(1):30–42, 2007.

[3] M. W. Bern, S. Mitchell, and J. Ruppert. Linear-size
nonobtuse triangulation of polygons. Discrete Comput.
Geom., 14:411–428, 1995.

[4] E. Demaine, M. Demain, and R. Uehara. Zipper unfold-
ability of domes and prismoids. In Proc. 25th Canad.
Conf. Comput. Geom., Aug. 2013.

[5] E. Demaine, M. Demaine, A. Lubiw, A. Shallit, and
J. Shallit. Zipper unfoldings of polyhedral complexes. In
Proc. 22nd Canad. Conf. Comput. Geom., pages 219–
222, Aug. 2010.

[6] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, July 2007. http://www.gfalop.org.

[7] H. Guo, A. Maheshwari, D. Nussbaum, and J.-R. Sack.
Shortest path queries between geometric objects on sur-
faces. In Comput. Sci. Appl.–ICCSA 2007, pages 82–95.
Springer, 2007.

[8] J. O’Rourke. Band unfoldings and prismatoids: A coun-
terexample. Technical Report 087, Smith College, Oct.
2007. arXiv:0710.0811v2 [cs.CG]; http://arxiv.org/
abs/0710.0811.

[9] J. O’Rourke. Tetrahedron angles sum to π: Bisec-
tor plane. MathOverflow: http://mathoverflow.net/

questions/94586/, Apr. 2012.

[10] J. O’Rourke. Unfolding prismatoids as convex patches:
Counterexamples and positive results. arXiv:1205.2048
[cs.CG]. http://arxiv.org/abs/1205.2048, 2012.

[11] J. O’Rourke. Dürer’s problem. In M. Senechal, ed-
itor, Shaping Space: Exploring Polyhedra in Nature,
Art, and the Geometrical Imagination, pages 77–86.
Springer, 2013.

[12] V. Pincu. On the fewest nets problem for convex poly-
hedra. In Proc. 19th Canad. Conf. Comput. Geom.,
pages 21–24, 2007.

25th Canadian Conference on Computational Geometry, 2013

84

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Counting Triangulations Approximately

Victor Alvarez∗ Karl Bringmann† Saurabh Ray‡ Raimund Seidel§

Abstract

We consider the problem of counting straight-edge tri-
angulations of a given set P of n points in the plane.
Until very recently it was not known whether the exact
number of triangulations of P can be computed asymp-
totically faster than by enumerating all triangulations.
We now know that the number of triangulations of P
can be computed in O∗(2n) time [2], which is less than
the lower bound of Ω(2.43n) on the number of triangu-
lations of any point set [11]. In this paper we address
the question of whether one can approximately count
triangulations in sub-exponential time. We present an
algorithm with sub-exponential running time and sub-
exponential approximation ratio, that is, if we denote
by Λ the output of our algorithm, and by cn the exact
number of triangulations of P , for some positive con-
stant c, we prove that cn ≤ Λ ≤ cn · 2o(n). This is the
first algorithm that in sub-exponential time computes a
(1 + o(1))-approximation of the base of the number of

triangulations, more precisely, c ≤ Λ
1
n ≤ (1 + o(1))c.

Our algorithm can be adapted to approximately count
other crossing-free structures on P , keeping the quality
of approximation and running time intact. The algo-
rithm may be useful in guessing, through experiments,
the right constants c1 and c2 such that the number of tri-
angulations of any set of n points is between cn1 and cn2 .
Currently there is a large gap between c1 and c2, we
know that c1 ≥ 2.43 and c2 ≤ 30.

1 Introduction

Let P be a set of n points on the plane. A crossing-free
structure on P is a straight-line plane graph with ver-
tex set P . Examples of crossing-free structures include
triangulations and spanning cycles, also known as poly-
gonizations, among others. Let C denote a certain class
of crossing-free structures, and let FC(P) denote the set
of all crossing-free structures on P belonging to class C.
∗Fachrichtung Informatik, Universität des Saarlandes, Ger-

many, alvarez@cs.uni-saarland.de.
†Max Planck Institute for Informatics, Karl Bringmann is a

recipient of the Google Europe Fellowship in Randomized Algo-
rithms, and this research is supported in part by this Google Fel-
lowship. kbringma@mpi-inf.mpg.de.
‡Ben Gurion University of the Negev, Israel

saurabh@math.bgu.ac.il.
§Fachrichtung Informatik, Universität des Saarlandes, Ger-

many, rseidel@cs.uni-saarland.de.

Recently, there has been a significant amount of work
regarding the question: “Can the cardinality of FC(P)
be computed faster than by enumerating FC(P)?”.

In this paper we focus on the particular class C of all
straight-edge triangulations. To the best of our knowl-
edge the first result regarding this question was by O.
Aichholzer in ’99 [1], where he introduced a geomet-
ric structure called “the path of a triangulation”, or T-
path for short. Using T-paths he showed a divide-and-
conquer algorithm that experimentally indicated that
triangulations could be counted in time sub-linear in
the number of triangulations, that is, the algorithm was
apparently faster than enumeration. However, a formal
proof of this - or even a good analysis of its running time
- seems hard to obtain, since it is not clear how to bound
the number of triangulations containing a single T-path.
Later, in ’05, S. Ray and R. Seidel [8] presented a new
algorithm for counting triangulations that, in practice,
appeared to be substantially faster than Aichholzer’s al-
gorithm. This algorithm is also very hard to analyze,
and thus no good analysis of its running time has been
presented so far. It took until ’12 for new counting al-
gorithms to come up that could be analyzed properly.
The first such algorithm is also based on T-paths but
uses the sweep-line paradigm [4]. This algorithm was
proven to count triangulations in time O∗(9n). The
second algorithm, based on the onion layers of P and
the divide-and-conquer paradigm, was proven to count
triangulations in time O∗(3.1414n) [3]. From the ex-
perimental point of view, the second algorithm turned
out to be significantly faster, for certain configurations
of points, than the one shown in [8]. These experi-
ments can be found in the full version of [3] available
on the authors’ websites. The third, and so far the lat-
est, algorithm for counting triangulations runs in time
O∗(2n) [2]. This last algorithm finally shows that enu-
meration algorithms for triangulations can indeed al-
ways be beaten, as all point sets with n points have at
least Ω(2.43n) triangulations [11]. From an experimen-
tal point of view it was also shown to be significantly
faster than all previous algorithms on a variety of in-
puts [2].

1.1 Our Contribution

The O∗(2n) algorithm of [2] for counting triangulations
exactly seems hard to beat at this point. However, it
would be very interesting to see whether the number

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

85

25th Canadian Conference on Computational Geometry, 2013

of triangulations of P can be approximated. The result
presented in this paper is, to the best of our knowledge,
the first result in this new line of research.

Note that since for all sets of n points the num-
ber of triangulations is Ω(2.43n) [11] and O(30n) [10],

the quantity Θ
(√

30× 2.43
n
)

approximates the ex-

act number of triangulations within a factor of

O
(√

30/2.43
n
)

. Thus, one can trade the exponential

time of an exact algorithm for a polynomial time al-
gorithm with exponential approximation ratio. In this
paper we bridge the gap between these two solutions by
presenting an algorithm with sub-exponential running
time and sub-exponential approximation ratio.

Let FT (P) denote the set of all triangulations of P .
The main result of this paper, whose proof is shown
in § 4, is the following:

Theorem 1 Let P be a set of n points on the plane.
Then a number Λ can be computed in time 2o(n) such
that |FT (P)| ≤ Λ ≤ |FT (P)|1+o(1) = 2o(n)|FT (P)|.

The precise o(n) terms mentioned in Theorem 1 are

O (
√
n log(n)) for the running time and O

(
n

3
4

√
log(n)

)

for the approximation factor. At the end of § 4 we
mention a trade-off between these two, running time
and approximation factor.

While the approximation factor of Λ is rather big,
the computed value is of the same order of magnitude
as the correct value of |FT (P)|, that is, we compute a
(1+o(1))-approximation of the base of the exponentially
large value |FT (P)|. More precisely, for |FT (P)| = cn

we have c ≤ Λ
1
n ≤ c1+o(1) ≤ (1 + o(1))c. Also, this ap-

proximation can be computed in sub-exponential time,
which, at least theoretically, is asymptotically faster
than the worst-case running times of the algorithms pre-
sented in [4, 3, 2]. This is certainly very appealing.

2 Preliminaries

Our algorithm uses simple cycle separators as the main
ingredient, originally presented in [7] by G. L. Miller,
and improved in [5] by H. N. Djidjev and S. M. Venkate-
san. The following theorem accounts for both results:

Theorem 2 (Separator Theorem) Let T be a trian-
gulation of a set of n points in the plane such that the
unbounded face is a triangle. Then there exists a simple
cycle C of size at most

√
4n, that separates the set A of

vertices of T in its interior from the set B of vertices of
T in its exterior, such that the number of elements of
each one of A and B is always at most 2n

3 .

Observe that the Separator Theorem does not imply
that every triangulation of a set of points contains a
unique simple cycle separator. One can easily come up

with examples in which a triangulation contains more
than one simple cycle separator. The important part
here is that every triangulation contains at least one
simple cycle separator.

3 The Algorithm

The idea for an approximate counting algorithm is sug-
gested by the Separator Theorem: We enumerate all
possible simple cycle separators C of size at most

√
4n

that we can find in the given set P . We then recur-
sively compute the number of triangulations of each of
the parts A and B, specified by the Separator Theorem,
that are delimited by CI. We then multiply the number
we obtain for the sub-problem A∪C by the number we
obtain for sub-problem B ∪ C, and we add these prod-
ucts over all cycle separators C. With this algorithm
we clearly over-count the triangulations of P , and it re-
mains to show that we do not over-count by too much.
We will later see that in order to keep over-counting
small, we have to solve small recursive sub-problems ex-
actly. Note that problems of size smaller than a thresh-
old ∆ can be solved exactly in time O∗

(
2∆
)

[2].
However, there are some technicalities that we have

to overcome first. For starters, the Separator Theorem
holds only if the unbounded face of T is also a triangle.
Thus, if we add a dummy vertex v∞ outside Conv(P),
along with the adjacencies between v∞ and the vertices
of Conv(P), to make the unbounded face a triangle, we
can apply the Separator Theorem. Once a simple cycle
with the dividing properties of a separator is found,
by the deletion of v∞ we are left with a separator that
is either the original cycle that we found, if v∞ does
not appear as a vertex of the separator, or a path
otherwise. Thus, when guessing a separator we have
to consider that it might be a path instead of a cycle.
This brings us to the second technical issue. As we
go deeper in the recursion we might create “holes” in
P whose boundaries are the separators that we have
considered thus far. That is, the recursive problems
are polygonal regions, possibly with holes, containing
points of P . Therefore, when guessing a separator,
cycle or path, we have to arbitrarily triangulate the
holes first. This does not modify the size of the sets we
guess for a separator in a sub-problem.

We can now prove the first lemma:

Lemma 3 Let FT (P) be the set of triangulations of a
set P of n points. Then all separators, simple cycles or
paths, among all the elements of FT (P) can be enumer-

ated in time 2O(
√
n log(n)).

Proof. We know by the Separator Theorem and the
discussion beneath that every element of FT (P), a tri-

IThus separator C also forms part of the two sub-problems.

25th Canadian Conference on Computational Geometry, 2013

86

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

angulation, contains at least one separator C, simple
cycle or path. Moreover, the size of C is at most

√
4n.

Thus, searching by brute-force will do the job. We can
enumerate all the subsets of P of size at most

√
4n along

with their permutations. A permutation tells us how
to connect the points of the guessed subset, after also
guessing whether we have a path or cycle. We can then
verify if the constructed simple cycle, or path, fulfils
the dividing properties of a separator, as specified in
the Separator Theorem.

It is not hard to check that the total number of
guessed subsets and their permutations is 2O(

√
n log(n)).

Verifying whether a cycle, or a path, is indeed a sepa-
rator can be done in polynomial time. Thus, the total

time spent remains being 2O(
√
n log(n)). �

We can now proceed with the proof of Theorem 1.

4 Proof of Theorem 1

We will first prove that the approximation ratio is sub-
exponential and then prove that the algorithm has sub-
exponential running time.

4.1 Quality of approximation

By the proof of Lemma 3 we also obtain that the num-
ber of simple cycle separators cannot be larger than

2O(
√
n log(n)). Since at every stage of the recursion of the

counting algorithm no triangulation of P can contain
more than the total number of simple cycle separators
found at that stage, we can express the over-counting
factor of the algorithm by the following recurrence:

S(P,∆) ≤
∑

C

S(A ∪ C,∆) · S(B ∪ C,∆)

≤ 2O(
√
n log(n)) · S(A ∪ C∗,∆) · S(B ∪ C∗,∆),

where the summation is over all separators C available
at the level of recursion, A ∪ C, B ∪ C are the sub-
problems as explained before, C∗ is the cycle that max-
imizes S(A ∪ C,∆) · S(B ∪ C,∆) over all C, and ∆ is
a stopping size. Specifically, whenever the current re-
cursive sub-problem contains ≤ ∆ points we stop the
recursion and compute the number of triangulations of
the sub-problem exactly. Hence, we have S(P ′,∆) = 1
whenever |P ′| ≤ ∆. We can now write

S′(P,∆) := log(S(P,∆)) ≤ O
(√
n log(n)

)
+

S′(A ∪ C∗,∆) +

S′(B ∪ C∗,∆).

Our goal now is to prove the following lemma:

Lemma 4 Let P be a set of n points on the plane and
assume ∆ = nΩ(1), n > ∆, and ∆ is at least a suffi-
ciently large constant. Then we have

S′(P,∆) = O

((
n√
∆/3

−√n
)

log ∆

)
.

Proof. We use induction over the size of P . Let P ′ ⊆ P
of size m ≤ n. We have,

S′(P ′,∆) ≤ O
(√
m log(m)

)
+ S′(A ∪ C∗,∆) +

S′(B ∪ C∗,∆)

≤ O
(√
m log(m)

)
+

c

 m1√

∆
3

−√m1 +
m2√

∆
3

−√m2

 log ∆, (1)

where m1,m2 are the sizes of the sub-problems A ∪ C∗
and B∪C∗ of P ′, respectively, and c is some sufficiently
large positive constant. By the Separator Theorem, we
can express m1 ≤ αm +

√
4m and m2 ≤ βm +

√
4m,

such that: () α, β are constants that depend on the
instance, so α = α (A ∪ C∗) and β = β (B ∪ C∗), ()
0 < β ≤ α ≤ 2

3 , and () α+ β = 1.
Now let us for the moment focus on the term m1√

∆/3
−

√
m1 + m2√

∆/3
−√m2 of equation (1) above:

m1√
∆
3

−√m1 +
m2√

∆
3

−√m2

=
m1 +m2√

∆
3

−√m1 −
√
m2

≤ αm+
√

4m+ βm+
√

4m√
∆
3

−√m1 −
√
m2

≤ m+ 4
√
m√

∆
3

−√αm−
√
βm

=
m+ 4

√
m√

∆
3

−√m
(√

α+
√
β
)

≤ m+ 4
√
m√

∆
3

−√m (1 + ε)

The last inequality is obtained by minimizing
√
α +√

β. Since we mentioned before that 0 ≤ β ≤ α ≤ 2
3

and α + β = 1, the minimum of
√
α +
√
β is attained

at (α, β) =
(

2
3 ,

1
3

)
, and is strictly larger than one, so

we can choose ε > 0. Now, since ∆ is sufficiently large,

we have 4
√
m√

∆/3
� ε
√
m, so 4

√
m√

∆/3
− ε
√
m ≤ −ε′√m,

for some positive constant ε′. Thus we can continue as
follows:

m1√
∆
3

−√m1 +
m2√

∆
3

−√m2 ≤ m+ 4
√
m√

∆
3

−√m (1 + ε)

≤ m√
∆
3

− (1 + ε′)
√
m. (2)

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

87

25th Canadian Conference on Computational Geometry, 2013

Combining equations (1) and (2) we obtain

S′(P ′,∆) ≤ O
(√
m log(m)

)
+ c

 m√

∆
3

− (1 + ε′)
√
m

 log ∆

≤ c

 m√

∆
3

−√m

 log ∆

+O
(√
m log(m)

)
− c · ε′√m log ∆

If we choose ∆ to be sufficiently large, say ∆ ≥ nδ,
for some constant δ > 0, then we have ∆ ≥ nδ ≥
mδ, and the negative term −c · ε′√m log ∆ is larger,
for appropriately large c, than the O (

√
m log(m))

term. Hence, we can conclude that S′(P ′,∆) ≤
O

((
m√
∆/3
−√m

)
log ∆

)
, which proves the induction

step.
It still remains to prove that the inductive claim

holds for the boundary condition, so let Q be a re-
cursive sub-problem of size ≤ ∆. As Q stems from
an application of the Separator Theorem, it is easy to
see that |Q| ≥ ∆

3 . Thus, we have S′(Q,∆) = 0 ≤
c

(
|Q|√
∆/3
−
√
|Q|
)

log ∆. Lemma 4 follows. �

Now, let Λ be the number computed by our algo-
rithm. Recall that |FT (P)| is the exact number of tri-
angulations of P . By setting ∆ =

√
n log(n) we obtain

an over-counting factor of the algorithm of:

S(P,∆) = 2S
′(P,∆) = 2

O
(

n log ∆√
∆

)
= 2

O
(
n

3
4
√

log(n)
)

Hence |FT (P)| ≤ Λ ≤ |FT (P)| · 2
O
(
n

3
4
√

log(n)
)

=
|FT (P)|1+o(1). This completes the qualitative part of
Theorem 1. It remains to discuss the running time of
our algorithm.

4.2 Running time

The running time of the algorithm can be expressed
with the following recurrence:

T (n) < 2O(
√
n log(n)) · T

(
2n

3
+
√

4n

)
.

Taking again T ′(n) = log(T (n)) yields T ′(n) :=
T ′
(

2n
3 +
√

4n
)

+ O (
√
n log(n)), which can then be

solved using the well-known Akra-Bazzi Theorem for
recurrences, see [6]. This yields T ′(n) = O (

√
n log(n)).

There is, however, one detail missing, the stopping
condition ∆. In order to use the Akra-Bazzi Theo-
rem we need a boundary condition of T (n) = 1 for
1 ≤ n ≤ n0 (for some constant n0), but in the algo-
rithm we stop the recursion whenever a sub-problem
Q is of size ≤ ∆ (which is dependent on the size n
of the original point set). At that point we compute

the exact number of triangulations of Q, which gives
T (|Q|) = O∗(2|Q|) = O∗(2∆). Hence the exponent in
the running time of the algorithm is upper-bounded by
the solution of T ′(n), as given by the Akra-Bazzi The-

orem, plus O (∆), i.e., T (n) = 2O(
√
n log(n)+∆). If as

before we assume that ∆ =
√
n log(n) then we end up

with T (n) = 2O(
√
n log(n)) = 2o(n), which concludes the

proof of Theorem 1.

As a final remark observe that we could have used
other values for ∆, rather than

√
n log(n), without vio-

lating any argument in the proofs. This yields a trade-
off with running time 2O(∆) and approximation ratio

2
O(n log ∆√

∆
)

for any
√
n log(n) ≤ ∆ ≤ n. Although the

quality of the approximation improves with larger ∆,
the running time increases. Since we see no way of
not having over-counting with this algorithm, we re-
gard ∆ =

√
n log(n) as the most reasonable setting.

It remains an open problem to find an algorithm with
sub-exponential approximation ratio and running time
2o(
√
n log(n)), e.g., polynomial.

5 Extensions and Conclusions

With the techniques of [3] one can generalize our algo-
rithm for approximately counting triangulations to ap-
proximately counting other crossing-free structures. See
[9] for other related results. In the following we sketch
this for spanning cycles. We embed a spanning cycle in
its contrained Delauney triangulation, annotating the
edges by whether they belong to the spanning cycle. To
approximate the number of spanning cycles of a given
set of points, we enumerate all possible cycle separators
together with all incident triangles (similar to sn-paths
versus triangular paths in [3]). Moreover, we enumerate
all annotations of this structure by which edges belong
to the spanning cycle and the topology of the seen parts
of the spanning cycle. This gives an algorithm with the
same asymptotic running time and approximation ratio
as for triangulations. The full details of this, along with
the details of how to approximately count crossing-free
matchings and spanning trees, will appear in the full
version of this paper.

In summary, in this paper we presented an approx-
imation algorithm for the number of triangulations of
a given point set. This algorithm has sub-exponential
running time and sub-exponential approximation ratio.
Although its approximation ratio is rather large, the al-
gorithm computes a (1+o(1))-approximation of the base
c of the number of triangulations cn, and it does so in
sub-exponential time. No algorithm with this property
was known before.

25th Canadian Conference on Computational Geometry, 2013

88

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

6 Acknowledgement

We would like to thank the anonymous referees for their
valuable suggestions.

References

[1] O. Aichholzer, “The path of a triangulation,” in
15th ACM Symposium on Computational Geome-
try, pp. 14–23, ACM, 1999.

[2] V. Alvarez and R. Seidel, “A Simple Aggregative
Algorithm for Counting Triangulations of Planar
Point Sets and Related Problems,” in 29th ACM
Symposium on Computational Geometry To ap-
pear, ACM, 2013.

[3] V. Alvarez, K. Bringmann, R. Curticapean, and
S. Ray, “Counting crossing-free structures,” in
28th ACM Symposium on Computational Geome-
try, pp. 61–68, ACM, 2012.

[4] V. Alvarez, K. Bringmann, and S. Ray, “A sim-
ple sweep line algorithm for counting triangulations
and pseudo-triangulations”, Submitted, 2012.

[5] H. Djidjev and S. M. Venkatesan, “Reduced con-
stants for simple cycle graph separation,” Acta Inf.,
vol. 34, no. 3, pp. 231–243, 1997.

[6] T. Leighton, “Notes on better master theorems for
divide-and-conquer recurrences,” tech. rep., Mas-
sachusetts Institute of Technology, 1996.

[7] G. L. Miller, “Finding small simple cycle separa-
tors for 2-connected planar graphs,” JCSS, vol. 32,
pp. 265–279, June 1986.

[8] S. Ray and R. Seidel, “A simple and less slow
method for counting triangulations and for related
problems,” in EuroCG, 2004.

[9] A. Razen and E. Welzl, “Counting Plane Graphs
with Exponential Speed-Up” in Rainbow of Com-
puter Science, pp. 36-46, 2011.

[10] M. Sharir and A. Sheffer, “Counting triangulations
of planar point sets,” Electr. J. Comb., vol. 18,
no. 1, 2011.

[11] M. Sharir, A. Sheffer, and E. Welzl, “On degrees
in random triangulations of point sets,” J. Comb.
Theory, Ser. A, vol. 118, no. 7, pp. 1979–1999,
2011.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

89

25th Canadian Conference on Computational Geometry, 2013

90

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Aggregate-Max Nearest Neighbor Searching in the Plane

Haitao Wang∗

Abstract

We study the aggregate nearest neighbor searching for
the Max operator in the plane. For a set P of n points
and a query set Q of m points, the query asks for a
point of P whose maximum distance to the points in Q
is minimized. We present data structures for answer-
ing such queries for both L1 and L2 distance measures.
Previously, only heuristic and approximation algorithms
were given for both versions. For the L1 version, we
build a data structure of O(n) size in O(n log n) time,
such that each query can be answered in O(m + log n)
time. For the L2 version, we build a data structure
of O(n log log n) size in O(n log n) time, such that each

query can be answered in O(m
√
n logO(1) n) time, and

alternatively, we build a data structure in O(n2+ε) time
and space for any ε > 0, such that each query can be
answered in O(m log n) time.

1 Introduction

Aggregate nearest neighbor (ANN) searching [1, 7, 8,
9, 10, 11, 15, 16, 17, 18, 19], also called group nearest
neighbor searching, is a generalization of the fundamen-
tal nearest neighbor searching problem [2], where the
input of each query is a set of points and the result of
the query is based on applying some aggregate operator
(e.g., Max and Sum) on all query points. In this paper,
we consider the ANN searching on the Max operator
for both L1 and L2 metrics in the plane.

For any two points p and q, let d(p, q) denote the
distance between p and q. Let P be a set of n points
in the plane. Given any query set Q of m points, the
ANN query asks for a point p in P such that g(p,Q)
is minimized, where g(p,Q) is the aggregate function of
the distances from p to the points of Q. The aggregate
functions commonly considered are Max, i.e., g(p,Q) =
maxq∈Q d(p, q), and Sum, i.e., g(p,Q) =

∑
q∈Q d(p, q).

If the operator for g is Max (resp., Sum), we use ANN-
Max (resp., ANN-Sum) to denote the problem.

In this paper, we focus on ANN-Max in the plane for
both L1 and L2 versions where the distance d(p, q) is
measured by L1 and L2 metrics, respectively.

Previously, only heuristic and approximation algo-
rithms were given for both versions. For the L1 version,

∗Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA. E-mail: haitao.wang@usu.edu.

we build a data structure of O(n) size in O(n log n) time,
such that each query can be answered in O(m + log n)
time. For the L2 version, we build a data structure
of O(n log log n) size in O(n log n) time, such that each

query can be answered in O(m
√
n logO(1) n) time, and

alternatively, we build a data structure in O(n2+ε) time
and space for any ε > 0, such that each query can be
answered in O(m log n) time.

1.1 Previous Work

For ANN-Max, Papadias et al. [16] presented a heuris-
tic Minimum Bounding Method with worst case query
time O(n + m) for the L2 version. Recently, Li et al.
[7] gave more results on the L2 ANN-Max (the queries
were called group enclosing queries). By using R-tree
[6], Li et al. [7] gave an exact algorithm to answer ANN-
Max queries, and the algorithm is very fast in prac-
tice but theoretically the worst case query time is still
O(n+m). Li et al. [7] also gave a

√
2-approximation al-

gorithm with query time O(m+log n) and the algorithm
works for any fixed dimensions, and they further ex-
tended the algorithm to obtain a (1 + ε)-approximation
result. To the best of our knowledge, we are not aware of
any previous work that is particularly for the L1 ANN-
Max. However, Li et al. [9] proposed the flexible ANN
queries, which extend the classical ANN queries, and
they provided an (1 + 2

√
2)-approximation algorithm

that works for any metric space in any fixed dimension.

For L2 ANN-Sum, a 3-approximation solution is given
in [9]. Agarwal et al. [1] studied nearest neighbor
searching under uncertainty, and their results can give
an (1 + ε)-approximation solution for the L2 ANN-Sum
queries. They [1] also gave an exact algorithm that can
solve the L1 ANN-Sum problem and an improvement
based on their work has been made in [18].

There are also other heuristic algorithms on ANN
queries, e.g., [8, 10, 11, 15, 17, 19].

Comparing with n, the value m is relative small
in practice. Ideally we want a solution that has a
query time o(n). Our L1 ANN-Max solution is the
first-known exact solution and is likely to be the best-
possible. Comparing with the heuristic result [7, 16]
with O(m+n) worst case query time, our L2 ANN-Max
solution use o(n) query time for small m; it should be
noted that the methods in [7, 16] uses only O(n) space
while the space used in our approach is larger.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

91

25th Canadian Conference on Computational Geometry, 2013

q1
q2

q4
q3

Figure 1: Illustrating the four extreme points q1, q2, q3, q4.

2 The ANN-Max in the L1 Metric

In this section, we present our solution for the L1 version
of ANN-Max queries. Given any query point set Q,
our goal is to find the point p ∈ P such that g(p,Q) =
maxq∈Q d(p, q) is minimized for the L1 distance d(p, q),
and we denote by ψ(Q) the above sought point.

For each point p in the plane, denote by pmax the
farthest point of Q to p. We show below that pmax must
be an extreme point of Q along one of the four diagonal
directions: northeast, northwest, southwest, southeast.

Let ρ1 be a ray directed to the “northeast”, i.e., the
angle between ρ and the x-axis is π/4. Let q1 be an
extreme point of Q along ρ1 (e.g., see Fig. 1); if there is
more than one such point, we let q1 be an arbitrary such
point. Similarly, let q2, q3, and q4 be the extreme points
along the directions northwest, southwest, and south-
east, respectively. Let Qmax = {q1, q2, q3, q4}. Note
that Qmax may have less than four distinct points if
two or more points of Qmax refer to the same (physical)
point of Q. Lemma 1, whose proof is omitted, shows
that g(p,Q) is determined only by the points of Qmax.

Lemma 1 For any point p in the plane, it holds that
g(p,Q) = maxq∈Qmax d(p, q).

Note that a point may have more than one farthest
point in Q. For any point p, if p has only one farthest
point in Q, then pmax is in Qmax. Otherwise, pmax may
not be in Qmax, and for convenience we re-define pmax to
be the farthest point of p in Qmax. For each 1 ≤ i ≤ 4,
let Pi = {p | pmax = qi, p ∈ P}, i.e., Pi consists of the
points of P whose farthest points in Q are qi, and let pi
be the nearest point of qi in Pi. To find ψ(Q), we have
the following lemma, whose proof is omitted.

Lemma 2 ψ(Q) is the point pj for some j with 1 ≤ j ≤
4, such that d(pj , qj) ≤ d(pi, qi) holds for any 1 ≤ i ≤ 4.

Based on Lemma 2, to determine ψ(Q), it is suffi-
cient to determine pi for each 1 ≤ i ≤ 4. To this end,
we make use of the farthest Voronoi diagram [5] of the
four points in Qmax, which is also the farthest Voronoi
diagram of Q by Lemma 1. Denote by FVD(Q) the
farthest Voronoi diagram of Qmax. Since Qmax has only
four points, FVD(Q) can be computed in constant time,

q
a

b

q

(a) (b) (c)

a

b

q
aa

b
q’ q’ q’

Figure 2: Illustrating the bisector B(q, q′) (the solid curve) for q
and q′. In (c), since R(q, q′) is a square, the two shaded quadrants
are entirely in B(q, q′), but for simplicity, we only consider the two
vertical bounding half-lines as in B(q, q′).

e.g., by an incremental approach. Each point q ∈ Qmax

defines a cell C(q) in FVD(Q) such that every point
p ∈ C(q) is farthest to qi among all points of Qmax. In
order to compute the four points pi with i = 1, 2, 3, 4,
we first show in the following that each cell C(q) has
certain special shapes that allow us to make use of the
segment dragging queries [4, 14] to find the four points
efficiently. Note that for each 1 ≤ i ≤ 4, Pi = P ∩C(qi)
and thus pi is the nearest point of P ∩ C(qi) to qi. In
fact, the following discussion also gives an incremental
algorithm to compute FVD(Q) in constant time.

2.1 The Bisectors

We first briefly discuss the bisectors of the points based
on the L1 metric. In fact, the L1 bisectors have been
well studied (e.g., [14]) and we discuss them here for
completeness and some notation introduced here will
also be useful later when we describe our algorithm.

For any two points q and q′ in the plane, define r(q, q′)
as the region of the plane that is the locus of the points
farther to q than to q′, i.e., r(q, q′) = {p | d(p, q) ≥
d(p, q′)}. The bisector of q and q′, denoted by B(q, q′),
is the locus of the points that are equidistant to q and
q′, i.e., B(q, q′) = {p | d(p, q) = d(p, q′)}. In order to
discuss the shapes of the cells of FVD(Q), we need to
elaborate on the shape of B(q, q′), as follows.

Let R(q, q′) be the rectangle that has q and q′ as
its two vertices on diagonal positions (e.g., see Fig. 2).
If the line segment qq′ is axis-parallel, the rectangle
R(q, q′) is degenerated into a line segment and B(q, q′)
is the line through the midpoint of qq′ and perpendic-
ular to qq′. Below, we focus on the general case where
qq′ is not axis-parallel. Without loss of generality, we
assume q and q′ are northeast and southwest vertices of
R(q, q′), and other cases are similar.

The bisector B(q, q′) consists of two half-lines and one
line segment in between (e.g., see Fig. 2); the two half-
lines are either both horizontal or both vertical. Specif-
ically, let l be the line of slope −1 that contains the
midpoint of qq′. Let ab = l ∩ R(q, q′), and a and b are
on the boundary of R(q, q′). Note that if R(q, q′) is a
square, then a and b are the other two vertices of R(q, q′)
than q and q′; otherwise, neither a nor b is a vertex.

25th Canadian Conference on Computational Geometry, 2013

92

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

q3

q1

(q)3l+

(q)3
−l

Figure 3: Illustrating an example where q1 is above l−(q3) and
below or on l+(q3). The bisector B(q1, q3) is a v-bisector.

We first discuss the case where R(q, q′) is not a square
(e.g., see Fig. 2 (a) and (b)). Let l(a) be the line through
a and perpendicular to the edge of R(q, q′) that contains
a. The point a divides l(a) into two half-lines, and we let
l′(a) be the one that doest not intersect R(q, q′) except
a. Similarly, we define the half-line l′(b). Note that l′(a)
and l′(b) must be parallel. The bisector B(q, q′) is the
union of l′(a), ab, and l′(b).

If R(q, q′) is a square, both a and b are vertices of
R(q, q′) (e.g., see Fig. 2 (c)). In this case, a quadrant
of a and a quadrant of b belong to B(q, q′), but for sim-
plicity, we consider B(q, q′) as the union of ab and the
two vertical bounding half-lines of the two quadrants.

We call ab the middle segment of B(q, q′) and de-
note it by BM (q, q′). If B(q, q′) contains two vertical
half-lines, we call B(q, q′) a v-bisector and refer to the
two half-lines as upper half-line and lower half-line, re-
spectively, based on their relative positions; similarly,
if B(q, q′) contains two horizontal half-lines, we call
B(q, q′) an h-bisector and refer to the two half-lines as
left half-line and right half-line, respectively.

For any point p in the plane, we use l+(q) to denote
the line through q with slope 1, l−(q) the line through q
with slope −1, lh(q) the horizontal line through q, and
lv(q) the vertical line through q.

2.2 The Shapes of Cells of FVD(Q)

A subset Q′ of Q is extreme if it contains an extreme
point along each of the four diagonal directions. Qmax

is an extreme subset. A point q of Qmax is redundant if
Qmax \ {q} is still an extreme subset. For simplicity of
discussion, we remove all redundant points from Qmax.
For example, if q1 and q2 are both extreme points along
the northeast direction (and q2 is also an extreme point
along the northwest direction), then q1 is redundant and
we simply remove q1 from Qmax (and the new q1 of Qmax

now refers to the same physical point as q2).

Consider a point q ∈ Qmax. Without loss of gen-
erality, we assume q = q3 and the other cases can be
analyzed similarly. We will analyze the possible shapes
of C(q3). We assume Qmax has at least two distinct
points since otherwise the problem would be trivial. We
further assume q1 6= q3 since otherwise the analysis is
much simpler. According to their definitions, q1 must

v1
v1

v1

v2v2v2

(a) (b) (c)

Figure 4: Illustrating three types of regions (shaded).

be above the line l−(q3) (e.g., see Fig. 3). However, q1
can be either above or below the line l+(q3). In the
following discussion, we assume q1 is below or on the
line l+(q3) and the case where q1 is above l+(q3) can be
analyzed similarly. In this case B(q3, q1) is a v-bisector
(i.e., it has two vertical half-lines).

We first introduce three types of regions (i.e., A, B,
and C), and we will show later that C(q3) must belong
to one of the types. Each type of region is bounded from
the left or below by a polygonal curve ∂ consisting of
two half-lines and a line segment of slope ±1 in between.

1. From top to bottom, the polygonal curve ∂ consists
of a vertical half-line followed by a line segment
of slope −1 and then followed by a vertical half-
line extended downwards (e.g., see Fig. 4 (a)). The
region on the right of ∂ is defined as a type-A region.

2. From top to bottom, ∂ consists of a vertical half-
line followed by a line segment of slope −1 and then
followed by a horizontal half-line extended right-
wards (e.g., see Fig. 4 (b)). The region on the right
of and above ∂ is defined as a type-B region.

3. From top to bottom, ∂ consists of a vertical half-
line followed by a line segment of slope 1 and then
followed by a vertical half-line extended downwards
(e.g., see Fig. 4 (c)). The region on the right of ∂
is defined as a type-C region.

In each type of the regions, the line segment of ∂
is called the middle segment. Denote by v1 the upper
endpoint of the middle segment and by v2 the lower end-
point (e.g., see Fig. 4). Note that the middle segment
may be degenerated to a point. By constructing C(q3)
in an incremental manner, Lemma 3 shows that C(q3)
must belong to one of the three types of regions. The
proof of Lemma 3 is omitted.

Lemma 3 The cell C(q3) must be one of the three types
of regions. Further (see Fig. 5), if C(q3) is a type-A
region, then C(q3) is to the right of lv(q3) and v2 is on
lh(q3); if C(q3) is a type-B region, then C(q3) is to the
right of lv(q3) and above lh(q3); if C(q3) a type-C region,
then C(q3) is to the right of lv(q3) and v1 is on lh(q3).

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

93

25th Canadian Conference on Computational Geometry, 2013

v1

v2q3

lv
q3()

lh
q3()

q3

q3

v1

v2
v2

v1C(q)3

C(q)3

C(q)3

(a) (b) (c)

Figure 5: Illustrating the three possible cases for C(q3): (a) a
type-A region; (b) a type-B region; (c) a type-C region.

2.3 Answering the Queries

Recall that our goal is to compute p3, which is is the
nearest point of P ∩C(q3) to q3. Based on Lemma 3, we
can compute the point p3 in O(log n) time by making
use of the segment dragging queries [4, 14]. The details
are given in Lemma 4.

Lemma 4 After O(n log n) time and O(n) space pre-
processing on P , the point p3 can be found in O(log n)
time.

Proof. We first briefly introduce the segment dragging
queries that will be used by our algorithm: parallel-track
queries and out-of-corner queries (e.g., Fig. 6).

Let S be a set of n points in the plane. For each
parallel-track query, we are given two parallel vertical
or horizontal lines (as “tracks”) and a line segment of
slope ±1 with endpoints on the two tracks, and the goal
is to find the first point of S hit by the segment if we
drag the segment along the two tracks. For each out-
of-corner query, we are given two axis-parallel tracks
forming a perpendicular corner, and the goal is to find
the first point of S hit by dragging out of the corner a
segment of slope ±1 with endpoints on the two tracks.

(a) (b)

Figure 6: Illustrating the segment dragging queries: (a) a
parallel-track query; (b) an out-of-corner query.

As shown by Mitchell [14], after O(n log n) time and
O(n) space preprocessing on S, each of the two types of
queries can be answered in O(log n) [4, 14].

Below, we present our algorithm for the lemma by
using the above segment dragging queries. Our goal is
to find p3. Depending on the type of the C(q3) as stated
in Lemma 3, there are three cases.

Type-A If C(q3) is a type-A region, we further decom-
pose C(q3) into three subregions (e.g., see Fig. 7 (a)) by
introducing two horizontal half-lines going rightwards

v1

v2q3

v1

v2

(b)

q3

q3 v1

v2

(c)(a)

C1

C2

C3

Figure 7: Illustrating the decomposition of C(q3) for segment-
dragging queries.

from v1 and v2 (i.e., the endpoints of the middle seg-
ment of the boundary of C(q3)), respectively. We call
the three subregions the upper, middle, and lower sub-
regions, respectively, according to their heights. To find
p3, for each subregion C, we compute the closest point
of P ∩ C to q3, and p3 is the closest point to q3 among
the three points found above.

For the upper subregion, denoted by C1, according to
Lemma 3, C1 is in the first quadrant of q3. Therefore,
q3’s closest point in P ∩C1 is exactly the answer of the
out-of-corner query by dragging a segment of slope −1
from the corner of C1.

For the middle subregion, denoted by C2, according
to Lemma 3, C2 is in the first quadrant of q3. Therefore,
q3’s closest point in P ∩C2 is exactly the answer of the
parallel-track query by dragging the middle segment of
the boundary of C(q3) rightwards.

For the lower subregion, denoted by C3, according to
Lemma 3, C3 is in the fourth quadrant of q3. Therefore,
q3’s closest point in P ∩C3 is exactly the answer of the
out-of-corner query by dragging a segment of slope 1
from the corner of C3.

Therefore, in this case we can find p3 in O(log n) time
after O(n log n) time O(n) space preprocessing on P .

Type-B If C(q3) is a type-B region, we further decom-
pose C(q3) into two subregions (e.g., see Fig. 7 (b)) by
introducing a horizontal half-line rightwards from v1.
To find p3, again, we find the closest point to q3 in each
of the two sub-regions.

By Lemma 3, both subregions are in the first quad-
rant of q3. By using the same approach as the first case,
q3’s closest point in the upper subregion can be found
by an out-of-corner query and q3’s closest point in the
lower subregion can be found by a parallel-track query.

Type-C If C(q3) is a type-C region, the case is sym-
metric to the first case and we can find p3 by using two
out-of-corner queries and a parallel-track query.

As a summary, we can find p3 in O(log n) time after
O(n log n) time O(n) space preprocessing on P . �

By combining Lemmas 2 and 4, we conclude this sec-
tion with the following theorem.

25th Canadian Conference on Computational Geometry, 2013

94

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Theorem 5 Given a set P of n points in the plane,
after O(n log n) time and O(n) space preprocessing, we
can answer each L1 ANN-Max query in O(m + log n)
time for any set Q of m query points.

Proof. As preprocessing, we build data structures
for answering the segment dragging queries on P in
O(n log n) time and O(n) space [4, 14].

Given any query set Q, we first determine Qmax in
O(m) time. Then, we compute the farthest Voronoi dia-
gram FVD(Q) in constant time, e.g., by the incremental
approach given in this paper. Then, for each 1 ≤ i ≤ 4,
we compute the point pi by Lemma 4 in O(log n) time.
Finally, ψ(Q) can be determined by Lemma 2. �

3 The ANN-Max in the L2 Metric

In this section, we present our results for the L2 version
of ANN-Max queries. Given any query point set Q,
our goal is to find the point p ∈ P such that g(p,Q) =
maxq∈Q d(p, q) is minimized for the L2 distance d(p, q),
and we use ψ(Q) to denote the sought point above.

We follow the similar algorithmic scheme as in the L1

version. Let QH be the set of points of Q that are on
the convex hull of Q. It is known that for any point p in
the plane, its farthest point in Q is in QH , and in other
words, the farthest Voronoi diagram of Q, denoted by
FVD(Q), is determined by the points of QH [5, 7]. Note
that the size of FVD(Q) is O(|QH |) [5].

Consider any point q ∈ QH . Denote by C(q) the
cell of q in FVD(Q), which is a convex and unbounded
polygon [5]. Let f(q) be the closest point of P ∩C(q) to
q. Similar to Lemma 2, we have the following lemma.

Lemma 6 If for a point q′ ∈ Q, d(f(q′), q′) ≤
d(f(q), q) holds for any q ∈ QH , then f(q′) is ψ(Q).

Hence, to find ψ(Q), it is sufficient to determine f(q)
for each q ∈ Q, as follows.

Consider any point q ∈ Q. To find f(q), we first tri-
angulate the cell C(q) and let Tri(q) denote the trian-
gulation. For each triangle 4 ∈ Tri(q), we will find the
closest point to q in P ∩ 4, denoted by f4(q). Conse-
quently, f(q) is the closest point to q among the points
f4(q) for all 4 ∈ Tri(q). Out goal is to determine
ψ(Q). To this end, we will need to triangulate each cell
of FVD(Q) and compute f4(q) for each4 ∈ Tri(q) and
for each q ∈ Q. Since the size of FVD(Q) is O(|QH |),
which is O(m), we have the following lemma.

Lemma 7 If the closest point f4(q) to q in P ∩4 can
be found in O(t4) time for any triangle 4 and any point
q in the plane, then ψ(Q) can be found in O(m·t4) time.

In the following, we present our algorithms for com-
puting f4(q) for any triangle 4 and any point q in the
plane. If we know the Voronoi diagram of the points

in P ∩4, then f4(q) can be determined in logarithmic
time. Hence, the problem becomes how to maintain the
Voronoi diagrams for the points in P such that given
any triangle 4, the Voronoi diagram information of the
points in P ∩ 4 can be obtained efficiently. To this
end, we choose to augment the O(n)-size simplex range
(counting) query data structure in [12], as shown in the
following lemma.

Lemma 8 After O(n log n) time and O(n log log n)
space preprocessing on P , we can compute the point
f4(q) in O(

√
n logO(1) n) time for any triangle 4 and

any point q in the plane.

Proof. We first briefly discuss the data structure in
[12] and then augment it for our purpose. Note that
the data structure in [12] is for any fixed dimension and
our discussion below only focuses on the planar case,
and thus each simplex below refers to a triangle.

A simplicial partition of the point set P is a collection
Π = {(P1,41), . . . , (Pk,4k)}, where the Pi’s are pair-
wise disjoint subsets (called the classes of Π) forming
a partition of P , and each 4i is a possibly unbounded
simplex containing the points of Pi. The size of Π is
k. The simplex 4i may also contain other points in P
than those in Pi. A simplicial partition is called special
if max1≤i≤k{|Pi|} < 2 ·min1≤i≤k{|Pi|}.

The data structure in [12] is a partition tree, denoted
by T , based on constructing special simplicial partitions
on P recursively. The leaves of T form a partition of P
into constant-sized subsets. Each internal node v ∈ T
is associated with a subset Pv (and its corresponding
simplex 4v) of P and a special simplicial partition Πv

of size |Pv|1/2 of Pv. The root of T is associated with
P . The cardinality of Pv (i.e., |Pv|) is stored at v. Each
internal node v has |Pv|1/2 children that correspond to
the classes of Πv. Thus, if v is a node lying at a distance
i from the root of T , then |Pv| = O(n1/2

i

), and the
depth of T is O(log log n). It is shown in [12] that T has
O(n) space and can be constructed in O(n log n) time.

For each query simplex 4, the goal is to compute the
number of points in P ∩ 4. We start from the root
of T . For each internal node v, we check its simplicial
partition Πv one by one, and handle directly those con-
tained in 4 or disjoint from 4; we proceed with the
corresponding child nodes for the other simplices. Each
of the latter ones must be intersected by at least one of
the lines bounding 4. If v is a leaf node, for each point
p in Pv, we determine directly whether p ∈ 4. Each
query takes O(n1/2(log n)O(1)) time [12].

For our purpose, we augment the partition tree T . For
each node v, we explicitly maintain the Voronoi diagram
of Pv, denoted by VD(Pv). Since at each level of T the
subsets Pv’s are pairwise disjoint, comparing with the
original tree, our augmented tree has O(n) additional
space at each level. Since T has O(log log n) levels,

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

95

25th Canadian Conference on Computational Geometry, 2013

the total space of our augmented tree is O(n log log n).
For the running time, we claim that the total time for
building the augmented tree is still O(n log n) although
we have to build Voronoi diagrams for the nodes. In-
deed, let T (n) denote the time for building the Voronoi
diagrams in the entire algorithm. We have T (n) =√
n · T (

√
n) + O(n log n), and thus, T (n) = O(n log n)

by solving the above recurrence.
Consider any query triangle 4 and any point q. We

start from the root of T . For each internal node v, we
check its simplicial partition Πv, i.e., check the children
of v one by one. Consider any child u of v. If 4u is
disjoint from 4, we ignore it. If 4u is contained in 4,
then we compute in O(log n) time the closest point of
P ∩4u to q (and its distance to q) by using the Voronoi
diagram VD(Pu) stored at the node u. Otherwise, we
proceed on u recursively. If v is a leaf node, for each
point p in Pv, we compute directly the distance d(q, p) if
p ∈ 4. Finally, f4(q) is the closest point to q among all
points whose distances to q have been computed above.

Comparing with the original simplex range query on
4, we have O(log n) additional time on each node u if
4u is contained in 4, and the number of such nodes is
bounded by O(n1/2(log n)O(1)). Hence, the total query
time for finding f4(q) is O(n1/2(log n)O(1) ·log n), which
is O(n1/2(log n)O(1)). The lemma thus follows. �

Similar augmentation may also be made on the O(n)-
size simplex data structure in [13] and the recent ran-
domized result in [3]. If more space are allowed, by
using duality and cutting trees [5], we can obtain the
following lemma, whose proof is omitted.

Lemma 9 After O(n2+ε) time and space preprocessing
on P , we can compute the point f4(q) in O(log n) time
for any triangle 4 and any point q in the plane.

Lemmas 7, 8, and 9 lead to the following theorem.

Theorem 10 Given a set P of n points in the plane,
after O(n log n) time and O(n log log n) space prepro-
cessing, we can answer each L1 ANN-Max query in
O(m

√
n logO(1) n) time for any set Q of m query points;

alternatively, after O(n2+ε) time and space preprocess-
ing for any ε > 0, we can answer each L2 ANN-Max
query in O(m log n) time.

References

[1] P.K. Agarwal, A. Efrat, S. Sankararaman, and
W. Zhang. Nearest-neighbor searching under uncer-
tainty. In Proc. of the 31st Symposium on Principles
of Database Systems, pages 225–236, 2012.

[2] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman,
and A.Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of
the ACM, 45:891–923, 1998.

[3] T.M. Chan. Optimal partition trees. Discrete and Com-
putational Geometry, 47:661–690, 2012.

[4] B. Chazelle. An algorithm for segment-dragging and its
implementation. Algorithmica, 3(1–4):205–221, 1988.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry — Algorithms and Ap-
plications. Springer-Verlag, Berlin, 3rd edition, 2008.

[6] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. of the ACM SIGMOD In-
ternational Conference on Management of Data, pages
47–57, 1984.

[7] F. Li, B. Yao, and P. Kumar. Group enclosing queries.
IEEE Transactions on Knowledge and Data Engineer-
ing, 23:1526–1540, 2011.

[8] H. Li, H. Lu, B. Huang, and Z. Huang. Two ellipse-
based pruning methods for group nearest neighbor
queries. In Proc. of the 13th Annual ACM Interna-
tional Workshop on Geographic Information Systems,
pages 192–199, 2005.

[9] Y. Li, F. Li, K. Yi, B. Yao, and M. Wang. Flexi-
ble aggregate similarity search. In Proc. of the ACM
SIGMOD International Conference on Management of
Data, pages 1009–1020, 2011.

[10] X. Lian and L. Chen. Probabilistic group nearest neigh-
bor queries in uncertain databases. IEEE Transactions
on Knowledge and Data Engineering, 20:809–824, 2008.

[11] Y. Luo, H. Chen, K. Furuse, and N. Ohbo. Effi-
cient methods in finding aggregate nearest neighbor by
projection-based filtering. In Proc. of the 12nd Inter-
national Conference on Computational Science and its
Applications, pages 821–833, 2007.

[12] J. Matoušek. Efficient partition trees. Discrete and
Computational Geometry, 8(3):315–334, 1992.

[13] J. Matoušek. Range searching with efficient hierarchi-
cal cuttings. Discrete and Computational Geometry,
10(1):157–182, 1993.

[14] J.S.B. Mitchell. L1 shortest paths among polygonal
obstacles in the plane. Algorithmica, 8(1):55–88, 1992.

[15] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis.
Group nearest neighbor queries. In Proc. of the 20th
International Conference on Data Engineering, pages
301–312, 2004.

[16] D. Papadias, Y. Tao, K. Mouratidis, and C.K. Hui. Ag-
gregate nearest neighbor queries in spatial databases.
ACM Transactions on Database Systems, 30:529–576,
2005.

[17] M. Sharifzadeh and C. Shahabi. VoR-Tree: R-trees
with Voronoi diagrams for efficient processing of spa-
tial nearest neighbor queries. In Proc. of the VLDB
Endowment, pages 1231–1242, 2010.

[18] H. Wang and W. Zhang. The L1 top-k nearest neigh-
bor searching with uncertain queries. arXiv:1211.5084,
2013.

[19] M.L. Yiu, N. Mamoulis, and D. Papadias. Aggregate
nearest neighbor queries in road networks. IEEE Trans-
actions on Knowledge and Data Engineering, 17:820–
833, 2005.

25th Canadian Conference on Computational Geometry, 2013

96

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Data Structures for Incremental Extreme Ray Enumeration Algorithms

Blagoy Genov∗

Abstract

Given a halfspace H and a polyhedral cone P with a
known extreme ray set V we consider the problem of
finding the extreme ray set for the cone P ′ = H ∩ P.
Regarding the computational time of the above prob-
lem, best results have been achieved with data struc-
tures based on multidimensional binary search trees.
We refined the existing algorithm by developing a spe-
cific method for tree creation which brought further
computational speedup. Furthermore, we examined al-
ternative data structures based on vantage point trees
and identified potential scenarios for their application.

1 Introduction

Polyhedral Cones. A nonempty set P of vectors in
Rd is called a (convex) polyhedral cone if there exists a
nonzero representation matrix A ∈ Rn×d such that

P := {x ∈ Rd : Ax ≥ 0}.
Those vectors VE ⊆ P which cannot be expressed as a
conical combination of other vectors are called extreme
rays of P. The active set of extreme rays is defined by
means of a mapping

ψ : VE → {0, 1}n

from extreme rays to binary vectors: z = ψ(r) identifies
the row vectors of A which r satisfied with equality, in
the sense that

zi = 0⇒ aTi · r > 0 and zi = 1⇒ aTi · r = 0

where ai is the i-th row vector of A. Given the binary
vectors z = (z1, . . . , zn) and z′ = (z′1, . . . , z

′
n) the oper-

ations ∧ and z̄ (complement) as well as the relations ≤
and < are defined as (see [21]):

z ∧ z′ = (z1 ∧ z′1, . . . , zn ∧ z′n),

z̄ = (z̄1, . . . , z̄n),

z ≤ z′ ⇔ z1 ≤ z′1, . . . , zn ≤ z′n,
z < z′ ⇔ z ≤ z′ and z 6= z′.

The definition of ∨ is analogous to that of ∧. Addition-
ally, we define the population of a binary vector

ρ : {0, 1}n → N0

as the count of its 1 values.
∗Department of Computer Science, University of Bremen, Ger-

many, bgenov@informatik.uni-bremen.de

Extreme Ray Enumeration. For a polyhedral cone P
the extreme ray enumeration is defined as the problem
to find VE out of A. This problem, which is identical
to the vertex enumeration of polytopes, has a number
of algorithmic solutions developed over the years. The
first one, called the double description method, was in-
troduced by Motzkin et al. [20] and later improved by
Fukuda et al. [16]. Further algorithms with historical
significance are the algorithm of Chernikova [12, 19],
the beneath-and-beyond method of Seidel [23, 15], the
randomized algorithm of Clarkson and Shor [13], the de-
randomized algorithm of Chazelle [11] and the reverse
search method of Avis and Fukuda [3, 4]. For the mo-
ment, there is no general algorithm performing in time
polynomial in the size of A and VE [1, 2]. The question
of whether such an algorithm exists is open as well [18].
Yet, for nondegenerate problems polynomial time solu-
tions are available [24, 3, 10].

In this paper, we focus on the practical implemen-
tation of incremental cutting plane algorithms like the
double description method and Chernikova’s algorithm.
Those start with an approximation cone P1 ⊇ P for
which the extreme ray set VE

1 is known and perform
a step by step refinement. At each step, the currently
best known approximation Pi is cut with a new halfs-
pace Hi = {aTi ·x ≥ 0} which splits VE

i into the subsets

V0
i = {r0 ∈ VE

i : aTi · r0 = 0},
V+
i = {r+ ∈ VE

i : aTi · r+ > 0} and

V−i = {r− ∈ VE
i : aTi · r− < 0}.

The set VE
i+1 contains V0

i , V+
i and one new element for

each pair of adjacent extreme rays (r+, r−) ∈ (V+
i ×V−i).

In practice, enumerating those pairs is the most time
consuming part of the algorithm. We propose improve-
ments related to the currently used data structures in
order to speed up this process.

Assuming that P is pointed and thus rank[A] = d,
the adjacency test of two extreme rays could be per-
formed in two different ways known as a combinational
(see Lemma 1) and an algebraic test (see Lemma 2).
For the proof of both lemmas we refer to [16, Proposi-
tion 7]. Corollary 3 expresses an incomplete form of the
algebraic test delivering either a negative or an indeci-
sive result.

Lemma 1 (Combinational Test) Two extreme rays
r′, r′′ ∈ VE are adjacent if and only if there is no other

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

97

25th Canadian Conference on Computational Geometry, 2013

extreme ray r′′′ ∈ VE such that ψ(r′) ∧ ψ(r′′) < ψ(r′′′).

Lemma 2 (Algebraic Test) Two extreme rays
r′, r′′ ∈ VE are adjacent if and only if rank[A′] = d− 2
where A′ ∈ Rk×d is a submatrix of A containing
only those row vectors ai for which zi = 1 with
z = ψ(r′) ∧ ψ(r′′).

Corollary 3 Two extreme rays r′, r′′ ∈ VE are nonad-
jacent if ρ(z) < d− 2 with z = ψ(r′) ∧ ψ(r′′).

Using the above criteria we can outline a simple al-
gorithm to identify all adjacent extreme ray pairs in
(V+

i ×V−i). First, we eliminate all pairs satisfying Corol-
lary 3. We call this a narrowing phase and all remaining
pairs feasible ones. Second, we check each feasible pair
against Lemma 1 for a definite result. We call this a
verification phase.

With regard to the narrowing phase, the enumera-
tion of all feasible pairs has a quadratic complexity in
the worst case, as each pair may indeed be a feasible
one. If, however, the feasible pairs are only a small
fraction, the enumeration could be sped up by applying
the divide-and-conquer approach. First, the set V+

i is
partitioned into finitely many subsets, and then for each
r− ∈ V−i the search for feasible pairs is limited to those
subsets which can produce a valid result. A closely re-
lated problem in metric spaces is the fixed-radius near
neighbor search [7, 8]. Note that we are dealing here
with a nonmetric space.

The divide-and-conquer approach is also applicable
in the verification phase. Each application of Lemma 1
is basically a partial match query [22] on VE

i where the
result is reduced to the existence or nonexistence of a ray
r′′′ matching the given active set constraint. A general
analysis on the lower bounds of this problem (referred
to as a no partial match query) can be found in [9].

Contributions and Related Work. Thus far, the most
efficient implementation of the outlined algorithm has
been given by Terzer et al. [25, 26]. Terzer et al. intro-
duced the bit pattern tree (here bp-tree), a data struc-
ture based on Bentley’s k-d tree [6], on which near
neighbor and partial match queries are performed. The
overall performance of the implementation, however, de-
pends very much on the structure of the bp-trees. Differ-
ently structured trees may require completely different
number of operations to process the same set of queries.
We made use of the fact that in our case all query in-
puts are known before the tree creation and developed
an optimization called query bits neutralization. This
method for tree creation considered the query inputs
during the creation process. The so generated bp-qbn-
trees accelerated the overall computation for most of
the investigated problems. In some cases, the calcula-
tion time was reduced by more than 80%. Furthermore,

S

S0

...

(V0...0,S0...0) (V0...1,S0...1)

...

S1

...
...

Figure 1: Generic structure of the binary tree.

we examined the performance of vp-trees (vantage point
trees) [28], also known as metric trees [27], as alterna-
tive data structures for the algorithm. In this respect,
we identified scenarios for which they tend to perform
better than bp-trees.

2 Binary Trees for Adjacency Tests

In order to examine the performance of bp- und vp-trees
we created a generic framework which supports adja-
cency tests using different binary tree types. In this
section, we briefly introduce three major aspects of its
functionality: tree generation, narrowing and verifica-
tion. Functions whose implementation differs for differ-
ent tree types are called generic. Specific implementa-
tions for bp- and vp-trees are presented in Sections 3
and 4.

Generation. The generation of a binary tree for some
set of extreme rays V involves two major steps. First,
V is recursively partitioned into finitely many subsets
V(0|1)∗ . Each subset corresponds to a single leaf node
of the resulting tree. Second, to each tree node, no
matter if intermediate or leaf, an auxiliary data S(0|1)∗
is attached. This data is produced during the genera-
tion process and encapsulates certain properties of the
extreme rays in the subsequent leaf nodes. The basic
structure of the resulting tree is shown in Figure 1. Its
recursive creation is covered in Function 1 which returns
either an intermediate node consisting of two subnodes
or a leaf one if no further partitioning is desired. The
generic function partition splits the set V into two dis-
joint subsets according to some criteria.

Narrowing. In the narrowing phase, we construct a
binary tree for the set V+

i and perform an operation
similar to a fixed-radius near neighbor search for each
r− ∈ V−i . The implementation of the search procedure
is given in Function 2. It recursively traverses the tree
and enumerates all extreme rays r′ building a feasible
pair with the given ray r. At each recursion step, the

25th Canadian Conference on Computational Geometry, 2013

98

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Function 1 create(V,S)

if leaf condition(V,S) then
return (V,S)

else
((V0,S0), (V1,S1))← partition(V)
T0 ← create(V0,S0)
T1 ← create(V1,S1)
return (T0, T1,S)

end if

Function 2 cand(r, T)

Require: T = (T0, T1,S) if T is an intermediate node
or T = (V,S) if T is a leaf one.
if proceed enum(r,S) then
if leaf(T) then

return {r′ ∈ V : ρ(ψ(r) ∧ ψ(r′)) ≥ d− 2}
else

return cand(r, T0) ∪ cand(r, T1)
end if

else
return ∅

end if

auxiliary data S is used to check whether such rays can
be found in the subsequent leaf nodes. If that is not the
case, the current branch is abandoned. This decision is
made by the generic function proceed enum.

Verification. Here a binary tree is constructed for the
set Vdeg

i = {r ∈ VE
i : ρ(ψ(r)) > d − 1} and then tra-

versed once for each feasible pair (r′, r′′) produced in
the narrowing phase. If no partial match according to
Lemma 1 is found then the corresponding rays are adja-
cent. The query implementation is given in Function 3
where proceed ver is a generic function using the auxil-
iary data S in order to check whether a certain branch
can produce a match.

3 Bit Pattern Trees

In this section, we give the implementation of all generic
functions for bp-trees and present the query bits neu-
tralization method.

Implementation. The partitioning process for bp-
trees is given in Function 4. It selects a vector q ∈
{0, 1}n with exactly one zero bit and groups all extreme
rays r for which q is a valid over-approximation of ψ(r)
into V0 and all others into V1. For each of the resulting
subsets Vk, k ∈ {0, 1}, an active set union uVk over all
ψ(r), r ∈ Vk, is generated and attached to the corre-
sponding tree node as an auxiliary data. It represents
an over-approximation of the active set for each extreme

Function 3 ver(r′, r′′, T)

Require: T = (T0, T1,S) if T is an intermediate node
or T = (V,S) if T is a leaf one.
e← ψ(r′) ∧ ψ(r′′)
if proceed ver(e,S) then
if leaf(T) then

if ∃r′′′ ∈ V \ {r′, r′′} : e < ψ(r′′′) then
return false

else
return true

end if
else

return ver(r′, r′′, T0) and ver(r′, r′′, T1)
end if

else
return true

end if

Function 4 partitionbpt(V)

Let q ∈ {0, 1}n and ρ(q̄) = 1
V0 ← {r ∈ V : ψ(r) ≤ q} ;V1 ← V \ V0
uV0 ←

∨
r∈V0

ψ(r); uV1 ←
∨

r∈V1
ψ(r)

return ((V0, uV0), (V1, uV1))

ray contained in one of the subsequent leaf nodes. Con-
sequently, applying Corollary 3 or Lemma 1 on uVk can
in some cases indicate the result for all extreme rays
stored in the subsequent leaf nodes. The implementa-
tion of proceed enum (see Function 5) and proceed ver
(see Function 6) for bp-trees rests on the above impli-
cation.

Function 5 proceed enumbpt(r,S)

Require: S = uV
if ρ(ψ(r) ∧ uV) ≥ d− 2 then
return true

else
return false

end if

Query Bits Neutralization. Using the vector q, at each
partitioning step we can influence all active set unions
in the left branch by defining a specific position at which
their value is zero. Consequently, we can use this fact
to stimulate the elimination of branches from the search
procedures in both phases. In the narrowing phase,
for example, we can intendedly plant zeros on positions
which are likely to meet nonzero ones in the query input
ψ(r). The idea is to neutralize those positions in ψ(r)
which are likely to be 1 and thus reduce the value of
ρ(ψ(r)∧uV) as much as possible. We call the so chosen
zero positions neutralizers. The determination of the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

99

25th Canadian Conference on Computational Geometry, 2013

Function 6 proceed verbpt(e,S)

Require: S = uV
if e < uV then
return true

else
return false

end if

neutralizers can be done at the beginning of the nar-
rowing phase by analyzing the set of all query inputs.
Thus, if the bp-tree is built out of V+

i then each vector
q is extracted out of V−i .

Neutralizers are also applicable in the verification
phase as each zero position in uV which is nonzero in e
leads to termination of the search in the current branch.
In this phase, however, analyzing the input data may
cause a substantial overhead due to its generally large
size. For those cases, the sets V+

i and V−i could be used
to determine the neutralizers instead as e ∈ (V+

i ×V−i).
There are two major metrics to evaluate the quality

of the query bits neutralization. First, the probability
of each neutralizer to meet a nonzero bit for some ar-
bitrary query input. We call this a hit probability. Sec-
ond, the number of neutralizers per active set union. It
should be pointed out that those two factors may eas-
ily build a trade-off. A good neutralizer according to
the first metric might also produce a bad partitioning
where |V0| << |V1| (see Function 4). In those cases,
the impact of the neutralizer is considerably reduced as
it will be planted only in a small fraction of the subse-
quent active set unions. Consequently, for an effective
neutralizer selection both hit probability and potential
partitioning should be taken into account.

4 Vantage Point Trees

In this section, we give the implementation of all generic
functions for vp-trees.

In the partition function (see Function 7) we select
an arbitrary extreme ray v ∈ V, the so called vantage
point, and measure the distance from v to all other rays
in V using the distance function

δ(v, r) = ρ(ψ(v))− ρ(ψ(v) ∧ ψ(r)).

Let δmax be the maximal measured distance. The set
V is then split by selecting some arbitrary distance
l, 0 < l ≤ δmax, and grouping all rays r with δ(v, r) < l
into V0 and all others into V1. To each of the result-
ing subsets Vk, k ∈ {0, 1}, we attach as an auxiliary
data the active set union uVk , the vantage point v, the
distance range qVk and the population range pVk . The
distance range qVk is a closed interval bounded by the
minimal and maximal distance from v to any ray in Vk.
The population range pVk is a closed interval bounded

Function 7 partitionvpt(V)

Let v ∈ V
δmax ← δ(v, r) with r ∈ V : ∀r′ ∈ V, δ(v, r) ≥ δ(v, r′)
Let l ∈ (0, δmax]
V0 ← {r ∈ V : δ(v, r) < l} ;V1 ← V \ V0
uV0 ←

∨
r∈V0

ψ(r); uV1 ←
∨

r∈V1
ψ(r)

qV0 ← [0, l − 1]; qV1 ← [l, δmax]
pV0 ← [pmin0 , pmax0] where
∀r0 ∈ V0, pmin0

≤ ρ(ψ(r0)) ≤ pmax0

pV1 ← [pmin1
, pmax1

] where
∀r1 ∈ V1, pmin1

≤ ρ(ψ(r1)) ≤ pmax1

S0 ← (uV0 , v, qV0 , pV0); S1 ← (uV1 , v, qV1 , pV1)
return ((V0,S0), (V1,S1))

by the minimal and maximal population of the elements
in Vk. With respect to the narrowing phase, the imple-

Function 8 proceed enumvpt(r,S)

Require: S = (uV , v, qV , pV) with qV = [qmin, qmax]
and pV = [pmin, pmax]
c1 ← ρ(ψ(r)) + δ(v, r)− qmin

c2 ← pmax + qmax − δ(v, r)
if c1 ≥ d− 2 and c2 ≥ d− 2 then
return true

else
return false

end if

mentation of proceed enum (see Function 8) rests on
the implication given in the following Lemma 4.

Lemma 4 If the extreme rays r′, r′′ ∈ VE are adjacent
then for any v ∈ VE

ρ(ψ(r′)) + δ(v, r′)− δ(v, r′′) ≥ d− 2 and

ρ(ψ(r′′)) + δ(v, r′′)− δ(v, r′) ≥ d− 2.

Let in the context of Lemma 4 r′ be the argument r from
Function 8. Then for r′′ we use the intervals qV and pV
as an over-approximation for the distance δ(v, r′′) and
the population ρ(ψ(r′′)). As a consequence, the traver-
sal of a certain tree branch needs to be proceeded only if
the inequations given in Lemma 4 hold for any distance
from qV and any population from pV . Otherwise the
nonexistence of feasible candidates in the subsequent
leaf nodes is guaranteed.

For the implementation of proceed ver (see Func-
tion 9) we apply the condition defined in Lemma 5. In
a similar way, for the distance δ(v, r′′′) and the popu-
lation ρ(ψ(r′′′)) we use the ranges qV and pV from the
auxiliary data. In order to maximize the branch elim-
ination the conditional function for bp-trees is invoked
as an additional criterion.

The proofs of Lemmas 4 and 5 can be found in the
full version of the paper.

25th Canadian Conference on Computational Geometry, 2013

100

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Lemma 5 If r′, r′′, r′′′ ∈ VE are extreme rays such that
e < ψ(r′′′) for e = ψ(r′) ∧ ψ(r′′) then for any v ∈ VE

ρ(ψ(v) ∧ e) ≤ ρ(ψ(v))− δ(v, r′′′) and

ρ(ψ(v) ∧ e) ≤ ρ(ψ(r′′′))− ρ(ψ(v)) + δ(v, r′′′).

Function 9 proceed vervpt(e,S)

Require: S = (uV , v, qV , pV) with qV = [qmin, qmax]
and pV = [pmin, pmax]
c1 ← ρ(ψ(v) ∧ e)− ρ(ψ(v)) + qmin

c2 ← ρ(ψ(v) ∧ e) + ρ(ψ(v))− pmax − qmax

if (c1 ≤ 0 and c2 < 0) or (c1 < 0 and c2 ≤ 0) then
return proceed verbpt(e, uV)

else
return false

end if

5 Results

In this section, we present the results from a small study
comparing the performance of bp-trees, bt-qbn-trees
and vp-trees. We used our own implementation of the
double description method1 in order to apply the vertex
and facet enumeration on different polytopes. Those in-
cluded samples from the work of Avis et al. [1, 2] and
a small collection of cut [5], metric [14] and randomly
generated 0/1 polytopes by polymake [17]. Table 1 sum-
marizes the results for the cut polytope c7, the metric
one m7, the product of cyclic polytopes cyc4 26 2, the
product of two simplices and a cube glue54, the trun-
cated polytope trunc50 and three randomly generated
0/1 polytopes, one of which was joined with a hyper-
cube.

d bp-trees bp-qbn-trees vp-trees
cyc4 26 2 9 118.6 75.2 117.5
c7 22 110.4 53.0 102.9
m7 22 3463.8 1028.1 9393.9
rnd36 22 1391.8 206.4 319.2
rndcube 31 756.3 715.2 137.9
trunc50 51 470.0 582.7 421.0
glue54 55 22.9 7.3 5.5
rnd64 59 277.6 222.0 168.1

Table 1: Sum of narrowing and verification time (s)

On the basis of the experimental results, we outlined
four major tendencies. First, vp-trees scaled best with
growing dimensionality. This is visible, for instance, in
the calculation times for rnd36 and rnd64, which are
similar problems in a different dimension. Second, bp-
qbn-trees were not suitable for problems where only a

1Available at www.informatik.uni-bremen.de/agbs/bgenov

0

0.2

0.4

0.6

0.8

1

26 28 30 32 34 36 38 40

O
P
S
P
E
R
Q
U
E
R
Y
−
lo
g
2
(|V

+ i
|)

|V
+ i
|−

lo
g
2
(|V

+ i
|)

Iteration step i

O(
∣∣∣V−

i

∣∣∣× log(
∣∣∣V+

i

∣∣∣))

O(
∣∣∣V−

i

∣∣∣×
∣∣∣V+

i

∣∣∣)bp-trees
bp-qbn-trees

vp-trees

Figure 2: Narrowing phase for c7 (snapshot).

small amount of data was processed at each step as the
overhead for selecting neutralizers could not be compen-
sated (see trunc50). Third, the performance of vp-trees
was very sensitive to the size of the population range pV
(see Function 8). The wider the range the worse the per-
formance. Figure 2 illustrates the complexity of the nar-

0

0.2

0.4

0.6

0.8

1

326 328 330 332 334 336 338 340 342

O
P
S
P
E
R
Q
U
E
R
Y
−
lo
g
2
(|V

d
e
g

i
|)

lo
g
3 2
(|V

d
e
g

i
|)−

lo
g
2
(|V

d
e
g

i
|)

Iteration step i

O(log(
∣∣∣Vdeg

i

∣∣∣))

O(log(
∣∣∣Vdeg

i

∣∣∣)3)bp-trees
bp-qbn-trees

vp-trees

Figure 3: Verification phase for glue54 (snapshot).

rowing phase for c7. For the majority of steps vp-trees
could not reach the efficiency of the bp-qbn-trees due to
the size of the population range. In the final steps pV
narrowed down which eventually boosted the vp-trees
performance. In comparison, the verification phase of
glue54 (see Figure 3) illustrates a scenario with minimal
population ranges. Finally, vp-trees showed consider-
ably better results for rndcube which is a problem with
an extremely high rate of negative tests in the verifi-
cation phase. In the most time consuming steps, more
than 99.99% of the tests were negative. In comparison,
for m7 this rate remained between 95 and 99%.

It is worth mentioning that for the generation of the
complexity charts the invocation of proceed enumvpt|bpt
and proceed verbpt counted as one operation. The
execution of proceed vervpt might have produced

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

101

25th Canadian Conference on Computational Geometry, 2013

up to two operations due to the potential call to
proceed verbpt.

6 Conclusion

In this paper, we revisited the application of bp-trees
within incremental extreme ray enumeration algorithms
and proposed a dynamic optimization of the trees with
regard to the particular input problem. For most of the
investigated problems a reduction in the overall calcu-
lation time was achieved. Furthermore, we examined
the general suitability of vp-trees as an alternative data
structure and presented problems for which vp-trees
outperformed bp-trees. Still, further improvements are
necessary so that vp-trees become competitive in the
general case.

References

[1] D. Avis and D. Bremner. How good are convex hull
algorithms? In Proceedings of the eleventh annual sym-
posium on Computational geometry, SCG ’95, pages 20–
28, New York, USA, 1995. ACM.

[2] D. Avis, D. Bremner, and R. Seidel. How good are con-
vex hull algorithms? Computational Geometry: Theory
and Applications, 7:265–301, 1997.

[3] D. Avis and K. Fukuda. A pivoting algorithm for con-
vex hulls and vertex enumeration of arrangements and
polyhedra. In Proceedings of the seventh annual sympo-
sium on Computational geometry, SCG ’91, pages 98–
104, New York, USA, 1991. ACM.

[4] D. Avis and K. Fukuda. Reverse search for enumer-
ation. Discrete Applied Mathematics, 65(13):21–46,
1996.

[5] F. Barahona and A. R. Mahjoub. On the cut polytope.
Mathematical Programming, 36(2):157–173, 1986.

[6] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9):509–517, 1975.

[7] J. L. Bentley. A survey of techniques for fixed radius
near neighbor searching. Technical report, Stanford,
CA, USA, 1975.

[8] J. L. Bentley. Multidimensional divide-and-conquer.
Commun. ACM, 23(4):214–229, 1980.

[9] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower
bounds for high dimensional nearest neighbor search
and related problems. In Proceedings of the thirty-
first annual ACM symposium on Theory of computing,
STOC ’99, pages 312–321, New York, USA, 1999. ACM.

[10] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual
methods for vertex and facet enumeration. Discrete &
Computational Geometry, 20:333–357, 1998.

[11] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete & Computational Geometry,
10:377–409, 1993.

[12] N. V. Chernikova. Algorithm for finding a general for-
mula for the non-negative solutions of system of linear
inequalities. U.S.S.R. Computational Mathematics and
Mathematical Physics, 5:228–233, 1965.

[13] K. L. Clarkson and P. W. Shor. Algorithms for diame-
tral pairs and convex hulls that are optimal, random-
ized, and incremental. In Proceedings of the fourth an-
nual symposium on Computational geometry, SCG ’88,
pages 12–17, New York, 1988. ACM.

[14] A. Deza, K. Fukuda, D. Pasechnik, and M. Sato. On
the skeleton of the metric polytope. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 125–136. Springer, 2001.

[15] H. Edelsbrunner. Algorithms in combinatorial geome-
try. Springer-Verlag, New York, 1987.

[16] K. Fukuda and A. Prodon. Double description method
revisited. In Combinatorics and Computer Science.
Springer-Verlag, Berlin/Heidelberg, 1996.

[17] E. Gawrilow and M. Joswig. polymake: a framework
for analyzing convex polytopes. In Polytopes — Com-
binatorics and Computation. Birkhäuser, 2000.

[18] L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni,
and V. Gurvich. Generating all vertices of a poly-
hedron is hard. Discrete & Computational Geometry,
39(1-3):174–190, 2008.

[19] H. Le Verge. A note on Chernikova’s Algorithm. Tech-
nical Report 635, IRISA, Rennes, France, 1992.

[20] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M.
Thrall. The double description method, in Contribu-
tions to the Theory of Games, volume II, pages 51–73.
Princeton University Press, 1953.

[21] C. Posthoff and B. Steinbach. Logic functions and equa-
tions: Binary models for computer science. Springer,
Dordrecht, The Netherlands, 2004.

[22] R. Rivest. Partial-match retrieval algorithms. SIAM
Journal on Computing, 5(1):19–50, 1976.

[23] R. Seidel. A convex hull algorithm optimal for point
sets in even dimensions. Technical report, Vancouver,
Canada, 1981.

[24] R. Seidel. Output-size sensitive algorithms for construc-
tive problems in computational geometry. PhD thesis,
Ithaca, USA, 1987.

[25] M. Terzer and J. Stelling. Accelerating the computa-
tion of elementary modes using pattern trees. In Pro-
ceedings of the 6th international conference on Algo-
rithms in Bioinformatics, WABI ’06, pages 333–343,
Berlin/Heidelberg, 2006. Springer-Verlag.

[26] M. Terzer and J. Stelling. Large-scale computation of
elementary flux modes with bit pattern trees. Bioinfor-
matics, 24:2229–2235, 2008.

[27] J. K. Uhlmann. Metric trees. Applied Mathematics
Letters, 4(5):61–62, 1991.

[28] P. N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
Proceedings of the fourth annual ACM-SIAM Sympo-
sium on Discrete algorithms, SODA ’93, pages 311–321,
Philadelphia, PA, USA, 1993. SIAM.

25th Canadian Conference on Computational Geometry, 2013

102

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Fault Tolerant Clustering Revisited

Nirman Kumar∗ Benjamin Raichel †

Abstract

In discrete k-center and k-median clustering, we are
given a set of points P in a metric space M , and the
task is to output a set C ⊆ P, |C| = k, such that the
cost of clustering P using C is as small as possible. For
k-center, the cost is the furthest a point has to travel
to its nearest center, whereas for k-median, the cost is
the sum of all point to nearest center distances. In the
fault-tolerant versions of these problems, we are given
an additional parameter 1 ≤ ` ≤ k, such that when
computing the cost of clustering, points are assigned to
their `th nearest-neighbor in C, instead of their near-
est neighbor. We provide constant factor approximation
algorithms for these problems that are both conceptu-
ally simple and highly practical from an implementation
stand-point.

1 Introduction

Two of the most common clustering problems are k-
center and k-median clustering. In both these prob-
lems, the goal is to find the minimum cost partition of
a given point set P into k clusters. Each cluster is de-
fined by a point in the set of cluster centers, C ⊆ P,
where |C| = k. In k-center clustering, the cost is the
maximum distance of a point to its assigned cluster cen-
ter, and in k-median clustering, the cost is the sum of
distances of points to their assigned cluster center. In
both cases, given a set of cluster centers C, a point is
assigned to its closest center in C. Both these prob-
lems are NP-hard for most metric spaces. Hochbaum
and Shmoys showed that k-center clustering has a 2-
approximation algorithm, but for every ε > 0 it cannot
be approximated to better than (2 − ε) unless P=NP
[8]. A 2-approximation was also provided by Gonzalez
[5], and by Feder and Greene [4]. For k-median, the
best known approximation factor is 1 +

√
3 + ε. This

is a recent result of Li and Svensson [13], but the ap-
proximation version of the k-median problem has a long
history, and before the result of Li and Svensson, the
best known result was by Arya et al. [2], that achieved
an approximation factor of (3 + ε) for any ε > 0, us-
ing local search. In general metric spaces, k-median is

∗University of Illinois; nkumar5@illinois.edu; http://www.

cs.uiuc.edu/~nkumar5/.
†University of Illinois; raichel2@illinois.edu; http://www.

cs.uiuc.edu/~raichel2/.

also APX hard. Jain et al. showed that k-median is
hard to approximate within a factor of 1 + 2/e ≈ 1.736
[9]. In Euclidean spaces, the k-center problem remains
APX-hard [4], while k-median admits a PTAS [1, 11, 7].

Fault-Tolerance. As mentioned earlier, in both the k-
center and k-median problems, each point is assigned
to its closest center. Consider a realistic scenario where
k-center clustering is used to decide in which k of n
cities, certain facilities (say Sprawlmarts or hospitals)
are opened, so that for clients in the n cities, their max-
imum distance to a facility is minimized. Once the k
cities are decided upon, clearly each client goes to its
nearest such facility when it requires service. Due to fa-
cility downtimes however, sometimes clients may need
to go to their second closest, or third closest facility.
Thus, in the fault-tolerant version of the k-center prob-
lem, we say that the cost of a client is the distance to
its `th nearest facility for some fixed 1 ≤ ` ≤ k. The
problem now is to find a set of k centers so that the
worst case cost is minimized, where in the worst case
each client actually goes to its `th nearest facility, and
the cost of clustering is the maximum distance traveled
by any client.

The fault-tolerant k-center problem was first stud-
ied by Krumke [12], who gave a 4-approximation algo-
rithm for this problem. Chaudhuri et al. provided a
2-approximation algorithm for this problem [3], which
is the best possible under standard complexity theo-
retic assumptions. In both these papers, the version
considered, differs slightly from ours in that one only
considers points which are not centers when comput-
ing the point that has the furthest distance to its `th
closest center. Khuller et al. [10] later considered both
versions of the k-center problem. Their first version is
the same as ours, i.e. the cost is the maximum distance
of any point (including centers) to its `th nearest cen-
ter. They gave a 2-approximation when ` < 4 and a
3-approximation otherwise. Their second version is the
same as that of Krumke [12]. For this version, they pro-
vided a 2-approximation algorithm matching the result
of Chaudhuri et al. [3].

For k-median clustering, a fault-tolerant version has
been considered by Swamy and Shmoys [14]. However,
our version is different from theirs.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

103

25th Canadian Conference on Computational Geometry, 2013

Our Contribution. Our main contribution is in pro-
viding and proving the correctness of a natural tech-
nique for fault-tolerant clustering. In particular, letting
m = bk/`c, we show that given a set of centers which
is a constant factor approximation to the optimal m-
center (resp. m-median) clustering, one can easily com-
pute a set of k centers whose cost is a constant fac-
tor approximation to the optimal fault-tolerant k-center
(resp. k-median) clustering. Specifically, in order to
turn the non-fault-tolerant solution into a fault-tolerant
one, simply add for each point of the m center set, its `
nearest neighbors in P. In other words, our main con-
tribution is in proving a relationship between the fault-
tolerant and non-fault-tolerant cases, specifically that
the non-fault-tolerant solution for m centers is already
a near optimal fault-tolerant solution in that, up to a
constant factor, it is enough to “reinforce” the current
center locations rather than looking for new ones.

For fault-tolerant k-center we prove that if one applies
this post-processing technique to any c-approximate so-
lution to the non-fault-tolerant problem with m centers,
then one is guaranteed a (1 + 2c)-approximation to the
optimal fault-tolerant clustering. Similarly, for fault-
tolerant k-median we show this post processing tech-
nique leads to a (1 + 4c)-approximation.

Our second main result is that using the algorithm
of Gonzalez [5] for the initial m-center solution, gives a
tighter approximation ratio guarantee. Specifically, we
get a 3-approximation when `|k, and a 4-approximation
otherwise, for fault-tolerant k-center. Additionally, on
the median side, to the best of our knowledge, we are the
first to consider this particular variant of fault-tolerant
k-median clustering.

The approximation ratios of our algorithms are rea-
sonable but not optimal. However, the authors feel that
the algorithms more than make up for this in their con-
ceptual simplicity and practicality from an implemen-
tation stand-point. Notably, if one has an existing im-
plementation of an m-center or an m-median clustering
approximation algorithm, one can immediately turn it
into a fault-tolerant clustering algorithm for k centers
with this technique.

Organization. In Section 2 we set up notation and for-
mally define our variants for the fault-tolerant k-center
and k-median problems. In Section 3 we review the al-
gorithm of Gonzalez [5], and present our algorithms for
the fault-tolerant k-center and k-median problems. In
Section 4 we analyze the approximation ratios of our
algorithm. We conclude in Section 5.

2 Preliminaries

We are given a set of n points P = {p1, . . . , pn} in a
metric space M . Let d(p, p′) denote the distance be-

tween the points p and p′ in M . For a point p ∈ M ,
and a number x ≥ 0, let ball (p, x) denote the closed
ball of radius x with center p. For a point p ∈ M , a
subset S ⊆ P, and an integer 1 ≤ i ≤ |S|, let di(p, S)
denote the radius of the smallest (closed) ball with cen-
ter p that contains at least i points in the set S. Let
nni(p, S) denote the ith nearest neighbor of p in S, i.e.
the point in S such that d(p, nni(p, S)) = di(p, S).1 Let
NNi(p, S) = ∪ij=1{nnj(p, S)} be the set of i nearest
neighbors of p in S. By definition, for 1 ≤ i ≤ |S|,
|NNi(p, S)| = i. The following is an easy observation.

Observation 2.1 For any fixed Q ⊆ P and integer
1 ≤ i ≤ |Q|, the function di(·, Q) is a 1-Lipschitz func-
tion of its argument, i.e., for any p, q ∈ M , di(p, Q) ≤
di(q, Q) + d(p, q).

2.1 Problem Definitions

Problem 2.2 (Fault-tolerant k-center) Let P be a
set of n points in M , and let k and ` be two given integer
parameters such that 1 ≤ ` ≤ k ≤ n. For a subset
C ⊆ P, we define the cost function µ(P, C) as,

µ(P, C) = max
p∈P

d`(p, C) .

The fault-tolerant k-center problem, denoted
FTC(P, k, `), is to compute a set C∗ with |C∗| = k
such that,

µ(P, C∗) = min
C⊆P,|C|=k

µ(P, C) .

For a given instance of FTC(P, k, `), we call C∗ the
optimum solution and we let ropt denote its cost, i.e.
ropt = µ(P, C∗). The classical k-center clustering
problem on a point set P is FTC(P, k, 1), and is referred
to as the non-fault-tolerant k-center problem.

Problem 2.3 (Fault-tolerant k-median) Let P be
set of n points in M , and let k and ` be two given inte-
ger parameters such that 1 ≤ ` ≤ k ≤ n. For a subset
C ⊆ P, we define the cost function µ(P, C) as,

µ(P, C) =
∑

p∈P
d`(p, C) .

The fault-tolerant k-median problem, denoted
FTM(P, k, `), is to compute a set C∗ with |C∗| = k
such that,

µ(P, C∗) = min
C⊆P,|C|=k

µ(P, C) .

For a given instance of FTM(P, k, `), we call C∗ the
optimum solution and we let σopt denote its cost, i.e.
σopt = µ(P, C∗). The classical k-median clustering
problem on a point set P is FTM(P, k, 1), and is referred
to as the non-fault-tolerant k-median problem.

1In case of non unique distances, we use the standard technique
of lexicographic ordering of the pairs (d(p, pj) , j) to ensure that
the 1st, 2nd, . . . , |S|th, nearest-neighbors of p are all unique.

25th Canadian Conference on Computational Geometry, 2013

104

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

3 Algorithms

Our algorithms for both problems, FTC(P, k, `) and
FTM(P, k, `), have the same structure. In the first
step they run an approximation algorithm for the non-
fault-tolerant version of the respective problem, for
m = bk/`c centers, and in the second step, the solution
output by the first step is added to in a straightforward
manner described below. Notice that for either fault-
tolerant problem, any approximation algorithm for the
non-fault-tolerant version can be used in the first step.
In particular, we prove that if the chosen algorithm for
this first step is a c-approximation algorithm for the
non-fault-tolerant problem for m centers, then the set
we output at the end of step two will be a (1 + 2c)-
approximation (resp. (1 + 4c)-approximation) for the
fault-tolerant k-center (resp. k-median) problem with k
centers.

Natural choices to use for our non-fault-tolerant m-
median algorithm include the local search algorithm of
Arya et al. [2], which is favored for its combinatorial
nature, and simplicity of implementation, or the recent
algorithm by Li and Svensson [13], which facilitates a
slight improvement in the approximation factor. For the
algorithms of Arya et al. and that of Li and Svennson
we refer the reader to the respective papers, as knowl-
edge of these algorithms is not required for understand-
ing our algorithm. We let Am(P,m) denote the chosen
approximation algorithm for m-median.

Similarly, we let Ac(P,m) denote the chosen approx-
imation algorithm for non-fault-tolerant m-center. Per-
haps the most natural choice for our m-center algorithm
is the 2-approximation algorithm by Gonzalez [5]. In
fact, in Section 4.2.1 we show that this particular choice
leads to a simpler analysis than the general case, and
produces a much tighter approximation ratio guarantee.
Since knowledge of the algorithm of Gonzalez is needed
for this analysis, we briefly review this algorithm below
in Section 3.2.

3.1 Fault-tolerant algorithms

We now describe the algorithms for fault-tolerant k-
center and fault-tolerant k-median, that is FTC(P, k, `)
and FTM(P, k, `).

For the problem FTC(P, k, `) (resp. FTM(P, k, `))
first run the algorithm Ac(P,m) (resp. Am(P,m)). Let
Q ⊆ P denote the set of m centers output, and let Q =
{q1, . . . , qm}. Then the set of centers we output for our
fault-tolerant solution is, C =

⋃m
i=1 NN`(qi,P). That is,

we take the ` nearest neighbors of each point qi in P,
for i = 1, . . . ,m. We only use this set C in the analysis.
If however C has less than k points, we can throw in
k − |C| additional points chosen arbitrarily from P \C,
since adding additional centers can only decrease the
cost of our solution.

Let Afc(P, k, `) and Afm(P, k, `) denote these algo-
rithms for FTC(P, k, `) and FTM(P, k, `), respectively.

3.2 The algorithm of Gonzalez

We now describe the 2-approximation algorithm for the
m-center problem, due to Gonzalez [5]. Gonzalez’s algo-
rithm builds a solution set C iteratively. To kick-start
the iteration, we let C = {p} where p ∈ P is an arbi-
trary point. Until m points have been accumulated, the
algorithm repeatedly looks for the furthest point in P to
the current set C, and adds the found point to C. More
formally, at each step we compute arg maxq∈P d(q, C),
and add it to C.

This algorithm is not only simple from a conceptual
stand-point, but also in regards to implementation and
running time. Indeed, by just maintaining for each point
in P, its current nearest center among C, the above al-
gorithm can be implemented in O(n) time per iteration,
for a total time of O(nm). As mentioned earlier, the re-
sult of Hochbaum and Shmoys [8] implies that the ap-
proximation factor for this algorithm for general metric
spaces, is the best possible.

4 Results and Analysis

We now present our results and their proofs. Our
first result, is that using a factor c-approximation algo-
rithm for Am(P,m) in the algorithm Afm(P, k, `) gives
a (1 + 4c)-approximation algorithm for the problem
FTM(P, k, `). The structure of the k-center prob-
lem allows us to use a nearly identical analysis except
with one simplification, yielding an improved (1 + 2c)-
approximation algorithm for the problem FTC(P, k, `).
Our second result, shows that if one uses the algorithm
of Gonzalez [5] for the subroutine Ac(P,m), then one
can guarantee a tighter approximation ratio of 4 (or 3 if
l|k), as opposed to the 5 guaranteed by our first result.

4.1 Analysis for fault-tolerant k-median

Theorem 4.1 For a given point set P in a metric space
M with |P| = n, the algorithm Afm(P, k, `) achieves
a (1 + 4c)-approximation to the optimal solution of
FTM(P, k, `), where c is the approximation guarantee
of the subroutine Am(P,m), where m = bk/`c.

As a corollary we have,

Corollary 4.2 There is a 12-approximation algorithm
for the problem FTM(P, k, `).

Proof. We use the (1 +
√

3 + ε)-approximation algo-
rithm of Li and Svennson [13] with a small enough ε,
for the subroutine Am(P,m). The result follows by ap-
pealing to Theorem 4.1. �

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

105

25th Canadian Conference on Computational Geometry, 2013

Proof of Theorem 4.1

We refer the reader to Section 2 for notation already
introduced. We need some more notation. For a given
instance of FTM(P, k, `), let C∗ = {w1, w2, . . . , wk} be
an optimal set of centers, and let σopt be its cost, i.e,
σopt =

∑
p∈P d`(p, C

∗). Let C = {c1, . . . , ck} be the set
of centers returned by Afm(P, k, `), and σalg its cost.

Let m = bk/`c, and let σmed denote the cost of
the optimum m-median clustering on P, i.e., the opti-
mum for the problem FTM(P,m, 1). When Afm(P, k, `)
is run, it makes a subroutine call to Am(P,m). Let
Q = {q1, . . . , qm} be the set of centers returned by this
subroutine call. We know that Q is a c-approximation
to the optimal solution to FTC(P,m, 1).

Notice that, C includes
⋃m

i=1 NN`(qi,P). We assume
that the set C has exactly k points. As mentioned ear-
lier, we only require that C includes

⋃m
i=1 NN`(qi,P) in

our analysis, and if |⋃m
i=1 NN`(qi,P)| < k, we can al-

ways add additional points. This can only decrease the
cost of clustering.

Proving the following two claims will immediately im-
ply σalg ≤ (1 + 4c)σopt.

Claim 4.3 We have that, σalg ≤ σopt + 2cσmed.

Claim 4.4 We have that, σmed ≤ 2σopt.

Proof of Claim 4.3: Let p ∈ P, and let q = nn1(p, Q).
By Observation 2.1, d`(p, C) ≤ d(p, q) + d`(q, C). As
NN`(q,P) ⊆ C, we have that d`(q,P) = d`(q, C). Again
by Observation 2.1, d`(q,P) ≤ d(q, p) + d`(p,P). Com-
bining the two inequalities gives, d`(p, C) ≤ 2d(p, q) +
d`(p,P) = 2d1(p, Q) + d`(p,P). Thus,

σalg =
∑

p∈P
d`(p, C) ≤

∑

p∈P
(2d1(p, Q) + d`(p,P))

≤ 2cσmed + σopt,

(1)

as Q is a c-approximate m-median solution, d`(p,P) ≤
d`(p, C

∗), and σopt =
∑

p∈P d`(p, C
∗).

The following is required to prove Claim 4.4, but is
interesting in its own right.

Lemma 4.5 Let M be any metric space. Let X ⊆ M
with |X| = t. Then for any integer 1 ≤ h ≤ t, and any
finite set Y ⊆M , there exists a subset S ⊆ Y, such that
(A) |S| ≤ t/h, and, (B) ∀y ∈ Y, d1(y, S) ≤ 2dh(y,X).

Proof. We give an algorithm to construct such a subset
S ⊆ Y. This subset is constructed by iteratively scoop-
ing out the points of the minimum radius ball containing
h points from X, adding the center to S, and repeating.
Formally, let W0 = ∅, and for i = 1, . . . , bt/hc, define it-

eratively, Xi = X\
(⋃i−1

j=0Wj

)
, yi = arg minv∈Y dh(v,Xi),

and, Wi = NNh(yi,Xi). We prove that S =
⋃bt/hc

i=1 {yi},
is the desired subset of points.

First, clearly |S| ≤ t/h. Let y ∈ Y, and let b =
ball (y, x), where x = dh(y,X). Let Wi be the first sub-
set, i.e. the one with smallest index i, such that there
exists some point w ∈ b ∩Wi. Such a point must ex-

ist, since fewer than h points are in X \
(⋃bt/hc

j=1 Wj

)
,

while |b ∩ X| ≥ h. Clearly b ∩ X ⊆ Xi, as i is the min-
imum index such that b ∩Wi 6= ∅. As such we have,
dh(y,X) = dh(y,Xi). Let ri = dh(yi,Xi), be the radius
of the ball that scooped out Wi. Clearly ri ≤ x, as

x = dh(y,X) = dh(y,Xi) ≥ ri = arg min
v∈Y

dh(v,Xi) .

Now, since w ∈ b ∩Wi, d(yi,w) ≤ ri = dh(yi,Xi). By
the triangle inequality,

d1(y, S) ≤ d(y, yi) ≤ d(y,w) + d(w, yi) ≤ x+ ri ≤ 2x

= 2dh(y,X) .

�

Proof of Claim 4.4: We use Lemma 4.5 with Y = P,
X = C∗, t = |C∗| = k and h = `. Let S be the subset
of P guaranteed by Lemma 4.5. Now |S| ≤ k/`, and as
such |S| ≤ m. We have,

σmed ≤
∑

p∈P
d1(p, S) ≤

∑

p∈P
2d`(p, C

∗) = 2σopt. (2)

The first inequality follows since σmed is the cost of the
optimum m-median clustering of P, while

∑
p∈P d1(p, S)

is the cost of a |S|-median clustering of P by the set of
centers S ⊆ P with |S| ≤ m. The second inequality
follows from Lemma 4.5.
This concludes the proof of Theorem 4.1.

4.2 Analysis for fault-tolerant k-center

We now present the analogues result to Theorem 4.1 for
fault-tolerant k-center. By following the proof nearly
verbatim from the previous section one sees that simi-
lar to Afm(P, k, `), Afc(P, k, `) also provides a (1 + 4c)-
approximation. However, in this case we will actually
get a (1 + 2c)-approximation, since now an improved
and simpler version of Claim 4.3 holds.

As a quick note on notation, here ralg, ropt, and rcen
will play the analogues role for center as σalg, σopt, and
σmed played for median.

Claim 4.6 We have that, ralg ≤ ropt + 2crcen.

Proof of Claim 4.6: Let p ∈ P, and let q =
nn1(p, Q). By Observation 2.1, d`(p, C) ≤ d(p, q) +
d`(q, C) = d(p, q) + d`(q,P), where the equality follows
since NN`(q,P) ⊆ C. Thus,

ralg = max
p∈P

d`(p, C) ≤ max
p∈P

(d1(p, Q) + d`(q,P))

≤ 2crcen + ropt,
(3)

25th Canadian Conference on Computational Geometry, 2013

106

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

as Q is a c-approximate m-center solution, d`(q,P) ≤
d`(q, C

∗), and ropt = maxp∈P d`(p, C∗).

Theorem 4.7 For a given point set P in a metric space
M with |P| = n, the algorithm Afc(P, k, `) achieves
a (1 + 2c)-approximation to the optimal solution of
FTC(P, k, `), where c is the approximation guarantee
of the subroutine Ac(P,m), where m = bk/`c.

Proof. As stated above, the proof of this theorem is
very similar to the proof of Theorem 4.1. In fact, we
can repeat the proof of Theorem 4.1 almost word for
word, except that we need to replace the sum function∑
p∈P

by the max function, max
p∈P

. More specifically, this

needs to be done for Eq. (2) in the proof of Claim 4.4,
and to replace Eq. (1) from Claim 4.3 we instead use
the improved Eq. (3) from Claim 4.6. As the proof can
be reconstructed step-by-step from the detailed proof of
Theorem 4.1 by making these modifications, we omit it
for the sake of brevity. �

4.2.1 A tighter analysis when using Gonzalez’s al-
gorithm as a subroutine

If we use a 2-approximation algorithm for the subrou-
tine Ac(P,m), Theorem 4.7 implies that Afc(P, k, `) is
a 9-approximation algorithm. Here we present a tighter
analysis for the case when we use the 2-approximation
algorithm of Gonzalez [5] (see also Section 3.2) for the
subroutine Ac(P,m).

See Section 2 for definitions and notation introduced
previously. Some more notation is needed. Let C∗ =
{w1, w2, . . . , wk} be an optimal set of centers. Its cost,
ropt, is maxp∈P d`(p, C∗). Let C = {c1, . . . , ck} be the
set of centers returned by Afc(P, k, `), and let ralg be its
cost.

Let m = bk/`c, where for now we assume `|k, i.e, m =
k/`. As we show later, this assumption can be removed.
When Afc(P, k, `) is run, it makes a subroutine call to
Ac(P,m). As mentioned, in this section we require this
subroutine to be the algorithm of Gonzalez [5]. Let
Q = {q1, . . . , qm} be the set of centers returned by this
subroutine call. Additionally, let ri = d(qi, Qi−1) for
2 ≤ i ≤ m, where Qi−1 = {q1, . . . , qi−1}. We assume
m > 1, as the m = 1 case is easier.

The following is easy to see, and is used in the cor-
rectness proof for the algorithm of Gonzalez. See [6] for
an exposition.

Lemma 4.8 For i 6= j, d(qi, qj) ≥ rm.

Lemma 4.9 For any qi, NN`(qi, C
∗) ⊆ ball (qi, ropt)

and NN`(qi,P) ⊆ ball (qi, ropt).

Proof. The first claim follows since qi ∈ P and so
d`(qi, C

∗) ≤ ropt. As C∗ ⊆ P, the second claim fol-
lows. �

Lemma 4.10 We have that, ralg ≤ rm + ropt.

Proof. As in Gonzalez’s algorithm, we have rm =
maxp∈P d(p, Qm−1), and so d(p, Q) ≤ rm for any p ∈ P.
Consider any point p ∈ P, and let q = nn1(p, Q).
By how Afc(P, k, `) is defined, NN`(q,P) ⊆ C, and so
d`(q, C) = d`(q,P) ≤ d`(q, C

∗) ≤ ropt. By Obser-
vation 2.1 we have, d`(p, C) ≤ d(p, q) + d`(q, C) ≤
rm + ropt. �

Lemma 4.11 If ralg > 3ropt, then for any 1 ≤ i 6= j ≤
m, ball (qi, ropt) and ball (qj , ropt) are disjoint and each
contains at least ` centers from C∗.

Proof. Let qi and qj be any two distinct centers in
Q. By Lemma 4.8 and Lemma 4.10, d(qi, qj) ≥ rm ≥
ralg − ropt > 2ropt, which implies that, ball (qi, ropt) ∩
ball (qj , ropt) = ∅. Each ball contains ` centers from C∗

by Lemma 4.9. �

Lemma 4.12 We have that, ralg ≤ 3ropt.

Proof. Suppose otherwise that ralg > 3ropt. By
Lemma 4.11, for i = 1, . . . ,m, |ball (qi, ropt) ∩ C∗| ≥ `,
and for 1 ≤ i < j ≤ m, ball (qi, ropt) ∩ ball (qj , ropt) = ∅.
Assign all points in C∗ ∩ ball (qi, ropt) to qi. Notice, qi
is the unique point from Q within distance ropt for any
point assigned to it. Now |Q| = m = k/`, and each
point in Q gets at least ` points of C∗ assigned to it
uniquely. As such, there are at least m` = k points of
C∗ assigned to some point of Q. Since |C∗| = k, it fol-
lows that each center in C∗ gets assigned to a center in
Q within distance ropt. For p ∈ P, let v be its closest cen-
ter in C∗. Let q be v’s center from Q in distance ≤ ropt.
We have d(p, q) ≤ d(p, v) + d(v, q) ≤ ropt + ropt = 2ropt,
by the triangle inequality. As NN`(q,P) ⊆ C, we have
that d`(q, C) = d`(q,P) ≤ d`(q, C

∗) ≤ ropt. By Obser-
vation 2.1, we have that, d`(p, C) ≤ d`(q, C) + d(p, q) ≤
ropt + 2ropt = 3ropt. This implies ralg ≤ 3ropt, a contra-
diction. �

Theorem 4.13 For a given instance of FTC(P, k, `),
when using the algorithm of Gonzalez [5] for the subrou-
tine Ac(P,m), the algorithm Afc(P, k, `) achieves a 4-
approximation to the optimal solution to FTC(P, k, `),
and a 3-approximation when `|k.

Proof. The `|k case follows from Lemma 4.12. If `
does not divide k, the proof of Lemma 4.12 needs to
be changed as follows. Suppose, k = ` ∗ m + r for
some integer 0 < r < `. Let k′ = ` ∗ m. As in the
proof of Lemma 4.12, it follows from Lemma 4.11, that
if ralg > 3ropt, then at least k′ centers from C∗ will be
within distance at most ropt to a center in Q. There-
fore, there are at most k− k′ = r centers from C∗, that
are not within ropt to some point in Q. However, each
such center needs ` > r centers from C∗, to be within

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

107

25th Canadian Conference on Computational Geometry, 2013

distance ropt, and so each such center must be within
distance ropt from one of the centers of C∗ that is near
a center in Q, i.e. within distance ropt to some center
in Q. Hence, by the triangle inequality, each center in
C∗, has a center of Q within distance at most 2ropt. Re-
peating the argument of Lemma 4.12, with this different
upper bound, we get that ralg ≤ 4ropt. �

5 Conclusions

In this paper we investigated fault-tolerant variants of
the k-center and k-median clustering problems. Our al-
gorithm achieves a (1 + 2c)-approximation (resp. (1 +
4c)-approximation) factor, where c is the approxima-
tion factor for the non-fault-tolerant m-center (resp. m-
median) algorithm that we use as a subroutine. Using
a better analysis for the case of fault-tolerant k-center,
when we use Gonzalez’s algorithm as a subroutine, we
showed that our algorithm has a tighter approxima-
tion ratio of 4. For fault-tolerant k-median, we get a
(5 + 4

√
3 + ε) ≈ 12-approximation algorithm, by using

the recent algorithm of Li and Svensson as a subroutine
[13]. We can see several questions for future research.

• The best known approximation factor for the fault-
tolerant k-center problem is 2 by Chaudhuri et al.
[3] and Khuller et al. [10]. Their techniques are
based on the work of Hochbaum and Shmoys [8]
and Krumke [12]. Our algorithm, which leads to a
4-approximation for fault-tolerant k-center is based
on the 2-approximation to k-center by Gonzalez [5].
Can the algorithm or its analysis be improved to get
a factor 2-approximation? Also, can we deal with
the second variant of fault-tolerant k-center in the
work of Khuller et al.– which also happens to be
the version considered by Krumke and Chaudhuri
et al.?

• The fault-tolerant k-median variant that we inves-
tigate, is very different from the work of Swamy
and Shmoys [14], but their techniques are more
technically involved. As we show, we reduce the
fault-tolerant version to the non-fault-tolerant ver-
sion for a smaller number of centers. An important
question that arises is the following: Can the ver-
sion considered by Swamy and Shmoys be reduced
to the non-fault-tolerant version, or some variant
thereof, i.e., can we use some simpler problem as an
oracle to get a fault-tolerant k-median algorithm,
for the version of Swamy and Shmoys?

Acknowledgements

We would like to thank Sariel Har-Peled for useful dis-
cussions, and in particular for the discussion that led us
to think about this problem.

References

[1] S. Arora, P. Raghavan, and S. Rao. Approximation
schemes for Euclidean k-median and related prob-
lems. In Proc. 30th Annu. ACM Sympos. Theory
Comput., pages 106–113, 1998.

[2] V. Arya, N. Garg, R. Khandekar, K. Munagala,
and V. Pandit. Local search heuristic for k-median
and facility location problems. In Proc. 33rd Annu.
ACM Sympos. Theory Comput., pages 21–29, 2001.

[3] S. Chaudhuri, N. Garg, and R. Ravi. The
p-neighbor k-center problem. Inf. Proc. Lett.,
65(3):131–134, 1998.

[4] T. Feder and D. H. Greene. Optimal algorithms for
approximate clustering. In Proc. 20th Annu. ACM
Sympos. Theory Comput., pages 434–444, 1988.

[5] T. Gonzalez. Clustering to minimize the maxi-
mum intercluster distance. Theoret. Comput. Sci.,
38:293–306, 1985.

[6] S. Har-Peled. Geometric Approximation Algo-
rithms. Amer. Math. Soc., 2011.

[7] S. Har-Peled and S. Mazumdar. Coresets for k-
means and k-median clustering and their applica-
tions. In Proc. 36th Annu. ACM Sympos. Theory
Comput., pages 291–300, 2004.

[8] D. S. Hochbaum and D. B. Shmoys. A best possible
heuristic for the k-cener problem. Math. of Oper.
res., 10(2):180–184, 1985.

[9] K. Jain, M. Mahdian, and A. Saberi. A new greedy
approach for facility location problems. In Proc.
34th Annu. ACM Sympos. Theory Comput., pages
731–740, 2002.

[10] S. Khuller, R. Pless, and Y. J. Sussmann. Fault
tolerant k-center problems. Theor. Comput. Sci.,
242(1-2):237–245, 2000.

[11] S. G. Kolliopoulos and S. Rao. A nearly linear-time
approximation scheme for the Euclidean κ-median
problem. In Proc. 7th Annu. European Sympos.
Algorithms, pages 378–389, 1999.

[12] S. O. Krumke. On a generalization of the p-center
problem. Inf. Proc. Lett., 56:67–71, 1995.

[13] S. Li and O. Svensson. Approximating k-median
via pseudo-approximation. In Proc. 45th Annu.
ACM Sympos. Theory Comput., page to appear,
2013.

[14] C. Swamy and D. B. Shmoys. Fault-tolerant fa-
cility location. In Proc. 14th ACM-SIAM Sympos.
Discrete Algorithms, pages 735–736, 2003.

25th Canadian Conference on Computational Geometry, 2013

108

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Open Problems from CCCG 2012

Joseph S. B. Mitchell∗

On Wednesday afternoon, August 8, 2012, we held an
open problem session at the 24th Canadian Conference
on Computational Geometry, in Charlottetown, Prince
Edward Island, Canada. The following is a description
of the problems presented and discussed, as scribed by
Joe Mitchell, with follow-up comments and details writ-
ten by the problem posers.

Zippered Volume
Anna Lubiw
University of Waterloo
alubiw@math.uwaterloo.ca

Given a zipper of length 1, find a simply con-
nected 2D shape, S, with perimeter 2 such that the
3D body obtained by “zipping up” the boundary of
S has maximum volume. The problem is also in-
teresting when S is restricted to be a polygon. See
Figure 1. For more information, see [16].

Figure 1: These unfoldings show that with a zipper of
length 1 we can make a tetrahedron of side length 1

3 and
volume 44×10−4, or a cube with side length 1

7 and volume
29 × 10−4. The start and end of the zipper are marked
with dots, and the two sides of the zipper travel in opposite
directions around the perimeter from the start to the end.

Many people worked on this problem during the
conference, including (but not limited to) Sarah
Cannon, Jean-Lou De Carufel, Thomas Hackl, Ste-
fan Huber, Denis Khromov, Matias Korman, Joe
Mitchell, Vinayak Pathak, Diane Souvaine, Selim
Tawfik, Ryuhei Uehara, Hamideh Vosoughpour.

Denis Khromov suggested focusing on the final
shape of the zipper in 3D, which leads to the prob-
lem of finding a curve C of length 1 that maximizes
the volume of the convex hull of C. It turns out

∗Stony Brook University, Stony Brook, NY 11794-3600, USA,
Joseph.Mitchell@stonybrook.edu. Partially supported by grants
from the National Science Foundation (CCF-1018388) and the
Binational Science Foundation (BSF 2010074).

that this problem has a long history. For a closed
curve in 2D, it is the isoperimetric problem (see the
wikipedia page) and the solution is a circle. For an
open curve in 2D, the solution is a semicircle. For
an open curve in 3D this is problem A28 in Croft,
Falconer, and Guy [5]. From the exposition there
and in the paper of Tilli [23] it seems that the prob-
lem is solved for curves that do not cross any plane
more than 3 times. In this case, the optimum so-
lution is a circular helix, x = sin(t), y = cos(t),
z = t/

√
2, as t goes from 0 to 2π, which gives vol-

ume 102× 10−4. See Figure 2.

Figure 2: Among a large class of curves, the maximum
volume of the convex hull, 102 × 10−4, is achieved by a
helix, with convex hull and unfolding as shown.

Some people at CCCG found (suboptimal) solu-
tions based on cones. Sarah Cannon, Diane Sou-
vaine and I found one with a volume of 84× 10−4,
where the curve consists of two semicircles lying in
orthogonal planes. The 3D body consists of two
half-cones where each half-cone has a semicircular
base and an apex above one endpoint of the semi-
circle. See Figure 3.

Characterize Output of Poisson-Disk Process
Scott Mitchell
Sandia National Lab
samitch@sandia.gov

(This might be considered a problem in spatial

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

109

25th Canadian Conference on Computational Geometry, 2013

Figure 3: A volume of 84×10−4 is achieved by conjoined
half cones.

statistics, but there are ties to Delaunay refinement
and sphere packings.) Maximal Poisson-disk sam-
pling (MPS) is a particular statistical process for
generating a point cloud. The location for the next
point is chosen uniformly by area at random. A
point has an empty disk of radius r around it; if
a new point falls into a prior point’s disk, it is re-
jected and not added to the sample. The process
continues until the sampling is maximal: the entire
domain is covered by samples’ disks and there is no
room for another sample. Let the domain be a two-
dimensional square with periodic (toroidal) bound-
ary conditions, so there are no domain boundary
issues to consider. A math definition appears in
Ebeida et al. [9].

I am aware of no analytic description of what
the correct output of MPS is supposed to be. I
haven’t even seen an experimental characterization!
As such, currently for an algorithm to be correct,
it must be step-by-step equivalent to the statisti-
cal process. For an example algorithm like this, see
again [9]. A characterization of the output is impor-
tant because it would enable the design of more effi-
cient algorithms. A metaphor is that bubble-sort is
a process, but the characterization of its output as
“sorted order” allows the discovery of e.g. quicksort
to generate “sorted order” more efficiently.

The computer graphics community typically
measures the output of MPS by generating Fourier
transform pictures of the output. See “Point Set
Analysis” [17], for software and paper references
for a standard way of generating these pictures.

My understanding of PSA follows. The vectors
of distances between all pairs of points are calcu-
lated. The Fourier transform of the distance vec-
tors are taken and displayed, and a picture with os-
cillating dark and light rings is expected. Integrat-
ing this transform over concentric circles produces
a one-dimensional graph by increasing radius. (A
nuance is how to bin distances to generate smooth
pictures.) Figure 4 top shows the kinds of pictures
the Graphics community expects to see for MPS.

Two-radii MPS output

•  Classic MPS
Rf = Rc

•  Two-radii MPS
 2 Rf = Rc

•  Rf = min center dist
•  Rc =max Vor dist

•  Uniform
 R = 0
non-maximal

Figure 4: Point clouds visualized using PSA. Top is stan-
dard MPS, and middle two-radii MPS from CCCG 2012.
The bottom is a uniform random point cloud without in-
hibition disks, using about the same number of points.

Subproblem A: Can you characterize the PSA
pictures for MPS, especially Figure 4 top right?
What is the mean location and height of the peaks?
What is their standard deviation? Is the distribu-
tion around the mean normal? (Recall MPS is a
random process.) Perhaps an experimental charac-
terization is an easier place to start than an analytic
characterization.

Subproblem B: Is some variant of MPS better
than standard MPS for texture synthesis graphics
applications? At CCCG 2012 I presented a paper
“Variable Radii MPS.” The two-radii MPS variant
generates a spectrum with less oscillations; see Fig-
ure 4 middle. We suspect, but don’t know for sure,
if this is better for applications.

MPS produces a sphere packing, halve the disk
radii r then the disks do not overlap. This is a
well-spaced point set. Delaunay refinement also
produces a well-spaced point set. Sometimes the
PSA pictures of the output of Delaunay refinement
look similar to MPS, sometimes not, depending on

25th Canadian Conference on Computational Geometry, 2013

110

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

the target edge length, angle threshold, the use of
off-centers, etc.; see Figure 5.

Spectrum results for DR

• Depends on target, queue order
(Alex Rand experiments in progress)

Figure 5: Delaunay refinement (Triangle) point clouds
from particular choices of target edge lengths and an-
gles, visualized using the PSA tool. Top left we see
patches of hexagonal packings, and bottom left we see
circular patterns of jumps in the point spacing. In the
Fourier transform, middle column, in the top the rings are
more pronounced than form MPS; in the bottom we see
bright spots which indicate preferential directions, mean-
ing nearby points are more dense in certain directions than
others. In the radial average, right, on both the top and
bottom we see accentuated spikes.

Subproblem C: characterize the PSA pictures
(Fourier spectrum) of the output of Delaunay re-
finement and its variants.

In computational geometry we often measure
point sets by the angles and edge length histograms
in a Delaunay triangulation of the points. These
histograms are different for MPS point clouds than
for Delaunay refinement output; see Figure 6.Uniform MPS vs. DR angles and edges

1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

Edge Length Ratio (100 bins)

Fr
ac

tio
n

* 1
00

Unbiased MPS
Chew's First DR
Target Edge DR

0 10 20 30 40 50 60

0.
0

1.
0

2.
0

3.
0

Minimum Angle (120 bins)

Fr
ac

tio
n

* 1
20

Unbiased MPS
Chew's First DR
Target Edge DR

To do: study and contrast further!Figure 6: Computational Geometry measures of point
clouds. Edge length and angle histograms of DR and MPS
output. The minimum angle is the smallest angle of each
triangle. The edge length ratio is the ratio of the length
of Delaunay edges to the disc radius (MPS) or maximum
Delaunay circumradius (DR). In both MPS and DR, the
theories guarantee r < |e| < 2r.

Subproblem D: Characterize MPS output using
computational geometry measures of Delaunay tri-
angulation edge lengths and angle distributions.

Bonus subproblem E: do these problems for di-
mensions other than 2. Three to five dimensions
have some graphics applications.

Bonus subproblem F: characterize the effect of
the domain boundary, for non-periodic domains.

Partners: Alexander Rand, Mohamed Ebeida,
John Owens, Anjul Patney, Andrew Davidson,
Chandrajit Bajaj.

Hiding a Cycle
Paz Carmi
Ben Gurion University
carmip@cs.bgu.ac.il

Pat Morin had posed at CCCG’2007 the follow-
ing question: Is it possible that a polygonal cycle C
in 3D, with each edge axis-parallel, can project or-
thogonally onto each of the three coordinate planes
in such a way that each projection does not have a
cycle?

A solution to the problem appears on the cover
of the book [24]. However, the three projections in
this figure are (rectilinear) trees. Is it possible that
all three projections of C are paths?

Divide and Conquer
Jérémy Barbay
Universidad de Chile
jbarbay@dcc.uchile.cl

Adaptive Divide and Conquer: For sev-
eral problems, divide and conquer algorithms of
complexity O(n log n) and O(nk), for input size
n and some additional parameter k, yield algo-
rithms of complexity O(n(1+lg k)), or even better,
O(n(1 +H(n1, . . . , nk))):

• Selecting k elements of respective ranks
(r1, . . . , rk) in an unsorted array of n ele-
ments can obviously be done by sorting the
n elements in O(n lg n) comparisons. It can
also be performed in O(nk) comparisons by
using k times the median of median quick
select algorithm. Yet in 1981 Dobkin et
al. [7] showed that those k ranks can be
computed in O(n(1 + H(r1, r2 − r1, . . . , rk −
rk−1))) ⊂ O(n(1 + lg k)) comparisons and
overall time, and in 2006 Kaligosi et al. [13]
showed that those k ranks can be computed in
n(1 +H(r1, r2 − r1, . . . , rk − rk−1)) + o(n(1 +
H(r1, r2− r1, . . . , rk− rk−1))) +O(n) compar-
isons andO(n(1+H(r1, r2−r1, . . . , rk−rk−1)))
overall time. This result is input order oblivi-
ous instance optimal, in the sense that no al-
gorithm can perform better in the worst (and
average) input order, for any set of values.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

111

25th Canadian Conference on Computational Geometry, 2013

• In 1972, Graham [11] showed a reduction
of the computational complexity of the con-
vex hull to sorting, yielding a complexity of
O(n log n), which is optimal in the worst case
over instances composed of n points. Yet in
1973, Jarvis [12] showed that this was not opti-
mal on instances where the number h of points
in the convex hull is smaller than log n, via
an algorithm running in time within O(hn) ⊂
O(n2). It is not until 1986 that Kirkpatrick
and Seidel [15] solved the paradox through
an algorithm running in time within O(n(1 +
log h)), which analysis Afshani et al. [1] later
improved to O(n(1 + H(n1, . . . , nh))), where

H(n1, . . . , nh) ≡ ∑h
i=1

ni

n log n
ni
≤ log2 h is

the minimal entropy of a certificate of the in-
stance.

• In 1983 Reif [19] described an algorithm com-
puting the minimal cut between two ver-
tices s and t of a planar graph over n vertices
in time O(n log2 n), using the fact that the
minimal cut corresponds to a cycle of min-
imal total weight in the dual of the planar
graph, which is intersected at most once by
the minimal path between s∗ and t∗. An-
other algorithm was known to perform in lin-
ear time when s and t share a face. In 2011,
Kaplan et al. [14] generalized this result to
yield an algorithm computing the minimal cut
in O(n(1 + log p)) operations, where p is the
minimum number of edges crossed by a curve
joining s to t, or equivalently the minumum
number of edges from the face s∗ to the face
t∗ in the dual of the planar graph.

• In 1952, Huffman showed that a prefix
free code of minimal redundancy for
n weighted symbols can be computed in
O(n lg n) algebraic operations (In 1976, van
Leeuwen showed that an equivalent code can
be obtained in linear time when the weights
are sorted.). In 2006 Belal et al. [3] claimed
an algorithm computing a code of equiva-
lent redundancy in O(nk) algebraic opera-
tions, where k is the number of distinct code-
lengths in a code of minimal redundancy.

• In an undirected planar graph of n vertices,
the maximum flow between two vertices s
and t can be computed in time O(n lg n) via
O(n) augmenting paths, which can be im-
proved to O(n(1 + lg k)) time when k faces
separate s and t. This result is optimal in the
worst case over instances for fixed values of n
and k.

We ask the following questions:

1. For which other problems are there at once
an algorithm working in time O(n lg n) and
an algorithm working in O(nk), for some pa-
rameter k, but no known algorithm running
in O(n(1 + lg k))?

2. For which other problems is there an algo-
rithm running in O(n(1 + lg k)), and a poten-
tial for an algorithm working in time O(n(1 +
H(n1, . . . , nk))), where (n1, . . . , nk) is a vec-
tor describing the difficulty of the instance in
a finer way than k and H(n1, . . . , nk) is its
entropy?

3. For the problems where there is an algorithm
running in time O(n(1 +H(n1, . . . , nk))), can
this be improved to n(1+H(r1, r2−r1, . . . , rk−
rk−1))+o(n(1+H(r1, r2−r1, . . . , rk−rk−1)))+
O(n) comparisons and O(n(1 + H(r1, r2 −
r1, . . . , rk − rk−1))) overall time, as Kaligosi
et al. did for the multi select problem?

4. Can we identify a general principle at work
for those problems (e.g. Input Order Obliv-
ious Instance Optimal Complexity?), or are
there counter examples, for example in the
form of a problem for which there is an algo-
rithm running in time O(n lg n), an algorithm
taking advantage of particular cases running
in O(nk), but provably no algorithm running
in o(nmin{lg n, k}) in the worst case over all
instances of fixed size n and fixed parameter
value k?

Minimum Interference Networks
Pat Morin
Carleton University
morin@scs.carleton.ca

Given a set S of n points in Rd, the goal is to
construct a connected network on S in order to
minimize the (maximum receiver-centric) interfer-
ence, which is the maximum depth in the set of
disks, centered on each pi ∈ S, of radius equal to
the length of the longest edge incident to pi.

In two and higher dimensions, achieving a better
than 5/4-approximation is NP-hard, as was shown
by Buchin [4]. In 1D, the problem is not known
to be NP-hard, yet the only result is a polynomial-
time O(n1/4)-approximation [20]. Thus, in any di-
mension, the following question is open: Does there
exist a polynomial time o(n1/4)-approximation al-
gorithm for constructing a minimum interference
network?

Another problem in this area involves bounding
the minimum-interference network of a point set
by the interference of its minimum spanning tree.
This is captured by the following conjecture: If

25th Canadian Conference on Computational Geometry, 2013

112

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

the minimum spanning tree of a point set, S, has
interference k, then there exists a connected net-
work on S with interference O(

√
k). If proven, this

would resolve a question, from [6], on constructing
minimum-interference networks for random point
sets.

Generalized MST: 2-GMST
Bob Fraser
University of Waterloo
r3fraser@uwaterloo.ca

In the generalized (or “one-of-a-set” or “group”)
MST, we are given a collection of n finite sets of
points, S1, . . . , Sn, and the goal is to compute a
minimum-weight spanning tree that visits at least
one point of each set Si. Pop [18, Theorem 4.3]
described a 2δ-approximate algorithm for general-
ized MST, where δ is the maximum cardinality of
any imprecise vertex. The algorithm solves the lin-
ear programming relaxation of the integer program-
ming formulation of the problem, and then chooses
a spanning tree from the points in the solution.
This result follows the approximation framework
used by Slav́ık [21, 22] to establish approximation
algorithms for the Generalized Travelling Salesman
Problem and the Group Steiner Tree problem with
approximation factors of 3δ/2 and 2δ, respectively.

We ask here about the 2-GMST in the Euclidean
plane, in which each Si is a pair of points; in fact,
we are interested in the special case in which each
pair is vertical (i.e., each set Si consists of two
points having the same x-coordinate). For the case
that |Si| = 2, for all i, a 4-approximation is immedi-
ate from the general 2δ-approximation algorithm of
Pop mentioned above. Can geometry be exploited
to do better?

Note that the generalized problem is APX-hard
(Dror and Orlin[8]), and the restricted version de-
scribed here (2-GMST) is NP-hard [10, §10.4] (the
proof of hardness also rules out the possibility of
an FPTAS).

Two Problems
Pankaj Agarwal
Duke University
pankaj@cs.duke.edu

(a). Forcing a vertex minimum of a terrain.
Given a triangulated terrain with (piecewise-linear)
heigh function h(x, y), and given a vertex v of
the terrain, our goal is to compute a new terrain,
h′(x, y), such that v is a unique minimum of h′ and
h′ has no critical points other than v. The objec-
tive function is to select h′ to minimize ||h − h′||
(or (||h− h′||)2).

(b). Separating 3D polytopes (a classic problem).
Given two convex polytopes, P1 and P2 in <3, each
with a Dobkin-Kirkpatrick hierarchy, our goal is to
compute a separating plane, or report that none
exists, for P1 and P2. Known methods yield time
O(logm log n), where m and n are the complexities
of P1 and P2. Is it possible to improve the time
bound to O(logm+ log n)?

Redrawing a Triangulation
Csaba Tóth
University of Calgary
cdtoth@ucalgary.ca

Given a triangulation T of n points in the plane.
Let ` be a line intersecting T , crossing edges
(e1, e2, . . . , ek), of T at points (p1, p2, . . . , pk), in
order along `. Now, consider another line, L, with
points (q1, q2, . . . , qk), in order along L. Is it always
possible to draw a triangulation T ′, equivalent (in
the sense of graph isomorphism) to T , with L cross-
ing the edges (e′1, e

′
2, . . . , e

′
k) (the mappings of the

ei’s) at the points (q1, q2, . . . , qk)?

Wavelets and the Golden Ratio
Braxton Carrigan
Auburn University
bac0004@auburn.edu

Given a triangulation in which every triangle is
isosceles. The goal is to find a subtriangulation by
adding new vertices along edges (while keeping the
cell complex property) in order to preserve the ratio
of side lengths (in Golden ratio).

Hamiltonian Tetrahedralization of a 3-Polytope
Joe Mitchell
Stony Brook University
Joseph.Mitchell@stonybrook.edu

I conjecture that every three-dimensional convex
polytope has a tetrahedralization (without adding
Steiner points) whose dual graph has a Hamiltonian
path. If true, then every finite point set in 3D has
a tetrahedralization (without Steiner points) that
is Hamiltonian.

For related work, see Arkin et al. [2].

References

[1] P. Afshani, J. Barbay, and T. Chan. Instance-
optimal geometric algorithms. In Proc. 50th IEEE
Symposium on Foundations of Computer Science
(FOCS), 2009.

[2] E. M. Arkin, M. Held, J. S. B. Mitchell, and
S. Skiena. Hamiltonian triangulations for fast ren-
dering. The Visual Computer, 12(9):429–444, 1996.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

113

25th Canadian Conference on Computational Geometry, 2013

[3] A. A. Belal and A. Elmasry. Distribution-sensitive
construction of minimum-redundancy prefix codes.
In B. Durand and W. Thomas, editors, 23rd In-
ternational Symposium on Theoretical Aspects of
Computer Science (STACS 2011), volume 3884 of
Lecture Notes in Computer Science, pages 92–103.
Springer, 2006.

[4] K. Buchin. Minimizing the maximum interference
is hard. CoRR, abs/0802.2134, 2008.

[5] H. T. Croft, K. J. Falconer, and R. K. Guy.
Unsolved Problems in Geometry, Springer-Verlag,
1991.

[6] L. Devroye and P. Morin. A note on interference in
random point sets. In Proc. 24th Canadian Confer-
ence on Computational Geometry (CCCG), pages
201–206, 2012.

[7] D. P. Dobkin and J. I. Munro. Optimal time min-
imal space selection algorithms. Journal of the
ACM, 28(3):454–461, 1981.

[8] M. Dror and J. B. Orlin. Combinatorial Optimiza-
tion with Explicit Delineation of the Ground Set by
a Collection of Subsets, SIAM Journal on Discrete
Mathematics, 21(4):1019–1034, 2008.

[9] M. S. Ebeida, A. A. Davidson, A. Patney, P. M.
Knupp, S. A. Mitchell, and J. D. Owens. Effi-
cient maximal poisson-disk sampling. ACM Trans-
actions on Graphics, 30(4):49, 2011.

[10] R. Fraser. Algorithms for Geometric Covering and
Piercing Problems. PhD thesis, University of Wa-
terloo, 2012.

[11] R. L. Graham. An efficient algorithm for determin-
ing the convex hull of a finite planar set. Informa-
tion Processing Letters, 1(4):132–133, 1972.

[12] R. Jarvis. On the identification of the convex hull
of a finite set of points in the plane. Information
Processing Letters, 2(1):18–21, 1973.

[13] K. Kaligosi, K. Mehlhorn, J. I. Munro, and
P. Sanders. Towards optimal multiple selection. In
Automata, Languages and Programming, 32nd In-
ternational Colloquium, ICALP 2005, Lisbon, Por-
tugal, July 11-15, 2005, Proceedings, volume 3580
of Lecture Notes in Computer Science, pages 103–
114. Springer, 2005.

[14] H. Kaplan and Y. Nussbaum. Minimum s-t cut
in undirected planar graphs when the source and
the sink are close. In T. Schwentick and C. Dürr,
editors, 28th International Symposium on Theoret-
ical Aspects of Computer Science (STACS 2011),

volume 9 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 117–128, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[15] D. G. Kirkpatrick and R. Seidel. The ultimate pla-
nar convex hull algorithm? SIAM Journal on Com-
puting, 1986. 15(1):287–299.

[16] A. Lubiw, E. D. Demaine, M. L. Demaine, A. Shal-
lit, and J. Shallit. Zipper unfoldings of polyhe-
dral complexes. In Proc. 22nd Annual Canadian
Conference on Computational Geometry (CCCG),
pages 219–222, 2010.

[17] Point Set Analysis, http://code.google.com/p/
psa/.

[18] P. Pop. The Generalized Minimum Spanning Tree
Problem. PhD thesis, University of Twente, 2002.

[19] J. Reif. Minimum s-t cut of a planar undirected
network in o(n log n) time. In S. Even and O. Kariv,
editors, Automata, Languages and Programming,
volume 115 of Lecture Notes in Computer Science,
pages 56–67. Springer Berlin / Heidelberg, 1981.

[20] P. von Rickenbach, S. Schmid, R. Wattenhofer,
and A. Zollinger. A robust interference model
for wireless ad-hoc networks. In Proc. 19th Inter-
national Parallel and Distributed Processing Sym-
posium (IPDPS 2005). IEEE Computer Society,
2005.

[21] P. Slav́ık. The errand scheduling problem. Com-
puter Science Technical Report 97-2, State Univer-
sity of New York at Buffalo, 1997.

[22] P. Slav́ık. Approximation Algorithms For Set Cover
And Related Problems. PhD thesis, State Univer-
sity of New York at Buffalo, 1998.

[23] P. Tilli. Transactions of the American Mathemati-
cal Society, 2010. 362:4497–4509.

[24] P. Winkler. Mathematical Mind Benders. A K Pe-
ters/CRC Press, 2007.

25th Canadian Conference on Computational Geometry, 2013

114

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Quantifying Design: the geometric properties
behind designer choices and human perception

Alla Sheffer

University of British Columbia, Canada

Over centuries artists and designers had developed effective tools to communicate notions of shape to the general
public. Even coarse artistic sketches are surprisingly effective at unambiguously conveying complex 3D shapes. While
artistic guidelines provide many useful hints as to how to describe shape effectively, very little is known as to why
these tools are effective and what geometric properties of the described shapes they capture.

Our work combines artistic guidelines and insights from perception literature to introduce an explicit mathematical
formulation of the relationships between the communication tools used by artists and the geometric properties they
aim to convey. In this talk I’ll discuss the application of the developed mathematical formalism to several challenging
computer graphics problems including shading of concept sketches and surfacing of artist designed 3D wireframe
models.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

115

25th Canadian Conference on Computational Geometry, 2013

116

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Universal Point Sets for Planar Graph Drawings with Circular Arcs

Patrizio Angelini∗ David Eppstein† Fabrizio Frati‡ Michael Kaufmann§ Sylvain Lazard¶

Tamara Mchedlidze∥ Monique Teillaud∗∗ Alexander Wolff††

Abstract

We prove that there exists a set S of n points in the
plane such that every n-vertex planar graph G admits
a plane drawing in which every vertex of G is placed on
a distinct point of S and every edge of G is drawn as a
circular arc.

1 Introduction

It is a classic result of graph theory that every pla-
nar graph has a plane straight-line drawing, that is,
a drawing where vertices are mapped to points in the
plane and edges to straight-line segments connecting
the corresponding points (achieved independently by
Wagner, Fáry, and Stein). Tutte [21] presented the
first algorithm, the barycentric method, that produces
such drawings. Unfortunately, the barycentric method
can produce edges whose lengths are exponentially far
from each other. Therefore, Rosenstiehl and Tarjan [19]
asked whether every planar graph has a plane straight-
line drawing where vertices lie on an integer grid of
polynomial size. De Fraysseix, Pach, and Pollack [5]
and, independently, Schnyder [20] answered this ques-
tion in the affirmative. Their (very different) methods
yield drawings of n-vertex planar graphs on a grid of size
Θ(n)×Θ(n), and there are graphs (the so-called “nested
triangles”) that require this grid size [10]. Later, it was
apparently Mohar (according to Pach [6]) who general-
ized the grid question to the following problem: What is

∗Dipartimento di Ingegneria, Roma Tre University,
angelini@dia.uniroma3.it

†Computer Science Department, University of California,
Irvine, eppstein@ics.uci.edu. D.E. was supported in part by the
National Science Foundation under grants 0830403 and 1217322,
and by the Office of Naval Research under MURI grant N00014-
08-1-1015.

‡School of Information Technology, The University of Sydney,
brillo@it.usyd.edu.au

§Wilhelm-Schickard-Institut für Informatik, Universität
Tübingen, mk@informatik.uni.tuebingen.de

¶INRIA Nancy Grand Est – Loria, lazard@loria.fr
∥Institute of Theoretical Informatics, Karlsruhe Institute of

Technology, mched@iti.uka.de
∗∗INRIA Sophia Antipolis – Méditerranée, monique.teillaud

@inria.fr
††Lehrstuhl für Informatik I, Universität Würzburg,

www1.informatik.uni-wuerzburg.de/en/staff/wolff alexander

A.W. acknowledges support by the ESF EuroGIGA project
GraDR (DFG grant Wo 758/5-1).

the smallest size f(n) of a universal point set for plane
straight-line drawings of n-vertex planar graphs, that
is, the smallest size (as a function of n) of a point set
S such that every n-vertex planar graph G admits a
plane straight-line drawing in which the vertices of G
are mapped to points in S? The question is listed as
problem #45 in the Open Problems Project [6]. De-
spite more than twenty years of research efforts, the
best known lower bound for the value of f(n) is lin-
ear in n [4, 17, 18], while the best known upper bound
is only quadratic in n, as established by de Fraysseix
et al. [5] and Schnyder [20]. Universal point sets for
plane straight-line drawings of planar graphs require
more than n points whenever n ≥ 15 [3]. Recently,
universal point sets with o(n2) points have been proved
to exist for straight-line planar drawings of several sub-
classes of planar graphs generalizing outerplanar graphs.
Namely, an upper bound of O(n(log n/ log log n)2 has
been proven for simply-nested planar graphs [1] and an
upper bound of O(n5/3) for planar 3-trees [14], which
extends to planar 2-trees and hence to series-parallel
graphs.

Universal point sets have also been studied with re-
spect to different drawing standards. For example, Ev-
erett et al. [13] showed that there exist sets of n points
that are universal for plane poly-line drawings with one
bend per edge of n-vertex planar graphs. On the other
hand, if bend-points are required to be placed on the
point-set, universal point-sets exist of size O(n2/ log n)
for drawings with one bend per edge, of size O(n log n)
for drawings with two bends per edge, and of size O(n)
for drawings with three bends per edge [11].

However, smooth curves may be easier for the eye to
follow and more aesthetic than poly-lines. Graph Draw-
ing researchers have long observed that poly-lines may
be made smooth by replacing each bend with a smooth
curve tangent to the two adjacent line segments [7, 15].
Bekos et al. [2] formalized this observation by consider-
ing smooth curves made of line segments and circular
arcs; they define the curve complexity of such a curve to
be the number of segments and arcs it contains. A poly-
line drawing with s segments per edge may be trans-
formed into a smooth drawing with curve complexity at
most 2s − 1, but Bekos et al. [2] observed that in many
cases the curve complexity can be made smaller than
this bound. For instance, replacing poly-lines by curves

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

117

25th Canadian Conference on Computational Geometry, 2013

in the construction of Everett et al. [13] would give rise
to a drawing of curve complexity 3, but in fact every set
of n collinear points is universal for smooth piecewise-
circular drawings with curve complexity 2, as can be
derived from the existence of topological book embed-
dings of planar graphs [8, 16, 2]. A monotone topological
book embedding of a graph G is a drawing of G such that
the vertices lie on a horizontal line, called spine, and the
edges are represented by non-crossing curves, monoton-
ically increasing in the direction of the spine. In [8, 16],
it was shown that every planar graph has a monotone
topological book embedding where each edge crosses the
spine exactly once and consists of two semi-circles, one
below and one above the spine (see Figure 2).

The difficulty of the problem of constructing a univer-
sal point set of a linear size for straight-line drawings,
the aesthetical properties of smooth curves, the recent
developments on drawing planar graphs with circular
arcs (see, for example, [2, 12]), and the existence of uni-
versal sets of n points for drawings of planar graphs with
curve complexity 2 [13] naturally give rise to the ques-
tion of whether there exists a universal set of n points
for drawings of planar graphs with curve complexity 1,
that is, for drawings in which every edge is drawn as a
single circular arc. In this paper, we answer this ques-
tion in the affirmative.

We prove the existence of set S of n points on the
parabolic arc P = {(x, y) : x ≥ 0, y = −x2} such that
every n-vertex planar graph G can be drawn with the
vertices mapped to S and the edges mapped to non-
crossing circular arcs. In the same spirit as Everett et
al. [13], we draw G in two steps. In the first step, we
construct a monotone topological book embedding of
G. In the second step, we map the vertices of G to the
points in S in the same order as they appear on the
spine of the book embedding.

2 Circular Arcs Between Points on a Parabola

In this section, we investigate geometric properties of
circular-arc drawings whose vertices lie on the parabolic
arc P.

In the following, when we say that a point is to the
left of another point, we mean that the x-coordinate of
the former is smaller than that of the latter. However,
when we say that an arc is to the left of a point q, we
mean that all the intersection points of the arc with the
horizontal line through q are to the left of q. We define
similarly to the right, above, and below, and we naturally
extend these definition to non-crossing pairs of arcs. We
denote by C(p, q, r) the circle through three points p, q,
and r.

We start by stating a classic property of parabolas
and circles.

Lemma 1 For every three points p, q, and r on P with
increasing x-coordinates, the circular arc from p to r
and through q is below P between p and q and above P
between q and r (see Figure 1).

Proof. We first observe that a circle intersects P in at
most three points with positive x-coordinates (counted
with multiplicity). Indeed, substituting y by −x2 in
the circle equation yields a degree-4 equation in x with
no monomial of degree 3. There are thus at most
three changes of sign in the sequence of coefficients, and
Descartes’ rule of signs implies that there are at most
three positive roots, counted with multiplicity.

We now consider three points p, q, and r on P and
consider circle C(p, q, r). Since there is no other point
of intersection with positive x-coordinate, and since the
circle is bounded and the parabolic arc is not, the cir-
cular arc to the right of r is below the parabolic arc.
The result follows since C(p, q, r) crosses P at p, q, and r
(since, otherwise, the number of intersection points with
positive x-coordinates and counted with multiplicity
would be larger than three). �

Given six points p0 = (x0, y0), . . . , p5 = (x5, y5) in
this order on P (that is, x0 ≤ x1 ≤ · · · ≤ x5), we con-
sider two circular arcs (see Figure 1); C0,3,4 (red) goes
through the ordered points p0, p3, p4 and C1,2,5 (blue)
goes through p1, p2, p5. We assume that the three points
defining each arc are pairwise distinct. It should be
stressed that these arcs may not be x-monotone.1 The
two circular arcs are, however, y-monotone—for C0,3,4

we argue as follows; the argument for C1,2,5 is simi-
lar: By Lemma 1, p0 lies on the right half-circle of
C(p0, p3, p4), and p3 and p4 are to the right of p0.

We will prove, in Lemma 4, that the arcs C0,3,4 and
C1,2,5 do not intersect each other if the x-coordinate
of pi is at least twice that of pi−1 for i = 3, 4. For
that purpose, we first consider, in the two next lemmas,
the special cases where these arcs share one of their
endpoints.

Lemma 2 If p4 = p5 and x3 ≥ x1+x2, the two circular
arcs C0,3,4 and C1,2,5 intersect only at p4 = p5.

Proof. Refer to Figure 1(a). We first observe that,
by Lemma 1, the circular arc C0,3,4 is below P in a
neighborhood of p0, it crosses P at p3, and it lies above
P in a neighborhood of p4. Similarly C1,2,5 is below P
in a neighborhood of p1, it crosses P at p2, and it lies
above P in a neighborhood of p5.

We now argue that the two arcs C0,3,4 and C1,2,5 in-
tersect at a point other than p4 = p5 if and only if the

1 This could be seen by considering, for instance, the limit case
of a circle where p0 and p3 lie at the origin and the x-coordinate
of p4 is larger than one. This circle is centered at (0, −a) with
a > 1. Since −a > −a2, the rightmost point (a, −a) of the circle
is above the parabola y = −x2, thus it lies on C0,3,4 by Lemma 1.

25th Canadian Conference on Computational Geometry, 2013

118

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

p0

p4 = p5

p1

p2

p3

(a) p4 = p5

p0 = p1

p2

p3

p5

p4

(b) p0 = p1

p0

p2

p3

p4

p1

p5

(c) p0, . . . , p5 are pairwise distinct

Figure 1: Three configurations of relative position of the circular arcs C0,3,4 (red) and C1,2,5 (blue dashed) defined
by six points p0, . . . , p5 lying in that order on P. For readability, the figure is not to scale.

(red) arc C0,3,4 is to the right of the (blue) arc C1,2,5 in
a neighborhood of p4. Since the (red) arc C0,3,4 is below
P in a neighborhood of p0, and C0,3,4 does not intersect
P between p0 and p1 (by Lemma 1), the (red) arc C0,3,4

is to the left of p1. On the other hand, the two circular
arcs intersect at most once other than at p4 (since circles
intersect at most twice). Hence, if they intersect at a
point q other than p4, their horizontal ordering changes
in a neighborhood of q and thus the (red) arc C0,3,4 is
to the right of the (blue) arc C1,2,5 in a neighborhood
of p4.

As a consequence, we can assume without loss of
generality that p0 is at the origin O = (0, 0) (that is,
the topmost point of P). This can be seen as follows.
First, by Lemma 1, the origin is inside C(p0, p3, p4).
Furthermore, since the origin is above p3 and p4, the
arc p3p4 of C(O, p3, p4) lies to the right of the arc p3p4

of C(p0, p3, p4). It follows that if C0,3,4 is to the right
of C1,2,5 in a neighborhood of p4, it remains to the right
if p0 is placed at the origin. Hence, in the sequel, we
can assume that x0 = 0.

We now prove that if x3 ≥ x1 +x2, then the tangents
at p4 = p5 of the two circular arcs C0,3,4 and C1,2,5 are
distinct for any position of p4 = p5 to the right of p3

on P.
The following calculations are done in Maple. We

consider the equation of C(p0, p3, p4), which is the de-
terminant

x0 −x2
0 x2

0 + x4
0 1

x3 −x2
3 x2

3 + x4
3 1

x4 −x2
4 x2

4 + x4
4 1

x y x2 + y2 1

and similarly for C(p1, p2, p4 = p5). The normals to

these circles at p4 are the gradient of their implicit equa-
tions evaluated at p4. We then compute the cross prod-
uct of these two vectors; more precisely, the last coordi-
nate of the cross product, that is, MxNy −NxMy, where
(Mx,My) and (Nx, Ny) are the normal vectors.

This expression can be factorized such that it is the
product of two terms. The first is the term x3 x4 (x3 −
x4)(x2 − x4)(x1 − x4)(x1 − x2), which does not vanish
if p0, . . . , p4 are pairwise distinct. The second is the
following term, which we view as a polynomial in x4

whose coefficients depend on x1, x2, and x3:

(x3 − x1 − x2) x4
4

+(x1 + x2 + x3) (x3 − x1 − x2) x3
4

+(1 + x1x2) (x3 − x1 − x2) x2
4

+(x1x2x
2
3 + x1x

2
2x3 + x2

1x2x3 + x2
3 − x2

1 − x2
2) x4

+x1 x2 (1 + x2
3) (x1 + x2).

All coefficients are non-negative since x3 ≥ x1 + x2.
Thus, the polynomial has no positive real root. In other
words, the two normals are never collinear. Now, con-
sidering the limit case where p4 = p3, the (red) circle
C(p0, p3, p4) is tangent to P and since, by Lemma 1, the
(blue) arc C1,2,5 is above and thus to the right of P in
a neighborhood of p4 = p5 (and is not tangent to P if
p2 ̸= p5), the (blue) arc C1,2,5 is to the right of the (red)
arc C0,3,4 in a neighborhood of p4. Hence, the two arcs
C0,3,4 and C1,2,5 do not intersect except at p4. �
Lemma 3 If p0 = p1, x0 ≥ 1, x3 ≥ 2x2 and x4 ≥
x0 +x3, the two circular arcs C0,3,4 and C1,2,5 intersect
only at p0 = p1.

Proof. Similarly as in the proof of Lemma 2, the two
arcs C0,3,4 and C1,2,5 intersect at a point other than

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

119

25th Canadian Conference on Computational Geometry, 2013

p0 = p1 if and only if the (red) arc C0,3,4 is to the right
of the (blue) arc C1,2,5 in a neighborhood of p0 (see
Figure 1(b)).

Furthermore, we can assume without loss of gener-
ality that p5 is at infinity, which means that C1,2,5 is
the (straight) ray from p0 = p1 through p2. Indeed, for
any point p′

5 that lies on P to the right of p5, point p′
5

lies outside the C(p1, p2, p5) by Lemma 1. Furthermore,
since p′

5 lies below p1 and p2, the arc through p1, p2,
and p′

5 (in order) lies to the left of C1,2,5 between p1

and p2. Hence, if the (blue) arc C1,2,5 is to the left of
the (red) arc C0,3,4 in a neighborhood of p0, it remains
to the left if p5 is at infinity.

Now, similarly to the proof of Lemma 2, we prove
that the tangents at p0 = p1 of C0,3,4 and C1,2,5 never
coincide. With the above assumption, this is equivalent
to showing that the normal to C0,3,4 at p0 is never or-
thogonal to the segment p1p2. The corresponding dot
product (computed in Maple) is equal to

(x4 − x3) (x4 − x0) (x3 − x0) (x2 − x0)(
(x3 − x2)x2

4 + (x3 − x2) (x0 + x3) x4 +

(
(x2

0 − 1 − x3x0 − x2
3)x2 + x3

0 + x0

))
.

The first four terms never vanish and we want to show
that the last term, seen as a polynomial in x4, has no
root x4 larger than x0 + x3 (it can be shown that this
polynomial has a positive root). For that purpose, we
make the change of variable x4 = t+x0+x3 which maps
the interval (x0 +x3,+∞) of x4 to the interval (0, +∞)
of t and maps the above degree-2 polynomial in x4 to

(x3 − x2) t2 + 3 (x3 − x2) (x0 + x3) t −
(1 + x2

0 − 5x0x3 + 3x2
3)x2 +

x0 + 4x0x
2
3 + x3

0 + 2x3
3 + 2x2

0x3

whose first and second coefficients are positive and
whose last coefficient is positive for any x2 ∈ [x0, x3/2]
since it is linear in x2 and takes value x3 (3x0+2x3) (x3−
x0) at x0 and value 1

2x3 (−1+x2
3+3x2

0+3x0x3)+x0+x3
0

at x3/2 (which is positive since x0 ≥ 1).2 Hence, if
x3 ≥ 2x2, all coefficients of this polynomial are posi-
tive, which implies that it has no positive roots. This,
in turn, means that the initial degree-2 polynomial in x4

has no root larger than x0 + x3.
This implies that there is no position of the points

p0 = p1, p2 . . . , p5 such that x3 ≥ 2x2, x4 ≥ x0 + x3

and such that the tangent to C0,3,4 is collinear with
p0p2. Furthermore, at the limit case where p2 = p0,
the segment p0p2 is tangent to P, and C0,3,4 is be-
low and to the left of that tangent in a neighborhood
of p0 (by Lemma 1). Hence, for any position of the

2Note that the last coefficient is negative when x2 = x3 which
is why we consider x2 in the range [x0, x3/2].

points p0 = p1, p2 . . . , p5 (as defined above) such that
x3 ≥ 2x2, x4 ≥ x0 + x3, the (red) circular arc C0,3,4

is to the left of the segment p1p2 in a neighborhood of
p0. Finally, as argued above when we considered p5 at
infinity, this implies that for any position of the points
p0 = p1, p2, . . . , p5 such that x3 ≥ 2x2 and x4 ≥ x0 +x3,
the (red) circular arc C0,3,4 is to the left of the (blue)
circular arc C1,2,5 in a neighborhood of p0 = p1. This
concludes the proof since we have proved that this is
equivalent to the property that the arcs C0,3,4 and C1,2,5

intersect only at p0 = p1. �

Lemma 4 If p0, . . . , p5 are pairwise disjoint and xi ≥
2xi−1 for i = 3, 4, the two circular arcs C0,3,4 and C1,2,5

do not intersect.

Proof. We refer to Figure 1(c) and, unless specified
otherwise, an arc pipj refers to the arc from pi to pj

on the arc C0,3,4 or C1,2,5 that supports both pi and
pj . We first prove that the arcs p2p5 and p3p4 do not
intersect. For any point q on P between p4 and p5, the
arc p3q on the circular arc through p0, p3, q lies above
the concatenation of the arcs p3p4 of C0,3,4 and p4q of
P (since the circular arcs p3q and p3p4 lie above P,
by Lemma 1, and C(p0, p3, p4) and C(p0, p3, q) intersect
only at p0 and p3). It follows that if arc p3p4 intersects
arc p2p5, then arc p3q also intersects arc p2p5 for any
position of q between p4 and p5 on P. This implies
that, for the limit case where q = p5, arc C1,2,5 and
the circular arc through p0, p3, and q = p5 intersect in
some point other than q = p5, which is not the case by
Lemma 2.

We now prove, similarly, that the arcs p0p3 and p1p2

do not intersect. For any point q on P between p0 and
p1, the arc qp2 on the circular arc through q, p2, p5 lies
below the concatenation of the arcs qp1 of P and p1p2

of C1,2,5. It follows that if arc p1p2 intersects arc p0p3,
then arc qp2 also intersects arc p0p3 for any position of
q between p0 and p1 on P. This implies that, for the
limit case where q = p0, arc C0,3,4 and the circular arc
through q = p0, p2, and p5 intersect in some point other
than q = p0, which is not the case by Lemma 3.

Finally, arcs p1p2 of C1,2,5 and p3p4 of C0,3,4 do not
intersect because they lie on different sides of P and sim-
ilarly for arcs p0p3 of C0,3,4 and p2p5 of C1,2,5. Hence,
the two arcs C0,3,4 or C1,2,5 do not intersect. �

3 Universal Point Set for Circular Arc Drawings

In this section, we construct a set of n points on P and,
by using the lemmata of the previous section, we prove
that it is universal for plane circular arc drawings of
n-vertex planar graphs.

Consider n2 points q0, . . . , qn2−1 on the parabolic
arc P such that x0 ≥ 1 and xi ≥ 2xi−1 for i =
1, . . . , n2 − 1. For our universal point set, we take the n

25th Canadian Conference on Computational Geometry, 2013

120

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

wi

dil wj

wkdjk
wl

(a) (b) (c) (e)(d)

Figure 2: Relative positions of two edges in a monotone topological book embedding.

points pi = qni for i = 0, . . . , n − 1. We call the points
in q0, . . . , qn2−1 that are not in the universal point set
helper points.

Theorem 5 Every n-vertex planar graph can be drawn
with the vertices on p0, . . . , pn−1 and circular edges that
do not intersect except at common endpoints.

Proof. Consider any planar graph G. Construct a
monotone topological book embedding Γ of G in which
all edges are drawn with a spine crossing [8, 16]. De-
note by w0, . . . , wn−1 the order of the vertices of G on
the spine in Γ. We substitute every spine crossing with
a dummy vertex. The relative position of any two edges
in Γ is as depicted in Figure 2 (in which two edges may
share their endpoints). For 0 ≤ i ≤ n−1, we map vertex
wi to point pi. Furthermore, for each 0 ≤ i ≤ n − 2, we
map the dummy vertices that lie in between wi and wi+1

on the spine in Γ to distinct helper points in between
pi and pi+1, so that the order of the dummy vertices
on P is the same as on the spine in Γ. (We postpone
the proof that there are enough points qi to map the
dummy vertices.) We finally draw every edge (wi, wj)
of G containing a dummy vertex dl as a circular arc
passing through pi, through pj , and through the helper
point to which vertex dl has been mapped to. We prove
that the resulting drawing is plane.

By Lemmata 2, 3, and 4, two edges whose relative
positions in Γ are as depicted in Figure 2(a) do not
intersect except possibly at a common endpoint.

For the pairs of edges whose relative positions in Γ
are as depicted in Figures 2(b) and 2(c), it is straight-
forward to check that they do not intersect either be-
cause they are separated by P, or because they are y-
monotone and hence they are separated by a horizontal
line.

Consider two edges (wi, wl) and (wj , wk) whose rel-
ative position in Γ is as depicted in Figure 2(d) (the
argument for pairs of edges as in Figure 2(e) is anal-
ogous). Let dil and djk be the dummy vertices of
(wi, wl) and (wj , wk), respectively. Let qil and qjk be
the points on P to which dil and djk are mapped. Arcs
piqil and pjpk do not intersect because they are both y-
monotone and their endpoints are separated by a hor-
izontal line. Arcs qilpl and pjqjk do not intersect be-
cause they are separated by P. Hence, it suffices to
prove that arcs qjkpk and qilpl do not intersect. These
two arcs are above and to the right of P (by Lemma 1)

and qil, qjk, pk, pl are ordered from top to bottom. It is
thus sufficient to prove that there exists a curve from
qjk to pk that is to the right of qjkpk and that does not
intersect qilpl. Consider the (y-monotone) arc from qjk

to pk of the circle C(pi, qjk, pk). It is indeed to the right
of the arc qjkpk (of C(pj , qjk, pk)) because pi is inside
C(pj , qjk, pk) (by Lemma 1) and pi, qjk, and pk are or-
dered on the parabola. Furthermore, this new arc does
not intersect qilpl because in the case where wi = wj ,
wk and wl are in this order on the spine—that’s the sit-
uation depicted in Figure 2(a)—we know that the cor-
responding circular arcs do not intersect.

It remains to show that there are enough helper points
to map the dummy vertices. There are n − 1 helper
points qni+1, . . . , qn(i+1)−1 between each pair of points
pi = qni and pi+1 = qn(i+1). It thus suffices to prove
that there are at most n−1 dummy vertices in between
wi and wi+1 along the spine in Γ.

Let (u1, v1), . . . , (uk, vk) be k edges in the book em-
bedding that define consecutive dummy vertices on the
spine. If no vertex wi lies in between these dummy
vertices on the spine in Γ, the k edges are such
that u1, . . . , uk, v1, . . . , vk are ordered from left to right
on the spine in Γ; see Figure 3(a). Now, consider
the graph that consists of these edges plus the edges
(ui, ui+1), (vi, vi+1), for i = 1, . . . , k−1; see Figure 3(b).
This graph is outerplanar. It has at most n vertices and,
thus, at most n − 3 chords. On the other hand, it has
exactly k−2 chords: (u2, v2), . . . , (uk−1, vk−1). This im-
plies that k − 2 ≤ n − 3 and k ≤ n − 1, which concludes
the proof. �

(a) (b)

u1 uk

v1 vk
u1 uk

v1 vk

Figure 3: (a) k edges of a monotone topological book
embedding that defines k consecutive dummy vertices
(spine crossings). (b) Augmented outerplanar graph.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

121

25th Canadian Conference on Computational Geometry, 2013

4 Conclusions

We proved the existence of a universal point set with n
points for plane circular arc drawings of planar graphs.
The universal point set we constructed has an area
of 2O(n2). It would be interesting, also for practical vi-
sualization purposes, to construct a universal point set
with n points for plane circular arc drawings of planar
graphs within polynomial area. We remark that (relax-
ing the requirement that the set have exactly n points)
a universal point set with O(n) points and within 2O(n)

area for plane circular arc drawings of planar graphs is
Q = {q0, . . . , q4n−7}, where the helper points are de-
fined as in Section 3. To construct a plane circular-arc
drawing of a planar graph G on Q, it suffices to map
vertices and dummy vertices of a monotone topological
book embedding of G to the points of Q in the order
they appear in the book embedding. The geometric
lemmata of Section 2 ensure that the resulting drawing
is plane.

Acknowledgments

This research started during Dagstuhl Seminar 13151
“Drawing Graphs and Maps with Curves” in April 2013.
The authors thank the organizers and the participants
for many useful discussions.

References

[1] P. Angelini, G. D. Battista, M. Kaufmann,
T. Mchedlidze, V. Roselli, and C. Squarcella. Small
point sets for simply-nested planar graphs. In M. van
Kreveld and B. Speckmann, editors, Proc. 19th Int.
Symp. Graph Drawing (GD’11), volume 7034 of LNCS,
pages 75–85. Springer, 2012.

[2] M. Bekos, M. Kaufmann, S. Kobourov, and A. Symvo-
nis. Smooth orthogonal layouts. In Didimo and Patrig-
nani [9], pages 150–161.

[3] J. Cardinal and V. Kusters. On universal point sets
for planar graphs. In Proc. Thailand–Japan Joint
Conf. Comput. Geom. Graphs (TJJCCGG’12), LNCS.
Springer, 2013. To appear, see arXiv:1209.3594.

[4] M. Chrobak and H. J. Karloff. A lower bound on the
size of universal sets for planar graphs. SIGACT News,
20(4):83–86, 1989.

[5] H. de Fraysseix, J. Pach, and R. Pollack. How to draw
a planar graph on a grid. Combinatorica, 10(1):41–51,
1990.

[6] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke.
The open problems project. Website, 2001. URL
cs.smith.edu/˜orourke/TOPP, accessed May 5, 2012.

[7] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.
Algorithms for drawing graphs: an annotated bibliog-
raphy. Comput. Geom. Theory Appl., 4:235–282, 1994.

[8] E. Di Giacomo, W. Didimo, G. Liotta, and S. Wismath.
Curve-constrained drawings of planar graphs. Comput.
Geom. Theory Appl., 30:1–23, 2005.

[9] W. Didimo and M. Patrignani, editors. Proc. 20th Int.
Symp. Graph Drawing (GD’12), volume 7704 of LNCS.
Springer, 2013.

[10] D. Dolev, T. Leighton, and H. Trickey. Planar em-
bedding of planar graphs. Advances in Computing Re-
search, 2:147–161, 1984.

[11] V. Dujmovic, W. S. Evans, S. Lazard, W. Lenhart,
G. Liotta, D. Rappaport, and S. K. Wismath. On point-
sets that support planar graphs. Comput. Geom. The-
ory Appl., 46(1):29–50, 2013.

[12] D. Eppstein. Planar Lombardi drawings for subcubic
graphs. In Didimo and Patrignani [9], pages 126–137.

[13] H. Everett, S. Lazard, G. Liotta, and S. Wismath. Uni-
versal sets of n points for one-bend drawings of pla-
nar graphs with n vertices. Discrete Comput. Geom.,
43(2):272–288, 2010.

[14] R. Fulek and C. Tóth. Universal point sets for planar
three-trees. In F. Dehne, J.-R. Sack, and R. Solis-Oba,
editors, Proc. 13th Int. Algorithms Data Struct. Symp.
(WADS’13), volume 8037 of LNCS. Springer, 2013. To
appear.

[15] E. R. Gansner, S. C. North, and K.-P. Vo. DAG—
a program that draws directed graphs. Softw. Pract.
Exper., 18(11):1047–1062, 1988.

[16] F. Giordano, G. Liotta, T. Mchedlidze, and A. Symvo-
nis. Computing upward topological book embeddings of
upward planar digraphs. In T. Tokuyama, editor, Proc.
Int. Symp. Algorithms Comput. (ISAAC’07), volume
4835 of LNCS, pages 172–183. Springer, 2007.

[17] M. Kurowski. A 1.235 lower bound on the number of
points needed to draw all n-vertex planar graphs. Inf.
Process. Lett., 92(2):95–98, 2004.

[18] D. Mondal. Embedding a planar graph on a given
point set. Master’s thesis, Department of Computer
Science, University of Manitoba, 2012. Available at
www.cs.umanitoba.ca/˜jyoti/DMthesis.pdf.

[19] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar lay-
outs and bipolar orientations of planar graphs. Discrete
Comput. Geom., 1(1):343–353, 1986.

[20] W. Schnyder. Embedding planar graphs on the grid.
In Proc. 1st ACM-SIAM Symp. Discrete Algorithms
(SODA’90), pages 138–148, 1990.

[21] W. T. Tutte. How to draw a graph. Proc. London Math.
Soc., 13(52):743–768, 1963.

25th Canadian Conference on Computational Geometry, 2013

122

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Weighted Region Problem in Arrangement of Lines

Amin Gheibi∗†1, Anil Maheshwari†1, and Jörg-Rüdiger Sack∗†1

1School of Computer Science, Carleton University, Ottawa, ON, Canada
[agheibi,anil,sack]@scs.carleton.ca

Abstract

In this paper, a geometric shortest path problem in
weighted regions is discussed. An arrangement of linesA, a source s, and a target t are given. The objec-
tive is to find a weighted shortest path, πst, from s
to t. Existing approximation algorithms for weighted
shortest paths work within bounded regions (typically
triangulated). To apply these algorithms to unbounded
regions, such as arrangements of lines, there is a need to
bound the regions. Here, we present a minimal region
that contains πst, called SP-Hull of A. It is a closed
polygonal region that only depends on the geometry of
the arrangement A and is independent of the weights.
It is minimal in the sense that for any arrangement of
lines A, it is possible to assign weights to the faces ofA and choose s and t such that πst is arbitrary close to
the boundary of SP-Hull of A. We show that SP-Hull
can be constructed in O(n logn) time, where n is the
number of lines in the arrangement. As a direct conse-
quence we obtain a shortest path algorithm for weighted
arrangements of lines.

1 Introduction

The geometric shortest path problem ranks among the
fundamental problems studied in Computational Geom-
etry and related fields. In this problem, the input is a
set of regions (often a triangulation), where each region
(triangle) has a corresponding weight, and two points,
source s and target t. The output is the weighted short-
est path from s to t, πst, which is the path with mini-
mum cost. The cost of the path is the total sum of the
length of each segment multiplied by the corresponding
region’s weight.

Mitchell and Papadimitriou [2] introduced this prob-
lem and proposed a (1 + ε)-approximation algorithms.
Subsequently, positioning Steiner points to discretize
the triangulation became a common technique to ob-
tain an approximation for the geometric shortest path

∗Research supported by High Performance Computing Virtual
Laboratory and SUN Microsystems of Canada

†Research supported by Natural Sciences and Engineering Re-
search Council of Canada

problem in weighted regions (cf. [3, 4]). The gen-
eral idea of this technique is to place a set of Steiner
points in each triangle and then build a graph by con-
necting them. The approximation solution is achieved
by finding a shortest path inside this graph, by using
well-known combinatorial algorithms (e.g., Dijkstra’s,
BUSHWHACK[4]). Some geometric factors (such as
segment lengths, angles) are taken into account in the
process of Steiner point placement. Therefore, the num-
ber of Steiner points depends on these geometric factors.

To the best of our knowledge, nobody has studied the
weighted shortest path problem when the input is an ar-
rangement of lines. It is impossible to cover the whole
length of the lines with Steiner points, because lines
are infinite and we cannot afford an infinite number of
Steiner points. Therefore, in this context, the first chal-
lenge is to bound the number of Steiner points. Conse-
quently, we need a bound on the region that weighted
shortest paths, from s to t, lie on. After establishing
this bound (i.e., a closed region) the infinite lines can
be clipped to bounded length segments, and the faces
of the arrangement inside that region can be triangu-
lated. Finally, by using the algorithm in [3] a (1 + ε)-
approximation can be obtained.

The formal problem statement is as follows: let s and
t be two points in the plane R2 and let A be an arrange-
ment of n lines li, i = 1 . . . n. For simplicity, assume no
two lines in A are parallel to each other and no three
lines have a common intersection. Each face of A is
assigned positive weight wi. By convention, the weight
of each edge of A is the minimum of the weights of its
adjacent faces. The task is to find a closed region in R2

that contains a weighted shortest path from s to t, πst.

A naive solution is a circle, centered at s whose radius
is the Euclidean distance between s and t multiplied by
wmax = max

i
wi. It is easy to see that πst will be inside

this circle. This circle clips the lines to segments and
the lengths of segments are bounded by the diameter of
the circle. However, this bound is very sensitive to out-
liers and if wmax is large, then so is the size of the circle.
In this paper, we propose an algorithm to construct a
closed polygonal region, called SP-Hull (Shortest Path
Hull), that only depends on the geometry of the ar-
rangement and is independent of the weights. This al-

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

123

25th Canadian Conference on Computational Geometry, 2013

gorithm exploits the fact that in an arrangement of lines,
the lines outside of the convex hull of A diverge. There-
fore, any shortest path, started and ended inside of the
convex hull of A, cannot go arbitrarily far from the con-
vex hull (i.e., there is a bound). We show that there are
some polygonal chains that define this bound for short-
est paths, and they intersect in a restricted way. From
this, we construct the SP-Hull. We will prove that any
πst lies inside the SP-Hull. We also justify that this is
an optimally bounded region, one in which πst is located
in the absence of any assumptions on the weights.

The structure of this extended abstract is as follows.
In Section 2, necessary preliminaries are presented. In
Section 3, some relevant geometric properties are dis-
cussed. The construction algorithm for SP-Hull is de-
scribed and analyzed in Section 4. Due to space limita-
tion, some of the proofs of the lemmas are removed.

2 Preliminaries

Let A be an arrangement of n lines li, i = 1 . . . n,
and P be the set of intersection points of li, P ={p1, p2,⋯, pn(n−1)/2}. The convex hull of P is denoted
by CH(P)= ⟨c1,⋯, cH⟩. Each line li either intersectsCH(P) twice, at ai1 and ai2 , or contributes a segment to
the boundary of the convex hull, ∂CH(P), from ai1 ∈ li
to ai2 ∈ li. For each li, i = 1 . . . n, we define two non-
intersecting rays (subset of li) from ai1 and ai2 , re-
spectively toward infinity. Sort all the rays based on
their slopes, and arrange them in a counter-clockwise
order around CH(P). This defines an order for the rays
R = ⟨r1, r2,⋯, r2n⟩ (Figure 1). This is a circular order
and the relation “<” is well-defined. Note that all the
rays diverge and there is no intersection between any
two of them in the exterior of CH(P).

For simplicity, it is assumed that s and t are inside (or
on the boundary of) CH(P). If they are not, a set of at
most three lines, passing through s and t, can be added
to the arrangement. This ensures that s and t are not
outside of CH(P). However, πst does not necessarily lie
inside CH(P). For example, in Figure 1, suppose the
weight of the face fi is ”very large” and the weight of
the face fi+1 is ”very cheap”. Then, the shortest path
from s to t goes outside of CH(P), as depicted in the
figure.

In this paper, each ray is identified by a pair r =⟨a, d⃗⟩, where a is the starting point on the boundary ofCH(P) and d⃗ is a vector pointing away from CH(P).
W.l.o.g., it can be assumed for the remainder of the
paper that the angle between any two consecutive rays,
r1 = ⟨a1, d⃗1⟩, r2 = ⟨a2, d⃗2⟩ ∈ R, is less than π

2
. If it is

not, (since this angle is less than π) one extra ray r′ =⟨a′, d⃗1+ d⃗2⟩ can be added in between, where a′ is a point
on the boundary of CH(P), between a1 and a2. The
total number of such angles greater than or equal to

π
2

in R is at most 4. Therefore, by adding a constant
number of rays to R this assumption holds.

Definition 1 (Order of the points on a ray) For
two points x and y on a ray ri = ⟨a, d⃗⟩, x ≺ y if∣a⃗x∣ < ∣a⃗y∣, where ∣.∣ denotes the length of a vector.

Note that this is defined for points on a ray ri ⊂ lj . The
point a is mapped to zero, and the points on the ray ri
are mapped to R+, in the direction of d⃗.

Definition 2 (Chains: chainccwi and chaincwi)
Let ci be a vertex of CH(P) corresponding to the
intersection of rays ri−1 and ri. The chainccwi is a
polygonal chain, starting from ci, defined as follows.
Find the normal from ci to ri+1. Let it be incident at
the point hi+1. Find the normal from hi+1 to ri+2 and
repeat until, either the normal is incident on a vertex
of CH(P) or is incident on a point in the interior
of CH(P). Then, chainccwi = ⟨ci, hi+1,⋯, hj⟩, where
hj ∈ CH(P) (see Figure 1). The chaincwi is defined
analogously.

The inner angle between two consecutive segments of
chainccwi is the angle on the left-hand side, when the di-
rection is from ci towards hj. Analogously, for chaincwi ,
it is the angle on the right-hand side.

Figure 1: For each line in the arrangement there are two
rays (in blue). Also, each vertex of CH(P), denoted by
ci, has two chains, chainccwi and chaincwi (the red dashed
lines in the figure). One of the inner angles of chainccwi
is shown in the figure (incident at ri+3). Furthermore,
suppose the weight of fi is ”very large” and the weight of
fi+1 is ”very cheap”. Then, πst goes outside of CH(P).

3 Geometric Properties

In this section, some of the geometric properties on the
order of the rays in the set R are discussed. Based on

25th Canadian Conference on Computational Geometry, 2013

124

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

these properties, some lemmas about the chains, which
are the primitive elements for constructing SP-Hull are
proven.

Property 1 Let rh < ri < rj be three rays in R and the
angles between rh and ri, and, ri and rj, are both less
than π

2
. Let x (y) be a point on rh (rj).

(a) The normal from x to rj, lies on the left side of
the normal from x to ri, directed from x toward ri.
Analogously, the normal from y to rh, lies on the
right side of the normal from y to ri, directed from
y toward ri (Figure 2 a).

(b) The normals from x and y to ri lie on the opposite
sides of the straight line that connects x to y, xy (or
both coincide with xy) (Figure 2 b).

Proof. The property follows from the fact that rays
in R diverge and do not intersect in the exterior ofCH(P). ◻

(a) (b)

(c) (d)

Figure 2: a) Property 1a, the normal from x to rj lies on
the left side of the normal from x to ri. b) Property 1b,
the normals from x and y to ri lie on the opposite sides
of xy. c) Property 2b, if xh1 intersects with yh2, then
h2 ≺ x and h1 ≺ y. d) Lemma 1, one of the normals,
either from ci to ri+1 or from ci+1 to ri+k, lies outside ofCH(P).
Lemma 1 Let ci ∈ rh and ci+1 ∈ rj be two consecutive
vertices of CH(P). (i) If rh < ri < rj, then one of the
normals from ci or ci+1 to ri lies outside of CH(P) (or
on its boundary). (ii) One of the normals, either from
ci to rh+1 or from ci+1 to rj−1, lies outside of CH(P)
(or on it) (see Figure 2 d).

Proof. (i) There is an edge e of CH(P) which is con-
necting ci and ci+1. By Property 1b, normals from ci
and ci+1 lie on the different sides of e or they coincide.
Thus, either one of the normals lies outside or both are
on the boundary of CH(P). (ii) If the normal from ci
to rh+1 lies outside the lemma is proved. Otherwise, by
first part of this lemma, the normal from ci+1 to rh+1 lies
outside (or on) the CH(P). Therefore, by Property 1a,
the normal from ci+1 to rj−1 lies outside (or on it). ◻
Property 2 Let ri < rj be two rays in R so that the
angle between them is less than π

2
.

(a) Let x ≺ y be two points on ri. If the normal from x
(y) to rj is at h1 (h2), then h1 ≺ h2.

(b) Let x and y be two points on ri and rj, respectively.
If the normal from x (y) to rj (ri) is at h1 (h2),

and xh1 intersects with yh2, then h2 ≺ x and h1 ≺ y
(Figure 2 c).

Proof. The proof of (a) follows directly from the fact
that rays in R diverge. To prove (b) assume that the
axes are rotated until ri is horizontal. Therefore, yh2 is
vertical. Since ri and rj diverge, if x is chosen s.t. x ≺ h2
then h1 ≺ y. It implies that there will be no intersection.
Therefore, to obtain an intersection between xh1 and
yh2, x should be chosen s.t. h2 ≺ x. By this selection
for x the only possible choice to pick y is h1 ≺ y. ◻
Lemma 2 (i) All inner angles of a chain,
are less than π. (ii) Furthermore, let
chainccwi = ⟨ci, hi+1,⋯,hs−1, hs, hs+1,⋯⟩ and chaincwj= ⟨cj , h′j−1,⋯,h′s+1, h′s, h′s−1,⋯⟩ intersect between rs and
rs+1 (see Figure 3a). Then, the common tangent lt of
chainccwi and chaincwj passes through hs ∈ chainccwi and
h′s+1 ∈ chaincwj .

Proof. (i) It follows directly from the fact that the rays
diverge and chains are defined by the normals to the
rays. (ii) We provide a proof by contradiction for one
the cases, when lt passes through hs−1 and h′s+1. Other
cases for other pairs of vertices are analogous. Since
chainccwi and chaincwj are intersecting, both lie on the
same side of lt. Therefore, the normal from hs−1 to rs
and from h′s+1 to rs both lie on the same side of lt. This
contradicts Property 1b. ◻
Definition 3 (Complete revolution) Suppose R =⟨r1,⋯,r2n⟩ is the counter-clockwise order of the rays
and chainccwi (chaincwi) is initiated at ci ∈ CH(P) where
ci ∈ rj. A chainccwi (chaincwi), initiated at a point x ∈ rj,
is said to achieve a complete revolution, if it successively
traverse all the rays in (reverse) order and returns back
to rj at a point x′ such that x′ is equal to x or x ≺ x′.
Lemma 3 No chain starting at a vertex ci ∈ CH(P)
achieves a complete revolution.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

125

25th Canadian Conference on Computational Geometry, 2013

(a) (b)

Figure 3: a) Two chains, chainccwi (the red dashed
chain) and chaincwj (the blue dashed chain), and their
common tangent, lt. b) An example of topological struc-
ture of the SP-Hull is shown in black solid lines. The
red dashed line is the assumed weighted shortest path
between s and t.

The proof of this lemma is based on the following ob-
servation. Always there exists a circle cmax, passing
through ci with the center inside CH(P), such that en-
closes CH(P). We can prove that the initiated chain at
this vertex lies inside cmax. It implies that this chain
does not achieve a complete revolution.

Lemma 4 Let chainccwi = ⟨ci, hi+1,⋯,hs−1, hs, hs+1,⋯⟩
and chaincwj = ⟨cj , h′j−1,⋯,h′s+1, h′s, h′s−1,⋯⟩ intersect be-
tween rs and rs+1 (Figure 3a). Then, chainij=⟨ci, hi+1,⋯,hs−1, hs, h′s+1, h′s+2,⋯,h′j−1, cj⟩ is a polygonal
chain, connecting ci to cj and the inner angles of chainij
are less than π.

Proof. By Lemma 2, chainij from ci to hs and from
h′s+1 to cj is convex. Therefore, it is enough to show
that ∠hs−1hsh′s+1 and ∠hsh′s+1h′s+2 are less than π.
In Lemma 2 we showed that the common tangent of
chainccwi and chaincwj , lt, passes through hs and h′s+1.
Since lt is a straight line and both chains lie on the
same side of lt, ∠hs−1hsh′s+1 and ∠hsh′s+1h′s+2 are less
than π. ◻

Let CW = {chaincwi ∣ i = 1..H} and CCW ={chainccwi ∣ i = 1..H}.

Lemma 5 Every ri ∈ R intersects with at least one of
chainccwj ∈ CCW or chaincwj+1 ∈ CW.

Proof. Every ri ∈ R is between two consecutive vertices
of CH(P), cj and cj+1. By Lemma 1, one of the normals
from cj and cj+1 to ri is not inside CH(P). W.l.o.g. as-
sume that the normal from cj to ri is not inside. By
Property 1a, chainccwj lies on the left side (or on) the
normal from cj to ri. Therefore, chainccwj ∈ CCW inter-
sects rj . ◻

Lemma 6 Any two chains in CW (or CCW) are either
disjoint or share an end-point at a vertex of CH(P).

Proof. This proof uses contradiction. Suppose two
chains, chaincwi and chaincwj , intersect between two rays,
rs and rs+1, not at a vertex of CH(P). Suppose chaincwi
intersects rs at x and rs+1 at h. Also, chaincwj intersects
rs at y and rs+1 at h′. W.l.o.g. assume x ≺ y. If they
intersect, it implies h′ ≺ h. This contradicts Property
2a. ◻
Definition 4 (Maximal chain) Suppose chainccwi
starts at rj and ends at rj+k, that is, chainccwi covers
rays from rj to rj+k−1. We represent chainccwi by a
range [j,⋯, j + k − 1]. It is a subrange1 of a circular
range of integers [1,⋯,2n]. We say chainccwi is maxi-
mal if there is no chainccwx ∈ CCW or chaincwx ∈ CW
such that its representative range fully covers the range[j,⋯, j + k − 1]. Analogously, the maximal chaincwi is
defined.

Let CCWmax = {chainccwi ∣ i = 1..H, s.t. chainccwi
is maximal} and CWmax = {chaincwi ∣ i = 1..H, s.t.
chaincwi is maximal}. By Lemma 6, CCWmax (CWmax)
is a set of chains such that their representative ranges
are disjoint.

Lemma 7 Suppose chainccwi ∈ CCWmax and it covers
the starting point of chaincwx ∈ CWmax. Then they do
not intersect.

Proof. By definition, chainccwi starts at the boundary
of CH(P) and ends inside. Therefore chainccwi forms
a closed region with the boundary of CH(P). By the
assumption of the lemma, chaincwx starts from inside the
corresponding region of chainccwi . If these two chains
intersect, the intersection contradicts Property 2b. ◻
Corollary 1 Let chainccwi , chainccwj ∈ CCWmax

(chaincwi , chaincwj ∈ CWmax) be two disjoint chains.
There is no chaincwx ∈ CWmax (chainccwx ∈ CCWmax)
that intersects both of them.

Proof. If chaincwx intersects chainccwi and chainccwj
without intersecting CH(P), then by Lemma 7 it must
intersects one of them at least twice. W.l.o.g. assume
that chaincwx intersects chainccwi twice, once to enter the
closed region formed by chainccwi and once to leave it.
The second intersection contradicts Property 2b. ◻
Lemma 8 Each chainccwi ∈ CCWmax intersects exactly
one chaincwj ∈ CWmax, or it ends at a vertex cx ∈CH(P).

1For simplicity, we are omitting ”modulo” as this is a circular
range.

25th Canadian Conference on Computational Geometry, 2013

126

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Proof. By definition, chainccwi ∈ CCWmax starts at a
vertex of CH(P). We prove that if it does not end at
another vertex of CH(P), then it intersects exactly one
chaincwj ∈ CWmax.

Suppose rs is the ray that chainccwi ends on. Thus,
the intersection of chainccwi and rs is in the interior
of CH(P). By Lemma 5, there exists another chain,
chainx, that intersects rs outside (or on) CH(P). This
chainx cannot be a member of CCWmax because it ei-
ther intersects with chainccwi (which contradicts Lemma
6) or fully covers chainccwi (which contradicts maximal-
ity). Therefore, it is a member of CW and intersects
chainccwi . If it is maximal, we have proved that there
exist at least one chain in CWmax that intersects. If it is
not maximal, then there exists a maximal chain, chainy,
that fully covers chainx. By the same reasoning, chainy
cannot be a member of CCWmax. Therefore, chainy
is a member of CWmax and intersects chainccwi (if it
does not intersect, it should fully cover chainccwi which
contradicts maximality of chainccwi).

Now suppose there are two chains chaincwx and
chaincwy ∈ CWmax, that intersect chainccwi . By Corol-
lary 1, chaincwx and chaincwy should either intersect each
other (which contradicts Lemma 6) or one should fully
cover the other one (which contradicts maximality).
Therefore, there exists exactly one chaincwj ∈ CWmax

that intersects chainccwi . ◻
4 The construction algorithm

In this section, we present an algorithm to construct the
SP-Hull (Algorithm 1). The input is an arrangement of
lines A, a source s, and a target t. The assumption is
that s and t are inside CH(P). The output is a simple
closed polygonal region SP-Hull that encloses CH(P).
The idea to construct SP-Hull is to cover all vertices
of CH(P) by some polygonal chains, chainij , which lie
outside of CH(P) (see Figure 3b). We will prove that
any weighted shortest path from s to t lies inside SP-
Hull. Furthermore, we will argue its minimality.

Theorem 9 Let A be an arrangement of lines. Any
weighted shortest path between two points inside CH(P),
lies inside SP-Hull of A, constructed by Algorithm 1.

Proof. This proof has two main steps. First, we prove
that SP-Hull, generated by Algorithm 1, is a simple
polygon that encloses CH(P). In the second step we
prove, by contradiction, that any weighted shortest path
between s and t, πst, does not go outside of SP-Hull,
where s, t ∈ CH(P).

Based on the construction in Algorithm 1, SP-Hull
is a sequence of chains, chainij , which do not overlap
and cover all of the rays (Lemma 5). Figure 3b shows
an example of topological structure of SP-Hull aroundCH(P). By Lemma 4, each chainij is a simple chain in

Algorithm 1 SP-Hull

Input: Source (s), target (t), an arrangement of n
lines (A)
Output: A simple closed polygon, SP-Hull

1: Compute convex hull(A), CH = ⟨c1,⋯, cH⟩;
2: Mark all ci ∈ CH as not covered;
3: Find CCWmax and CWmax sets and sort them

based on chains’ subscripts;
4: while all ci’s are not covered do
5: chainccwi = First element of CCWmax;
6: if chainccwi intersects with chaincwk then
7: chainik=Merge (chainccwi , chaincwk);
8: Mark all cj (j = i..k) as covered;
9: else/*chainccwi ends at cx ∈ CH*/

10: chainix = chainccwi ;
11: Mark all cj (j = i..x) as covered;

12: return the list of chainij , sorted by their first index
(i.e., i), as the SP-Hull;

which its inner angles are less than π. It starts and ends
at the vertices of CH(P). Therefore, the SP-Hull is a
closed simple polygon. Also, each chainij by definition is
outside of CH(P). Therefore, SP-Hull encloses CH(P).

Before continuing the proof, let us introduce some
notation. If πx is a polygonal chain and a and b are two
points on πx, then πx[a, b] denotes the subpath of πx
from a to b.

In the second step of the proof, we show that no point
of πst lies in the exterior of SP-Hull. We prove this
by contradiction. Since s and t are inside CH(P), πst
intersects SP-Hull at least twice. Let i1 and i2 be the
first two consecutive intersections of πst and SP-Hull
(see Figure 3b). Our claim is SP-Hull[i1, i2] is shorter
than πst[i1, i2] which is a contradiction to the fact that
πst is a shortest path.

Suppose there are k regions between i1 and i2 which
are separated by k − 1 rays. W.l.o.g., let the rays in
order be ⟨r1,⋯, rk−1⟩. The number of segments in SP-
Hull[i1, i2] is at most k. Furthermore, the number of
segments in πst[i1, i2] is at least k, as it must traverse
through k diverging regions. We will show that each
segment of SP-Hull[i1, i2], oj , is shorter than the corre-
sponding segment of πst[i1, i2] in that region, πj . Then,
the total length of SP-Hull[i1, i2] is smaller than the to-
tal length of πst[i1, i2] and we will arrive at a contra-
diction.

From the fact that there is no intersection between
SP-Hull[i1, i2] and πst[i1, i2] from i1 to i2, oj and πj
do not intersect. There are two cases: the segment oj
is one of the normals in a chain that is contributing to
SP-Hull, or it is a segment introduced by merging of
two chains. The first case is shown in Figure 4a. In this
case, even if πj is perpendicular, oj is shorter because

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

127

25th Canadian Conference on Computational Geometry, 2013

the rays are diverging.
For case 2, assume that the endpoints of oj are q1 and

q2, and the endpoints of πj are q′1 and q′2 (see Figure 4b).
Since rj and rj+1 diverge, translating πj toward CH(P)
makes it shorter. Therefore, the shortest possible length
for πj while avoiding an intersection between oj and πj ,
is when one of the endpoints of πj is as close as possible
to one of the endpoints of oj . Assume q′1 is equal to
q1. Then, oj is shorter than πj because of the following
observation. The distance function from a point x to a
ray r is a convex function (i.e., there is one line segment
that connects x to a point xopt ∈ r such that it has the
minimum length). Assume a line segment from x to
x0 ∈ r. By translating x0 on r toward xopt it length
becomes shorter. ◻

(a) (b)

Figure 4: a) Proof of Theorem 9, case 1. b) Proof of
Theorem 9, case 2.

Theorem 10 For an arrangement of n lines, SP-Hull
can be computed in O(n logn) time.

Proof. Computing the convex hull of P takesO(n logn) time and its size is O(n) [1].
The key here is that it is possible to find CCWmax

(CWmax) in linear time without computing all chainccwi
(chaincwi), i = 1⋯H. Lemma 6 implies that if cj ∈ CH
is covered by a chainccwi then we can skip computing
chainccwj and chaincwj , because they are not maximal.
Also, members of CCWmax do not overlap. There-
fore, the computation of CCWmax requires at most two
traversals of the rays.

In the While-loop, CCWmax (CWmax) is a set of non-
overlapping ranges that are sorted. Based on Lemma 8,
each member of CCWmax, either has exactly one inter-
section with a member of CWmax, or both endpoints
of that chain are vertices of CH. Therefore, finding
the intersecting chains takes constant time, by compar-
ing only the endpoints of the first and the last chains
in the sets. When an intersection is detected, then re-
move both chains from the sets, merge them and re-
peat. Since the total number of operations for merging
all intersected chains is equal to the number of rays, the
While-loop takes linear time. ◻
Minimality of SP-Hull

In Theorem 9, we have shown that πst lies inside SP-
Hull. Now we address its minimality. We show that

for any arrangement of lines, A, it is possible to assign
weights to the faces of A and choose s, t ∈ CH(P) such
that πst is arbitrarily close to the boundary of SP-Hull.

The procedure is as follows. Assign the weight “in-
finity” to the bounded faces of A. By this assignment,
we make sure that πst does not traverses these faces.
Choose one of the chains in SP-Hull, say chainij . This
chain is either chainccwi , or chaincwj , or the result of
merging them. Here, we prove the minimality for the
merging case. The other cases are analogous.

Let chainij be the result of merging chainccwi and
chaincwj . W.l.o.g., assume that chainccwi starts at ci ∈CH(P) and intersects CH(P) at point x ∈ ∂CH(P).
Place s on ci and t on x. Assume chainccwi traverses
k unbounded faces in order, ⟨f1,⋯, fk⟩. The weight for
the other unbounded faces that are not visited by this
chain, is set to infinity. To make πst close enough to
chainccwi , the corresponding weights for fi, i = 1 . . . k,
are set in such a way that w1 ≫ w2 ≫ ⋯ ≫ wk. It
suffices to set the weights of fi, i = 1 . . . k, as zi. If z
goes to zero, then wi ≫ wi+1 and πst is arbitrarily close
to chainccwi . An analogous argument can be used to
become as close as possible to chaincwj .

5 Further Work

Analogous question arises for existence of such bounded
region for an arrangement of line segments in an appro-
priately defined weighted region problem. Suppose P
is the set of endpoints of line segments and their in-
tersections. It is not difficult to show that if s and t
are inside the CH(P), then πst will not go further than
the boundary of CH(P). Also, an interesting exten-
sion of this problem is the question of existence of such
bound for a given arrangement of curves (e.g., algebraic
curves).

6 Acknowledgement

The authors would like to thank the anonymous review-
ers of CCCG 2013 and Maryam Nasirpour for construc-
tive comments.

References

[1] M. Atallah. Computing the convex hull of line intersec-
tions. J. Algorithms 7, 285-288, 1986.

[2] J.S.B. Mitchell and C.H. Papadimitriou. The weighted
region problem: finding shortest paths through a
weighted planar subdivision. J. ACM 38, 1:18-73, 1991.

[3] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Deter-
mining approximate shortest paths on weighted polyhe-
dral surfaces. J. ACM 52, 1:25-53, 2005.

[4] Z. Sun, J.H. Reif. On finding approximate optimal paths
in weighted regions. J. Algorithms 58, 132, 2006.

25th Canadian Conference on Computational Geometry, 2013

128

Combinatorics of Beacon-Based Routing and Coverage

Michael Biro∗ Jie Gao† Justin Iwerks∗ Irina Kostitsyna† Joseph S. B. Mitchell∗

Abstract

We consider combinatorial problems motivated by sen-
sor networks for beacon-based point-to-point routing
and covering. A beacon b is a point that can be ac-
tivated to effect a ‘magnetic pull’ toward itself every-
where in a polygonal domain P . The routing problem
asks how many beacons are required to route between
any pair of points in a polygonal domain P . In simple
polygons with n vertices we show that

⌊
n
2

⌋
− 1 beacons

are sometimes necessary and always sufficient. In poly-
gons with h holes, we establish that

⌊
n
2

⌋
−h−1 beacons

are sometimes necessary while
⌊
n
2

⌋
+ h− 1 beacons are

always sufficient. Loose bounds for simple orthogonal
polygons are also shown. We consider art gallery prob-
lems where beacons function as guards. Loose bounds
are given for covering simple polygons, polygons with
holes and simple orthogonal polygons.

1 Introduction

The model of beacon-based routing in this paper is an
analog of geographical greedy routing in sensor networks
in the continuous setting. A comparison of our model
with others found in the literature can be found in the
the current authors’ related paper on beacon-based al-
gorithms [1]. We consider two main questions in this pa-
per: “How many beacons are required to allow for point-
to-point routing between any two points in a polygonal
domain P?” and “How many beacons are required to
cover P?”

In our model, a beacon can occupy a point location on
the interior or the boundary of P , ∂P . When a beacon
is activated, an object p in P moves along a straight line
toward b until either it reaches b or makes contact with
∂P . If contact is made with ∂P , p will follow along
∂P as long as its straight line distance to b decreases
monotonically. p may alternate between moving in a
straight line path toward b on the interior of P and
following along ∂P . If p is unable to move so that its
distance to b decreases monotonically, we say p is ‘stuck’
and has reached a local minimum at a dead point. If an
object p originating at a point q reaches b we say that b

∗Department of Applied Mathematics and Statis-
tics, Stony Brook University, mbiro@ams.stonybrook.edu,
jiwerks@ams.stonybrook.edu, jsbm@ams.stonybrook.edu
†Department of Computer Science, Stony Brook University,

jgao@cs.stonybrook.edu, ikost@cs.stonybrook.edu

attracts q. A point s is routed to t if there is a sequence
of beacons that can be activated and then deactivated,
one at a time in order, such that an object beginning
at a source s visits each beacon in the sequence after it
is activated and terminates at a destination t, which we
always assume to be a beacon itself, but is not counted.
We restrict each beacon to be activated at most one time
during a routing. We say that a polygon P is covered
by a set of beacons if every point of P is attracted by
at least one beacon in the set.

2 Routing in Simple Polygons

Suppose first that P is a simple polygon. Then we show
tight bounds on the number of beacons necessary to
route between a pair s, t of points in P and the number
of beacons sufficient to route between any pair of points
s, t in P .

Theorem 1 Given a simple polygon P ,
⌊
n
2

⌋
−1 beacons

are sometimes necessary and always sufficient to route
between any pair of points in P .

Proof. We can see from Figure 1 that
⌊
n
2

⌋
− 1 beacons

are sometimes necessary to route between a specific pair
s and t.

s

t

Figure 1:
⌊
n
2

⌋
− 1 beacons are sometimes necessary to

route between a pair of points in a simple polygon. Here,
n = 19 and 8 beacons are required to route from s to t.

To establish the upper bound, we first triangulate P
and construct the dual graph G of the resulting triangu-
lation, rooted at an arbitrary triangle. Beginning with
a lowest leaf node of G, we begin to peel off adjacent
triangles. Suppose the leaf triangle is σ1 and its neigh-
bor is σ2. The analysis depends on the degree of σ2 in
the triangulation.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

129

25th Canadian Conference on Computational Geometry, 2013

Figure 2: (i) The beacon b is placed at a vertex common
to three triangles; (ii) The beacon b is placed appropri-
ately on the edge BD. Any point in the four triangles
can then navigate to b and vice-versa without any ad-
ditional beacons needed.

(i) σ2 has only one additional adjacent triangle σ3.
Suppose σ1 = 4ABC, σ2 = 4BCD. σ3 is then
either 4BDE or 4CDE. If σ3 = 4CDE, then
we place a beacon b at the vertex C and otherwise
we place b at B. In either case, since b is contained
in each of the three triangles, any point p in these
three triangles can navigate to b and vice-versa (see
Figure 2 (i)).

(ii) σ2 has two additional adjacent triangles σ3, σ4.
Assume that σ1 = 4ABC, σ2 = 4BCD, σ3 =
4BDE, σ4 = 4CDF . Suppose that the path
from σ1 to the root passes through triangle σ3.
Since σ1 = 4ABC was a lowest leaf, σ4 = CDF
is also a leaf. We place a beacon on the diago-
nal BD. The location b along BD is chosen so
the pentagon ABDFC is visible to b. This is al-
ways possible, by placing b on the correct side of
lines CF and AC. Then, any point in triangles
4ABC,4BCD,4CDF can be routed to or from
b as b is visible to each point in those triangles.
Hence, the claim is true (see Figure 2 (ii)).

Given the basic steps as shown above, we will place
beacons in a recursive manner: We take any lowest leaf
triangle σ1 of the triangulation of P and place a beacon
at points described above.

1. If P is a single triangle, we do nothing. If P has
at most one more triangle besides σ1 and σ2 or P
has only two more triangles but both are adjacent
to σ2, then we are done after placing one more bea-
con (see Figure 3 (ii) or (iii)). By the above argu-
ments we can navigate from any starting point to
any destination point by using the single beacon:
First route from the start to the beacon and then

route from the beacon to the destination (which is
always a beacon).

Figure 3: Inductive placement of beacons. (i): Base
case; (ii): Peeling off σ1 and σ2 leaves a simple polygon;
(iii): Peeling off σ1, σ2, and σ4, leaves a simple polygon.

2. Otherwise, we peel off σ1 at least one more triangle.
There are two subcases to consider:

(a) σ2 is only adjacent to one more triangle σ3
(i.e., σ2 has degree 2 in the dual graph; see
Figure 3 (ii)). In this case peeling off σ1 and
σ2 will still leave a simple polygon P ′. We
can recursively ‘beaconize’ P ′. Now we argue
that one can navigate with the union of these
beacons. In particular, if the start and desti-
nation pair are both in σ1 ∪ σ2, we may route
from s to b and from b to t as b is visible to
both s and t. If both s and t are in P ′, then
we can navigate by induction hypothesis. If
the start and destination pair are separated
in σ1 ∪ σ2 and P ′, we can route from s to the
beacon b and then from b to t by the induc-
tion hypothesis and the analysis above. Thus
navigation works in this case.

(b) σ2 is adjacent to two other triangles σ3 and
σ4, with σ4 also a leaf. Thus peeling off σ1,
σ2, and σ4 will still leave a simple polygon
P ′; see Figure 3 (iii)). We can recursively
‘beaconize’ P ′. Now we argue that one can
navigate with the union of these beacons. In
particular, if the start and destination pair are
both in σ1 ∪ σ2 ∪ σ4, we may route from s to
b and then from b to t as t is visible to both
s and t. If both s and t are in P ′, we can
navigate by the induction hypothesis. If the
start and destination pair are separated, we
route from s to b and then from b to t, again
by the induction hypothesis and the analysis
above. Thus, navigation works in this case as
well.

With the algorithm, we can see that each time we
place a beacon we peel off at least two triangles. There

25th Canadian Conference on Computational Geometry, 2013

130

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

are n−2 triangles in any triangulation of a simple poly-
gon with n vertices. Thus the total number of beacons
we place would be at most bn−22 c = bn2 c − 1. �

3 Routing in Polygons with Holes

If P has n vertices and h holes, then we give bounds
on the number of beacons that are sometimes necessary
and always sufficient to route between any pair of points
in P .

Theorem 2 Given a polygon P with n vertices and h
holes,

⌊
n
2

⌋
− h − 1 beacons are sometimes necessary to

route between a pair of points in P . Conversely,
⌊
n
2

⌋
+

h− 1 beacons are always sufficient to route between any
pair of points in P .

Proof. Figure 5 illustrates that
⌊
n
2

⌋
− h − 1 beacons

are sometimes necessary to route between a specific
pair of points s and t. The figure shows the poly-
gon from Figure 1, with another copy of that polygon
placed where s was originally in Figure 1, as in Fig-
ure 4. The original polygon requires 19 vertices and
the additional hole polygon has 19 vertices, plus one
extra to close the hole, so 20 vertices, and 39 total.
We have that 8 beacons are required for the original,
and an additional 9 for the hole, so 17 beacons are re-
quired to route from s to t in this polygon. That is⌊
n
2

⌋
− h− 1 =

⌊
39
2

⌋
− 1− 1 = 19− 2 = 17. This process

may be iteratively repeated to achieve the
⌊
n
2

⌋
− h− 1

bound for large numbers of holes and vertices.

Figure 4: Closing a copy of the polygon in Figure 1 with
an additional vertex to create a hole with 20 vertices
that requires 9 beacons.

To establish the upper bound, we first triangulate P
and construct the dual graph G of the resulting trian-
gulation. Since P is not simple, there may be cycles in
the dual graph and so, for each cycle in G we remove
an edge. This leaves the dual graph connected and is
equivalent to cutting a thin channel in the polygon to
remove a hole, thus adding 2 vertices. After h cuts, the
resulting polygon is simple and has n+ 2h vertices. We
then utilize Theorem 1, to say that the resulting polygon
may be routed with

⌊
n+2h

2

⌋
−1 =

⌊
n
2

⌋
+h−1 beacons, as

the beacons placed do not depend on the rigidity of the

Figure 5:
⌊
n
2

⌋
− h− 1 beacons are sometimes necessary

to route between a pair of points. Here, n = 39, h = 1,
and 17 beacons are required to route from s to t.

edges of the polygon. Then, a valid routing sequence
in the modified simple polygon corresponds to a valid
routing sequence in the original polygon P . �

Conjecture 1 Given a polygon P with n vertices and
h holes,

⌊
n
2

⌋
− h − 1 beacons are always sufficient to

route between any pair of points in P .

4 Routing in Simple Orthogonal Polygons

In simple orthogonal polygons we give loose bounds for
the number of beacons necessary to route between a
pair of points s, t in P and the number of beacons suf-
ficient to route between any two points s, t in P . We
were unsuccessful in attempting to mimic the proof of
Theorem 1 with a peeling process on a convex quadri-
lateralization of P in order to improve the upper bound.

Theorem 3 Given a simple orthogonal polygon P with
n vertices,

⌊
n
4

⌋
− 1 beacons are sometimes necessary

while
⌊
n
2

⌋
− 1 beacons always sufficient to route between

any pair of points in P .

Proof. We can see that
⌊
n
4

⌋
−1 beacons are sometimes

necessary to route between any pair of points in P by
constructing an orthogonal ‘zig-zag’ polygon as in Fig-
ure 6. The upper bound carries over from Theorem 1
for general simple polygons. �

5 Coverage in Simple Polygons and Polygons with
Holes

Define the attraction region of a beacon b to be the
locus of points in P that can reach b when b is activated.
Also, let the inverse attraction region of point p be the
locus of points that can attract p. Then we say that
a set of beacons B covers a polygon P if P is entirely
contained in the union of the attraction regions of the
beacons in B. In this section, we give bounds on the
number of beacons that are sometimes necessary and

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

131

25th Canadian Conference on Computational Geometry, 2013

Figure 6:
⌊
n
4

⌋
− 1 beacons are sometimes necessary to

route between a pair of points in an orthogonal polygon.
Here, n = 20 and 4 beacons (light filled circles) are
required to route from s to t.

always sufficient to cover a simple polygon.

Figure 7 depicts a small polygon with 9 vertices that
requires 3 beacons to cover. Due to the angles involved,
this small example cannot easily be extended to larger
n.

Figure 7: Here, n = 9 and 9
3 = 3 beacons are required

to cover. The (red) independent witnesses and their
disjoint inverse attraction regions are shaded.

In order to get around the angle issue, we try to make
multiple copies of the above figure in a linear pattern.
This yields a polygon with a repeating spike gadget,
requiring

⌊
3n
10

⌋
beacons to cover.

In order to further improve this lower bound, we
iteratively ‘glue’ spikes together. We distinguish be-
tween spike trunks that are ‘angled-in’ and those that
are ‘angled-out’, and proceed to glue two copies of an
angled-in spike to form an angled-out spike, as in Figure
9. The next operation takes two such angled-out spikes
and glues them together to form a new angled-in spike.
This process can then be iterated to generate larger and
larger examples.

Note the additional barb added when creating the
angled-in spike, which should be removed before start-

Figure 8: Here, we have a repeatable spike with n = 10

and 3(10)
10 = 3 beacons are required to guard. The (red)

independent witness points and their disjoint inverse at-
traction regions are shaded.

Figure 9: Two copies of the ‘angled-in’ spike from Figure
8 glued together to form an ‘angled-out’ spike.

ing the next iteration. The procedure takes an angled-in
spike (with barb) and proceeds as follows:

1. Remove the barb.

2. Glue two copies of the ‘angled-in’ (barb-less) spike
together by merging a corresponding pair of angled-
in edges and adding new angled-out edges to make
an ‘angled-out’ spike.

3. Glue two copies of the ‘angled-out’ spike together
by merging a corresponding pair of angled-out
edges and adding new angled-in edges to make an
‘angled-in’ spike.

4. Add the barb.

25th Canadian Conference on Computational Geometry, 2013

132

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 10: We took two copies of the ‘angled-out’ spike
from Figure 9, and glued them together with new ver-
tices to form an ‘angled-in’ spike. Note the extra barb
added where the spike attaches to the shaft. It has 36
vertices and requires 11 beacons and may be arbitrarily
repeated along the line. Iterating the procedure with
this spike as input yields a new spike with 140 vertices
that requires 43 beacons.

With respect to the number of vertices, we have that
step 1 removes two vertices; step 2 doubles the number
of vertices, then merges two edges (deleting two vertices)
and adds two new vertices; step 3 doubles the number
of vertices again, merges edges (deleting two vertices),
then adds two new vertices; step 4 adds two new ver-
tices. Altogether, if the initial spike has n vertices, then
after the above procedure we are left with a new closed
spike with 4n− 4 vertices.

With respect to the number of independent witness
points, we have that step 1 deletes one witness point,
step 2 doubles the number of witness points, step 3 dou-
bles the number of witness points then adds two new
witness points, and step 4 adds a new witness point.
Altogether, if the original spike has b independent wit-
ness points, the new spike has 4b−1 independent witness
points.

We can now analyze the number of beacons required
to cover the above polygons, starting with the closed
spike in Figure 8.

Lemma 4 Starting with the spike depicted in Figure
8, after k iterations of the operation, we are left with
an angled-in spike having 1

3 (26 · 4k + 4) vertices and
1
3 (8 · 4k + 1) independent witness points.

Proof. Define a function T (k) to be the number of ver-
tices after k iterations. We start with the above spike,
so T (0) = 10. Using the observations above, we have the
recursion T (k) = 4T (k − 1) − 4. Solving this recursion
yields T (k) = 1

3 (26 · 4k + 4) vertices.
Define a function W (k) to be the number of indepen-

dent witness points after k iterations. We start with

the above spike, so W (0) = 3. Using the observations
above, we have the recursion W (k) = 4W (k − 1) − 1.
Solving this recursion yields W (k) = 1

3 (8 · 4k + 1) inde-
pendent witness points. �

Using the preceding lemma we may now give an
asymptotic lower bound on the number of beacons
sometimes necessary to cover arbitrarily large polygons.

Theorem 5 For an arbitrary polygon P with n vertices
and h holes (possibly 0), we may need arbitrarily close
to
⌊
4n
13

⌋
beacons to cover P . Conversely,

⌊
n+h
3

⌋
beacons

are always sufficient to cover P .

Proof. We have shown a gluing approach that gives
1
3 (8·4k+1) independent witness points and 1

3 (26·4k+4)
vertices for arbitrary k. The ratio of these as k goes to

infinity is lim
k→∞

1
3 (8 · 4k + 1)
1
3 (26 · 4k + 4)

=
4

13
. In simple polygons,

we can then arrange an arbitrary number of angled-in
spikes in a line, whereas for polygons with h holes, h
angled-out spikes may be closed with an additional ver-
tex and then placed in a convex h-gon. Therefore, we
can display a family of polygons that display a require-
ment for a number of beacons arbitrarily close to

⌊
4n
13

⌋
.

The proof of the always sufficient bound is derived
from standard art gallery theorems:

⌊
n
3

⌋
or
⌊
n+h
3

⌋

beacons are always sufficient since if a set of beacons
‘sees’ the entire polygon they must also cover the poly-
gon [4, 7]. �

6 Coverage in Orthogonal Polygons

In this section, we show that, unlike in arbitrary poly-
gons, beacons seem significantly stronger than standard
visibility guards in orthogonal polygons. Specifically,
we show that if P is an orthogonal polygon, then

⌊
n+4
8

⌋

beacons are sometimes necessary, while
⌊
n
4

⌋
beacons al-

ways suffice, due to the standard art gallery bound.
The following figure displays an example of a family

of orthogonal polygons that require
⌊
n+4
8

⌋
beacons to

cover.

Figure 11:
⌊
n+4
8

⌋
beacons are sometimes necessary to

guard an orthogonal polygon. Here, n = 20 and 20+4
8 =

3 beacons are required to guard.

There is a gap between the sometimes necessary and
always sufficient bounds proved in the above theorem.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

133

We conjecture that the sometimes necessary bound is
also sufficient.

Conjecture 2 Given a simple orthogonal polygon P
with n vertices,

⌊
n+4
8

⌋
beacons are sometimes necessary

and always sufficient to cover P .

Acknowledgements

This research has been partially supported by the Na-
tional Science Foundation (CCF-1018388) and the US-
Israel Binational Science Foundation (project 2010074).

References

[1] M. Biro, J. Iwerks, I. Kostitsyna, J. S. B. Mitchell.
Beacon-Based Algorithms for Geometric Routing. Proc.
of the 13th Algorithms and Data Structures Symposium
(WADS 2013), London, Ontario, Canada, August 2013.
To appear.

[2] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, J. S. B.
Mitchell. Beacon-based structures in polygonal domains.
In Abstracts of the 1st Computational Geometry: Young
Researchers Forum (CG:YRF 2012), 2012.

[3] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, J. S. B.
Mitchell. Beacon-based routing and coverage. In 21st
Fall Workshop on Computational Geometry (FWCG
2011), 2011.

[4] V. Chvátal. A combinatorial theorem in plane geome-
try. Journal of Combinatorial Theory Series B, 18:39–41,
1975.

[5] E. Györi, F. Hoffman, K. Kriegel, T. Shermer. Gen-
eralized guarding and partitioning for rectilinear poly-
gons. Computational Geometry: Theory and Applica-
tions, 6(1):21–44, 1996.

[6] J. Kahn, M. Klawe, D. Kleitman. Traditional Galleries
Require Fewer Watchman. SIAM J. on Algebraic and
Discrete Methods, 4(2):194–206, 1983.

[7] F. Hoffman, M. Kaufmann, K. Kriegel The art gallery
theorem for polygons with holes. Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science
(FOCS 1991), 39–48.

25th Canadian Conference on Computational Geometry, 2013

134

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Privacy by Fake Data: A Geometric Approach

Victor Alvarez∗ Erin Chambers† László Kozma‡

Abstract

We study the following algorithmic problem: given n
points within a finite d-dimensional box, what is the
smallest number of extra points that need to be added
to ensure that every d-dimensional unit box is either
empty, or contains at least k points. We motivate the
problem through an application to data privacy, namely
k-anonymity. We show that minimizing the number
of extra points to be added is strongly NP-complete,
but admits a Polynomial Time Approximation Scheme
(PTAS). In some sense, this is the best we can hope for,
since a Fully Polynomial Time Approximation Scheme
(FPTAS) is not possible, unless P=NP.

1 Introduction

Data privacy is a fundamental problem associated to
data mining. On one hand, we would like to make data
publicly available so that data mining or analysis is pos-
sible. On the other hand, we would like to make sure
that the identity of an individual is not disclosed and
no extra information is revealed as a result of mining.
Several approaches have been proposed for alleviating
the inherent tension between the two goals. Two of the
more popular frameworks are k-anonymity [3] and dif-
ferential privacy [7].

In differential privacy, one controls the way a
database is accessed, and adds noise to the results of
queries to the database. The idea is essentially to en-
sure that the results of any query, or analysis, with or
without the data of one individual have similar distri-
butions.

The idea behind k-anonymity is to ensure that for
every query there are at least k records that are indis-
tinguishable from each other. This is usually achieved
by suppression or generalization, i.e., selective deletion
of parts of data - which hopefully does not substantially
affect the results of analysis using the data. The larger
the value of k , the greater the extent of privacy. Mey-
erson and Williams [5] have studied the complexity of

∗Fachrichtung Informatik, Universität des Saarlan-
des, Im Stadtwald, Saarbrücken, 66123, Germany,
alvarez@cs.uni-saarland.de
†Department of Mathematics and Computer Science, Saint

Louis University, echambe5@slu.edu
‡Fachrichtung Informatik, Universität des Saarlandes,

kozma@cs.uni-saarland.de

computing the minimum amount of generalization and
suppression necessary for k-anonymity, and proved that
it is an NP-hard problem. They also give an O(k log k)
approximation algorithm. LeFevre, DeWitt and Ra-
makrishnan [6] studied the optimization problem in a
multidimensional model. They proved NP-hardness and
gave a greedy algorithm that seems to perform well in
practice.

In this paper we concentrate on achieving k-
anonymity, assuming that the queries are sufficiently
broad. This condition describes a situation in which
an adversary has only partial or inaccurate information
about an individual. The goal is to prevent disclosure
of identity in this setting.

Now assume that the query is broad, but still the
database returns only a small number of records. What
should we do in such a case? One easy solution is to
refuse answering such queries. This is not effective,
since the adversary can make several broader queries
which contain the unanswered query range, and then
take their intersection to determine which records be-
long to the unanswered range. Another easy solution
is to append some fake data on the spot, so that the
total number of records returned is at least k. This is
not effective either since an adversary can make several
similar queries and observe that only certain records
are present in all of the returned results, thereby find-
ing out that these are the only real data. However, this
approach can be made effective if we can be consistent
about the fake data. The idea is to insert a fixed set of
fake data points all at once into the database such that
the answer to any broad query either returns no records
or at least k records.

We represent data records having multiple attributes
as points in multidimensional space. This view is natu-
rally suited for numeric data. We assume that queries
are axis-parallel hyper-rectangles, which we will simply
call d-dimensional boxes, that have certain minimum
width in every dimension. The specific minimum width
in each dimension can be different and needs to be cho-
sen appropriately depending on the data. However, by
appropriate scaling we can assure that the minimum
width in every dimension is exactly one.

We would like the amount of fake data to be as small
as possible. It is intuitive that in general the amount
of fake data required is much smaller than the size of
the database, since data is often densely concentrated
in certain regions, and fake data is required only for

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

135

25th Canadian Conference on Computational Geometry, 2013

sparse regions. For example, if the multidimensional
volume of the domain of the data is V , our broad query
ranges have volume at least v , and there are n data
points chosen uniformly at random from the domain,
then the expected number of data points in a specific
broad query range is nv/V . If this number is much
larger than k , then with high probability a broad range
is already k-anonymous, and needs no fake data. An
easy calculation shows that the number of fake points
required goes down exponentially with nv/(kV).

1.1 Recasting to a geometric setting

The main geometric problem studied in this paper is the
following: given a set P of n points in a d-dimensional
box1 D ⊆ [0, s]d (s ≥ 1), what is the smallest number
of additional points that need to be added to P, so that
every d-dimensional unit box contained in D is either
empty or contains at least k points.

Notice that, if we want to hit all unit hypercubes, not
just the non-empty ones, then this is a standard hitting
set problem, with an obvious solution. The restriction
to non-empty hypercubes is precisely what makes the
problem difficult. This situation is similar to that of
other hitting set problems, in which the ranges that we
are interested in are defined implicitly. For example,
when studying ε-nets, one is interested in hitting all
ranges which have size at least εn. Implicitly defined
hitting set problems also appear in combinatorial set-
tings such as the feedback vertex set problem, where
the goal is to pick the smallest set of vertices that hit
all cycles of a graph.

No general technique is known to solve problems of
this kind, and the methods for solving individual prob-
lems are varied. Our problem (defined formally in the
next section) is motivated by the discussion in the pre-
vious section, and focuses on approximation algorithms
for achieving k-anonymity.

1.2 Our contribution

Motivated by the above discussion, we define the follow-
ing notions:

Definition 1 A set P of n points contained in a box
D ⊆ [0, s]d (s ≥ 1) is k-anonymous, for some given
k ≥ 1, if and only if every box of unit size contained in
D is either empty or it contains at least k points of P.

Note that any collection of points is trivially 1-
anonymous. We therefore concern ourselves only with
the case k ≥ 2.

Definition 2 Given a set P of n points as before, a k-
anonymizer of P is a set A ⊂ D of extra points such
that P ∪ A is k-anonymous.

1In this paper, all boxes considered are axis-parallel.

Our goal is to find a k-anonymizer of smallest car-
dinality. We call this an optimal k-anonymizer. The
decision version of the problem is the following:

k-Anonymity:2 Given a set P of n points as before
and an integer l , is there a k-anonymizer of P of size at
most l?

The results achieved in this paper are the following:

Theorem 1 k-Anonymity is strongly NP-complete,
even for k = 2.

While we prove this for the two-dimensional case only,
the result trivially implies the NP-completeness of the
problem in any dimension d ≥ 2. On the positive
side, we give a polynomial-time approximation scheme
(PTAS):

Theorem 2 Let OPT denote the size of an optimal k-
anonymizer for a set P of n points in D ⊂ Rd . Then,
given 0 < ε ≤ 1, a k-anonymizer of P, of size at most

(1 + ε)OPT can be computed in O((knd/ε)poly(k,(d/ε)
d))

time.

Note that a fully polynomial time approximation
algorithm (FPTAS) is not possible for strongly NP-
complete problems, unless P=NP. Also, as the expo-
nents in our approximation scheme are prohibitively
large, we do not claim direct applicability of the al-
gorithm, thus Theorem 2 should rather be taken as an
existential result.

The rest of the paper is organized as follows: in Sec-
tion 2 we introduce a dual setting, which is equivalent
to the original problem but provides a better setting in
which to prove our results. In Sections 3 and 4 we prove
Theorems 1 and 2, respectively.

2 Dual setting

For convenience, we work in a “dual” setting based on
our “primal” setting of input points/boxes, where we
replace points by boxes and boxes by points. Each p ∈ P
gets mapped to the full dimensional unit box with its
center at p, and every unit box B ⊂ D in the primal
setting gets mapped to its center. This way, a set of
n points P gets mapped to a set Q of n unit boxes.
Observe that incidences between points and boxes are
preserved by this transformation.

In all collections of points or boxes that we mention,
we allow multiple copies of the same element. For sim-
plicity we call these collections sets, even though tech-
nically they are multisets.

Given a set Q of n unit boxes, and a point p ∈ D, we
define the depth of p as the number of elements ofQ that
contain p. We now have the following dual definition of
k-anonymity:

2Our definition of k-Anonymity is slightly different from ex-
isting formulations in the literature, however, due to the strong
similarity, we retained the term.

25th Canadian Conference on Computational Geometry, 2013

136

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Definition 3 Let Q be a set of n unit boxes of dimen-
sion d contained in a box D ⊆ [0, s]d (s ≥ 1). We say
that Q is a k-anonymous arrangement of boxes if and
only if the depth of every point p ∈ D is either 0 or at
least k.

The equivalence between the two definitions follows
from this simple observation: If p is a point and B is a
unit box containing p, then the unit box centered at p
contains the center of B.

Now the task is to find a set A of unit boxes (rep-
resenting the extra points in the primal) of minimum
cardinality such that Q ∪ A is k-anonymous. For com-
pleteness, we have the following formal definition of the
decision version:

k-Anonymity (dual): Given a set Q of n unit boxes
and an integer l , is there a k-anonymizer for Q with at
most l boxes?

3 NP-completeness: proof of Theorem 1

First we show that k-Anonymity ∈ NP. We consider
an instance of the problem in the primal version (a set P
of n points in a rectangle D ⊂ R2 and a threshold l) and
a candidate solution (a set A of t points in D). We need
to verify in time polynomial in n + t that the solution
is correct, i.e. P ∪ A is k-anonymous and that |A| ≤ l .
The latter can be checked with a simple counting, which
takes O(t) time. It remains to be shown that we can
verify k-anonymity of a set of points in polynomial time.

Let us call a unit box in the primal setting a test box.
There are an infinite number of locations in which a test
box can be placed, but the following observation shows
that it is sufficient to verify O((n + t)2) of them: If we
move a test box continuously, the number of points in-
side does not change as long as the sides of the box do
not cross any point. If we do not meet any points, we
stop at the boundary of D. It is therefore sufficient to
look at test boxes in particular locations: one of the ver-
tical sides of the test box touches a point or the bound-
ary of D and one of the horizontal sides touches a point
or the boundary of D. By convention we do not count
points on the top- or on the right side of the test box
and we count points on the bottom- or on the left side
as well as points inside the test box. Verifying that in
all of these test boxes there are either at least k points
or none, requires polynomial time.

Now we prove NP-hardness. This is done using a
reduction from Planar3SAT, a known NP-complete
decision problem [2]. In 3SAT, given a formula φ in
3-CNF, we ask whether there exists an assignment of
truth values to the variables, such that φ evaluates to
true. In Planar3SAT we restrict the question to pla-
nar formulae: those that can be represented as a planar
graph in which vertices correspond to both variables
and clauses of the formula and there is an edge between

clause C and variable x if and only if C contains either
x or ¬x .

Knuth and Ragunathan [4] observed that Pla-
nar3SAT remains NP-complete if we restrict it to for-
mulae having the following rectilinear embedding : vari-
ables are placed on a line, clauses are placed on the two
sides of the line and the three legs of each clause are
properly nested (Figure 1(a)).

(a)

(b)

Figure 1: (a) Rectilinear embedding of the formula (b∨¬c ∨
¬d) ∧ (a ∨ ¬b ∨ d) ∧ (¬a ∨ b ∨ c).
(b) A variable with three connections on top and one at the
bottom and its corresponding gadget (above). Clause and
its gadget (below).

Given an instance of Planar3SAT with an embed-
ding as described before, we transform it into a two
dimensional instance of the (dual) k-Anonymity deci-
sion problem.

The unit squares of the set Q are placed so as to align
with an orthogonal grid with cells of size 1

5 × 1
5 . The

placement of Q will create the following types of regions
in D: (a) empty regions, consisting of points with depth
0, (b) uncovered regions consisting of points with posi-
tive depth less than k, which need to be “fixed” by the
k-anonymizer and (c) safe regions consisting of points
with depth at least k. Our construction will assure that
all uncovered regions have a depth of exactly k − 1,
therefore we need not add multiple copies of the same
square in the solution.

We can create an uncovered square of size 1
5× 1

5 in the
following way: we put k − 1 squares in the same place,
k squares shifted to the right by 1

5 and k squares shifted
upwards by 1

5 . We call the resulting uncovered square
a patch and it is the main element in our reduction.

Our construction is such that patches are surrounded
by large safe regions. Consider a box B ∈ A that covers
one or more patches created by the input set Q. The
parts of B that do not cover a patch fall entirely within
the safe region surrounding the patches. In this way

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

137

25th Canadian Conference on Computational Geometry, 2013

we ensure that the boxes in the k-anonymizer A do not
create new uncovered regions.

Our main gadget is a sequence of patches which we
call a wire (Figure 2). Note that the wire can be ex-
tended infinitely at both ends. The wire has two im-
portant properties: (1) a unit square can cover any two
neighboring patches, such that the leftover part falls en-
tirely in the safe region, and (2) no unit square can cover
more than two patches of the wire. In Figure 2, uncov-
ered patches are colored black, the surrounding safe re-
gion is gray. We also show the corresponding points in
the primal diagram, together with their multiplicities.

k

k
k

k − 1

k
k

k

k − 1

k
k

k
k

k − 1

k

k
k

k − 1

k

k
k

k − 1

k

k
k

k − 1

k − 1

Figure 2: Wire gadget in dual version and primal points with
their multiplicities.

We can also design a bend gadget, which will intro-
duce 90 degrees turns in a wire, shown in Figure 3. Both
of the previously mentioned properties of a wire are also
preserved by the bend gadget, which we illustrate with
dotted unit squares that cover neighboring patches..

Figure 3: Bend gadget (dual) and unit squares that cover
neighboring patches.

Now we can create loops and we will represent each
variable by a loop that contains an even number of
patches. Let the patches in a loop be numbered from
1 to 2m. It can be observed that the optimal k-
anonymizer of this loop has m boxes, each covering
two neighboring patches. The boxes cover either the
patches (1, 2), (3, 4), ... , (2m − 1, 2m), or the patches
(2, 3), (3, 4), ... , (2m, 1). The choice between the two op-
timal solutions encodes the truth value of a variable.

We transmit the value of a variable with a tentacle
extending from the main loop. A tentacle consists of two
parallel wires with a sufficient distance between them to
avoid interference. A clause gadget is the meeting point

of three such tentacles. The variable and the clause
gadget are schematically presented in Figure 1(b). The
line here indicates a wire, without showing the actual
patches.

We will show the clause gadget in more detail in the
full version of this paper. However, as mentioned be-
fore, it is the meeting point of three variable tentacles.
Besides the patches that make up the variable tentacles,
the clause contains an extra patch in the middle. This
patch is placed in such a way that it is reachable by
a square of the optimal covering of either of the three
variables, but only if the variable is in one particular
state. By convention, we consider this the true state.
This means that if all three variables are false, we need
an extra square to cover the patch in the middle. This
penalty is the key ingredient of our reduction.

We have not yet discussed negated variables. If a vari-
able appears negated in a clause, we need to lengthen
the corresponding tentacle by one patch on each side,
so that the two patches nearest to the clause center are
now covered by a single square in the false state. We
can achieve such a shift by replacing a small piece of
a wire by a condensing gadget. This gadget increases
the number of patches by one, while keeping the end-
points in place and maintaining properties (1) and (2)
of a wire. We omit the details of this gadget, as it is a
straightforward construction.

Our reduction is almost complete; what is left is the
computation of the parameter l in the k-Anonymity
instance. Let the total number of patches in wires (ex-
cluding the extra patches in the middle of clauses) be
2m. Then we set l = m and conclude that there exists a
k-anonymizer of size at most l if and only if the original
Planar3SAT instance has a satisfying assignment.

For completeness, we need to prove that our construc-
tion is of polynomial size (in terms of the number of
clauses and variables of the Planar3SAT instance).
First we observe that the resulting construction can be
bounded by a box of polynomial size: the height of the
box depends on the maximum level of nesting in the em-
bedding of the formula, but each additional level results
in an increase of constant size. The number of levels is
bounded by the number of clauses in the formula. The
width of the rectangle increases with the addition of
each new variable or clause, but again, only by a con-
stant additive term. Since our construction consists of
points with multiplicity at most k aligned with a grid of
size 1

5× 1
5 , the total number of points needed is less than

25k times the size of the bounding box, which is clearly
polynomial. This concludes the proof of Theorem 1.

4 PTAS: proof of Theorem 2

As before, all this section will take place in the dual set-
ting, where the input set of points P is represented by

25th Canadian Conference on Computational Geometry, 2013

138

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

an arrangement of boxes Q. The main result of this sec-
tion is the proof of correctness of the following random-
ized algorithm that computes a k-anonymizer of size at
most (1 + ε)OPT , where OPT denotes the size of an
optimal k-anonymizer of Q. This algorithm is based
on a technique developed by Hochbaum and Maass [1].
Additionally, at the end of the section we will discuss
how to derandomize our algorithm..

Algorithm 1

Input: A set Q of n unit boxes in D ⊆ [0, s]d (s ≥ 1).
Output: An anonymizer of size (1 + ε)OPT for Q.

1. Given 0 < ε ≤ 1, choose L = (2d/ε) and a random integer
r ∈ [0, L− 1].

2. Impose a grid G over domain D of cell size L, and with offset r
from the origin in every dimension.

3. Find an optimal k-anonymizer inside every non-empty cell of G.
4. Output the union of the solutions of the cells of G.

In Step 2 of the algorithm, offset r from the origin
means that the coordinates of every grid point inside
domain D are of the form (r+cL), where c ≥ 0 is integer.
The grid points on the boundary of D are automatically
defined. Note that non-empty refers to the dual view:
we consider a cell empty if all its points have depth 0 or
at least k.

As the reader can note, the only step in the algorithm
that is non-trivial is Step 3, in which we have to com-
pute an exact solution of a subproblem contained in a
smaller domain. In order to make the presentation sim-
pler, we first focus on the case d = 2. We then look at
the general case, and then consider derandomization of
Algorithm 1.

Given two axis-parallel squares, we say that they are
aligned if and only if they intersect only at their bound-
aries, i.e. their intersection is non-empty, but they have
disjoint interiors. Now, given a set of unit squares
Q = {Q1, ... ,Qn} ⊂ D ⊆ [0, s]2, we can define a grid
GQ over D as follows:

Let Q ∈ Q and define GQ to be the unit grid over
D having Q as a cell. Denote by E (GQ) the set of grid
lines of GQ . The set of grid lines of GQ is

⋃n
i=1 E (GQi),

and its vertex set is the set of intersection points among
its grid lines. We now have the following lemma:

Lemma 3 Let Q ⊂ D and GQ be as defined before.
Then there exists an optimal k-anonymizer A of Q such
that each of its elements has its vertices at grid points
of GQ.

Proof. We show that there is an optimal k-anonymizer
that is aligned in the horizontal direction. By a similar
argument it can be shown that there is an optimal k-
anonymizer that is aligned in both the horizontal and
vertical directions.

Let us proceed by contradiction. LetA be the optimal
k-anonymizer with the least number of elements whose
vertical sides are not aligned with the vertical grid lines
of GQ. Denote by U this set of “unaligned” elements of

A. If U = ∅ then we are done, so we will assume that
U 6= ∅. If we manage to move the elements of A around,
such that the cardinality of U decreases, we are done.

We will move the boxes in U to the right simulta-
neously and at the same speed until we are about to
de-anonymize some region and are forced to stop. At
that point, some element of U gets aligned (horizon-
tally) with some element B ∈ Q ∪ (A \ U), and thus
automatically with a vertical grid line of GQ, since B
was already aligned. Observe that during this process
we do not de-anonymize any region of D but we “align”
one element of U. This is a contradiction since we as-
sumed that U was of minimum cardinality.

Once we have an optimal solution that is horizon-
tally aligned to GQ we can repeat the argument with
a solution whose boxes are horizontally aligned and a
minimum number of them are vertically unaligned. �

We can now perform Step 3 of Algorithm 1 in poly-
nomial time:

Lemma 4 Let Q = {Q1, ... ,Qn} be a set of unit squares
contained in a square of side-length L. Then a k-
anonymizer of minimum cardinality can be found in

time O
(
(knL)poly(k,L

2)
)

.

The proof is based on Lemma 3. Since there exists an
optimal k-anonymizer in which every element is aligned
with the grid, we exhaustively search all candidate sets
in increasing order of size, until we find a solution. We
defer the details to the full version of this paper.

Note that in practice L and k might be small, and in-
dependent of n, giving a running time of the sort O(nc),
for some constant c , which is thus polynomial in n. We
now prove a result that implies Theorem 2 for the case
d = 2, by setting L = 4/ε.

Theorem 5 Let Q ⊂ D be a set of n unit squares
defined as before. Then Algorithm 1 computes a k-
anonymizer of Q of size at most (1 + ε)OPT in time

O
(
(knL)poly(k,L

2)
)

.

Proof. To achieve the desired running time, we run
the algorithm of Lemma 4 in each non-empty cell of the
grid G imposed over domain D in Step 2 of Algorithm 1.
Since there are at most n non-empty cells, the overall
running time is O((knL)poly(k,L

2)). Observe that the cell-
size is at most L = 4

ε , which is independent of n.
As for the quality of approximation, let 0 < ε ≤ 1 be a

given parameter. Let OPT denote the size of an optimal
solution A. By the previous discussion, we know that
each element of A, a unit square, can intersect (1) one
vertical line and no horizontal line, or (2) one horizontal
line and no vertical line, or (3) one vertical and one
horizontal line, i.e. it can contain exactly one grid point
of G, or (4) lie entirely in a cell of G. Now consider

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

139

25th Canadian Conference on Computational Geometry, 2013

some q ∈ A. If q is of type (1) or (2), note that q then
intersects exactly two cells C ,C ′ of G. In this case, we
will create another copy q′ of q and move q to C and q′

to C ′ taking care that A∪{q′} remains a k-anonymizer,
although not of minimum cardinality anymore. If q is
of type (3), then we will create three more copies of it
and distribute the four of them among the four cells of
G that q intersects. By performing these operations on
every element of A of type (1), (2), or (3) we create a
new k-anonymizer A′ with the property of having each
element inside some cell of G.

Let us denote by OPT ′ the size of the solution ob-
tained by Algorithm 1. Let C be a cell of G and ob-
serve that the local solution given by A′ on C must be
at least as large as the local solution provided by Al-
gorithm 1, since the latter is optimal for C . Therefore
we obtain that OPT ′ ≤ |A′|. We can think of A′ as a
version of A with a penalty. Note that by the random
offset r of G, an element Q of A can intersect a verti-
cal or horizontal line with probability 1

L , since r takes
values from 0 to L − 1, and Q is a unit square, so Q
gets penalized only in one out of the L unit intervals of
[0, L]. Note as well that Q intersects a vertical and a
horizontal line independently, so the expected penalty
of Q is 1 · p1 + 1 · p2 + 3 · p3 + 0 · p4, where pi is the
probability that Q is of type (i). We obtain (using the
fact that L = 4

ε):

E[Penalty of Q] =
1

L

(
1− 1

L

)
+

1

L

(
1− 1

L

)
+

3

L2

=
2

L
+

1

L2
≤ 3

L
.

Therefore, E[OPT ′] ≤ E[|A′|] ≤ |A| + |A| · 3
L =(

1 + 3
L

)
OPT < (1 + ε)OPT .

�

Note that all arguments carry over to higher dimen-
sions. We summarize the result in the following theo-
rem, which implies Theorem 2 for general dimension d
by setting L = 2d/ε. We leave the details of the proof
for the full version of this paper.

Theorem 6 Let Q ⊂ D be a set of n unit boxes in d
dimensions, and let L = 2d

ε . Then Algorithm 1 com-
putes a k-anonymizer of Q of size at most (1 + ε)OPT

in time O
(
(kdnL)poly(k,L

d)
)

.

Finally, observe that the random offset r is an integer
in the interval [0, L− 1]. Since the expected size of the
computed k-anonymizer is (1+ ε)OPT , we can try each
possible value of r , and pick the smallest k-anonymizer.
This derandomizes Algorithm 1 adding a factor of L to
the running time.

5 Conclusions

In this paper, we presented a new notion of k-anonymity
that uses fake data to achieve anonymity assuming that
queries are broad. We studied the complexity of the
associated optimization problem in a geometric frame-
work, which allowed us to leverage techniques avail-
able in computational geometry. We proved strong NP-
completeness and gave a PTAS in fixed dimensions and
for constant k. Note that this is mostly of theoretical
interest: the exponent in the running time is very large,
even in two dimensions and for small k. It is still not
clear whether the exact dependence on the number of
data points can be improved. One can easily imagine a
situation where the number of points is arbitrarily large
but the optimal solution remains the same for a much
smaller subset. It may be possible to sample a subset
of the input points, from which with high probability
a good approximation may be obtained by using our
algorithm on the sample.

Acknowledgements

We thank Saurabh Ray for suggesting the problem and
for fruitful discussions. Erin Chambers is partially sup-
ported by NSF grant CCF 1054779.

References

[1] D. Hochbaum, W. Maass, Approximation schemes
for covering and packing problems in image process-
ing and VLSI, J. ACM, 31:1:130–136, 1985.

[2] D. Lichtenstein, Planar formulae and their uses,
SIAM J. Comput., 11:2:329–343, 1982.

[3] L. Sweeney, k-Anonymity: A Model for Protect-
ing Privacy, Intl J. of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10:5:557–570, 2002.

[4] D.E. Knuth, A. Raghunathan, The problem of com-
patible representatives, SIAM J. Discret. Math.,
5:3:422–427, 1992.

[5] A. Meyerson, Ryan Williams, On the Complexity of
Optimal K-Anonymity, Proc. of the Twenty-third
ACM SIGACT-SIGMOD-SIGART, 223–228, 2004.

[6] K.LeFevre, D. J. DeWitt, R. Ramakrishnan, Mon-
drian Multidimensional K-Anonymity, Proc. of the
22nd Intl Conf. on Data Engineering, ICDE 2006,
3-8 April 2006, Atlanta, GA, USA

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith,
Calibrating noise to sensitivity in private data anal-
ysis, Proc. of the 3rd Theory of Cryptography Conf.,
265–284, 2006.

25th Canadian Conference on Computational Geometry, 2013

140

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Stabbing Polygonal Chains with Rays is Hard to Approximate

Steven Chaplick∗ Elad Cohen† Gila Morgenstern‡

Abstract

We study a geometric hitting set problem involving
unirectional rays and curves in the plane.

We show that this problem is hard to approxi-
mate within a logarithmic factor even when the curves
are convex polygonal x-monotone chains. Addition-
ally, it is hard to approximate within a factor of 7

6
even when the curves are line segments with bounded
slopes. Lastly, we demonstrate that the problem is
W [2]-complete when the curves are convex polygonal
x-monotone chains and is W [1]-hard when the curves
are line segments.

1 Introduction

Motivated by art-gallery problems such as terrain-
guarding and minimum-link watchman route, Katz,
Mitchell and Nir [7] studied a family of geometric stab-
bing/hitting problems involving orthogonal line seg-
ments and rays in the plane. Among other problems,
they introduced the following problem of Stabbing Seg-
ments with Rays (SSR).

problem: SSR.

input: A set S of non-vertical line segments and a
set R of upwards rays.

output: A minimum cardinality subset R′ of R
so that for each s ∈ S there exists r ∈ R′ for which
r ∩ s 6= ∅.

In addition to the SSR problem we also consider the
more general problem of Stabbing polygonal Chains with
Rays (SCR); defined below.

problem: SCR.

input: A set C of polygonal chains and a set R of
upwards rays.

output: A minimum cardinality subset R′ of R
so that for each c ∈ C there exists r ∈ R′ for which

∗Department of Applied Mathematics, Charles University in
Prague, Czech Republic, chaplick@kam.mff.cuni.cz. The major-
ity of this research was completed when S. Chaplick was a vis-
iting researcher at the Caesarea Rothschild Institute, University
of Haifa, Israel in July 2012. Partial support by the ESF GraDR
EUROGIGA grant as project GACR GIG/11/E023.
†Caesarea Rothschild Institute, University of Haifa, Israel,

eladdc@gmail.com.
‡Caesarea Rothschild Institute, University of Haifa, Israel,

gilamor@cri.haifa.ac.il.

r ∩ c 6= ∅.

Katz, Mitchell and Nir [7] presented an exact poly-
time solution for the variant of SSR in which the line
segments in S are non-intersecting, and left the more
general problem (involving intersecting line segments)
open.

An equivalent problem was studied by Chan and
Grant [1] who refer to it as the problem of hitting-set
of downward shadows of line segments in the plane with
points. A downward shadow of a set Y ⊂ R2 is the set
of all points p = (px, py) in the plane for which there ex-
ists a point q = (qx, qy) in Y with qx = px and qy ≥ py.
Chan and Grant have also presented an exact poly-time
solution; both solutions [1, 7] are similar and based on
dynamic programming.

Chan and Grant [1] studied several other related
problems, including covering and packing. For example
they showed that the hitting set of downward shadows
of horizontal line segments by points and its ”almost-
dual” problem (covering points with downward shadows
of horizontal line segments) are both poly-time solv-
able. They further showed that the covering of points
with downward shadows of 2-intersecting1 x-monotone
curves is poly-time solvable.

In contrast to the fact that both covering and hitting
problems with downward shadows of horizontal line seg-
ments are poly-time solvable, for downward shadows of
2-intersecting x-monotone curves, things are different.
Chan and Grant [1] remarked that a naive attempts
to generalize their solution to a solution for the hitting
problem of downward shadows of curves appear to fail.
They left it as an open problem to determine whether
the hitting set problem involving downward shadows of
2-intersecting x-monotone curves in the plane is APX-
hard, has a PTAS, or perhaps is even poly-time solvable.
In this paper we show that it is APX-hard, even for the
simple case of downward shadows of line segments with
bounded slopes.

In Section 2 we show that SCR is hard to approximate
within a logarithmic factor. In Section 3 we show that
although simpler, SSR is still APX-hard and is hard to
approximate within a factor of 7

6 . We further observe
that these results hold even if the slopes of all line seg-
ments are bounded. In Section 4 we show that SCR is

1A collection C of curves is said to be k-intersecting if every
two curves in C intersect at most k times.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

141

25th Canadian Conference on Computational Geometry, 2013

W [2]-complete and that SSR is W [1]-hard; thus both
are most unlikely to be fixed-parameter intractable.

2 Stabbing polygonal chains with rays

We show below that SCR is APX-hard via a reduction
from Hitting-Set (HS).

problem: HS.

input: A set U and a collection S of subsets of U .
output: A minimum cardinality subset U ′ of U so

that for every S ∈ S we have that S ∩ U ′ 6= ∅.

Theorem 1 SCR is APX-hard, and is hard to approx-
imate within a logarithmic factor.

p3

p7 p8

p1

p2

p5
p4

p6

p10

p11

p12

p9

Figure 1: A chain corresponding to {2, 4, 5, 7, 10}. It can
be stabbed only by the rays with origins at the corresponding
points.

Proof. We show that HS is reducible to SCR via a cost-
preserving reduction; since HS is hard to approximate
within a logarithmic factor [4], the desired result follows.

Let S be a collection of subsets of [n]. We con-
struct sets C of polygonal chains and R of upwards
rays so that a minimum hitting set for S corresponds
to a minimum subset of R that stabs all chains in C
and vice versa. Indeed, let P = {pi : 1 ≤ i ≤ n} be
a point set lying on the upper half of a circle, left to
right, and let R be the set of upwards rays with ori-
gins in P . Starting with an empty set C, for each
set S ∈ S, add to C the (convex) polygonal chain
with vertices at points corresponding to elements of S.
More precisely, put S = {i1, i2, . . . , im} ⊆ [n] where
1≤i1 < i2 < · · · < im≤n then the corresponding chain
is c = 〈pi1 , pi2 , . . . , pim〉; see Figure 1. It is easy to see
that a chain c ∈ C is stabbed by exactly those rays with
origins at its vertices, just as the set S ∈ S is hit by ex-
actly its elements. That is, a minimum hitting set for
S corresponds to a minimum subset of R that stabs all
chains in C (of the same cardinality) and vice versa. �

3 Stabbing segments

SSR is a special case of SCR. Although simpler, it is still
APX-hard. The reduction in the proof of Theorem 1 is
applicable also for special case in which the collection S

is a collection of pairs, and consequently, the resulting
chains are line segments. That is, the reduction in the
proof of Theorem 1 is also a reduction from Vertex-
Cover (VC) to SSR, as is described in the proof of
Theorem 2 below.

Theorem 2 SSR is APX-hard and is hard to approxi-
mate within a factor of 7

6 .

1 2 3

4 5 6

(a)

p2

p4

p1

p3

p5

p6

(b)

Figure 2: (a) A graph G and (b) its corresponding appear-
ance of SSR.

Proof. Let G = (V,E) be a graph. As in the proof of
Theorem 1, P is a point set embedded to the upper half
of a circle, now corresponding to the vertices of G, R is
a set of upwards rays with origins in P , and S is a set of
line segments with endpoints in P where for each edge
(vi, vj) ∈ E, the line segment pipj is in S; see Figure 2
for an illustration. It is easy to see that a minimum
vertex cover of G corresponds to a minimum subset of
R that stabs all segments in S (of the same cardinality)
and vice versa. Since VC is hard to approximate within
a factor of 7

6 [6], then we are done. �

Notice that the reduction in proof of Theorems 1
and 2 could be adjusted, by sliding the points of P ,
to fit restricted versions of SCR and SSR in which all
slopes of the segmental links are within a fixed range.
Corollary 3 below follows. We first define SCR(α, β)
and SSR(α, β).

problem: SCR(α, β).
input: Two parameters 0 ≤ α < β ≤ π, a set C

of polygonal chains whose segmental links have slopes
between α and β, and a set R of upwards rays.

output: A minimum cardinality subset R′ of R
so that for each c ∈ C there exists r ∈ R′ for which
r ∩ c 6= ∅.

problem: SSR(α, β).
input: Two parameters 0 ≤ α < β ≤ π, a set S of

line segments with slopes between α and β, and a set R
of upwards rays.

output: A minimum cardinality subset R′ of R
so that for each s ∈ S there exists r ∈ R′ for which
r ∩ s 6= ∅.

Corollary 3 For any 0 ≤ α < β ≤ π, SCR(α, β) and
SSR(α, β) are APX-hard.

25th Canadian Conference on Computational Geometry, 2013

142

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

4 Fixed parameter intractability

The concept of parameterized complexity was intro-
duced by Downey and Fellows [3] (see also [5, 8]). An
instance of a parameterized problem is a pair (I, k),
where k is a parameter; the complexity of the prob-
lem is measured not only with respect to the input size,
but also with respect to the parameter k. A parame-
terized problem is said to be fixed-parameter tractable
(FPT) with respect to the parameter k if there ex-
ists an algorithm for the problem with time complexity
f(k) · p(|I|) for some computeable function f and some
polynomial p. Downey and Fellows [3] also introduced
a theory of parameterized intractability; i.e., a hierarchy
of complexity classes called the W -hierarchy. Some of
the classes in this hierarchy are interrelated as follows:
FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ W [3] · · · . Generally
speaking, a parameterized problem with parameter k is
in the class W [i] if it is reducible to a circuit of height
i or less, which assigns 1 to at most k inputs. It is
most-likely that all above inclusion are strict, namely,
there are problems in W [1] that are most likely fixed-
parameter intractable and, in particular, that W [1]-
hard problems are fixed-parameter intractable [3, 5, 8].

In this section we observe that SCR is W [2]-complete
and demonstrate that SSR is W [1]-hard.

The reduction in the proof of Theorem 1 shows that
SCR is exactly the same as Hitting Set. Thus SCR
is W [2]-complete since Hitting Set is W [2]-complete [3,
5]. Unfortunately, this is not necessarily true for SSR
as the reduction in this case is from 2-Hitting-Set.
In general, d-Hitting-Set (i.e., when the size of each
subset is at most a constant d) is FPT. Therefore the
reduction from Vertex-Cover does not provide any
W [k]-hardness. We show that SSR is W [1]-hard via a
reduction from the problem of stabbing 2-intervals2 with
points (S2I) (defined below) which is known to be W [1]-
hard [2] (note: S2I is equivalent to the 2-C1P-Set-
Cover problem in [2]). We consider all problems to be
parameterized with respect to the size of the solution.

problem: S2I.

input: A collection 2I of 2-intervals and a set P of
points on the line.

output: A minimum cardinality subset P ′ of P so
that for each 2-interval I ∈ 2I, I = (I1, I2) there exists
a point p ∈ P ′ for which p ∈ I1 or p ∈ I2.

Theorem 4 SSR is W [1]-hard.

Proof. We show S2I is reducible to SSR with similar
parameters; since the former is W [1]-hard [2], the de-
sired result follows. Let 2I be a collection of 2-intervals,
and P a set of points on the line. We construct sets S of
line segments and R of upwards rays so that a minimum

2A 2-interval is a pair of intervals on the line.

pi

pj
pk

pl

Figure 3: A segment corresponding to a 2-interval
([i, j], [k, l]). The segment lies above exactly those points
that are contained in one of its two intervals.

subset P ′ of P that collectively stabs all 2-intervals in
2I corresponds to a minimum subset of R that stabs all
segments in S and vice versa.

Notice that we may assume that the endpoints of in-
tervals in 2I as well as the points in P are integers.
Moreover, we may also assume that the endpoints of all
intervals in 2I are taken from P (otherwise an interval
with an endpoint which is not in P can be shortened).
We embed the points in P on the upper half of a cir-
cle in the same left to right order in which they appear
on the line. Starting with an empty set S, for each 2-
interval I = ([i, j], [k, l]) with i ≤ j ≤ k ≤ l, add s(I)
to S where s(I) denotes the line segment through the
points pj and pk whose left and right endpoints are, re-
spectively, above pi and pl. Finally, let R be the set of
upward rays with origins at the points of P ; see Fig-
ure 3 for an illustration. It is easy to see that the line
segment s(I) where I = ([i, j], [k, l]) lies above exactly
those points of P that lie in the union of its two inter-
vals. Thus, the rays which can be chosen to stab I are
precisely the ones corresponding to points that belong
to I. That is, a minimum subset of P that stabs 2I
corresponds to a minimum subset of R that stabs S (of
same cardinality) and vice versa. �

5 Concluding Remarks

The paper shows that SCR is hard to approximate
within a logarithmic factor while SSR is hard to approx-
imate within a constant factor. A first natural open
question we raise is either to strengthen the hardness
of approximation or to present an approximation algo-
rithm better than the standard O(log n)-approximation
algorithm for Hitting-Set. In particular, we hope that
the geometric structure that we have observed may be
useful for this purpose.

We showed that SCR is W [2]-complete and that SSR
is W [1]-hard, However, it is still open whether SSR
is in W [1], W [2]-complete, or in W [2] but not W [2]-
complete.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

143

25th Canadian Conference on Computational Geometry, 2013

References

[1] T.M. Chan and E. Grant. Exact Algorithms
and APX-Hardness Results for Geometric Packing
and Covering Problems. Computational Geometry
(2012), to appear.

[2] M. Dom, M. Fellows, and F. Rosamond. Parameter-
ized complexity of stabbing rectangles and squares
in the plane. In Proc. Workshop on Algorithms
and Computation (WALCOM), LNCS 5341: 298-
309, 2009.

[3] R.G. Downey and M.R. Fellows. Fixed-parameter
tractability and completeness. Congressus Numer-
antium, 87: 161–187, 1992.

[4] U. Feige. A threshold of lnn for approximating set
cover. J. ACM, 45(4): 634-652, July 1998.

[5] J. Flum and M. Grohe. Parameterized complex-
ity theory. Texts in theoretical computer science,
Springer, 2006.

[6] J. H̊astad. Some optimal inapproximability results.
J. ACM 48(4): 798–859, 2001.

[7] M.J. Katz, J.S.B. Mitchell, and Y. Nir. Orthogonal
segment stabbing. Computational Geometry, 30(2):
197–205, 2005.

[8] R. Niedermeier. Invitation to Fixed-Parameter Al-
gorithms. Oxford University Press, 2006.

25th Canadian Conference on Computational Geometry, 2013

144

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Heaviest Induced Ancestors and
Longest Common Substrings

Travis Gagie∗ Pawe l Gawrychowski† Yakov Nekrich‡

Abstract

Suppose we have two trees on the same set of leaves, in
which nodes are weighted such that children are heavier
than their parents. We say a node from the first tree
and a node from the second tree are induced together if
they have a common leaf descendant. In this paper we
describe data structures that efficiently support the fol-
lowing heaviest-induced-ancestor query: given a node
from the first tree and a node from the second tree,
find an induced pair of their ancestors with maximum
combined weight. Our solutions are based on a geo-
metric interpretation that enables us to find heaviest
induced ancestors using range queries. We then show
how to use these results to build an LZ-compressed in-
dex with which we can quickly find with high probability
the longest substring common to the indexed string and
a given pattern.

1 Introduction

In their paper “Range Searching over Tree Cross Prod-
ucts”, Buchsbaum, Goodrich and Westbrook [4] consid-
ered how, given a forest of trees T1, . . . , Td and a sub-
set E of the cross product of the trees’ node sets, we
can preprocess the trees such that later, given a d-tuple
u consisting of one node from each tree, we can, e.g.,
quickly determine whether there is any d-tuple e ∈ E
that induces u — i.e., such that every node in e is a
descendant of the corresponding node in u. (Unfortu-
nately, some of their work was later found to be faulty;
see [1].)

In this paper we assume we have two trees T1 and
T2 on the same set of n leaves, in which each internal
node has at least two children and nodes are weighted
such that children are heavier than their parents. We
assume E is the identity relation on the leaves. Follow-
ing Buchsbaum et al., we say a node in T1 and a node
in T2 are induced together if they have a common leaf
descendant. We consider how, given a node v1 in T1
and a node v2 in T2, we can quickly find a pair of their
heaviest induced ancestors (HIAs) — i.e., an ancestor
u1 of v1 and ancestors u2 of v2 such that u1 and u2 are

∗University of Helsinki and HIIT
†Max-Planck-Institut für Informatik
‡University of Kansas

induced together and have maximum combined weight.

In Section 2 we give several tradeoffs for data struc-
tures supporting HIA queries: e.g., we describe anO(n)-
space data structure with O

(
log3 n(log logn)2

)
query

time. Our motivation is the problem of building LZ-
compressed indexes with which we can quickly find a
longest common substring (LCS) of the indexed string
and a given pattern. Tree cross products and LZ-
indexes may seem unrelated, until we compare figures
from Buchbaum et al.’s paper and Kreft and Navarro’s
“On Compressing and Indexing Repetitive Sequences”,
shown in Figure 1. In Section 3 we show how, given
a string S of length N whose LZ77 parse [23] consists
of n phrases, we can build an O(n logN)-space index
with which, given a pattern P of length m, we can find
with high probability an LCS of P and S in O

(
m log2 n

)

time.

2 Heaviest Induced Ancestors

An obvious way to support HIA queries is to impose
orderings on T1 and T2; for each node u, store u’s weight
and the numbers of leaves to the left of u’s leftmost and
rightmost leaf descendants; and store a range-emptiness
data structure for the n × n grid on which there is a
marker at point (x, y) if the x-th leaf from the left in T1
is the y-th leaf from the left in T2. Suppose there are
x1 − 1 and x2 − 1 leaves to the left of the leftmost and
rightmost leaf descendants of u1 in T1, and y1 − 1 and
y2−1 leaves to the left of the leftmost and rightmost leaf
descendants of u2 in T2. Then u1 and u2 are induced
together if and only if the range [x1..x2]×[y1..y2] is non-
empty. Chan, Larsen and Pǎtraşcu [5] showed how we
can store the range-emptiness data structure in O(n)
space with O(logε n) query time, or in O(n log log n)
space with O(log log n) query time.

Given a node v1 in T1 and v2 in T2, we start with
a pointer p to v1 and a pointer q to the root of T2.
If the nodes u1 and u2 indicated by p and q are in-
duced together, then we check whether u1 and u2 have
greater combined weight than any induced pair we have
seen so far and move q down one level toward v2; oth-
erwise, we move p up one level toward the root of T1;
we stop when p reaches the root of T1 or q reaches v2.
This takes a total of O(depth(v1) + depth(v2)) range-
emptiness queries.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

145

25th Canadian Conference on Computational Geometry, 2013

Figure 1: Figure 1 from Buchsbaum et al.’s “Range Searching over Tree Cross Products” and Figure 2b from Kreft
and Navarro’s “On Compressing and Indexing Repetitive Sequences”, whose similarity suggests a link between the
two problems. We exploit this link when we use HIA queries to implement LCS queries.

2.1 An O
(
n log2 n

)
-space data structure with

O(log n log log n) query time

We now describe an O
(
n log2 n

)
-space data structure

with O(log n log log n) query time; later we will show
how to reduce the space via sampling, at the cost of
increasing the query time. We first compute the heavy-
path decompositions [20] of T1 and T2. These decom-
positions have the property that every root-to-leaf path
consists of the prefixes of O(log n) heavy paths. There-
fore, for each leaf w there are O

(
log2 n

)
pairs (a, b) such

that a and b are the lowest nodes in their heavy paths
in T1 and T2, respectively, that are ancestors of w.

For each pair of heavy paths, one in T1 and the other
in T2, we store a list containing each pair (a, b) such
that a is a node in the first path, b is a node in the
second path, a and b are induced together by some leaf,
a’s child in the first path is not induced with b by any
leaf, and b’s child in the second path is not induced with
a by any leaf. We call this the paths’ skyline list. Since
there are n leaves and O

(
log2 n

)
pairs for each leaf, all

the skyline lists have total length O
(
n log2 n

)
. We store

a perfect hash table containing the non-empty lists.

Let L = (a1, b1), . . . , (a`, b`) be the skyline list for a
pair of heavy paths, sorted such that depth(a1) > · · · >
depth(a`) and weight(a1) > · · · > weight(a`) or, equiv-
alently, depth(b1) < · · · < depth(b`) and weight(b1) <
· · · < weight(b`). (Notice that, if a is induced with b,
then every ancestor of a is also induced with b. There-
fore, if (ai, bi) and (aj , bj) are both pairs in L and ai is
deeper than aj then, by our definition of a pair in a sky-
line list, bj must be deeper than bi.) Let v1 be a node
in the first path and v2 be a node in the second path.
Suppose we want to find the pair of induced ancestors
in these paths of v1 and v2 with maximum combined

weight. With the approach described above, we would
start with a pointer p to v1 and a pointer q to the high-
est node in the second path, then move p up toward the
highest node in the first path and q down toward v2.

A geometric visualization is shown in Figure 2: the
filled markers (from right to left) have coordinates
(weight(a1),weight(b1)), . . . , (weight(a`),weight(b`)),
the hollow marker has coordinates
(weight(v1),weight(v2)), and we seek the point (x, y)
that is dominated both by some filled marker and by
the hollow marker, such that x+y is maximized. Notice
(weight(a1),weight(b1)), . . . , (weight(a`),weight(b`))
is a skyline — i.e., no marker dominates any other
marker. There are five cases to consider: neither v1 nor
v2 are induced with any other nodes in the paths; v1 is
induced with some node in the second path, but v2 is
not induced with any node in the first path; v1 is not
induced with any node in the second path, but v2 is
induced with some node in the first path; both v1 and
v2 are induced with some nodes in the paths, but not
with each other; and v1 and v2 are induced together.

It follows that finding the pair of induced ances-
tors in these paths of v1 and v2 with maximum
combined weight is equivalent to finding the inter-
val (ai, bi), . . . , (aj , bj) in L such that depth(ai−1) >
depth(v1) ≥ depth(ai) and depth(bj) ≤ depth(v2) <
depth(bj+1), then finding the maximum in

weight(v1) + weight(bi−1),
weight(ai) + weight(bi),

weight(ai+1) + weight(bi+1),
...

weight(aj−1) + weight(bj−1),
weight(aj) + weight(bj),

weight(aj+1) + weight(v2) .

25th Canadian Conference on Computational Geometry, 2013

146

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 2: Finding the pair of induced ancestors of v1 and v2 with maximum combined weight is equivalent to storing
a skyline such that, given a query point, we can quickly find the point (x, y) dominated both by some point on the
skyline and by the query point, such that x+ y is maximized.

Therefore, if we store O(`)-space predeces-
sor data structures with O(log log n) query
time [21] for depth(a1), . . . ,depth(a`) and
depth(b1), . . . ,depth(b`) and an O(`)-space range-
maximum data with O(1) query time [8] for
weight(a1) + weight(b1), . . . ,weight(a`) + weight(b`),
then in O(log log n) time we can find the pair of induced
ancestors in these paths of v1 and v2 with maximum
combined weight. Notice that we can assign v1 and
v2 different weights when finding this pair of induced
ancestors; this will be useful in Section 3.

Lemma 1 We can store T1 and T2 in O
(
n log2 n

)

space such that, given nodes v1 in T1 and v2 in T2, in
O(log log n) time we can find a pair of their induced an-
cestors in the same heavy paths with maximum combined
weight, if such a pair exists.

To find a pair of HIAs of v1 and v2, we consider the
heavy-path decompositions of T1 and T2 as trees T1 and
T2 of heightO(log n) in which each node is a heavy path
and V is a child of U in T1 or T2 if the highest node in
the path V is a child of a node in the path U in T1 or
T2. We start with a pointer p to the path V1 containing
v1 and a pointer q to the root of T2. If the skyline list
for the nodes U1 and U2 indicated by p and q is non-
empty, then we apply Lemma 1 to the deepest ancestors
of v1 and v2 in U1 and U2, check whether the induced
ancestors we find have greater combined weight than
any induced pair we have seen so far and move q down
one level toward V2 (to execute the descent efficiently,
in the very beginning we generate the whole path from
V2 containing v2 to the root of T2); otherwise, we move
p up one level toward the root of T1. This takes a total

of O(log n log log n) time. Again, we have the option of
assigning v1 and v2 different weights for the purpose of
the query.

Theorem 2 We can store T1 and T2 in O
(
n log2 n

)

space such that, given nodes v1 in T1 and v2 in T2, in
O(log n log log n) time we can find a pair of their HIAs.

In the full version of this paper we will reduce the
query time in Theorem 2 to O(log n) via fractional
cascading [6]; however, this is not straightforward, as
we need to modify our approach such that predeces-
sor searches keep the same target as we change pairs
of heavy paths and the hive or catalogue graph has
bounded degree.

2.2 An O(n log n)-space data structure with
O
(
log2 n

)
query time

To reduce the space bound in Theorem 2 to O(n log n),
we choose the orderings to impose on T1 and T2 such
that each heavy path consists either entirely of leftmost
children or entirely of rightmost children (except pos-
sibly for the highest nodes). We store an O(n logε n)-
space data structure [2] that supports O(log logn+ k)-
time range-reporting queries on the grid described at
the beginning of this section, where k is the number of
points reported.

Notice that, if u1 is an ancestor of w1 in the same
heavy path in T1 and u2 is an ancestor of w2 in the same
heavy path in T2, then we can use a range-reporting
query to find, e.g., the leaves that induce u1 and u2
together but not w1 and w2 together. Suppose there
are x1 − 1 and x2 − 1 > x1 − 1 leaves to the left of the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

147

25th Canadian Conference on Computational Geometry, 2013

u1

w1

w2

u2

T1

T2

Figure 3: Suppose u1 is an ancestor of w1 in the same
heavy path (shown as an oval) in T1 and u2 is an an-
cestor of w2 in the same heavy path (also shown as an
oval) in T2. We can use a range-reporting query to find
the leaves (shown as filled boxes) that induce u1 and u2
together but not w1 and w2 together.

leftmost leaf descendants of u1 and w1 in T1, and y1−1
and y2 − 1 > y2 − 1 leaves to the left of the rightmost
leaf descendants of w2 and u2 in T2; the cases when
x2 < x1 or y2 < y1 are symmetric. Then the leaves that
induce u1 and u2 together but not w1 and w2 together
are indicated by markers in [x1..x2 − 1] × [y1..y2 − 1],
as illustrated in Figure 3. That is, we query the cross
product of the ranges of leaves in the subtrees of u1
and u2 but not w1 and w2. Similarly, we can find the
leaves that induce u1 and w2 together but not u2 and
w1 together (or vice versa), but then we query the cross
product of the ranges of leaves in the subtrees of u1 and
w2 but not w1 (or of u2 and w1 but not w2).

For each pair of heavy paths, we build a list containing
each pair (a, b) such that, for some leaf x, a is the lowest
ancestor of x in the first path and b is the lowest ancestor
of x in the second path. We call this the paths’ extended
list, and consider it in decreasing order by the depth of
the first component. Notice that an extended list is
a supersequence of the the corresponding skyline list,
but all the extended lists together still have total length
O
(
n log2 n

)
.

We do not store the complete extended lists; instead,
we sample only every (log n)-th pair, so the sampled lists
take O(n log n) space. We store a perfect hash function
containing the non-empty sampled lists; we can still tell
if a list was empty before sampling by using a range-
reporting query to find any common leaf descendants of
the highest nodes in the heavy paths. Given two consec-
utive sampled pairs from an extended list, in O(log n)
time we can recover the pairs between them using a
range-reporting query, as described above.

With each sampled pair from an extended list, we
store the preceding and succeeding pairs (possibly un-
sampled) that also belong to the corresponding skyline

list; recall that the extended list is a supersequence of
the skyline list. This gives us an irregular sampling
(which may include duplicates) of pairs from the sky-
line lists, which has total size O(n log n). Instead of
storing predecessor and range-maximum data structures
over the complete skyline lists, we store them over these
sampled skyline lists, so we use a total of O(n log n)
space. Since these data structures are over sampled
skyline lists, querying them indicates only which (log n)-
length block in a complete extended list contain the pair
that would be returned by a query on a corresponding
complete skyline list. We can recover any (log n)-length
block of a complete extended list in O(log n) time with
a range-reporting query, however, and then scan that
block to find the pair with maximum combined weight.

If we sample only every (log2 n)-th pair from each
extended list and use Chan et al.’s linear-space data
structure for range reporting, then we obtain an even
smaller (albeit slower) data structure for HIA queries.

Theorem 3 We can store T1 and T2 in O(n log n)
space such that, given nodes v1 in T1 and v2 in T2, in
O
(
log2 n

)
time we can find a pair of their HIAs. Al-

ternatively, we can store T1 and T2 in O(n) space such
that, given v1 and v2, in O

(
log3+ε n

)
time we can find

a pair of their HIAs.

3 Longest Common Substrings

LZ-compressed indexes can use much less space than
compressed suffix arrays or FM-indexes (see [3, 13,
14, 17]) when the indexed string is highly repetitive
(e.g., versioned text documents, software repositories
or databases of genomes of individuals from the same
species). Although there is an extensive literature
on the LCS problem, including Weiner’s classic pa-
per [22] on suffix trees and more recent algorithms for in-
puts compressed with the Burrows-Wheeler Transform
(see [18]) or grammars (see [15]), we do not know of any
grammar- or LZ-compressed indexes designed to sup-
port fast LCS queries.

Most LZ-compressed indexes are based on an idea by
Kärkkäinen and Ukkonen [11]: we store a data struc-
ture supporting access to the indexed string S[1..N]; we
store one Patricia tree [16] Trev for the reversed phrases
in the LZ parse, and another Tsuf for the suffixes start-
ing at phrase boundaries; we store a data structure for
4-sided range reporting for the grid on which there is a
marker at point (x, y) if the x-th phrase in right-to-left
lexicographic order is followed in the parse by the lexi-
cographically y-th suffix starting at a phrase boundary;
and we store a data structure for 2-sided range report-
ing for the grid on which there is a marker at point
(x, y) if a phrase source begins at position x and ends
at position y.

25th Canadian Conference on Computational Geometry, 2013

148

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Given a pattern P [1..m], for 1 ≤ i ≤ m we search for
(P [1..i])rev in Trev (where the superscript rev indicates
that a string is reversed) and for P [i+ 1..m] in Tsuf ; ac-
cess S to check that the path labels of the nodes where
the searches terminate really are prefixed by (P [1..i])rev

and P [i + 1..m]; find the ranges of leaves that are de-
scendants of those nodes; and perform a 4-sided range-
reporting query on the cross product of those ranges.
This gives us the locations of occurrences of P in S that
touch phrase boundaries. We then use recursive 2-sided
range-reporting queries to find the phrase sources cov-
ering the occurrences we have found so far.

Rytter [19] showed how, if the LZ77 parse of S con-
sists of n phrases, then we can build a balanced straight-
line program (BSLP) for S with O(n logN) rules. A
BSLP for S is a context-free grammar in Chomsky nor-
mal form that generates S and only S such that, in
the parse tree of S, every node’s height is logarithmic
in the size of its subtree. We showed in a previous pa-
per [9, 10] how we can store a BSLP for S in O(n logN)
space such that extracting a substring of length m from
around a phrase boundary takes O(m) time. Using this
data structure for access to S and choosing the rest
of the data structures appropriately, we can store S
in O(n logN) space such that listing all the occ occur-
rences of P in S takes O

(
m2 + occ log logN

)
time.

Our solution can easily be modified to find the LCS
of P and S in O

(
m2 log log n

)
time: we store the BSLP

for S; the two Patricia trees Trev and Tsuf , with the
nodes weighted by the lengths of their path labels; and
an instance of Chan et al.’s O(n log log n)-space range-
emptiness data structure with O(log log n) query time,
instead of the data structure for 4-sided range range re-
porting. All these data structures together take a total
ofO(n logN) space. By the definition of the LZ77 parse,
the first occurrence of every substring in S touches a
phrase boundary. It follows that we can find the LCS of
P and S by finding, for 1 ≤ i ≤ m, values h and j such
that some phrase ends with P [h..i] and the next phrase
starts with P [i+ 1..j] and j − h+ 1 is maximum.

For 1 ≤ i ≤ m we search for (P [1..i])rev in Trev and for
P [i+1..m] in Tsuf , as before; access S to find the longest
common prefix (LCP) of (P [1..i])rev and the path label
of the node where the search in Trev terminates, and
the LCP of P [i + 1..m] and the path label of the node
where the search in Tsuf terminates; take v1 and v2 to
be the loci of those LCPs, and treat them as having
weights equal to the lengths of the LCPs; and then use
the range-emptiness data structure and the simple HIA
algorithm described at the beginning of Section 2 to find
h and j for this choice of i. For each choice of i this takes
O(m log log n) time, so we use O

(
m2 log log n

)
time in

total.

Lemma 4 We can store S in O(n logN) space such
that, given a pattern P of length m, we can find the

LCS of P and S in O
(
m2 log log n

)
time.

We now show how to use our data structure for HIA
queries to reduce the dependence on m in Lemma 4 from
quadratic to linear.

Ferragina [7] showed how, by storing path labels’
Karp-Rabin hashes [12] and rebalancing the Patri-
cia trees via centroid decompositions, in a total of
O(m log n) time we can find with high probability the
nodes where the searches for (P [1..i])rev and P [i+1..m]
terminate, for all choices of i. In our previous paper
we showed how, by storing the hash of the expansion
of each non-terminal in the BSLP for S, in O(m logm)
time we can then verify with high probability that the
path labels of the nodes where the searches terminate
really are prefixed by (P [1..i])rev and P [i+ 1..m].

Using the same techniques, in O(m logm) time we
can find with high probability for all choices of i, the
LCP of (P [1..i])rev and any reversed phrase, and the
LCP of P [i + 1..m] and any suffix starting at a phrase
boundary. If m = nO(1) then O(m logm) = O(m log n).
If m = nω(1), then we can preprocess P and batch the
searches for the LCPs, to perform them all in O(m)
time.

More specifically, to find the LCPs of
P [2..m], . . . , P [m..m] and suffixes starting at phrase
boundaries, we first build the suffix array and LCP
array of P . For 1 ≤ i ≤ m we use Ferragina’s
data structure to find the suffix starting at a phrase
boundary whose LCP with P [i + 1..m] is maximum.
For each phrase boundary, we use the suffix array
and LCP array of P to build a Patricia tree for the
suffixes of P whose LCPs we will seek at that phrase
boundary. We then balance these Patricia trees via
centroid decompositions. For each phrase boundary,
we determine the length of the LCP of any suffix of
P and the suffix starting at that phrase boundary.
We then use the LCP array of P to find the LCPs of
P [2..m], . . . , P [m..m] and suffixes starting at phrase
boundaries. This takes a total of O(m) time. Finding
the LCPs of P [1], (P [1..2])rev, . . . , P rev is symmetric.

Suppose we already know the LCPs of
P [1], (P [1..2])rev, . . . , P rev and the reversed phrases,
and the LCPs of P [2..m], . . . , P [m] and the suffixes
starting at phrase boundaries. Then in a total of
O
(
m log2 n

)
time we can find with high probability

values h and j such that some phrase ends with P [h..i]
and the next phrase starts with P [i+ 1..j] and j−h+ 1
is maximum, for each choice of i. To do this, we use
m applications of Theorem 3 to Trev and Tsuf , one for
each partition of P into a prefix and a suffix. This gives
us the following result:

Theorem 5 Let S be a string of length N whose
LZ77 parse consists of n phrases. We can store S in
O(n logN) space such that, given a pattern P of length

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

149

25th Canadian Conference on Computational Geometry, 2013

m, we can find with high probability a longest substring
common to P and S in O

(
m log2 n

)
time.

We can reduce the time bound in Theorem 5 to
O(m log n log log n) at the cost of increasing the space
bound to O

(
n(logN + log2 n)

)
, by using the data struc-

ture from Theorem 2 instead of the one from Theorem 3.
In fact, as we noted in Section 2, in the full version of
this paper we will also eliminate the log log n factor here.

References

[1] A. Amir, G. M. Landau, M. Lewenstein and D. Sokol.
Dynamic text and static pattern matching. ACM
Transactions on Algorithms, 3(2), 2007.

[2] S. Alstrup, G. S. Brodal, and T. Rauhe. New data struc-
tures for orthogonal range searching. In Proc. Sympo-
sium on Foundations of Computer Science, pages 198–
207, 2000.

[3] D. Arroyuelo, G. Navarro, and K. Sadakane. Stronger
Lempel-Ziv based compressed text indexing. Algorith-
mica, 62(1–2):54–101, 2012.

[4] A. L. Buchsbaum, M. T. Goodrich, and J. Westbrook.
Range searching over tree cross products. In Proc. Eu-
ropean Symposium on Algorithms, pages 120–131, 2000.

[5] T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Orthog-
onal range searching on the RAM, revisited. In Proc.
Symposium on Computational Geometry, pages 1–10,
2011.

[6] B. Chazelle and L. J. Guibas. Fractional cascading.
Algorithmica, 1(2):133–191, 1986.

[7] P. Ferragina. On the weak prefix-search problem. The-
oretical Computer Science, 483:75–84, 2013.

[8] J. Fischer and V. Heun. Space-efficient preprocessing
schemes for range minimum queries on static arrays.
SIAM Journal on Computing, 40(2):465–492, 2011.

[9] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich,
and S. J. Puglisi. A faster grammar-based self-index.
In Proc. Conference on Language and Automata Theory
and Applications, pages 240–251, 2012.

[10] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich,
and S. J. Puglisi. A faster grammar-based self-index.
Technical Report 1109.3954v6, arxiv.org, 2012.

[11] J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and
sublinear-size index structures for string matching. In
Proc. South American Workshop on String Processing,
pages 141–155, 1996.

[12] R. M. Karp and M. O. Rabin. Efficient randomized
pattern-matching algorithms. IBM Journal of Research
and Development, 31(2):249–260, 1987.

[13] S. Kreft and G. Navarro. On compressing and index-
ing repetitive sequences. Theoretical Computer Science,
483:115–133, 2013.

[14] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki.
Storage and retrieval of highly repetitive sequence col-
lections. Journal of Computational Biology, 17(3):281–
308, 2010.

[15] W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara,
T. Nakamura, and K. Hashimoto. Efficient algorithms
to compute compressed longest common substrings and
compressed palindromes. Theoretical Computer Sci-
ence, 410(8–10):900–913, 2009.

[16] D. R. Morrison. PATRICIA - Practical Algorithm To
Retrieve Information Coded in Alphanumeric. Journal
of the ACM, 15(4):514–534, 1968.

[17] G. Navarro and V. Mäkinen. Compressed full-text in-
dexes. ACM Computing Surveys, 39(1), 2007.

[18] E. Ohlebusch, S. Gog, and A. Kügel. Computing
matching statistics and maximal exact matches on com-
pressed full-text indexes. In Proc. Symposium on String
Processing and Information Retrieval, pages 347–358,
2010.

[19] W. Rytter. Application of Lempel-Ziv factorization
to the approximation of grammar-based compression.
Theoretical Computer Science, 302(1-3):211–222, 2003.

[20] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. In Proc. Symposium on Theory of Com-
puting, pages 114–122, 1981.

[21] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementation of an efficient priority queue. Mathe-
matical Systems Theory, 10:99–127, 1977.

[22] P. Weiner. Linear pattern matching algorithms. In
Proc. Symposium on Switching and Automata Theory,
pages 1–11, 1973.

[23] J. Ziv and A. Lempel. A universal algorithm for se-
quential data compression. IEEE Transactions on In-
formation Theory, 23(3), 1977.

25th Canadian Conference on Computational Geometry, 2013

150

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Maximum-Weight Planar Boxes in O(n2) Time (and Better)

Jérémy Barbay∗ Timothy M. Chan† Gonzalo Navarro‡ Pablo Pérez-Lantero§

Abstract

Given a set P of n points in Rd, where each point p of P
is associated with a weight w(p) (positive or negative),
the Maximum-Weight Box problem consists in find-
ing an axis-aligned box B maximizing

∑
p∈B∩P w(p).

We describe algorithms for this problem in two dimen-
sions that run in the worst case in O(n2) time, and much
less on more specific classes of instances. In particu-
lar, these results imply similar ones for the Maximum
Bichromatic Discrepancy Box problem. These im-
prove by a factor of Θ(log n) on the best worst-case com-
plexity previously known for these problems, O(n2 lg n)
[Cortés et al., J. Alg., 2009; Dobkin et al., J. Comput.
Syst. Sci., 1996].

1 Introduction

Consider a set P of n points in Rd, such that the points
are in general position (i.e., no pair of points share the
same x or y coordinate). Each point p of P is assigned a
weight w(p) ∈ R that can be either positive or negative.
For any subset B ⊆ Rd let W (B) :=

∑
p∈B∩P w(p).

A box is an axis-aligned hyper-rectangle, and we say
that the weight of a box B is W (B). We consider the
Maximum-Weight Box problem, which given P and
w() consists in finding a box B with maximum weight
W (B).

Related work. In one dimension, the coordinates of
the points matter only in the order they induce on their
weights, and the problem reduces to the Maximum-
Sum Consecutive Subsequence problem [3], which
can be solved in O(n) time if the coordinates are al-
ready sorted. Cortés et al. [6] solved the dynamic
version of this problem supporting updates of weights

∗Department of Computer Science, University of Chile, Chile.
jbarbay@dcc.uchile.cl. Partially supported by grant CONI-
CYT, FONDECYT/Regular 1120054, Chile.
†Cheriton School of Computer Science, University of Waterloo,

Waterloo, Canada. tmchan@cs.uwaterloo.ca.
‡Department of Computer Science, University of Chile, Chile.

gnavarro@dcc.uchile.cl. Partially funded by Millennium Nu-
cleus Information and Coordination in Networks ICM/FIC P10-
024F, Mideplan, Chile.
§Escuela de Ingenieŕıa Civil en Informática, Universidad de

Valparáıso, Chile. pablo.perez@uv.cl. Partially supported by
grant CONICYT, FONDECYT/Iniciación 11110069, Chile.

for a fixed point set. They described a data struc-
ture called MCS-tree, which supports in O(lg n) time
both updates and Maximum-Sum Consecutive Sub-
sequence queries on any interval of the sequence of
points. The Maximum-Weight Box problem in two
dimensions was introduced by Cortés et al. [6], who gave
an algorithm running in O(n2 lg n) time within O(n)
space. Their algorithm is based on MCS-trees: they
reduce any instance of the Maximum-Weight Box
problem in two dimensions to O(n2) instances of the
problem in one dimension, each solved dynamically in
O(lg n) time by using the MCS-tree.

We consider the Maximum-Weight Box problem in
two dimensions on a set P of n weighted points, such
that no pair of points share the same x or y coordinate.

Basic definitions. A strip is the area delimited by two
lines parallel to the same axis. Given the point set P ,
we say that a strip S is monochromatic if S ∩ P is not
empty and the weights of all elements of S ∩P have the
same sign. A monochromatic strip S is positive (resp.
negative) if S contains points of P with positive (resp.
negative) weights. We say that P is composed of δ strips
if P can be covered by δ pairwise disjoint monochro-
matic strips of alternating signs. Given any bounded
set S ⊂ R2, let Box(S) denote the smallest box cover-
ing S.

Results. We present the following results for the
Maximum-Weight Box problem in two dimensions.
All our algorithms use space linear in the number of
input points. Over instances composed of n weighted
points, our general algorithm runs in O(n2) time (The-
orem 2). Although this result can be deduced from
new results on the Klee’s Measure problem [5], it
is a more direct and simplified (non-trivial) solution,
which further provides smaller running times on spe-
cific classes on instances. Namely, if the point set P
is composed of δ ∈ [1..n] (either horizontal or vertical)
strips, our algorithm executes adaptively in SORT(n)+
O(δn) ⊂ O(n lg n + δn) ⊂ O(n2) time (Theorem 4),
where SORT(n) is the time required to sort the elements
of P by their x-coordinates and by their y-coordinates
(O(n lg n) in the Comparison Model, O(n lg lgn) in the
RAM model, and O(n

√
lg lg n) with randomization in

the RAM model if the coordinates of the points are in-
teger numbers [10]).

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

151

25th Canadian Conference on Computational Geometry, 2013

Applications to other known problems. Let P be a
set of n planar points, each being colored either red or
blue.

The Maximum Bichromatic Discrepancy Box
problem [6, 7] consists in finding a box that maximizes
the absolute difference between the numbers of red and
blue points that it contains, and was solved in O(n2 lg n)
time by Dobkin et al. [7]. Any instance of this prob-
lem can be reduced to two particular instances of the
Maximum-Weight Box problem [6]. In the first one
red points have weight +1 and blue points weight −1,
and conversely in the second one. Then our results can
be applied and imply an O(n2) worst-case time algo-
rithm for the Maximum Bichromatic Discrepancy
Box problem, improving upon previous O(n2 lg n)-time
algorithms [6, 7].

The Maximum Box problem [6,8,11] consists in find-
ing a box B containing the maximum number of blue
points and no red point. Eckstein et al. [8] introduced
it in general dimension, proving that if the dimension
d of the points is part of the input then the problem
is NP-hard. In two dimensions it was later solved in
O(n2 lg n) time by Liu and Nediak [11]. In 2010 Backer
et al. [1] showed that the Maximum Box problem in
two dimensions can be solved in O(n lg3 n) time and
O(n lg n) space, and that for any fixed dimension d ≥ 3
it can be solved in time within O(nd lgd−2 n).

Any instance of the Maximum Box problem is equiv-
alent to a particular case of the Maximum-Weight
Box problem in which blue points have weight +1 and
red points have weight −∞ [6]. Then our techniques
can be applied and imply O(n2) worst-case time algo-
rithms for this problem. While this time complexity is
worse than the best known solution [1], it requires only
linear space, which in some cases can be an important
advantage over the O(n lg n) space required by Backer
et al.’s solution [1].

Note that our specialized results are faster on some
classes of instances which arise naturally in applications,
such as instances where one needs to find a maximum
box over an imbalanced red-blue dataset in data mining
and/or data analysis [8, 9, 13]. Generally, if the ratio of
the number of blue points over the number of red points
is within ω(1), then our techniques yield a running time
within SORT(n) + o(n2) on an instance of n points.

Outline. In Section 2 we describe the general O(n2)-
time algorithm. In Section 3 we obtain the adaptive
algorithm running in SORT(n) + O(δn) time, where
δ is the number of strips of the point set. Finally,
in Section 4, we discuss further adaptive results, a
connection to Klee’s Measure problem, potential
polylogarithmic-factor speedups, and open problems.

2 Quadratic worst-case time algorithm

Assume the elements of P are sorted twice, first by x-
coordinates and second by y-coordinates, in SORT(n)
time.

We say that X ⊆ P is a box set if X is the intersection
of P with some box. For any box set X ⊆ P we define
the score of X, S(X), as the following four boxes (see
Figure 1). Let [x1, x2]× [y1, y2] := Box(X):

(1) Box(X);

(2) a maximum-weight box BL(X) ⊆ Box(X) of X of
the form [x1, x]× [y1, y2], x1 ≤ x ≤ x2;

(3) a maximum-weight box BR(X) ⊆ Box(X) of X of
the form [x, x2]× [y1, y2], x1 ≤ x ≤ x2; and

(4) a maximum-weight box B0(X) ⊆ Box(X) of X of
the form [x, x′]× [y1, y2], x1 ≤ x ≤ x′ ≤ x2.

For each of these boxes we keep only two opposed ver-
tices defining it and its weight, so representing a box set
X by S(X) := (Box(X), BL(X), BR(X), B0(X)) requires
only constant space.

Box(X) B0(X)

BL(X) BR(X)

Figure 1: The score S(X) = (Box(X), BL(X), BR(X), B0(X))
of a box set X ⊆ P .

We say that a box set X ⊆ P is scored if S(X) is
computed, and we use Box(X) to represent X instead
of X itself. Let the operator ⊕ : 2P × 2P → 2P be
defined over all pairs (X1, X2) of scored box sets of P
such that: X1 and X2 can be separated with a vertical
line, X1 is to the left of X2, and X1 ∪X2 is a box set.
Then X1⊕X2 returns the scored set X1∪X2, and it can
be computed in O(1) time from the next observations:

W (X1∪X2)=W (X1) +W (X2).

W (BL(X1∪X2))= max

{
W (BL(X1))
W (X1)+W (BL(X2)).

W (BR(X1∪X2))= max

{
W (BR(X2))
W (X2)+W (BR(X1)).

25th Canadian Conference on Computational Geometry, 2013

152

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

W (B0(X1 ∪X2))= max

W (B0(X1))
W (B0(X2))
W (BR(X1)) +W (BL(X2)).

Notice that by applying the operators ⊕ to singletons
{p} over all points p of P in left-to-right order, we can
compute B0(P), i.e., the maximum-weight vertical strip,
in O(n) time. After projection to the x-axis, this imme-
diately gives a linear-time algorithm for the Maximum-
Sum Consecutive Subsequence problem, studied by
Bentley [3] and often taught in undergraduate algo-
rithms classes.

Let S be a horizontal strip such that exactly m points
of P are not in S. The vertical lines passing through
the m points of P \ S split S into m+ 1 boxes denoted
S1,S2, . . . ,Sm+1 from left to right. Let B be a box of
maximum weight that has its top side above S and its
bottom side below S. Suppose that the left and right
sides of B intersect Si and Sj (1 ≤ i ≤ j ≤ m + 1),
respectively. If i 6= j, then W (B ∩ Si) and W (B ∩
Sj) are precisely W (BR(P ∩ Si)) and W (BL(P ∩ Sj)),
respectively (see Figure 2). Therefore we have W (B) =

W (BR(P∩Si))+
∑j−1

t=i+1W (St)+W (BL(P∩Sj))+W (B\
S). On the other hand, if i = j, then W (B) equals
W (B0(P ∩ Si)).

S
B

Si

Sj
BR(P ∩ Si) BL(P ∩ Sj)

Figure 2: The strip S is partitioned into m + 1 boxes
S1,S2, . . . ,Sm+1 by the vertical lines passing through the m
points in P \ S. If the left and right sides of an optimal box
B cross Si and Sj , respectively, then they are determined by
BR(P ∩ Si) and BL(P ∩ Sj).

Consider the following Strip-Constrained
Maximum-Weight Box problem: Let P be a
weighted point set and S be a horizontal strip so that:
P \ S consists of n points already sorted from left
to right; S splits P \ S into two halves; the vertical
lines through the points of P \ S split S into the
boxes S1,S2, . . . ,Sn+1 from left to right; and the
points of P ∩ S are summarized by the scored box sets
P ∩ S1, . . . ,P ∩ Sn+1. Find a maximum-weight box
of P, with the top side above S and the bottom side
below S.

The key to our new solution is an O(n2)-time al-
gorithm for this constrained problem, using an ap-
proach which may be nick-named “divide-summarize-
and-conquer”.

Lemma 1 The Strip-Constrained Maximum-
Weight Box problem admits a solution in O(n2) time
and O(n) space.

Proof. Let F (n) denote the time required to solve a
given instance of the Strip-Constrained Maximum-
Weight Box problem over n points. We apply divide-
and-conquer: Split the points of P above (resp. below)
S into two halves with a horizontal line `1 (resp. `2).
Let P1 denote the points above `1, P2 denote the points
in between `1 and S, P3 denote the points in between
S and `2, and P4 denote the points below `2. Then the
problem can be reduced to the next four subproblems:

(1) the points of P1 ∪ P4 outside a strip S ′ covering
P2 ∪ P3 ∪ S;

(2) the points of P1 ∪ P3 outside a strip S ′ covering
P2 ∪ S;

(3) the points of P2 ∪ P3 outside the strip S ′ = S; and

(4) the points of P2 ∪ P4 outside a strip S ′ covering
P3 ∪ S.

The reduction to subproblem (1) can be done in O(n)
time as follows: Take each point p of P2 ∪ P3 and com-
pute the score S({p}). Simulate the merging of the left-
to-right orders of P1 ∪P4, P2 ∪P3, and S1,S2, . . . ,Sn+1

(each of which can be obtained in O(n) time) to com-
pute the corresponding scored box sets in the new strip
S ′. This computation can be done by applying the op-
erator ⊕ to successive scored box sets in between con-
secutive points of P1∪P4 in the left-to-right order. The
reductions to subproblems (2)–(4) are similar.

The base case occurs when n ∈ {1, 2}. In the most
general setting (n = 2) we have one point p1 above S
and one point p2 below S, defining boxes S1, S2, and
S3 on S. Assume w.l.o.g. that p1 is to the left of p2
and w(p1), w(p2) > 0 (for example, if w(p1) < 0, we can
eliminate p1). Then the solution is B0

(
(P ∩S1)∪{p1}∪

(P ∩ S2) ∪ {p2} ∪ (P ∩ S3)
)
, which can be computed in

constant time by applying the ⊕ operator.
This yields the recurrence

F (n) ∈ 4F (n/2) +O(n),

where F (1) ∈ O(1). Then F (n) ∈ O(n2). As for the
space G(n), since the four subproblems are solved inde-
pendently one after the other, the recurrence is G(n) ∈
G(n/2) +O(n), whose solution is within O(n). �

The reduction from the original Maximum-Weight
Box problem to the constrained problem follows from
a more straightforward divide-and-conquer:

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

153

25th Canadian Conference on Computational Geometry, 2013

Theorem 2 The Maximum-Weight Box problem
admits a solution in O(n2) time and O(n) space on in-
stances of n points.

Proof. We first sort the points of P by their x-
coordinates in SORT(n) time and then apply a recursive
procedure, whose time over n weighted points will be
T (n). The recursion applies divide-and-conquer as fol-
lows: Draw a horizontal strip S (a line) splitting P into
two halves P1 and P2, where P1 is above S and P2 is be-
low S. Then we can find a maximum-weight box B1 for
P1, a maximum-weight box B2 for P2, and a maximum-
weight box B1,2 for P1 ∪ P2 restricted to intersect S.
Then the box among B1, B2, and B1,2 maximizing W ()
is the solution. To compute B1,2 we will use the solu-
tion for the Strip-Constrained Maximum-Weight
Box problem over P and S, for which we split S into
n+1 empty scored boxes S1, . . . ,Sn according to all the
x-coordinates of P . This requires O(n) time and then
Lemma 1 allows us to compute B1,2 in O(n2) time and
O(n) space. Since B1 and B2 are computed recursively,
the time complexity is

T (n) ∈ 2T (n/2) +O(n2),

where T (1) ∈ O(1). Hence T (n) ∈ O(n2). As for
the space S(n), the three subproblems are solved in-
dependently one after the other, and thus it holds
S(n) ∈ max{S(n/2), S(n/2), O(n)} ⊆ O(n). �

3 δ-sensitive analysis

Assume that P is composed of δ ∈ [1..n] strips, and
suppose w.l.o.g. that these strips are horizontal. These
strips can be identified in O(n) time from the sorting
of the points in P by their y-coordinates. One does not
need to consider boxes whose horizontal sides are in the
middle of some of these strips: there always exists an
optimal box such that each horizontal side is aligned
with an edge of some strip; specifically, the top (resp.
bottom) of an optimal box will align with a positive
point at the top (resp. bottom) of a positive strip. Using
this observation we refine the results of Section 2.

Lemma 3 The Strip-Constrained Maximum-
Weight Box problem admits a solution in O(δn) time
and O(n) space if the points of P above (resp. below) S
are composed of δ/2 strips.

Proof. Let F (n, δ) denote the time required to solve
the problem. We modify the divide-and-conquer algo-
rithm from the proof of Lemma 1 as follows: We split the
points above S with a horizontal line `1 and the points
below S with a horizontal line `2, and define P1, . . . , P4

as before. However, we choose `1 and `2 differently, not
to ensure that each Pi has n/4 points, but to ensure

that each Pi is composed of δ/4 strips. Let ni denote
the size of Pi (so that n1 + n2 + n3 + n4 = n).

The base case arises when there is at most one strip
above (resp. below) S, and can be solved as follows:
Assume w.l.o.g. that the weights of these at most two
strips are positive (if one of the strips has all negative
weights, we can eliminate all of its points). Then the
solution is B0(P), which can be computed by applying
the operator ⊕ to the sequence, arranged in left-to-right
order, consisting of P ∩ S1, . . . ,P ∩ Sn+1 together with
singletons {pi} over all pi in P \ S. The base case then
requires O(n) time.

The recurrence is now modified to the following:

F (n, δ) ∈ F (n1 + n3, δ/2) + F (n1 + n4, δ/2)

+ F (n2 + n3, δ/2) + F (n2 + n4, δ/2)

+O(n).

where F (n, 1) ∈ O(n). Observe that the recursion tree
for F (n, δ) has at most lg δ levels, and that in the i-
th level the computation time besides recursive calls is
O(2in). Then F (n, δ) ∈ O(δn). The space is within
O(n) as in Theorem 2. �

Theorem 4 The Maximum-Weight Box problem
admits a solution in SORT(n) + O(δn) time and O(n)
space on instances of n points composed of δ strips.

Proof. Let T (n, δ) denote the time required to solve the
Maximum-Weight Box problem over n points com-
posed of δ strips. We apply divide-and-conquer as in
Theorem 2, but selecting strip S such that both result-
ing sets P1 and P2 are composed of δ/2 strips, and n1
points and n2 points respectively. If there is only δ = 1
strip then the solution is either empty (if the strip is
negative) or all the points (if it is positive), so in the
base case it holds T (n, 1) ∈ O(n). In the recursive case
we have:

T (n, δ) = T (n1, δ/2) + T (n2, δ/2) + F (n, δ)

∈ T (n1, δ/2) + T (n2, δ/2) +O(δn).

The recursion tree of T (n, δ) has at most lg δ levels and
in the i-th level the computation time besides recursive
calls is O(δn/2i), and thus T (n, δ) ∈ O(δn). Again, the
space is O(n) as before. �

Some naturally occurring instances will have a low
number of strips. For example, instances with an un-
balanced number of positive and negative points are due
to contain few strips. The following corollary captures
this observation.

Corollary 5 Let n+ and n− be the number of points
with positive and negative weight of an instance of
n = n+ + n− points, respectively. Then the Maximum-
Weight Box problem admits a solution in SORT(n)+
O(min{n+, n−} · n) time.

25th Canadian Conference on Computational Geometry, 2013

154

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Proof. Observe that δ ≤ 2 min{n+, n−}+ 1 and apply
Theorem 4. �

4 Discussion

Improved adaptive results. Our SORT(n) + O(δn)
time algorithm adapts well to instances where points
associated with weights of same sign can be clustered
into a small number of vertical or horizontal strips. It
improves a previous O(δn lg(n/δ)) result [2].

To obtain better adaptive algorithms, we can consider
more general clusterings into rectangles. One approach
is as follows: Call (C1, . . . , Ck) a cluster partition of P
if {C1, . . . , Ck} is a partition of P and in every axis
the orthogonal projections of Box(C1), . . . , Box(Ck) are
pairwise disjoint.

Given a single rectangular cluster, the optimal box
of the whole instance can intersect the cluster bound-
aries in 10 distinct ways. Considering the top, bottom,
left or right edges of the cluster, an optimal box can
either intersect none of them (1 case where the optimal
box is strictly contained in the cluster), exactly two (4
cases where it contains exactly one of the corners of the
cluster), exactly three of them (4 cases where it entirely
contains exactly one cluster edge), or exactly four (1
case where it contains the whole cluster). Note that if
a box intersects exactly one edge, or exactly two oppo-
site edges (e.g., top and bottom), then there is a box of
the same score which intersects no cluster boundaries,
since by the definition of a cluster partition, there are
no other points exactly above, below, to the left or to
the right of the cluster.

In the extended version of this article we will show
how, given a partition of the n points into k clusters
of respective sizes n1, . . . , nk, one can compute the 10
optimal boxes (extending the 4 boxes Box, BL, BR, and
B0 from Section 2) corresponding to the cases described

above in time within O(
∑k

i=1 n
2
i) and combine these

results in time O(k2) to obtain the optimal box of the

whole instance. This yields an O(
∑k

i=1 n
2
i + k2) time

algorithm. Finding an optimal cluster partition seems
hard.

Connection to Klee’s measure problem and higher
dimensions. Our O(n2) worst-case time algorithm is
actually a special case of a more general result for a
problem related to the well known Klee’s Measure
problem (computing the volume of a union of n boxes).

In the D-dimensional Weighted Depth problem,
we are given a set of n weighted boxes in RD and we
want a point p ∈ RD that maximizes the depth, defined
as the sum of the weights of the boxes that contain p.
All known algorithms for Klee’s Measure problem
can be modified to solve the Weighted Depth prob-
lem. In particular, Overmars and Yap’s algorithm [12]

runs in O(nD/2 lg n) time, Chan’s algorithm [4] runs in
O(nD/22O(lg∗ n)) time, and a new simple algorithm by
Chan [5] runs in O(nD/2) time.

The following observation has not been noted before:

Observation 6 The Maximum-Weight Box prob-
lem in any constant dimension d can be reduced to the
Weighted Depth problem in dimension D = 2d.

Proof. Given a point set P in Rd, we map each
point p = (a1, . . . , ad) ∈ P to a region Rp in
R2d, consisting of all 2d-tuples (x1, . . . , xd, x

′
1, . . . , x

′
d)

such that p lies inside the box with opposite corners
(x1, . . . , xd) and (x′1, . . . , x

′
d); in other words, Rp =

{(x1, . . . , xd, x′1, . . . , x′d) | [(x1 ≤ a1 ≤ x′1) ∨ (x′1 ≤ a1 ≤
x1)] ∧ · · · ∧ [(xd ≤ ad ≤ x′d) ∨ (x′d ≤ ad ≤ xd)]}. We
can decompose Rp into a constant number of boxes in
R2d. The maximum-weight box for P corresponds to
a point (x1, . . . , xd, x

′
1, . . . , x

′
d) that has the maximum

depth among these regions. �

According to the above observation, our O(n2) re-
sult for the Maximum-Weight Box problem in two
dimensions is thus not new, but can be deduced from
Chan’s latest result for the Weighted Depth prob-
lem in D = 4 dimensions [5]. In fact, the O(n2) time
algorithm presented in this paper is inspired by the algo-
rithm in [5], which is also based on a “divide-summarize-
and-conquer” approach. We feel that the algorithm
here is nevertheless interesting, because it is a more
direct solution, and can be viewed as a further sim-
plification of [5], avoiding the need to work explicitly
in 4-dimensional space. (Besides, our O(n2) time algo-
rithm is a stepping stone towards our SORT(n)+O(δn)
time algorithm.)

The above observation also implies that the
Maximum-Weight Box problem in d dimensions can
be solved in O(nd) time by Chan’s new algorithm.
Previously, only an O(n2d−2 lg n) time bound was re-
ported [6].

Polylogarithmic-factor speedups and applications.
Chan [5] also showed how to further speed up his al-
gorithm by a polylogarithmic factor for the Weighted
Depth problem, but only when the dimension is suffi-
ciently large (in particular, not for D = 4).

However, in the unweighted case of the Depth prob-
lem, it is shown [4, 5] that polylogarithmic speedup is
possible for any D ≥ 3: the running time can be im-
proved to O((nD/2/ lgD/2 n)(lg lg n)O(1)). This extends
to the case where the weights are integers with absolute
value bounded by O(1), since we can replace a box with
positive weight c by c copies of the box, and we can
replace a box with negative weight −c by c copies of its
complement (which can be decomposed into a constant
number of boxes).

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

155

25th Canadian Conference on Computational Geometry, 2013

In particular, we can thus solve the Maximum-
Weight Box problem for the case of +1 and −1
weights in O((nd/ lgd n)(lg lg n)O(1)) time. The same
bound thus follows for the Maximum Bichromatic
Discrepancy problem mentioned in the introduction.
Previously, only an O(n2 lg n) bound was known for
d = 2 [6, 7]. Similarly, by straightforward changes to
incorporate −∞ weights, the Maximum Box problem
can be solved in O((nd/ lgd n)(lg lg n)O(1)) time, im-
proving the previous O(nd lgd−2 n) bound for d ≥ 3 [1].

Lower bounds? We conjecture that O(nd) is the best
possible time complexity for the Maximum-Weight
Box problem, ignoring polylogarithmic factors. Uncon-
ditional lower bounds are probably difficult to prove. If
one could show a converse to Observation 6 (a reduc-
tion from some problem related to Klee’s Measure
problem in 2d dimensions to the Maximum-Weight
Box problem in d dimensions), that might provide evi-
dence for the conjecture. We are only able to show the
following:

Observation 7 The Weighted Depth problem in
any constant dimension d can be reduced to the
Maximum-Weight Box problem in dimension d.

Proof. We first reduce the Weighted Depth prob-
lem to a special case of the Weighted Depth problem
where all the input boxes are “dominance” ranges of the
form (−∞, b1]× · · · × (−∞, bd]. To see this, for a given
i ∈ [1..d], we replace any input box [a1, b1]×· · ·× [ad, bd]
of weight w with two boxes: [a1, b1]×· · ·× [ai−1, bi−1]×
(−∞, bi] × [ai+1, bi+1] × · · · × [ad, bd] of weight w, and
[a1, b1] × · · · × [ai−1, bi−1] × (−∞, ai] × [ai+1, bi+1] ×
· · · × [ad, bd] of weight −w. By repeating this for each
i ∈ [1..d], each original box is replaced with 2d boxes of
the desired special form.

Now, given an instance of this special case of the
Weighted Depth problem, we map each input box
b = (−∞, b1] × · · · × (−∞, bd] to the point pb =
(b1, . . . , bd), of the same weight. We have the obvious
property that pb lies inside the box [x1,∞)×· · ·×[xd,∞)
iff (x1, . . . , xd) lies inside b. We add an extra point at
(∞, . . . ,∞) with weight M for a sufficiently large num-
ber M . The maximum-weight box containing the result-
ing point set must be of the form [x1,∞)×· · ·× [xd,∞)
because of this extra point, and so corresponds to a
point of maximum depth of the given boxes. �

The above observation implies the W [1]-hardness of
the Maximum-Weight Box problem with respect to
d, since Klee’s Measure problem and the Weighted
Depth problem are W [1]-hard [4]. It also implies the
unlikeness of an algorithm that runs faster than nd/2

time with current knowledge about Klee’s Measure
problem.

References

[1] J. Backer and J. Keil. The mono- and bichromatic
empty rectangle and square problems in all dimen-
sions. In Proceedings of the 9th Latin American Theoret-
ical Informatics Symposium (LATIN’10), pages 14–25.
2010.

[2] J. Barbay, G. Navarro, and P. Pérez-Lantero. Adaptive
techniques to find optimal planar boxes. In Proceedings
of the 24th Canadian Conference on Computational Ge-
ometry (CCCG’12), pages 71–76, 2012.

[3] J. Bentley. Programming pearls: algorithm design tech-
niques. Commun. ACM, 27(9):865–873, 1984.

[4] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. Comput. Geom., 43(3):243–250,
2010.

[5] T. M. Chan. Klee’s measure problem made
easy. Submitted, https://cs.uwaterloo.ca/~tmchan/
easyklee4_13.pdf, 2013.

[6] C. Cortés, J. M. Dı́az-Báñez, P. Pérez-Lantero,
C. Seara, J. Urrutia, and I. Ventura. Bichromatic sep-
arability with two boxes: A general approach. J. Algo-
rithms, 64(2-3):79–88, 2009.

[7] D. P. Dobkin, D. Gunopulos, and W. Maass. Comput-
ing the maximum bichromatic discrepancy, with appli-
cations to computer graphics and machine learning. J.
Comput. Syst. Sci., 52(3):453–470, 1996.

[8] J. Eckstein, P. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its ap-
plication to data analysis. Comput. Optim. App.,
23(3):285–298, 2002.

[9] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou.
On the class imbalance problem. In Proceedings of the
Fourth International Conference on Natural Computa-
tion, pages 192–201, 2008.

[10] Y. Han and M. Thorup. Integer sorting in
O(n
√

log logn) expected time and linear space. In Pro-
ceedings of the Thirty-Third IEEE Symposium on Foun-
dations of Computer Science, pages 135–144, 2012.

[11] Y. Liu and M. Nediak. Planar case of the maxi-
mum box and related problems. In Proceeding of the
15th Canadian Conference on Computational Geome-
try (CCCG’03), pages 14–18, 2003.

[12] M. H. Overmars and C.-K. Yap. New upper bounds
in Klee’s measure problem. SIAM J. Comput.,
20(6):1034–1045, 1991.

[13] S. Visa and A. Ralescu. Issues in mining imbalanced
data sets - a review paper. In Proceedings of the Six-
teen Midwest Artificial Intelligence and Cognitive Sci-
ence Conference, pages 67–73, 2005.

25th Canadian Conference on Computational Geometry, 2013

156

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

An Optimal Algorithm Computing Edge-to-Edge Visibility in a Simple
Polygon

Mikkel Abrahamsen∗

Abstract

Let P be a given, simple polygon with n vertices. We
present a new O(n)-time algorithm to compute the vis-
ible part of one edge from another edge of P . The al-
gorithm does not alter the input and only uses O(1)
variables and is therefore a constant-workspace algo-
rithm. The algorithm can be used to make a constant-
workspace algorithm for computing the weak visibil-
ity polygon from an edge in O(mn) time, where m is
the number of vertices of the resulting polygon, and
a constant-workspace algorithm for computing a mini-
mum link path between two points inside a simple poly-
gon in O(n2) time.

1 Introduction

Much research has been done about visibility problems
in the plane, see the book by Ghosh [8] for an overview
of the most important problems and results.

Let P be a simple polygon with vertices v0v1 . . . vn−1
in counterclockwise (CCW) order, and let vn = v0. A
point q ∈ P is said to be visible from vjvj+1 if there
exists a point p ∈ vjvj+1 such that the segment pq is
contained in P. In this paper we show how to compute
the visible part of an edge vivi+1 from the edge vjvj+1.
Without lose of generality, we assume that j = 0 for
the rest of this paper. The algorithm uses O(n) time
in is therefore optimal. The input is given in read-
only memory and only O(1) variables are needed in the
workspace, each consisting of O(log n) bits. Therefore,
the algorithm is a constant-workspace algorithm.

The problem of computing visibility between two
edges was first addressed by Toussaint [12], who gave a
query algorithm deciding if two edges are visible to each
other if a triangulation of P is provided. Later, Avis et
al. [4] described an O(n)-time algorithm to compute the
visible part of one edge from another which does not re-
quire a triangulation or other involved data structures,
but uses Ω(n) variables in the workspace. De et al. [7]
claimed to present an O(n)-time algorithm using con-
stant workspace. However, their algorithm has a fault,
as we shall see.

∗Department of Computer Science, University of Copenhagen,
mikkel.abrahamsen@gmail.com

One of the best-known constant-workspace algo-
rithms for a geometric problem is Jarvis’ march [10] for
the computation of the convex hull of n points in the
plane in O(hn) time, where h is the number of points
on the hull. Recently, Asano et al. [2], Asano et al. [3],
and Barba et al. [5] gave constant-workspace algorithms
solving many elementary tasks in planar computational
geometry. The research presented in this paper is a part
of a master’s thesis [1], which contains more details and
space-efficient solutions to some other planar visibility
problems.

1.1 Notation and definitions

Given two points in the plane a and b, the line segment
with endpoints a and b is written ab. Both endpoints
are included in segment ab. If s is a line segment, the
line containing s which is inifinite in both directions is

written←→s . The half line
−→
ab is a line infinite in one direc-

tion, starting at a and passing through b. The right half
plane RHP(ab) is the closed half plane with boundary←→
ab lying to the right of ab. The left half plane LHP(ab)
is just RHP(ba).

If P is a simple polygon, the boundary of P is written
∂P. Let P(p, q) for two points p, q ∈ ∂P be the set of
points on ∂P we meet when traversing ∂P CCW from
p to q, both included. A chain of P is such a set P(p, q)
for some points p, q ∈ ∂P. We have the general position
assumption that no three vertices of P are collinear.

Consider the edge v0v1 of a simple polygon P. A ray
emanating from v0v1 is a segment pq where p ∈ v0v1
and pq is contained in P. Thus, a point q is visible from
v0v1 if and only if there exists a ray pq emanating from
v0v1. A right support of the ray pq is a reflex vertex v
of P such that v ∈ pq and the edges meeting at v are
both contained in RHP(pq). A left support is defined
analogously. Since no ray emanates from a point to
the left of v0, we make the convention that v0 is a left
support of any ray v0q. Likewise, v1 is a right support
of any ray v1q. A support is a right support or a left
support.

The edge vivi+1 is totally facing the edge vjvj+1 if
both of the points vj and vj+1 are in LHP(vivi+1). No-
tice that vivi+1 can be totally facing vjvj+1 even though
no point on vjvj+1 is visible from vivi+1. Edge vivi+1

is partially facing vjvj+1 if excactly one of the points vj

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

157

25th Canadian Conference on Computational Geometry, 2013

and vj+1 is in LHP(vivi+1) and not facing vjvj+1 if none
of the points are in LHP(vivi+1). We say that vivi+1

is facing vjvj+1 if vivi+1 is partially or totally facing
vjvj+1. It follows from the definitions that vivi+1 is ei-
ther totally facing, partially facing or not facing vjvj+1.
That gives 32 = 9 different combinations of how vivi+1

is facing vjvj+1 and how vjvj+1 is facing vivi+1. How-
ever, only 8 of the cases are possible when vivi+1 and
vjvj+1 are edges of a simple polygon, since they cannot
both partially face each other. That would imply that
they intersect each other properly. All of the remaining
8 cases are possible, see for instance the paper of Avis
et al. [4].

2 Visibility Between Two Edges of a Polygon

2.1 Point-to-point and point-to-edge visibility

If the edge vivi+1 is not facing edge v0v1, the only point
on vivi+1 that can be visible from v0v1 is one of the end-
points vi or vi+1. Likewise, if v0v1 is not facing vivi+1,
the only point on v0v1 that can possibly see vivi+1 is one
of the endpoints v0 or v1 by means of rays contained in
RHP(v0v1). In such cases, the problem of computing
the visible part of vivi+1 is reduced to point-to-point
and point-to-edge visibility.

Point-to-point visibility is the problem of, given two
points a and b in P, to determine if ab is contained in P.
That can easily be tested in O(n) time using constant
workspace by traversing all edges of ∂P, seeing if ∂P
crosses ab somewhere.

Point-to-edge visibility is the slightly more compli-
cated task of computing the visible part of an edge
from a point p. This can also be done using constant
workspace and O(n) time by traversing all edges of ∂P
once while keeping track of the vertices shadowing the
largest part of the edge in each of the ends [1].

We now turn our attention to the more interesting
case of computing the visible part of vivi+1 from v0v1 if
the edges are facing each other. We motivate the devel-
opment of a new algorithm by giving a counterexample
to the constant-workspace algorithm of De et al. [7].

2.2 Counterexample to the algorithm proposed by
De et al. [7]

The textual description and the pseudocode in [7] do
not agree. Figure 1 is an example of a polygon where
the algorithm computes a wrong result in both cases.
After PASS1 (), the line segment L is still pi+1pj+1. Af-
ter PASS2 (), L is θpj+1. The text says that PASS3 ()
is to check if a vertex on P(pj+1, pi) is to the right of
L. No one is, so the algorithm returns that the right-
most visible point on pjpj+1 from pipi+1 is pj+1, which
is wrong. The pseudocode gives another definition of
PASS3 (), according to which we also check if a vertex

pi pi+1

pjpj+1

θ

v

Figure 1: The algorithm from [7] reports the wrong vis-
ible part of pjpj+1 from pipi+1 in this polygon.

on P(pi+1, pj) is to the left of L. Vertex v is, so the al-
gorithm reports that nothing of pjpj+1 is visible. That
is clearly also wrong.

2.3 Computing visibility between edges facing each
other

Assume for the rest of this section that the edges
v0v1 and vivi+1 are facing each other and let
� = �v0v1vivi+1 be the quadrilateral with vertices
v0v1vivi+1 in that order. The possible rays from v0v1
to vivi+1 are all contained in �, so when computing
the visible part of vivi+1, we are only concerned about
the edges of P that are (partially) in �. A ray pq is a
proper ray if pq ⊂ LHP(v0v1) and pq ⊂ LHP(vivi+1).
An improper ray is a ray that is not proper. Each ray pq
where p is an interior point on v0v1 and q is an interior
point on vivi+1 is necessarily proper. Therefore, if pq
is improper, p = v0, p = v1, q = vi, or q = vi+1. The
visibility due to improper rays can be computed using
point-to-edge visibility, so in this section, we focus on
the visibility due to proper rays only. We leave out the
proof of the following lemma due to limited space [1].

Lemma 1 Let vR ∈ P(v1, vi) ∩ � and vL ∈
P(vi+1, v0) ∩ �. Every proper ray pq from v0v1 to
vivi+1 satisfies p ∈ LHP(vRvL) and q ∈ RHP(vRvL).
In particular, if v0v1 ∩ LHP(vRvL) = ∅ or vivi+1 ∩
RHP(vRvL) = ∅, then no proper ray from v0v1 to vivi+1

exists.

Assume that there are some proper rays from v0v1
to vivi+1. We say that the ray pq is the rightmost ray
from v0v1 to vivi+1 if p is as close to v1 as possible and
q is as close to vi+1 as possible among all proper rays.
Similairly, pq is the leftmost ray from v0v1 to vivi+1 if
p is as close to v0 as possible and q is as close to vi as
possible. If v0v1 and vivi+1 are totally facing each other,
all rays from v0v1 to vivi+1 are proper, so the visible
part of vivi+1 is the points between the endpoints of
the leftmost and rightmost rays. If one of the edges is
only partially facing the other, the visible part of vivi+1

25th Canadian Conference on Computational Geometry, 2013

158

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

can be computed using the leftmost and rightmost rays
in combination with point-to-edge visibility.

If pq is a ray from v0v1 to vivi+1, a generalized left
support of pq is vi+1 if q = vi+1 or a left support of pq
otherwise. The following lemma characterizes rightmost
rays by means of their supports.

Lemma 2 Let pq be a proper ray from v0v1 to vivi+1.
The ray pq is a rightmost ray if and only if pq has a
right support vR and a generalized left support vL and
vL ∈ vRq.

Proof. If pq does not have any supports, we can choose
p to be closer to v1, so pq is no rightmost ray. If pq has
a generalized left support vL, but no right support on
pvL, we can turn pq CCW around vL to get a proper
ray from a point closer to v1 to a point closer to vi+1.
The same is true if pq has a right support vR but no
generalized left support on vRq.

It is also clear that if pq has a right support vR and
a generalized left support vL, every other segment p′q′

from pv1 to qvi+1 crosses ∂P, so p′q′ is no ray. There-
fore, pq is a rightmost ray. �

If the edges v0v1 and vivi+1 are totally facing each
other and no edge obstructs the visibility between the
edges, then the rightmost ray is pq = v1vi+1 and it has
supports vL = v1 and vR = vi+1.

Algorithm 1 returns the indices (R,L) of the sup-
ports of the rightmost ray if it exists. The algorithm
iteratively computes the correct value of R and L, tak-
ing the edges into consideration one by one. Initially, R
is set to 1 and L is set to i+1, as if no edges obstructed
the visibility between the edges. The points p and q on
v0v1 and vivi+1, respectively, are always defined such
that the segment pq contains vR and vL. The algorithm
alternately traverses P(v1, vi) and P(vi+1, vn) one edge
at a time using the index variables r and l. The vari-
able side is 1 when an edge in P(v1, vi) is traversed and
−1 when an edge in P(vi+1, vn) is traversed. Each time
an edge vr−1vr or vl−1vl is found that crosses pq, the
value of R or L is updated to r or l, respectively. If
the value of R is updated, we reset l to L, since it is
possible that there are some edges on P(vL, vn) that
did not intersect the old segment pq, but intersect the
updated one. Likewize, when L is updated, we reset r
to R. Although segment pq is changed when R or L is
updated, P(v1, vR) or P(vi+1, vL) does not cross pq af-
ter the update. That is because pq is rotated clockwise
(CW) away from the chains.

All our figures illustrate the case where v0v1 and
vivi+1 are totally facing each other, but that assumption
is not used in any of the proofs. If vivi+1 is partially
facing v0v1 such that v0 ∈ LHP(vivi+1), then vi might
be the right support of the rightmost ray from v0v1 to
vivi+1. Likewise, if v0v1 is partially facing vivi+1 such

that vi ∈ LHP(v0v1), v0 can be the left support of the
rightmost ray.

Algorithm 1: FindRightmostRay(i)

Input: A polygon P defined by its vertices
v0, v1, . . . , vn−1 in CCW order and an
index i such that v0v1 and vivi+1 are facing
each other.

Output: If no proper ray from v0v1 to vivi+1

exists, NULL is returned. Otherwise, a
pair of indices (R,L) is returned such
that the rightmost ray from v0v1 to
vivi+1 has right support vR and
generalized left support vL.

1 R← 1, L← i+ 1
2 r ← R, l← L
3 p← v1, q ← vi+1

4 side← 1 (∗ 1 is right side, −1 is left side ∗)
5 while r < i or l < n
6 if side = 1
7 if r < i
8 r ← r + 1
9 if vr ∈ LHP(pq) ∩�

10 if vr−1vr intersects vLq
11 return NULL

12 R← r, l← L

13 else (∗ side = −1 ∗)
14 if l < n
15 l← l + 1
16 if vl ∈ RHP(pq) ∩�
17 if vl−1vl intersects vRp
18 return NULL

19 L← l, r ← R

20 Let p be the intersection point between −−−→vLvR
and v0v1

21 Let q be the intersection point between −−−→vRvL
and vivi+1

22 if p or q does not exist
23 return NULL

24 side← −side
25 if pq ⊂ LHP(v0v1) ∩ LHP(vivi+1)
26 return (R,L)

27 else
28 return NULL

Lemma 3 Let Rj, Lj, pj, and qj be the values of R,
L, p, and q, respectively, in the end if iteration j of the
loop at line 5 in Algorithm 1, j = 1, 2, . . . , k. The ini-
tial values are R0, L0, p0, and q0. Then Rj−1 = Rj or
Lj−1 = Lj for j = 1, . . . , k. p0, p1, p2, . . . , pk is a se-
quence of points moving monotonically along v0v1 from

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

159

25th Canadian Conference on Computational Geometry, 2013

v1 towards v0. Likewise, q0, q1, q2, . . . , qk is a sequence
of points moving monotonically along vivi+1 from vi+1

towards vi. Let aj be the CW angle from ←−−−−−−→vRj−1vLj−1 to
←−−−→vRj

vLj
. Then

∑k
j=1 aj < 180◦. In particular, aj < 180◦

for each j = 1, . . . , k.

Proof. See Figure 2. It is clear that at most one of
R and L changes in iteration j, since the lines 12 and
19 cannot both be executed. Therefore, Rj−1 = Rj

or Lj−1 = Lj . If R is redefined in iteration j, then←−→vRvL is rotating around vL and the new value of R,
namely Rj , satisfies vRj

∈ LHP(vRj−1
vLj−1

). There-
fore, pj is on the segment v0pj−1 and qj is on the seg-
ment qj−1vi. The same is true if L is updated. Hence,
p0, . . . , pk is monotinically moving along v0v1 from v1
towards v0 and q0, . . . , qk is monotonically moving along
vivi+1 from vi+1 towards vi. Because of the monotonic-
ity, the angles are additive, so that the CW angle from←−−−→vR0

vL0
to ←−−−→vRk

vLk
is
∑k

j=1 aj . If v0v1 is totally facing
vivi+1, every qj is contained in LHP(v0v1). Otherwise
vivi+1 is totally facing v0v1 so that every pj is contained

in LHP(vivi+1). In either case,
∑k

j=1 aj is bounded by
180◦. That bound cannot be reached, since it would
require that v0v1 or vivi+1 was infinitely long in both
directions. �

Theorem 4 Algorithm 1 works correctly.

Proof. First, consider the cases where the algorithm
returns NULL. In line 11, we have found an intersec-
tion point x between P(vR, vi) and vLq. That means
that P(v1, vi) intersects pq properly at x, since no three
vertices are collinear. Lemma 1 gives that the only pos-
sible proper rays from v0v1 to vivi+1 are on the form
p′q′, where p′ ∈ v0p and q′ ∈ qvi. At the same time, if
we use Lemma 1 with v0v1 and vivi+1 interchanged by
each other and using x as ‘vL’ and vL as ‘vR’, we get
that p′q′ satisfies p′ ∈ pv1 and q′ ∈ vi+1q. Therefore,
p′ = p and q′ = q, but pq is no ray. Hence, there are no
proper rays from v0v1 to vivi+1. The case in line 18 is
analogous.

Due to Lemma 3, we know that p is moving mono-
tonically from v1 towards v0 and q is moving mono-
tonically from vi+1 towards vi. The case of line 23
happens if p has moved outside v0v1, so that v0v1 ∩
LHP(vRvL) = ∅, or q has moved outside vivi+1, so that
vivi+1 ∩ RHP(vRvL) = ∅. In each of these cases, it fol-
lows from Lemma 1 that there are no proper rays from
v0v1 to vivi+1.

Now, assume that the algorithm returns (R,L), but
that pq is not a ray since some edge obstructs the vis-
ibility from p to q. Assume that P(v1, vi) intersects pq
properly, and let x be the intersection point closest to
p. P(v1, vi) enters LHP(pq)∩� at x. Let y be the first
point where P(x, vi) leaves LHP(pq)∩�. Then P(x, y)
is contained in LHP(pq) ∩ � and y ∈ xq. We have two

v0
v1

vivi+1

vR

vL

p

q

x

y

Figure 3: Case 2 in the proof of Theorem 4.

cases: x ∈ P(v1, vR) (case 1) and x ∈ P(vR, vi) (case
2). Assume that we are in case 2, see Figure 3. Assume
that the final value of R is defined in a later iteration of
the loop at line 5 than the final value of L. After R is
defined in line 12, every edge vr−1vr in P(vR, vi) is tra-
versed and it is checked in line 10 if some edge intersects
pq. In particular the edges in P(x, y) are traversed, in
which case the algorithm either returns NULL or updates
R, which is a contradiction. If R is defined in an earlier
iteration than L, then r is set to R in line 19 when L
is defined, and it is checked if some edge in P(vR, vi)
intersects pq, so that cannot happen either.

Assume that we are in case 1, i.e. x ∈ P(v1, vR).
Consider the first iteration, say iteration j, at the end of
which P(v1, vR) intersects pq properly, and let x′ be the
intersection point closest to p. Let y′ be the first point
where P(x′, vi) leaves LHP(pq)∩�, such that P(x′, y′) is
contained in LHP(pq)∩� and y′ ∈ x′q (x′ and y′ might
not be the same as x and y, since R and L can change
before the algorithm terminates). We must have vR ∈
P(y′, vi). There are three possible cases to consider:
vR ∈ px′ (case 1.1), vR ∈ x′y′ (case 1.2), and vR ∈ y′q
(case 1.3).

Assume case 1.3. Let Rk, Lk, pk, and qk be de-
fined as in Lemma 3 for each iteration k. Either R
or L is redefined in iteration j due to the minimal-
ity of j. Therefore, Rj−1 6= Rj or Lj−1 6= Lj (case
1.3.1 and 1.3.2, respectively). First, assume Rj−1 6= Rj

but Lj−1 = Lj . Again, there are three cases to con-
sider: vRj−1

∈ P(v1, x
′) (case 1.3.1.1), vRj−1

∈ P(x′, y′)
(case 1.3.1.2), and vRj−1

∈ P(y′, vRj
) (case 1.3.1.3). As-

sume case 1.3.1.3, see Figure 4(a). According to Lemma
3, the CW angle between ←−−−−−−→vRj−1vLj−1 and ←−−−→vRjvLj is
less than 180◦. Therefore, a subset of P(x′, y′) would
also be contained in LHP(vRj−1

vLj−1
) ∩ �. That im-

plies that P(v1, vRj−1
) intersects pj−1qj−1, a contradic-

tion because of the choice of j. vRj−1
cannot be in

P(x′, y′) (case 1.3.1.2), because then vRj would be in
RHP(vRj−1vLj−1), so R would not have been redefined

25th Canadian Conference on Computational Geometry, 2013

160

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

v0
v1, p0, p6

p13p15p22

vi+1, q0
vi

q6 q13 q15 q22

a6
a15a13

a22

Figure 2: Illustration for Lemma 3. The points pj , qj are shown with the number j of the first iteration where they
occur. The segments pjqj are drawn dashed. The angles aj > 0 are indicated with grey arcs.

to Rj in iteration j. Finally, if vRj−1
was a vertex in

P(v1, x
′) (case 1.3.1.1), P(x′, y′) would be contained in

LHP(vRj−1
vLj−1

) ∩�, and therefore vR would be rede-
fined to a vertex in P(x′y′) when the edges of that chain
was traversed. Hence, vR would not be redefined to vRj

in iteration j, which is a contradiction.
Now, assume Lj−1 6= Lj (case 1.3.2), see Figure 4(b).

The CW angle between ←−−−−−−→vRj−1
vLj−1

and ←−−−→vRj
vLj

is less
than 180◦. Therefore, a part of P(x′, y′) is also in
LHP(vRj−1vLj−1). That implies that P(v1, vRj−1) in-
tersects pj−1qj−1, which contradicts the choice of j.

The case where vR ∈ x′y′ (case 1.2) can be elimi-
nated in a similar way. Consider case 1.1, i.e. vR ∈ px′.
The chain P(p, x′) and the segment x′p forms a simple,
closed curve, because x′ is the intersection point be-
tween P(v1, vi) and pq closest to p. The curve can, for
instance, be seen in Figure 4(a). Consider the region of
P enclosed by the curve. In order to get to vR, P(y′, vi)
has to cross x′p to get into the region. That contradicts
that x′ was the intersection point closest to p.

If we assume that P(vi+1, vn) intersects pq, we get a
contradiction in an analogous way.

The test at line 25 is to ensure that pq is a proper ray,
which is not always the case if v0v1 is only partially fac-
ing vivi+1. The conclusion is that if (R,L) is returned,
vR and vL defines a proper ray pq with right support
vR and generalized left support vL in that order. There-
fore, pq must be the rightmost ray from v0v1 to vivi+1

according to Lemma 2. �

Even though we reset l to L in line 12 or r to R in line
19, the running time is linear since the other variable
is not reset, so half of the traversed are never traversed
again, as the following theorem explains.

v0
v1

vivi+1

vRj

vLj
, vLj−1

pj

qj

x′

y′

vRj−1

pj−1

qj−1

(a)

v0 v1

vivi+1

vRj
, vRj−1

vLj

pj

qj

x′

y′

vLj−1

pj−1

qj−1

(b)

Figure 4: Cases in the proof of Theorem 4. (a) Case
1.3.1.3. (b) Case 1.3.2.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

161

25th Canadian Conference on Computational Geometry, 2013

Theorem 5 There are at most 2n− 6 iterations of the
loop at line 5 of Algorithm 1.

Proof. Let N(n) be the maximal number of edge visits
for a polygon with n vertices. Consider the first time
line 12 or 19 is executed, assume it is line 12. There has
been made 2(r − 1) − 1 < 2(r − 1) iterations, because
P(v1, vi) is traversed every second time, beginning with
the first. The r−1 edges in P(v1, vr) are never traversed
again. Therefore, N satisifies the recurrence N(n) ≤
2k+N(n− k), where k = r− 1. The same bound holds
for some k ≥ 1 if line 19 is executed first. We know that
N(4) = 2, so induction yields that N(n) ≤ 2n− 6 is an
upper bound. �

It is clear that an algorithm to compute a leftmost ray
from v0v1 to vivi+1 can be constructed symmetrically.
That gives us the following theorem:

Theorem 6 The visible part of an edge vivi+1 from
v0v1 in a simple polygon can be computed in O(n) time
using constant workspace.

3 Weak Visibility Polygons and Minimum Link
Paths

The weak visibility polygon of the polygon P from the
edge v0v1 consists of all the points in P visible from v0v1.
Guibas et al. [9] presented an O(n)-time algorithm to
compute the weak visibility polygon if a triangulation
of P was provided, where n is the number of vertices
of P. Later, Chazelle [6] described an O(n)-time de-
terministic triangulation algorithm, implying that the
weak visibility polygon can be computed in O(n) time
using O(n) space. Using Algorithm 1, one can make a
O(mn)-time algorithm using constant workspace, where
m is the number of edges of the weak visibility polygon
[1]. It is well-known that m = O(n).

A minimum link path between two points s and t
in a simple polygon is a polygonal path from s to t
which is contained in P and which consists of as few
segments as possible. Suri [11] showed how to compute
a minimum link path using O(n) time if a triangulation
of P is provided. Using the algorithm to compute
the weak visibility polygon, it is possible to devise an
O(n2)-time algorithm to compute a minimum link path
using constant workspace. The details are given in [1].

Acknowledgements

We would like to thank Jyrki Katajainen, Ashwini Joshi,
and Kristian Mortensen for suggesting many improve-
ments to the present paper.

References

[1] M. Abrahamsen. Constant-workspace algorithms for
visibility problems in the plane. Master’s thesis. Univer-
sity of Copenhage, Department of Computer Science,
2013. Available at http://www.diku.dk/forskning/

performance-engineering/Mikkel/thesis.pdf.

[2] T. Asano, K. Buchin, M. Buchin, M. Kor-
man, W. Mulzer, G. Rote, and A. Schulz.
Memory-constrained algorithms for simple poly-
gons. E-print arXiv:1112.5904, 2011, available at
http://arxiv.org/abs/1112.5904.

[3] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-
work-space algorithms for geometric problems. Journal
of Computational Geometry, 2(1):46–68, 2011.

[4] D. Avis, T. Gum, and G. Toussaint. Visibility between
two edges of a simple polygon. The Visual Computer,
2(6):342–357, 1986.

[5] L. Barba, M. Korman, S. Langerman, and R. Silveira.
Computing the visibility polygon using few variables.
Algorithms and Computation, Lecture Notes in Com-
puter Science Volume 7074, pages 70–79, 2011.

[6] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete & Computational Geometry, 6(1):485–
524, 1991.

[7] M. De, A. Maheshwari, and S. Nandy. Space-
efficient algorithms for visibility problems in simple
polygon. E-print arXiv:1204.2634, 2012, available at
http://arxiv.org/abs/1204.2634.

[8] S. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, 2007.

[9] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. Tarjan. Linear-time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2(1):209–233, 1987.

[10] R. Jarvis. On the identification of the convex hull of a
finite set of points in the plane. Information Processing
Letters, 2(1):18–21, 1973.

[11] S. Suri. A linear time algorithm for minimum link paths
inside a simple polygon. Computer Vision, Graphics,
and Image Processing, 35(1):99–110, 1986.

[12] G. Toussaint. Shortest path solves edge-to-edge visibil-
ity in a polygon. Pattern Recognition Letters, 4(3):165–
170, 1986.

25th Canadian Conference on Computational Geometry, 2013

162

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Counting Carambolas

Maarten Löffler∗ André Schulz† Csaba D. Tóth‡

Abstract

We give upper and lower bounds on the maximum and
minimum number of certain geometric configurations
hidden in a triangulation of n points in the plane. Con-
figurations of interest include star-shaped polygons and
monotone paths. We also consider related problems in
directed planar straight-line graphs.

1 Introduction

Problems in extremal combinatorics typically ask the
minimum or maximum number of certain subconfigu-
rations in a configuration of a given size. We consider
extremal problems where both the configuration and the
subconfiguration have geometric attributes. Consider
a (straight-line) triangulation of n points in the plane.
Buchin et al. [1] showed that every triangulation contains
O(2.893n) simple cycles, and there are triangulations
that contain Ω(2.4262n) simple cycles and Ω(2.0845n)
Hamilton cycles. Buchin and Schulz [2] proved that ev-
ery n-vertex triangulation contains O(5.2852n) spanning
trees. These techniques are instrumental for bounding
the total number of noncrossing Hamilton cycles and
spanning trees that n points in the plane admit [4, 6].

Van Kreveld et al. [7] were the first to consider sub-
structures with geometric attributes. They proved that
every triangulation contains O(1.62n) convex polygons
(cycles), and some contain Ω(1.5028n) convex polygons.
Their upper bound is based on counting star-shaped
polygons in a “reduced” graph, which is a carefully con-
structed subgraph of a given triangulation.

In this note, we consider subgraphs of a straight-line
triangulation with other common geometric attributes.
A star-shaped polygon (a.k.a. carambola, see Fig. 1) is
a simple polygon P such that there is a point o with
the property that every ray emanating from o intersects
the boundary of P in exactly one point. Star-shaped
polygons are closely related to monotone paths. A path
P is monotone in direction u ∈ R2, u 6= 0, if every line
orthogonal to u intersects P in at most one point. A
special case is an x-monotone path, which is monotone

∗Department of Computing and Information Sciences, Utrecht
University, m.loffler@uu.nl.
†Institut für Mathematische Logik und Grundlagenforschung,

Universität Münster, andre.schulz@uni-muenster.de.
‡Department of Mathematics, California State University

Northridge, and University of Calgary, cdtoth@acm.org.

Figure 1: A “carambola” in a triangulation..

in horizontal direction u = (1, 0). Table 1 summarizes
known and new results:

configurations lower bound upper bound

convex polygons Ω(1.50n) [7] O(1.62n) [7]
star-shaped polygons Ω(1.70n) O(n3αn)
monotone paths Ω(1.70n) O(nαn)
directed simple paths Ω(αn) O(n23n)

Table 1: Bounds for the maximum number of configurations
in an n-vertex plane (di)graph. Results in row 1 are and
included for comparison; the bounds in rows 2-4 are proved
in the paper. Note that α ≈ 1.84 is the real root of x3 =
x2 + x+ 1.

2 Lower Bounds

We construct plane straight-line graphs on n vertices that
contain Ω(1.70n) x-monotone paths (Fig. 2 and 3). By
orienting all edges from left to right, we obtain a directed
planar graph that contains Ω(1.70n) directed paths. By
connecting the leftmost and rightmost vertices by an
extra edge, we obtain a plane straight-line graph that
contains Ω(1.70n) monotone polygons. By arranging
three copies of this graph around the origin in a cyclic
fashion (Fig. 4), we obtain a plane straight-line graph
that contains Ω(1.70n) star-shaped polygons.

Figure 2: There are 1.70n monotone paths in this graph.

Let n = 2` + 2 for an integer ` ∈ N. We define the
plane graph G on n vertices V = {v1, . . . , vn}: it consists

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

163

25th Canadian Conference on Computational Geometry, 2013

Figure 3: A straight-line embedding of the graph in Fig. 2,
where the points lie alternately on two circular arcs, preserv-
ing x-monotonicity.

of a path (v1, . . . , vn) and two balanced binary triangu-
lation of the vertices {v1, . . . , vn−1} and {v2, . . . , vn},
respectively, one on each side of the path (Fig. 2). A
straight-line embedding is shown in Fig. 3, where the odd
(resp., even) vertices lie on a concave (convex) polygonal
chain.

Figure 4: Cyclic embedding of 3 copies of the graph in Fig. 2.
The monotone order becomes cyclic order.

Theorem 1 The graph G described in the above para-
graph has Ω(1.700n) x-monotone paths.

Proof. We count the number of x-monotone paths in
a sequence of subgraphs of G. Let G0 be a Hamilton
path (v1, . . . , vn); and we recursively define Gk from
Gk−1 by adding the edges (vi, vi+2k) for i = j2k + 1 and
i = j2k+2 for j = 0, 1, . . . , `/k−1. Denote by pk(vi) the
number of x-monotone paths in Gk that end at vertex
vi. Since every monotone path can be extended to the
rightmost vertex vn, the number of maximal1 monotone
paths in Gk is pk(vn). We establish recurrence relations
for pk(vi). The initial values are pk(v1) = pk(v2) = 1
for all k = 0, . . . , `. For k = 1 and i ≥ 2, we have
p1(vi) = p1(vi−1) +p1(vi−2), therefore p1(vi) = Fi is the
ith Fibonacci number and p1(vn) = Θ(1.619n).

The recurrence for pk(vi), k ≥ 2, is more nuanced, due
to the asymmetry between the triangulations on the two
sides of the Hamilton path. We partition the vertices
of Gk into disjoint groups of consecutive vertices of size
2k. Let ai = vi2k+1 denote the first vertex of group i,

1Maximal for containment.

and let bi = vi2k+2 be the second vertex of group i. We
count in how many ways one can route an x-monotone
path through a group. A path through group i starts at
either ai or bi, and ends at either ai+1 or bi+1. Thus, it
is enough to keep track of four different type of paths.
By our choice, the edge (ai, bi) belongs to group i but
not to group i + 1. We record the number of paths
connecting ai or bi to ai+1 or bi+1 in a 2× 2 matrix Mk,
such that

Mk · (pk(ai), pk(bi))
T = (pk(ai+1), pk(bi+1))T .

Figure 5: The five possible x-monotone paths in the group
of G2.

Once the matrix Mk is known, we can compute the

number of paths by (p(vn−1), p(vn))T = M
n/2k

k · (1, 1)T .
By the Perron-Frobenius theorem, limp→∞Mp

k/λ
p = A,

for some matrix A, and for λ being the largest eigen-

value of Mk. Hence, we have limn→∞ Tk(vn) = Θ(λn/2
k

)
maximal x-monotone paths in Gk.

Figure 6: Schematic drawing of the paths counted by Mk.

In the last step we show how to compute the matrices
Mk. The matrix M2 can be easily obtained by hand
(see Fig. 5). For a block of size 2k in Gk, we have all
the paths that use only the edges in Gk−1 (and can
therefore be decomposed in two paths of Gk−1’s blocks)
plus one additional path of type ai → ai+1, ai → bi+1,
and bi → bi+1 each (see Fig. 6). Therefore, we can
compute the matrices Mk as

M2 :=

(
2 1
1 1

)
, and Mi := M2

i−1 +

(
1 0
1 1

)
.

k 2 3 4 5 6

λ2
−k

1.61803 1.69605 1.70034 1.70037 1.70037

Table 2: The asymptotic growth of x-monotone paths in the
graphs Gk. For k = 6 it follows that there are Ω(1.70037n)
monotone paths.

Table 2 shows the values λ1/2
k

for k = 2, . . . , 6. We
observed that when going from k = 5 to k = 6, there is no

change in λ1/2
k

up to 8 digits after the point. The precise
value for k = 5 equals λ = 1/2(4885 + 9

√
294153). �

25th Canadian Conference on Computational Geometry, 2013

164

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Directed plane graphs. We also construct n-vertex di-
rected plane straight-line graphs that contain Ω(1.83n)
directed paths (Fig. 7). The directed paths, however,
cannot be extended to a cycle because in a planar embed-
ding the start and end vertex are not in the same face.
Similarly, most of the directed paths are not monotone
in any direction in a planar embedding.

Figure 7: There are Θ(αn), α ≈ 1.84, directed paths in this
graph. A plane embedding of the graph is depicted in Fig. 8.

Figure 8: A plane embedding of the graph in Fig. 7. The
edges are directed from the outer circles to inner inner circles.

Denoting by T (i) the number of directed paths ending
at vertex vi, we have T (1) = T (2) = 1, T (3) = 2, and a
linear recurrence relation

T (i) = T (i− 1) + T (i− 2) + T (i− 3)

for i ≥ 4. The recurrence solves to T (i) = O(αi), where
α ≈ 1.83929 is the real root of x3 = x2+x+1. Therefore
the total number of directed paths, starting from any
vertex, is Θ(αn).

3 Upper Bounds

Monotone Paths. We start with x-monotone paths
in plane straight-line graph. We prove the bound for
a broader class of graphs, plane monotone graphs, in
which every edge is an x-monotone Jordan arc (since
some of the operations in our argument may not preserve
straight-line edges).

Let n ∈ N, n ≥ 3, and let G = (V,E) be a plane
monotone graph with |V | = n vertices that maximizes
the number of x-monotone paths. We may assume that
the vertices have distinct x-coordinates (otherwise we
can perturb the vertices without decreasing the number
of x-monotone paths). We may also assume that G

is fully triangulated (i.e., it is an edge-maximal planar
graph), otherwise we add extra edges which only increase
the number of x-monotone paths. Label the vertices in
V as v1, v2, . . . , vn sorted by their x-coordinates. Orient
each edge {vi, vj} ∈ E from vi to vj if i < j.

i jk

l

i jk

l

Figure 9: The flip operation.

Consider an edge vivj ∈ E that is not on the boundary.
There are two triangular faces incident to vivj , and two
other vertices vk and vl that are connected to both vi
and vj .

Claim 2 If i < k < j and i < l < j, then flipping vivj
to vkvl or vlvk (depending on whether k < l or l < k)
only increases the number of paths. (See Fig. 9.)

Since G has the maximum number of x-monotone
paths, we may now assume that for all edges in G, there
is a vertex either to the left or to the right of the edge
that is adjacent to both endpoints. We show next that
G contains an x-monotone Hamilton path.

Lemma 3 All edges vivi+1 are present in G.

Proof. Suppose, to the contrary, that there are two non-
adjacent vertices vi and vi+1. Since G is a triangulation,
there must be an edge vjvk, with j < k, that separates
vi and vi+1. Since the edge vjvk is x-monotone, we have
j < i < i + 1 < k. Assume w.l.o.g. that vi lies below
vjvk and vi+1 lies above vjvk. By Claim 2, the triangle
incident to vjvk from either above or below connects to
a vertex vl either to the left of vj or to the right of vk.
Assume w.l.o.g. it is the triangle above, and that vl lies
to the right of vk. Now consider edge vjvl. Since the tri-
angle below it has vk as third vertex and j < k < l, there
must be another vertex vm that connects to vjvl and lies
either to the left of j or to the right of l. This argument
repeats, and we never reach vi+1. Contradiction. �

For any pair i < j, let Vij denote the set of consecutive
vertices vi, vi+1, . . . , vj , and let Gij = (Vij , Eij) be the
subgraph of G induced by Vij .

Since G is planar, we know that |E| ≤ 3|V | − 6, and
furthermore, that |Eij | ≤ 3|Vij | − 6 for all subgraphs
induced by groups of 3 or more consecutive vertices.

In the remainder of the proof we will apply a sequence
of operations on G that may create multiple edges and
edge crossings. Hence, we consider G as an abstract
multigraph. However, the operations will maintain the
invariant that |Eij | ≤ 3|Vij | − 6 for all i < j.

Let i < j < k be a triple of indices such that
vivj , vivk ∈ E. The operation shift(i, j, k) removes the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

165

25th Canadian Conference on Computational Geometry, 2013

edge vivk from E, and inserts the edge vjvk into E (see
Fig. 10). Note that the new edge may already have been
present, in this case we insert a new copy of this edge
(i.e., we increment its multiplicity by one).

i

j

k i

j

k

Figure 10: The operation shift(i, j, k).

Claim 4 The operation shift(i, j, k) does not decrease
the number of x-monotone paths in G.

Proof. Clearly, any path that used vivk can be replaced
by a path that uses vivj and (the new copy of) vjvk. �

Now, we apply the following algorithm to the input
graph G. We process the vertices from left to right, and
whenever we encounter a vertex vi with outdegree 4 or
higher, we identify the smallest index j such that vi has
an edge to vj and the largest index k such that vi has
an edge to vk; and then apply shift(i, j, k). We repeat
until there are no more vertices with outdegree larger
than 3.

Claim 5 The algorithm terminates and maintains the
invariants that (1) all edges vivi+1 are present in G
with multiplicity one; and (2) |Eij | ≤ 3|Vij | − 6 for all
subgraphs induced by Vij, i < j.

Proof. Initially, invariant (1) holds by Lemma 3, and
(2) by planarity. Suppose, to the contrary, that there is
an operation that increases the number of edges of an
induced subgraph above the threshold. Let shift(i, j, k)
be the first such operation. Since the only new edge is
vjvk, any violator subgraph must contain both vj and
vk; and it cannot contain vi since the only edge removed
is vivk. Recall that vj was the leftmost vertex that vi
is adjacent to; and by invariant (1), we know j = i+ 1.
Therefore, the violator subgraph is induced by Vjk′ for
some k′ ≥ k, and we have |Ejk′ | > 3|Vjk′ | − 6 after
the shift. Since vk was the rightmost vertex adjacent
to vi before the shift, all outgoing edges of vi went to
vertices in Vjk′ . The outdegree of vi was at least 4
before the shift, hence Gik′ had at least 3|Vik′ |− 4 edges.
Contradiction. �

Now, after executing the algorithm, we are left with a
multigraph where the outdegree of every vertex is at most
3, and no subgraph induced by |Vi,j | ≥ 3 consecutive
vertices has more than 3|Vij | − 6 edges. This, combined
with invariant (1), implies that the multiplicity of any
edge vivi+2 is at most one. Thus, for every vertex vi,
the three outgoing edges go to vertices at distance at
least 1, 2, and 3, respectively, from vi. Denoting by T (i)

the number of x-monotone paths that start at vn−i+1,
we arrive at the recurrence

T (i) = T (i− 1) + T (i− 2) + T (i− 3)

for i ≥ 4, with initial values T (1) = T (2) = 1, T (3) = 2.
The recurrence solves to T (n) = O(αn) where α ≈
1.83929 is the real root of x3−x2−x−1 = 0. Therefore,
every plane straight-line graph on n vertices admits at
most O(αn) x-monotone paths.

Since the edges of an n-vertex planar straight-line
graph have O(n) distinct directions, the number of mono-
tone paths (in any direction) is bounded by O(nαn).

Star-shaped Polygons. Given a plane straight-line
graph G on n vertices, the lines passing through the
O(n) edges induce a line arrangement with O(n2) faces.
Choose a face f of the arrangement, and a vertex p of G.
We show that G contains O(αn) star-shaped polygons
with vertex v and a star center lying in f . Indeed, pick
an arbitrary point o ∈ f . Each edge of G is oriented
either clockwise or counterclockwise with respect to o
(with the same orientation for any o ∈ f). Order the
vertices of G by a rotational sweep around o starting
from the ray −→ov. Let Gv be the graph obtained from G
by deleting all edges that cross the ray −→ov. We can repeat
the argument for x-monotone path for Gf , replacing the
x-monotone order by the rotational sweep order about o,
and conclude that G admits O(αn) star-shaped polygons
with vertex p and star center o.

Directed Simple Paths. Let G = (V,E) be a directed
planar graph. Denote by deg−(v) the outdegree of vertex
v ∈ V ; let V0 = {v1, . . . , v`} be the set of vertices with
outdegree at least 1, where 1 ≤ ` ≤ n. We show that
for every v0 ∈ V0, there are O(3n) maximal2 directed
simple paths starting from v0. Each maximal directed
simple path can be encoded in an `-dimensional vector
that contains the outgoing edge of each vertex v ∈ V0
in the path (and an arbitrary outgoing edge if v ∈ V0 is
not part of the path). The number of such vectors is

∏̀

i=1

deg−(vi) ≤
(

1

`

∑̀

i=1

deg−(vi)

)`
<

(
3n

`

)`
≤ 3n,

where we have used the geometric-arithmetic mean in-
equality, Euler’s formula

∑`
i=1 deg−(vi) ≤ 3n− 6 < 3n,

and maximized the function x → (3n/x)x over the in-
terval 1 ≤ x ≤ n. Since there are O(n) choices for the
starting vertex v0 ∈ V0, and a maximal simple path
contains O(n) nonmaximal paths starting from the same
vertex, the total number of simple paths is O(n23n).

2Maximal for containment.

25th Canadian Conference on Computational Geometry, 2013

166

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

4 Minimizing the number of configurations

In this section, we explore the minimum number of
geometric configurations that a triangulation on n points
in the plane can have. Our bounds are summarized in
Table 3.

configurations lower bound upper bound

convex polygons Ω(n) O(n)
star-shaped polygons Ω(n) O(n2)
monotone paths Ω(n2) O(n3.39)
directed paths Ω(n) O(n)

Table 3: Bounds for the minimum number of configurations
in a (directed) triangulation with n vertices.

Potatoes. Every n-vertex triangulation has Θ(n) con-
vex faces, hence Ω(n) is a natural lower bound for
the number of convex polygons. The triangulation in
Fig. 11(left) contains Θ(n) convex polygons, which is
the best possible apart from constant factors. The tri-
angulation consists of the join of two paths P2 ∗ Pn−2,
where path Pn−2 is realized as a monotone zig-zag path.
Every convex polygon is either a triangle or the union
of two adjacent triangles that share a flippable edge [5].

Figure 11: There are Θ(n) convex polygons and x-monotone
paths in the triangulation on the left; it contains Θ(n4)
star-shaped polygons and monotone paths. There are Θ(n2)
star-shaped polygons and Θ(n4) monotone paths in the tri-
angulation on the right.

Carambolas. The sum of degree squares
Ω(
∑
v∈V deg2(v)) = Ω(n) is a natural lower bound for

the number of star-shaped polygons, since the union
of consecutive triangles incident to a vertex forms
a star-shaped polygon. This might suggest that a
triangulation that minimizes the number of star-shaped
polygons should have bounded degree. Surprisingly, the
best construction found so far is a triangulation with
a vertex of degree n− 1 (Fig. 11, right), which admits
Θ(n2) star-shaped polygons.

Monotone paths. It is not difficult to see that between
any two vertices, u and v, in a triangulation there is a

monotone path in direction −→uv [3]. Hence every trian-
gulation contains Ω(n2) monotone paths. Two vertices,
however, are not always connected by an x-monotone
path: a trivial lower bound for x-monotone paths is
Ω(n), since every edge is x-monotone.

The triangulation P2 ∗ Pn−2 in Fig. 11(left) is embed-
ded such that Pn−2 is x-monotone and lies to the right of
P2. With this embedding, it contains Θ(n2) x-monotone
paths: every x-monotone path consists of a sequence of
consecutive vertices of Pn−2, and 0, 1, or 2 vertices of
P2. However, both triangulations in Fig. 11 admit Θ(n4)
monotone paths (in some direction).

Triangulations with a polynomial number of monotone
paths are also provided by known constructions in which
all monotone paths are “short.” Dumitrescu et al. [3]
constructed full triangulations with maximum degree
O(log n/ log log n) such that every monotone path has
O(log n/ log n log n) edges. Furthermore, there are trian-
gulations with bounded degree in which every monotone
path has O(log n) edges. These constructions contain
polynomially many, but ω(n4), monotone paths.

1

2

3
4

o

ab

Figure 12: A triangulation from [3] in which every monotone
path has O(logn) edges.

A triangulation that contains only O(nβ log2 n) mono-
tone paths, where β = 2 + 2 log2((1 +

√
5)/2) ≈ 3.3885

comes from [3]: It has maximum degree n− 1 and every
monotone path has O(log n) edges. Refer to Fig. 12.

The number of vertices is n = 2` + 1 for some ` ∈ N.
The outer face is a regular triangle abo, where o is the
origin. The interior vertices are arranged on `− 1 circles
centered at the origin, with 2i points on circle i, where
the radii of the circles rapidly converge to 0. The vertices
on circle i are drawn interspersed (in angular order)
with the vertices of the previous layers. The origin is
connected to all other vertices, and a vertex on circle i is
connected to the two vertices of the previous layers that
are closest in angular order. The radii of the circles are
chosen recursively such that the edges that connect an
interior vertex v to vertices on smaller circles are almost
parallel—thus a monotone path can contain two such
edges for at most one interior vertex v. It follows that
every monotone path contains at most two vertices from
each circle, hence the O(log n) bound on the number of
edges [3].

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

167

25th Canadian Conference on Computational Geometry, 2013

Claim 6 For every n ∈ N, there is an nvertex triangu-
lation that admit O(nβ log2 n) monotone paths, where
β = 2 + 2 log2((1 +

√
5)/2) ≈ 3.3885.

Proof. In the above construction, it is enough to count
maximal monotone paths, since every monotone path can
be extended to the outer triangle abo, and each maximal
monotone path contains only O(log2 n) subpaths. First,
consider paths between a and b. For every path between
a and b, we can record the layers of the vertices along
the paths, where a and b are at level 0, and o is at level
`. This sequence must be unimodal for a monotone path
(by construction). An a-b path that avoids the origin is
uniquely determined by its modality (the vertex lying on
the smallest circle), hence there are at most O(n) such
paths (all these paths happen to be monotone).

Consider now the paths incident to o. An a-b path
that goes though o is counted as the combination of a
path from o to a and one from o to b. By symmetry, it
is enough to count monotone paths from o to a. Such
a path also corresponds to a unimodal sequence (with
o being the only modality). We have n− 1 choices for
the first edge of incident to o, and the remainder of the
path is restricted to an outerplanar graph with at most
`+ 2 = 1 + log(n− 1) vertices.

In an outerplanar graph with k vertices, any two ver-
tices are connected by at most Fk = Θ((1 +

√
5)/2)k) =

O(1.62k) paths, where Fk is the kth Fibonacci num-
ber. Therefore, the number of o-a paths is at most

n · F`+2 = Θ(n1+log2((1+
√
5)/2)) = O(n1.70). (In fact,

all these paths are monotone.) Every path from a to
b via o is the combination of two branches: a path
from o to a and one from o to b. Hence the num-
ber of these paths is bounded by O(nβ log2 n), where
β = 2 + 2 log2((1 +

√
5)/2) ≈ 3.3885. �

Figure 13: There are Θ(n) directed paths in this directed
planar graph.

Directed paths. Every edge in a planar digraph is a
directed path on its own, hence there are Ω(n) directed
paths in every directed triangulation on n vertices. This

bound is tight, apart from constant factors. Directed
triangulation with O(n) paths consists of a sequence of
n/3 triangles, and edges between consecutive triangles
point either inward or outward alternately (Fig. 13).

5 Conclusion

We considered the maximum and minimum number of
star-shaped polygons, monotone paths, and directed
paths that a (directed) triangulation of n points in the
plane can have. Our results are summarized in Tables 1
and 3. Closing or narrowing the gap between the upper
and lower bounds is left for future research.

Acknowledgments

M. Löffler is supported by the Netherlands Organisation for
Scientific Research (NWO) under grant 639.021.123. Tóth
is supported in part by NSERC (RGPIN 35586) and NSF
(CCF-0830734). This work was initiated at the workshop
“Counting and Enumerating of Plane Graphs”, which took
place at Schloss Dagstuhl in March 2013.

References

[1] K. Buchin, C. Knauer, K. Kriegel, A. Schulz, and R. Sei-
del. On the number of cycles in planar graphs. In
Proc. 13th Annual International Conference on Comput-
ing and Combinatorics (COCOON), volume 4598 of Lec-
ture Notes in Computer Science, pages 97–107. Springer,
2007.

[2] K. Buchin and A. Schulz. On the number of spanning trees
a planar graph can have. In M. de Berg and U. Meyer,
editors, Proc. 18th Annual European Symposium on Algo-
rithms (ESA), volume 6346 of Lecture Notes in Computer
Science, pages 110–121. Springer, 2010.

[3] A. Dumitrescu, G. Rote, and C. D. Tóth. Monotone paths
in planar convex subdivisions. In Proc. 18th Annual In-
ternational Conference on Computing and Combinatorics
(COCOON), volume 7434 of Lecture Notes in Computer
Science, pages 240–251. Springer, 2012.

[4] M. Hoffmann, A. Schulz, M. Sharir, A. Sheffer, C. D.
Tóth, and E. Welzl. Counting plane graphs: flippability
and its applications. In J. Pach, editor, Thirty Essays on
Geometric Graph Theory, pages 303–326. Springer, 2013.

[5] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges
in triangulations. Discrete & Computational Geometry,
22(3):333–346, 1999.

[6] M. Sharir, A. Sheffer, and E. Welzl. Counting plane
graphs: Perfect matchings, spanning cycles, and Kaste-
leyn’s technique. J. Comb. Theory, Ser. A, 120(4):777–
794, 2013.

[7] M. van Kreveld, M. Löffler, and J. Pach. How many
potatoes are in a mesh? In Proc. 23rd International
Symposium on Algorithms and Computation (ISAAC),
volume 7676 of Lecture Notes in Computer Science, pages
166–176. Springer, 2012.

25th Canadian Conference on Computational Geometry, 2013

168

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Cell-Paths in Mono- and Bichromatic Line Arrangements in the Plane∗

Oswin Aichholzer† Jean Cardinal‡ Thomas Hackl† Ferran Hurtado§ Matias Korman§

Alexander Pilz† Rodrigo I. Silveira§ Ryuhei Uehara¶ Birgit Vogtenhuber† Emo Welzl‖

Abstract

We show that in every arrangement of n red and blue
lines — in general position and not all of the same
color — there is a path through a linear number of cells
where red and blue lines are crossed alternatingly (and
no cell is revisited). When all lines have the same
color, and hence the preceding alternating constraint is
dropped, we prove that the dual graph of the arrange-
ment always contains a path of length Θ(n2).

1 Introduction

Given an arrangement of n red and blue lines in the
Euclidean plane, we consider sequences of cells of the
arrangement such that consecutive cells share an edge
and no cell appears more than once in the sequence. We
refer to such sequences as cell-paths, or simply paths. A
path is called alternating if the common edges of con-
secutive cells alternate in color. The length of a path is
defined to be one less than the number of cells involved.
Cell-paths can also be seen as paths in the dual graph
of the arrangement, in which there is a node for every
cell in the arrangement, and an edge connects two nodes

∗OA and BV supported by the ESF EUROCORES pro-
gramme EuroGIGA—CRP ‘ComPoSe’, Austrian Science Fund
(FWF): I648-N18. JC supported by the ESF EUROCORES pro-
gramme EuroGIGA—CRP ‘ComPoSe’ and F.R.S.-FNRS Grant
R70.01.11F. TH supported by the Austrian Science Fund (FWF):
P23629-N18 ‘Combinatorial Problems on Geometric Graphs’.
FH, MK, and RS partially supported by projects MINECO
MTM2012-30951, Gen. Cat. DGR2009SGR1040, and ESF EU-
ROCORES programme EuroGIGA—CRP ‘ComPoSe’: MICINN
Project EUI-EURC-2011-4306. MK received support of the Sec-
retary for Universities and Research of the Ministry of Economy
and Knowledge of the Government of Catalonia and the Euro-
pean Union. AP is a recipient of a DOC-fellowship of the Aus-
trian Academy of Sciences at the Institute for Software Technol-
ogy, Graz University of Technology, Austria. RS was funded by
FP7 Marie Curie Actions Individual Fellowship PIEF-GA-2009-
251235. EW supported by EuroCores/EuroGiga/ComPoSe SNF
20GG21 134318/1.
†Graz University of Technology, Graz, Austria,

[oaich|thackl|apilz|bvogt]@ist.tugraz.at
‡Université Libre de Bruxelles, Brussels, Belgium,

jcardin@ulb.ac.be
§Universitat Politècnica de Catalunya, Barcelona, Spain,

[ferran.hurtado|matias.korman|rodrigo.silveira]@upc.edu
¶Japan Advanced Institute of Science and Technology,

Ishikawa, Japan, uehara@jaist.ac.jp
‖ETH Zürich, Zürich, Switzerland, emo@inf.ethz.ch

when the corresponding cells are adjacent.

We consider the following question: Is there a func-
tion p(n) tending to infinity so that every arrangement
of n blue and red lines in general position (i.e., no three
lines share a point and no two lines parallel) and not all
of the same color has an alternating path of length at
least p(n)? In Section 2 we answer this question in the
affirmative proving that p(n) ≥ n (and give an upper-
bound example with p(n) = 2n−O(1)).

If the n lines in the arrangement have the same
color — a monochromatic arrangement — we ask a sim-
ilar question: Is there a growing function f(n) so that
every arrangement of n lines in general position has a
cell-path of length at least f(n)? One would expect that
dropping the requirement for the path to be alternat-
ing from the previous problem would lead to a stronger
result. Indeed, in Section 3 we prove that f(n) = Θ(n2).

Previous work. Arrangements of (uncolored) lines
have been thoroughly studied for decades [7, 10, 13, 14,
15, 22]. For example, properties of monotone paths in
the arrangement have been studied (see, e.g., [9]). Sub-
stantial emphasis has been put into studying degener-
ate arrangements in which, e.g., the number of vertices
decreases dramatically. Further, the kind of cells one
may obtain as well as their extremal number were in-
vestigated (for example how many triangles appear in
any simple arrangement). In another direction one can
study the graph having as nodes the intersection points
of lines, which are adjacent if they are consecutive in
one of the lines [6], and study its basic properties as a
graph, such as edge-colorings or whether it can be de-
composed into Hamiltonian cycles (in projective space)
[11]. For later use recall that the cells in any arrange-
ment can be 2-colored chessboard-like, i.e., no two cells
with the same color are adjacent [23] (see also [18]).

Not many problems on colored arrangements of lines
were considered in the early times, in contrast to the
rich (and still growing) literature on combinatorial prob-
lems on red and blue points [7, 20]. The first publica-
tions considered bichromatic sets of lines and studied
the number and distribution of the intersection points
of lines with the same color [16, 17, 26]. There is a
recent line of research on problems in which lines have
to be colored to achieve some property, or are already
colored and one looks at the kind of cells that appear,
regarding the color of their sides [3, 4, 5]. Our problem

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

169

25th Canadian Conference on Computational Geometry, 2013

on alternating paths adds to this trend.

The presented work on bichromatic line arrangements
was inspired by a well known (still open) problem on
points: consider a set R of n red points and a set B
of n blue points in convex position, what is the longest
alternating path spanned by these points (a crossing-
free alternating Hamiltonian path on R ∪ B does not
always exist)? Erdős (see [21]) proposed to study the
value `(n) such that a plane alternating path of length
at least `(n) always exists for any such pair R and B.
Independently, Akiyama and Urrutia [2] considered the
same problem and gave a necessary and sufficient con-
dition for the existence of an alternating Hamiltonian
path and an O(n2) algorithm to find one, if it exists.
Abellanas et al. [1], and independently Kynčl et al. [21],
proved that `(n) ≤ 4

3n + O(
√
n). Cibulka et al. [8]

proved that `(n) ≥ n + Ω(
√
n). The gap is still to be

closed. Other variations and related problems appear
in Mészáros’ PhD Thesis [24].

Finally, our results are also related to a long-standing
open problem about paths in planar graphs. In 1963,
Moon and Moser [25] showed that there exist three-
connected planar graphs with n vertices in which the
longest simple path has length at most cnlog 2/ log 3,
where c is some constant. It is conjectured (see [19])
that this is a lower bound as well, hence that every
three-connected planar graph contains a path of this
length. Our result on f(n) shows that considering dual
graphs of arrangements instead, we always get a path
of length Ω(n2).

2 Long Alternating Paths in Bichromatic Arrange-
ments

In this section we prove the existence of long alternat-
ing paths in bichromatic arrangements. First observe
that general position is important to allow a positive
answer: Assume n ≥ 2 and take all the n lines in the
arrangement to go through a common point, so that all
of the red lines have slope between 0 and 1, and all of
the blue lines have positive slope larger than 1. Now
every alternating path has length at most two. This
holds since each cell on an alternating path, except for
the first and the last one, has to be bichromatic, i.e.,
has to have a red and a blue edge on its boundary, and
the constructed arrangement has only four bichromatic
cells, which do not share an edge among each other.

Further consider an arrangement of n lines, all blue
except for exactly one of them red, in general position.
Then the length of the longest alternating path is 2n−
O(1): In the arrangement (as edge set) there are n red
edges which can be used at most once in a path, so in an
alternating path at most 2n+1 edges can be used; hence
the upper bound. For the lower bound we go through
the 2n cells along the red line, crossing the red line in

every other step, and a blue edge for entering a red-
line-incident cell not yet visited in the steps in between;
hence a path of length at least 2n− 1.

The following lemma directly implies our main re-
sult for the stated problem on bichromatic arrange-
ments. For the sake of convenience we delay the proof
of Lemma 1 to Section 2.1.

Lemma 1 Any pair of bichromatic cells in an arrange-
ment of red and blue lines in general position is con-
nected by an alternating path.

Consider two antipodal bichromatic infinite cells in
an arrangement (“antipodal” means that the cells are
separated by all n lines). As long as there is at least
one line of each color, such a pair of cells has to exist
and, by Lemma 1, is connected by an alternating path.
Clearly, such a path has to cross every line at least once.

Theorem 2 In a set of n blue and red lines — in gen-
eral position and not all of the same color — there is an
alternating path of length n.

By the example with exactly one red line, the bound
in the theorem is asymptotically tight. However, if we
require the same number of red and blue lines, we do
not know whether longer alternating paths always exist.

2.1 Proof of Lemma 1

The graph underlying our problem is the dual graph of
the arrangement: the

(
n+1
2

)
+ 1 cells are the nodes of

the graph, two nodes are adjacent if their corresponding
cells share an edge in the arrangement. In order to cap-
ture the ‘alternating’ property, we can orient the edges
as follows. First, observe that the graph has a proper
2-coloring (choose the color of a cell according to the
parity of the number of lines above the cell), for which
we choose the colors “r-out” and “b-out”. Now direct
the edges of the dual graph by directing red edges (i.e.,
edges dual to red edges in the arrangement) from color
r-out to color b-out and blue edges from color b-out
to color r-out. This is illustrated in Figure 1. It is
an easy exercise to verify that every (undirected) alter-
nating path in the arrangement can be directed in one
way so that it appears as a directed path in this oriented
version of the dual of the arrangement — and vice versa,
every directed path is clearly alternating.

Let us fix an arbitrary bichromatic cell z in the ar-
rangement and consider the set of all cells that can be
reached by a directed path in the just defined directed
graph. Note that the construction of this directed graph
is not unique, since we can obtain a second one by
changing directions of all edges. We arbitrarily choose
one and proceed. Now consider the closure of the union,
reach(z), of all the cells that are reachable by a directed
path starting from z in the oriented graph.

25th Canadian Conference on Computational Geometry, 2013

170

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 1: Orientation of the dual graph of a bichromatic
line arrangement. Every bichromatic vertex of the ar-
rangement yields a four-cycle in the oriented graph.

Here comes the crucial observation: Let us call a ver-
tex in the arrangement bichromatic, if it is the inter-
section of a red and a blue line. Then the four cells
incident to a bichromatic vertex form a directed cycle
in the oriented graph and thus either all four of them
are contained in reach(z) or none of them is. (Here we
implicitly use the fact that the existence of a directed
walk — i.e., with repetitions of vertices allowed — from
node x to node y implies the existence of a directed
path from x to y.) Therefore, every bichromatic vertex
is interior either to reach(z) or to its complement.

We have now established the following fact.

Lemma 3 Let E be the set of edges of the arrangement
that separate cells in reach(z) from its complement. No
red edge in E shares a vertex with a blue edge in E.

We will show that bichromatic vertices cannot be in-
terior to the complement of reach(z). Thus all of them
have to be interior to reach(z) and therefore, all bichro-
matic cells are in reach(z) from which Lemma 1 follows.
To this end consider a set X of separating edges that
form a cycle or maximal path in the graph of separating
edges. A maximal path has to start and end with an
edge that extends to infinity. Consequently the union of
edges in X separates the plane into two parts, one part
of which contains the seed cell z. Suppose the edges in
X are all blue (recall that they all have the same color).
Then it is not possible that both sides contain a point
on a red line, as otherwise, since we can travel on red
lines between these two points, a red line had to cross
the union of edges in X, which we know is not possible,
since all of them are blue. Thus, the side that does not
contain z must be completely monochromatic, i.e., all
cells there are bounded by edges of the same color.

Since every point p in the complement of reach(z)
must have such a cycle or path X separating p from
reach(z), it follows that bichromatic vertices cannot be

interior to the complement of reach(z), as claimed. As
argued before, this implies Lemma 1.

2.2 Discussion

(1) As mentioned before, the linear bound on the length
of the alternating path is probably not tight if an equal
number of red and blue lines is required. However, aban-
doning the general position assumption, we have an ex-
ample with the same number of red and blue lines, half
of the lines vertical and half of them horizontal, so that
the longest alternating path has only length O(n).
(2) A closer inspection of the proof given shows that we
have actually established the following.

Theorem 4 Let C be a set of red and blue simple closed
or biinfinite curves, each of which separates the plane
into two parts. If the union of red curves is connected,
the union of blue curves is connected, and no point is
contained in more than two of the curves, then any pair
of bichromatic cells in the arrangement is connected by
an alternating path.

(3) Similarly, Lemma 1 can be generalized to higher
dimensions: Consider two antipodal bichromatic cells
in a (d + 1)-dimensional arrangement. Intersect these
two cells (and the arrangement) with a hyperplane H.
The intersection of the arrangement with H gives a d-
dimensional bichromatic arrangement, in which the an-
tipodal cells are connected by induction.

3 Long Paths in (Monochromatic) Arrangements

We are given a set S of n ≥ 2 lines in general position.
Our aim is to find bounds on the length of the longest
simple path in the dual graph of the arrangement. Let
A(S) be the arrangement associated with S, and let G
be the dual graph of A(S). Recall that the number
of vertices of G is N :=

(
n+1
2

)
+ 1. We define f(S)

as the length of the longest simple path in G, and let
f(n) = min|S|=n f(S). In this section we show:

Theorem 5 f(n) = Θ(n2).

This theorem is a direct consequence of Theorem 14
and Proposition 15 below. The lower bound actually
holds for simple arrangements of pseudolines in the Eu-
clidean plane. The main idea for its proof is to perform
local transformations to G to make it four-connected,
and then apply Tutte’s Theorem, which states that ev-
ery four-connected planar graph is Hamiltonian.

3.1 Lower Bound

G is a planar bipartite quasi-quadrangulation (i.e., every
face of G has size four except for the unbounded one).
It is easy to check that G is two-connected. We consider

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

171

25th Canadian Conference on Computational Geometry, 2013

the natural embedding of G given by S, in which every
vertex of G is located in the corresponding face of A(S),
every edge of G intersects exactly one edge of A(S), and
the face corresponding to the unbounded cells of A(S)
is the outer face. Recall that a vertex cutset of a graph
is a set of vertices whose removal disconnects the graph.

Let C be a simple cycle of G. By Jordan’s Theo-
rem, the removal of C from G decomposes the remain-
ing vertices into two subsets, which we call outer and
inner, where the outer one is the component that con-
tains the unbounded cells of the arrangement. Given a
vertex v ∈ C, we define its inner degree as the number
of neighbors of v that belong to the inner component.

Lemma 6 In any cycle C of G of length 2k, the inner
degree of any vertex of C is at most k−2 and the number
of vertices in the inner part is at most (k− 1)(k− 2)/2.

Proof. Consider the set S(C) ⊆ S of lines associated
with edges of C. Since C is a cycle, every line in S(C) is
intersected by C an even number of times, and at least
twice. Hence, there are |S(C)| ≤ k such lines. As any
vertex v of C is incident to two edges on C, there are
exactly |S(C)| − 2 lines left that could correspond to
edges incident to v and in the inner part of C. Further,
the number of vertices in the inner part of C is at most
the number of bounded cells of the arrangement formed
by S(C) and thus at most (k − 1)(k − 2)/2. �

Let P be a simple path of G whose first and last
vertex are incident to the outer face, while all other
vertices are interior vertices of G. Then the removal
of P splits the remaining vertices of G into two subsets
as well. We refer to P as a separating path and to the
induced subsets as separated vertex sets. The proof of
the following lemma is similar to the one of Lemma 6.

Lemma 7 For any separating path P of G with k ver-
tices, one of the separated vertex sets of G has cardinal-
ity at most (k − 1)(k − 2)/2.

Lemma 8 Let C be a simple cycle of G, and let I(C) be
the set of vertices in its interior. If I(C) 6= ∅, there ex-
ists a simple cycle C ′ with the same set I(C) in its inte-
rior such that no two consecutive vertices of C ′ have in-
ner degree zero. For any separating path P which splits
the remaining vertices of G into V1 and V2, there exists
a separating path P ′ such that (1) for each side of P ′,
at least one out of any two consecutive vertices of P ′

has an emanating edge to this side, (2) P ′ splits the re-
maining vertices of G into V ′

1 ⊇ V1 and V ′
2 ⊇ V2, and

(3) the first and the last vertex of P ′ have emanating
edges to both sides of P ′.

Proof. Suppose I(C) 6= ∅. As all faces of G in the inte-
rior of C have size four, at most two consecutive vertices

x

w

u

w

x

vu v

Figure 2: The Y-∆ transformation.

of C can have inner degree zero. Moreover, the only pos-
sibility of having two consecutive such vertices is that C
uses three consecutive edges of a face in its interior. It-
eratively replacing these edges by the fourth edge of this
face wherever such a situation occurs, we obtain a sim-
ple cycle C ′. C ′ has exactly I(C) in its interior as well,
and no two consecutive vertices of C ′ have inner degree
zero. Similarly, in a separating path P , two consecutive
vertices without emanating edges on one side can occur
only if P uses three consecutive edges of a face on that
side. Replacing all such occurrences on both sides gives
the claimed properties. �

Lemma 9 All vertex cutsets of size two of G consist of
the two neighbors of a degree-two vertex.

Proof. Consider a cutset C = {c1, c2} and the at least
two resulting sets V1, V2 of the remaining vertices of G.
First consider the case in which a component, say V1,
contains only inner vertices of G. Then c1 and c2 are
part of a cycle which has V1 as its inner part. By Lem-
ma 8 such a cycle with length at most four exists. Hence
Lemma 6 implies that V1 = ∅ and thus C is not a cutset.
If both V1 and V2 contain vertices of the outer face, then
by Lemma 8, c1 and c2 are the end points of a separating
path with at most three vertices. Thus, by Lemma 7,
min{|V1|, |V2|} ≤ 1, implying that c1 and c2 are the two
neighbors of a degree-two vertex or C is not a cutset. �

Lemma 10 If C is a vertex cutset of size three of G
where one of the separated sets does not contain any
vertex of the outer face, then C consists of the three
neighbors of a degree-three vertex.

Proof. Consider a minimal cutset C = {c1, c2, c3} and
let V1 be a connected component that contains only in-
terior vertices of G. By Lemma 8, C must be contained
in a cycle of length at most six that has V1 in its interior.
Thus, Lemma 6 implies |V1| ≤ 1. �

In order to construct a long path in G, we will use
the following well-known result.

Theorem 11 (Tutte [27]) Every four-connected pla-
nar graph is Hamiltonian.

Given a degree-three vertex x in a graph, adjacent to
u, v, w, the corresponding Y-∆ transformation consists
of removing vertex x, adding edges uv, uw, and vw,
and removing any parallel edges. This is illustrated in

25th Canadian Conference on Computational Geometry, 2013

172

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 2. We define a new graph G′ by applying the
following two transformations to G, in the given order
(see Figure 3):

1. Add an extra vertex v∞, and make it adjacent to all
vertices of G dual to the unbounded faces of A(S).

2. For all vertices of degree three, perform a Y-∆
transformation. Note that after adding v∞, no two
vertices of degree three are adjacent. Hence, the
transformation is well-defined.

G

v∞

G′

Figure 3: Transforming the dual graph G into G′.

Lemma 12 G′ is a four-connected planar graph, hence
it is Hamiltonian.

Proof. We need to show that G′ does not have any cut-
set of size three or less. We first have to make the fol-
lowing observation: if C is a cutset of G′, then C \{v∞}
is a cutset of G. To check this, we need to show that the
vertices of degree three that are eliminated by the Y-∆
transformations do not reconnect the separated vertex
sets in G′. Each such Y-∆ transformation involves three
vertices u, v, w that are pairwise adjacent in G′. Hence
the degree-three vertex of G that was eliminated can be
assigned to the same side of the partition in G as the
vertices {u, v, w} \ C.

Now, we rule out the existence of a cutset C of size
two in G′, thereby showing that G′ is at least three-
connected. From our observation, C \ {v∞} would be a

cutset of G. If v∞ belongs to C then C \ {v∞} has size
one, which is impossible since G is known to be two-
connected. Otherwise, we have a cutset of size two in
G, which from Lemma 9 must be neighbors of a degree-
two vertex in G. This vertex, however, after adding v∞
became of degree three, thus it must have been elimi-
nated by a Y-∆ transformation, hence again C cannot
be a cutset in G′.

Now suppose that C is a cutset of size exactly three in
G′, and let us first suppose that C does not contain v∞.
From our observation, C is also a cutset of G, and from
Lemma 10 it either (i) consists of the neighbors of a
degree-three vertex of G, or (ii) is such that both sepa-
rated sets contain vertices of the outer face. In case (i),
since degree-three vertices of G are eliminated by the Y-
∆ transformations, C cannot be a cutset of G′ and we
have a contradiction. In case (ii), since the vertex sub-
sets separated in G are connected by v∞ in G′, C can-
not be a cutset in G′ and we have a contradiction again.
Hence we can assume that v∞ ∈ C, and that C \ {v∞}
is a cutset of size two of G. But this case was already
ruled out above, hence G′ cannot have a cutset of size
at most three, and therefore is four-connected. �

Lemma 13 G′ has at least n2/6− 5n/6 + 2 vertices.

Proof. Recall that G has exactly N =
(
n+1
2

)
+ 1 ver-

tices. Further, it is known that the maximum num-
ber of degree-three interior vertices in G, that is, of
bounded triangular faces in the arrangement A(S), is
at most n(n−2)/3 [12]. Also, the number of degree-two
vertices is at most 2n. These are exactly the vertices
that are eliminated by the Y-∆ transformation to ob-
tain G′. Hence the number of vertices of G′ is at least
n(n+1)/2+2−(n(n−2)/3)−2n = n2/6−5n/6+2. �

Theorem 14 f(n) ≥ n2/6− 5n/6.

Proof. Consider a Hamiltonian cycle in G′. This cycle
can be transformed into a simple path of length at least
n2/6−5n/6 in G, by eliminating v∞ and replacing every
portion of the cycle using one or two edges of a trian-
gle obtained from a Y-∆ transformation by two edges
incident to the degree-three vertex (see Figure 4). �

3.2 Upper Bound

We show that the previous lower bound on the length
of the longest simple path in G is within a factor two of
the optimum.

Proposition 15 f(n) ≤ n2/3 +O(n).

Proof. It is well-known that the cells of any line ar-
rangement can be properly two-colored, hence that G is
a bipartite graph. We will refer to the colors as black
and white. Füredi and Palásti [13] give an example of

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

173

25th Canadian Conference on Computational Geometry, 2013

v∞

Figure 4: Obtaining a long path in G (operations shown
at the bottom) from a Hamiltonian cycle in G′ (top).

an arrangement of n lines in which there are n2/3+O(1)
black cells and n2/6+O(n) white cells. Hence, there are
roughly twice as many black cells as white cells, which is
known to be asymptotically tight [18]. Now observe that
any simple path or cycle in G will alternatingly traverse
white and black cells, hence cannot have length greater
than n2/3 +O(n). �

Acknowledgments

This work was initiated during the ComPoSe-Meeting
“Workshop on combinatorics of colored point sets” held
on Feb. 4–8, 2013 at the University of Seville, Spain. We
thank the other participants — J.M. Dı́az-Báñez, P. Ka-
mousi, D. Orden, P. Ramos, M. Saumell, W. Steiger,
and I. Ventura — for helpful comments.

References

[1] M. Abellanas, A. Garćıa, F. Hurtado, and J. Tejel.
Caminos alternantes. Actas X Encuentros de Geome-
tria Computacional (in Spanish), Sevilla, 2003, 7–12.

[2] J. Akiyama, J. Urrutia. Simple alternating path prob-
lem. Discrete Math. 84:101–103, 1990.

[3] E. Ackerman, R. Pinchasi A note on coloring line ar-
rangements. http://arxiv.org/pdf/1207.0080.pdf.

[4] S. Bereg, F. Hurtado, M. Kano, M. Korman, D. Lara,
C. Seara, R.I. Silveira, J. Urrutia and K. Verbeek. Bal-
anced partitions of 3-colored geometric sets in the plane
Manuscript, 2012. Abstract in 29th EuroCG, 2013.

[5] P. Bose, J. Cardinal, S. Collette, F. Hurtado, S. Langer-
man, M. Korman, and P. Taslakian Coloring and guard-
ing arrangements. Abstract in 28th EuroCG, 2012.

[6] P. Bose, H. Everett, and S. Wismath. Properties of Ar-
rangements. Int. J. Comput. Geom., 13:447-462, 2003.

[7] P. Brass, W. Moser and J. Pach. Research Problems in
Discrete Geometry. Vieweg Verlag, 2004.

[8] J. Cibulka, J. Kynčl, V. Mészáros, R. Stolař, and
P. Valtr. Hamiltonian alternating paths on bicol-
ored double-chains. In: Graph Drawing 2008, LNCS ,
vol. 5417 (2009) 181–192.

[9] A. Dumitrescu. On some monotone path problems in
line arrangements. Comput. Geom. 32(1):13–25, 2005.

[10] S. Felsner. Geometric Graphs and Arrangements.
Springer, Berlin, 2005.

[11] S. Felsner, F. Hurtado, M. Noy and I. Streinu. Hamil-
tonicity and colorings of arrangement graphs. Discrete
Appl. Math., 154:2470-2483, 2006.

[12] S. Felsner and K. Kriegel. Triangles in Euclidean
Arrangements. Discrete Comput. Geom., 22:429-438,
1999.

[13] Z. Füredi and I. Palásti. Arrangements of lines with
a large number of triangles. Proc. Amer. Math. Soc.,
92:561-566, 1984.

[14] B. Grünbaum. Arrangements and Spreads. Regional
Conf. Ser. Math., Amer. Math. Soc., 1972.

[15] B. Grünbaum. How many triangles? Geombinatorics,
8:154-159, 1998.

[16] B. Grünbaum. Arrangements of colored lines. Abstract
720-50-5, Notices Amer. Math. Soc., 22(1975), A-200.

[17] B. Grünbaum. Monochromatic intersection points in
families of colored lines. Geombinatorics, 9:3-9, 1999.

[18] B. Grünbaum. Two-coloring the faces of arrangements.
Period. Math. Hungar., 11(3):181-185, 1980.

[19] B. Grünbaum and H. Walther. Shortness exponents of
families of graphs. J. Comb.Theory A, 14:364-385, 1973.

[20] A. Kaneko and M. Kano. Discrete geometry on red
and blue points in the plane – a survey. In Discrete
and Computational Geometry, The Goodman-Pollack
Festschrift, pp. 551-570, 2003.

[21] J. Kynčl, J. Pach and G. Tóth. Long alternating paths
in bicolored point sets. Discrete Math. 308:4315–4322,
2008.

[22] J. Leaños, M. Lomeĺı, C. Merino, G. Salazar, and J.
Urrutia. Simple Euclidean arrangements with no (≥ 5)-
gons. Discrete Comput. Geom., 38:595–603, 2007.

[23] E. Lucas. Récréations mathématiques IV. Paris, 1894

[24] V. Mészáros. Extremal problems on planar point sets.
PhD Thesis, University of Szeged, 2011.

[25] J.W. Moon and L. Moser. Simple paths on polyhedra.
Pacific J. Math., 13:629-631, 1963.

[26] T. S. Motzkin. Nonmixed connecting lines. Abstract
67T 605, Notices Amer. Math. Soc., 14(1967), p. 837.

[27] W. T. Tutte. A theorem on planar graphs. Trans.
Amer. Math. Soc., 82:99-116, 1956.

25th Canadian Conference on Computational Geometry, 2013

174

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Optimal Data Structures for Farthest-Point Queries in Cactus Networks∗

Prosenjit Bose† Jean-Lou De Carufel† Carsten Grimm†‡ Anil Maheshwari† Michiel Smid†

Abstract

Consider the continuum of points on the edges of a net-
work, i.e., a connected, undirected graph with positive
edge weights. We measure the distance between these
points in terms of the weighted shortest path distance,
called the network distance. Within this metric space,
we study farthest points and farthest distances. We in-
troduce optimal data structures supporting queries for
the farthest distance and the farthest points on trees,
cycles, uni-cyclic networks and cactus networks.

1 Introduction

1.1 Problem Definition

We call a simple, finite, undirected graph with positive
edge weights a network. Unless stated otherwise, we
consider only connected networks. Let G = (V,E) be a
network with n vertices and m edges, where V is the set
of vertices and E is the set of edges. We write uv to de-
note an edge with endpoints u, v ∈ V and we write wuv

to denote its weight. A point p on edge uv subdivides
uv into two sub-edges up and pv with wup = λwuv and
wpv = (1 − λ)wuv, where λ is the real number in [0, 1]
for which p = λu+ (1−λ)v. We write p ∈ uv when p is
on edge uv and p ∈ G when p is on some edge of G.

As shown in Fig. 1, we measure the distance between
points p, q ∈ G in terms of the weighted length of a
shortest path from p to q in G, denoted by dG(p, q).
We say that p and q have network distance dG(p, q).
The points on G and the network distance form a met-
ric space. Within this metric space, we study far-
thest points and farthest distances. We call the largest
network distance from some point p on G the eccen-
tricity of p and denote it by eccG(p), i.e., eccG(p) =
maxq∈G dG(p, q). A point p̄ on G is farthest from p if
and only if dG(p, p̄) = eccG(p). We omit the subscript
G whenever the underlying network is understood.

We aim to construct data structures for a fixed net-
work G supporting the following queries. Given a point
p on G, what is the eccentricity of p? What is the set
of farthest points from p in G? We refer to the former
as an eccentricity query and to the latter as a farthest-

∗Research supported in part by FQRNT and NSERC.
†School of Computer Science, Carleton University
‡Institut für Simulation und Graphik, Fakultät für Informatik,

Otto-von-Guericke-Universität Magdeburg

2

8

93

4

4
u v

s

t

x

2

8

93

q

3 1

2

2

p

1

8

11
126

3

10

p

Figure 1: From left to right: (a) a network G (b) the
network distance from p = 1

4u + 3
4v to q = 1

2s + 1
2 t

is dG(p, q) = 10 (c) a shortest path tree rooted at p
(orange1) and its extension (orange + purple). We have
ecc(p) = 12 and the farthest point from p is on xs.

point query. Both queries consist of the query point p
represented by the edge uv containing p and the value
λ ∈ [0, 1] such that p = λu + (1 − λ)v. We study
trees, cycles, uni-cyclic networks and cactus networks.
A uni-cyclic network is a network with exactly one sim-
ple cycle and a cactus network is a network where no
two simple cycles share an edge.

1.2 Related Work

The problem of determining farthest points has been
encountered [1, 2] when studying farthest-point Voronoi
diagrams on networks. Specifically, when all of the in-
finitely many points on a network are considered sites.
This point of view leads to a data structure with con-
struction time O(m2 log n) and size O(m2) supporting
eccentricity queries and farthest point queries on arbi-
trary networks in optimal time [1, 2].

This work has connections to center problems [12, 11].
In a tree network, the set of farthest points changes
only at its absolute center [4]. An absolute center is a
point c on a network G = (V,E) whose farthest ver-
tices are as close as possible, i.e., maxv∈V d(c, v) =
minq∈G maxv∈V d(q, v). There are linear time algo-
rithms for finding an absolute center in trees [6], uni-
cyclic networks [5], and cactus networks [10]. The algo-
rithm by Hämäläinen [5] plays an important role when
we study uni-cyclic networks. We use the decomposi-
tion of a network into its tree structure like many works
about center problems [9]. Tansel [12] and Kincaid [9]
provide comprehensive surveys about center problems.

1Due to the limitations of the printed proceedings, please refer
to the online version for colors in figures.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

175

25th Canadian Conference on Computational Geometry, 2013

1.3 Our Contributions

We introduce optimal data structures supporting ec-
centricity queries and farthest-points queries for trees,
cycles, uni-cyclic networks and cactus networks. The
query times are summarized in Tab. 1. All of the pre-
sented data structures have linear construction time
and, thus, require only linear space.

Type Eccentricity Farthest-Points

Tree O(1) O(k)
Cycle O(log n) O(log n)

Uni-Cyclic O(log n) O(k + log n)
Cactus O(log n) O(k + log n)

Table 1: The query times for different types of networks,
where k is the number of reported farthest points.

In Section 2, we introduce data structures for trees,
cycles and uni-cyclic networks. In Section 3, we con-
struct data structures supporting eccentricity queries
and farthest-point queries on cactus networks. Our ap-
proach is to reduce a cactus network to smaller net-
works having a sufficiently simple structure such that
the query algorithms of Section 2 can be applied.

2 Trees, Cycles, and Uni-Cyclic Networks

2.1 Trees

Let T be a tree network. We call a point c on T whose
farthest points are closest, a center of T , i.e, ecc(c) =
minx∈T ecc(x). A tree has exactly one center and we
can find this center in linear time [6].

Lemma 1 Let T be a tree, and let p be a point on T .
All farthest points from p are leaves and any path from
p to a farthest leaf contains the center of T .

Corollary 2 Let T be a tree with center c. For all
points p on T we have ecc(p) = d(p, c) + ecc(c).

Splitting a tree T at its center c yields sub-trees with
common farthest points, as shown in Fig. 2. When c is
on edge uv with u 6= c 6= v, we split T into two sub-
trees: the sub-tree Tu, containing the sub-edge uc, and
the sub-tree Tv containing the sub-edge cv. The points
on Tu (except for c) have all farthest points in Tv. The
farthest points in c are those points that are farthest
from Tu in Tv and those farthest from Tv in Tu.

Lemma 3 Let T be a tree with center c, and let T ′ be
one of the sub-trees obtained by splitting T at c. Leaf l ∈
T ′ is farthest from p ∈ T \ T ′ if and only if l is farthest
from c, i.e., eccT (p) = dT (l, p) ⇐⇒ eccT (c) = dT (l, c).

c

c̄1

c̄2
c̄3

Figure 2: A tree T with geometric edge weights. The
center c splits T into two sub-trees. For every point on
the left sub-tree (orange) c̄3 is farthest and for every
point on the right sub-tree (blue) c̄1 and c̄2 are farthest.

Using Corollary 2 and Lemma 3, we support eccen-
tricity queries and farthest point queries in tree net-
works: Let T be a tree network with center c. We
compute the position of c and the distances d(c, v) for
each vertex v of T . The maximum encountered dis-
tance is the eccentricity of c. Let T1, T2, . . . , Tr be the
sub-trees obtained by splitting T at c. For each sub-
tree, we store the set of farthest leaves from c in Ti,
denoted by Li, i.e., Li = {l ∈ Ti | d(l, c) = ecc(c)}. For
an eccentricity query from point p on edge uv of T with
d(u, c) < d(v, c), we have ecc(p) = wup+d(u, c)+ecc(c).
For a farthest-point query from p with p 6= c and p ∈ Ti,
we report all leaves in each Lj with j 6= i; for a farthest-
point query from c we report the union of all Li.

Theorem 4 Let T be a tree network with n vertices.
There is a data structure with construction time O(n)
supporting eccentricity queries on T in constant time
and farthest-point queries on T in O(k) time, where k
is the number of reported farthest points.

2.2 Cycles

Let C be a cycle network and let wC be the sum of
all edge weights of C. Each point p on C has exactly
one farthest point p̄ located on the opposite side of C
with ecc(p) = d(p, p̄) = wC/2. Supporting eccentricity
queries on C amounts to calculating and storing wC/2.

To support farthest-point queries, we compute the
farthest-point v̄ of each vertex v, subdivide the edge st
containing v̄ at v̄, and introduce pointers between v and
v̄. We perform this computation as illustrated in Fig. 3:
First, we compute the farthest point v̄ for some initial
vertex v by walking a distance of wC/2 from v along C.
Then, we sweep a point p from position p = v to position
p = v̄ along C while maintaining the farthest point p̄.
During this sweep we subdivide C at p whenever p̄ hits
a vertex and at p̄ whenever p hits a vertex. We store
the distance from v to any other vertex, which enables
us to compute the distance of any pair of vertices in
constant time. The entire sweep takes linear time, thus,
the resulting data structure occupies linear space.

25th Canadian Conference on Computational Geometry, 2013

176

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

p

p̄

v̄5

v̄6

v1

v2

v3 v4

v5

v6

v7

v̄1

v̄2

v̄3

v̄5

v̄6

v̄7

v̄4

Figure 3: From left to right: (a) a sweep along cycle C
starting from p = v1 and (b) the resulting subdivision
of C. The farthest point from any point on sub-edge
v5v̄2 is located on the sub-edge v̄5v2.

With the subdivided network, we can answer farthest-
point queries in constant time, provided we know the
sub-edge containing the query point p: When p is lo-
cated on sub-edge x̄ȳ with p = µx̄ + (1 − µ)ȳ for some
µ ∈ [0, 1] then p̄ is located on xy with p̄ = µx+(1−µ)y.
The query point p is represented by the edge uv contain-
ing p and the value λ ∈ [0, 1] such that p = λu+(1−λ)v.
Using a binary search, we determine the sub-edge con-
taining p and the value µ. This takes O(log n) time,
since we subdivide each edge at most n times.

Lemma 5 Given a cycle network C with n vertices.
There is a data structure with construction time O(n)
supporting eccentricity queries on C in constant time
and farthest-point queries on C in O(log n) time.

2.3 Uni-cyclic Networks

As shown in Fig. 4, a uni-cyclic network U consists of
a cycle C and trees T1, T2, . . . , Tr, called the branches,
attached to C at vertices v1, v2, . . . , vr, respectively.

v3
v2

v1

v4

v3

t2

v2

t3

t1

t4
v1

v4

7

v̄2

v̄4

v̄1

v̄3

6

29

Figure 4: From left to right: (a) A unicyclic network
with four branches (coloured) attached to its cycle.
(b) The same network with compressed branches. The
colouring of the cycle indicates the farthest branch.

Our data structure for uni-cyclic networks consists of
three components: a data structure for queries on the
cycle C that yields the farthest point among the points
on C, a data structure for queries on C that yields the
branches containing farthest points, and data structures
for queries on the branches. The first component is the
data structure from Section 2.2 supporting queries on
C. The second component is a data structure support-
ing farthest-branch queries, i.e., queries for the branches
containing farthest points from a query point on C. The
second component uses the following simplification of U .

We replace each branch Ti of U with a vertex ti and
an edge tivi, where vi is the vertex connecting Ti to
C. The weight of tivi is the farthest distance from vi
in Ti, i.e., wtivi = eccTi(vi). In the resulting network
S, vertex ti is farthest from p if and only if Ti contains
farthest points from p with respect to U , i.e.,

dS(p, ti) = eccS(p) ⇐⇒ ∃q ∈ Ti : dU (p, q) = eccU (p) .

We call a vertex ti relevant if there exists a point p on
C who has ti as a farthest vertex among t1, t2, . . . , tr,
i.e., dS(ti, p) = maxr

j=1 dS(tj , p). Recall that v̄i denotes
the farthest point from vi among all points on C.

Lemma 6 Vertex ti is relevant if and only if ti is far-
thest from v̄i among t1, t2, . . . , tr.

Lemma 6 yields a certificate for irrelevance. We say
that tj dominates ti, and write ti ≺ tj , if dS(ti, v̄i) <
dS(tj , v̄i). When tj dominates ti, all points on C are
closer to ti than to tj and, thus, ti cannot be relevant.
Conversely, a vertex is relevant if and only if there is no
other vertex dominating it. For the following, assume
we have a circular list storing t1, t2, . . . , tr ordered as
v1, v2, . . . , vr appear along the cycle.

Lemma 7 Let ta be the first relevant vertex after ti and
let tb be the first relevant vertex before ti. Vertex ti is
relevant if and only if neither ta nor tb dominate ti, i.e.,
if and only if ti ⊀ ta and ti ⊀ tb.

Algorithm 1 computes the relevant vertices in O(r) time
using Lemma 7. We begin with a circular list containing
all vertices t1, t2, . . . , tr. We remove irrelevant vertices
from this list until no vertex in the list is dominated
by its predecessor or successor. In each iteration of the
while-loop we either delete some vertex or we mark the
current t as processed ensuring that it will never as-
sume the role of t again. Thus, the claim about the
running time follows. Hämäläinen [5] uses a variant of
Algorithm 1 in his linear time algorithm for finding the
absolute center of a uni-cyclic network.

Algorithm 1: Determining the relevant vertices

input : A circular list L containing t1, t2, . . . , tr.
output: A sub-list of L containing only the relevant

vertices among t1, t2, . . . , tr.
1 Mark each t1, t2, . . . , tr as unprocessed;
2 t← t1;
3 while t is unprocessed do
4 if t ≺ pred(t) or t ≺ succ(t) then
5 t← succ(t);
6 delete(pred(t));

7 else if pred(t) ≺ t then delete(pred(t));
8 else if succ(t) ≺ t then delete(succ(t));
9 else (t ⊀ pred(t) ⊀ t ⊀ succ(t) ⊀ t)

10 Mark t as processed;
11 t← succ(t);

12 end

13 end

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

177

25th Canadian Conference on Computational Geometry, 2013

The relevant vertices induce a subdivision of C
into regions with a common farthest vertex among
t1, t2, . . . , tr. When walking along C, we encounter these
regions in the same order as the corresponding relevant
points. Given the relevant vertices, we can compute the
subdivision in linear time. Storing the relevant vertex
with each sub-edge reduces a query for the farthest ver-
tices among t1, t2, . . . , tr to a binary search. We query
for branches containing farthest points using the subdi-
vision and our data structure for the cycle C.

Lemma 8 Let U be a uni-cyclic network with n vertices
and cycle C. There is a data structure with construction
time O(n) supporting farthest-branch queries in U from
points on the cycle C in time O(b + log n), where b is
the number of reported branches.

Lemma 8 concludes the description of the second com-
ponent of our data structure for uni-cyclic networks.

The third component is a data structure support-
ing queries on branches. Consider a branch T that is
attached to the cycle C at vertex v. We extend T
by a vertex v′ and an edge vv′ whose weight is the
farthest distance from v to any point outside of T ,
i.e., wvv′ = eccU\T (v). The resulting tree T ′, pre-
serves farthest distances with respect to U , i.e., we have
eccU (p) = eccT ′(p) for all p ∈ T . Thus, we can use the
data structure from Section 2.1 to support eccentricity
queries in U from points on T . Furthermore, if a point
q outside of T has a farthest point q̄ on T , then q̄ is also
farthest from v′ in T ′. When a farthest-branch query
from q returns T , we report the farthest points from q
in T with a farthest-point query from v′ in T ′.

A farthest point query in T ′ from a point p ∈ T yields
the farthest points from p on T and the vertex v′ when
p has farthest points outside of T . If v′ is reported
as a farthest point, we check whether v̄, the farthest
point from v on C is farthest from p. We determine
the branches containing farthest points from p with a
farthest-branch query at v and then report the farthest
points from p in these branches as described above.

The above procedure for farthest point queries from
T works correctly, unless the farthest branch query from
v returns only T itself. This situation occurs for at most
one branch of U , because it implies that all points on
C have T as their only farthest branch. We resolve this
issue by removing T from U and computing the farthest
branches from v in the resulting network.

Theorem 9 Let U be a uni-cyclic network with n ver-
tices. There is a data structure with construction time
O(n) supporting eccentricity queries on U in O(log n)
time and farthest-point queries on U in O(k + log n)
time, where k is the number of reported farthest points.

3 Cactus Networks

In this section, we construct a data structure supporting
eccentricity queries and farthest-point queries on cactus
networks. Recall that a cactus networks is a network
where no two simple cycles share an edge. A cut-vertex
is a vertex whose removal increases the number of con-
nected components and a bi-connected component is a
maximal connected sub-network without cut-vertices.

In linear time [8], we can decompose any network G
into connected sub-networks B1, B2, . . . , Bb such that

• each edge of G is contained in exactly one Bi

• each Bi is a bi-connected component of G or the
union of bi-connected components of G,

• and each vertex contained in more than one sub-
network is a cut-vertex of G.

We call this a block decomposition of G into blocks
B1, B2, . . . , Bb. We call a cut-vertex contained in more
than one block a hinge vertex [3]. For cactus networks,
we consider the block decomposition where each block
is a simple cycle or one of the (non-trivial) trees that
remain when removing all cycles, as shown in Fig. 5.

Figure 5: A cactus network decomposed into six blocks
(coloured) with four hinge vertices (empty discs).

The following terms describe how we subdivide a net-
work G with respect to a block decomposition; examples
are shown in Fig. 6. For a sub-network S of G, we write
G−S to denote the network resulting from removing all
edges of S from G (without removing any vertices). For
a block B and a hinge vertex h ∈ B, we call the con-
nected component of G − B containing h the block-cut
of B at h, denoted by bcut(B, h). We call the connected
component of G−bcut(B, h) containing h the co-block-
cut of B at h, denoted by co-bcut(B, h).

h
h

Figure 6: For the network from Fig. 5, from left to right:
(a) the block-cut of the brown block at hinge vertex h
and (b) the corresponding co-block-cut.

25th Canadian Conference on Computational Geometry, 2013

178

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

3.1 Eccentricity Queries

Consider a block B of a network G. To support ec-
centricity queries on B, we compress the (non-trivial)
connected components of G − B like we compress the
branches of uni-cyclic networks. For each hinge vertex
h ∈ B we replace bcut(B, h) with a vertex ĥ and an

edge hĥ whose weight is the largest distance from h to
any point in bcut(B, h), i.e., whĥ = eccbcut(B,h)(h). We
refer to the resulting network as the locus of B, denoted
by loc(B). The locus of block B preserves farthest dis-
tances of G, i.e., eccloc(B)(p) = eccG(p) for all p on B.

We begin at some block B∗ of a cactus network. For
each hinge h∗ ∈ B∗, we compute eccbcut(B∗,h∗)(h

∗) with
a modified breadth-first-search in linear time. This
breadth-first-search also yields the farthest distances
along paths leading away from B∗, i.e., we obtain
eccbcut(B,h)(h) for any bcut(B, h) ⊆ bcut(B∗, h∗).

Let B′ be a block neighboring B∗ at hinge vertex h, as
shown in Fig. 7. To construct loc(B′), we only lack the
farthest distance from h in co-bcut(B∗, h). We obtain
this value with an eccentricity query in loc(B∗) via

eccco-bcut(B∗,h)(h) = eccloc(B∗)(ĥ)− whĥ,

where ĥ represents bcut(B∗, h) in loc(B∗). This way we
obtain the loci of all neighbors of B∗, then all loci of the
neighbors of all neighbors of B∗ and so forth.

B∗

B′

h

B′

h ?

B∗

ĥ

eccbcut(h,B′)(h)

h

Figure 7: Top down and left to right: (a) An abstraction
of the block structure of a network. The arrows indicate
shortest path trees emanating from block B∗. (b) When
constructing the locus of block B′ we lack the distance
from bcut(B′, h) (green) whereas the distances from all
other block cuts (blue) are known. (c) We obtain the
missing distance with an eccentricity query in loc(B∗).

Constructing a data structure supporting eccentricity
queries on a locus takes linear time in the size of the lo-
cus. Recall that each locus of a cactus network is either
a tree or a uni-cyclic network. The eccentricity queries
in a neighboring block take constant time, due to The-
orem 9. Therefore, our data structure for eccentricity
queries in cactus networks has construction time O(n)
and inherits the query times from uni-cyclic networks.

Lemma 10 Let G be a cactus network with n vertices.
There is a data structure with construction time O(n)
supporting eccentricity queries on G in O(log n) time.

3.2 Farthest-Point Queries

To answer a farthest-point query from a point p in block
B, we perform a farthest-point query in the locus loc(B)
and then cascade the query into the neighboring blocks.
If the query from p in loc(B) returns vertex ĥ represent-
ing bcut(B, h), then bcut(B, h) contains farthest points
from p. From the construction of loc(B), we know which
blocks neighboring B at h lie on a path to from p to one
of its farthest points. We continue with a farthest-point
query from ĥ in the loci of these blocks. This takes O(n)
time, since we might cascade through O(n) blocks un-
til we reach one containing farthest points from p. We
improve the query time by using shortcuts to skip long
chains of blocks without farthest points.

We define the tree structure [7] of a block decompo-
sition of a network G, denoted by TG, as the following
graph. The set of vertices of TG consists of the blocks of
G and the hinge vertices of G. The edges of TG connect
a hinge vertex h and a block B whenever h ∈ B. Since
the tree structure is indeed a tree [7] and since there
are at most n blocks and at most n cut-vertices in a
network with n vertices, TG has at most 2n− 1 edges.

The blocks and the hinge vertices visited during a
cascading farthest-point query form a sub-tree Tquery
of the tree structure TG. All farthest points from the
query point are located in blocks that occur as vertices
of Tquery. Next, we use path compression to obtain a
version of Tquery whose size is linear in the number of
blocks containing farthest points from the query point.

Consider an edge {h,B} in TG and the paths from h
to blocks containing farthest points from h with respect
to co-bcut(B, h). We store a shortcut from {h,B} to the
first edge {h′, B′} along these paths, where B′ contains
farthest points or two paths split at B′. Fig. 8 shows a
farthest-point query using one of these shortcuts. There
are O(n) shortcuts in total, since we add at most one
shortcut per edge of TG and since TG has O(n) edges.

We obtain the shortcuts leading away from B∗ as a
byproduct of the breadth-first-search used in the con-
struction of the locus of B∗. For the remaining short-
cuts, we rely on a similar strategy as used to obtain
the loci of all blocks B with B 6= B∗. Let B be a
block neighboring B∗ at h. We introduce no shortcut

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

179

25th Canadian Conference on Computational Geometry, 2013

B′

B∗

h

Figure 8: A farthest point query (blue) from block B′ re-
porting the farthest points in bcut(B′, h) (green) using
a shortcut (dashed). Blocks containing farthest points
are indicated in red. An arc from a block B to a hinge
vertex h indicates that we continue reporting farthest
points in bcut(B, h). An arc from h to B indicates that
we continue reporting farthest points in co-bcut(B, h).

when B∗ contains farthest points from ĥ or when two
paths to farthest points from h in co-bcut(B∗, h) split
in B∗ or at some hinge vertex of B∗. Otherwise, B∗

has one neighboring block B′ at hinge vertex h′ such
that co-bcut(B′, h′) contains all farthest points from h
in co-bcut(B∗, h). In this case, we add a shortcut from
co-bcut(B∗, h) to the destination of the shortcut from
co-bcut(B′, h′). Since we conduct farthest point queries
only on pendant edges of the loci, it takes constant time
to determine which case applies and the overall con-
struction time for cactus networks is O(n).

Let p be a point in block B with k farthest points.
During a farthest-point query from p, we report all far-
thest points from p in B and all block-cuts contain-
ing farthest points with a query in loc(B). This takes
O(k + log n) time due to Theorem 9. We follow the
shortcuts associated to the reported block-cuts and ob-
tain all other blocks containing farthest points in O(k)
time. For each reported block B′ we perform a farthest-
point query from a pendant vertex of loc(B′). By The-
orem 4, this takes linear time in the number of farthest
points in B′. The overall query time is O(k + log n).

Theorem 11 Let G be a cactus network with n ver-
tices. There is a data structure with construction time
O(n) supporting eccentricity queries on G in O(log n)
time and farthest-point queries in O(k + log n) time,
where k is the the number of reported farthest points.

4 Conclusions and Future Work

In previous work [1, 2], we introduce a data structure
with optimal query times for eccentricity and farthest-
point queries and construction time O(m2 log n) for any
network with n vertices and m edges. In this work,
we improve the construction time to O(n) for certain
classes of networks without sacrificing query time. In
future work, we aim to achieve o(m2 log n) construction
time for more classes of networks.

References

[1] P. Bose, J.-L. D. Carufel, C. Grimm, A. Maheshwari,
and M. Smid. On farthest-point information in net-
works. In Proceedings of the 24th Canadian Conference
on Computational Geometry, pages 199–204, 2012.

[2] P. Bose, K. Dannies, J.-L. De Carufel, C. Doell,
C. Grimm, A. Maheshwari, S. Schirra, and M. Smid.
Network Farthest-Point Diagrams. ArXiv, Apr. 2013.

[3] R. E. Burkard and J. Krarup. A linear algorithm for
the pos/neg-weighted 1-median problem on a cactus.
Computing, 60(3):193–215, 1998.

[4] S. L. Hakimi. Optimum locations of switching centers
and the absolute centers and medians of a graph. Op-
erations Research, 12(3):450–459, 1964.

[5] P. Hämäläinen. The absolute center of a unicyclic net-
work. Discrete Appl Math, 25(3):311 – 315, 1989.

[6] G. Y. Handler. Minimax location of a facility in an
undirected tree graph. Trans. Sci., 7(3):287–293, 1973.

[7] F. Harary and G. Prins. The block-cutpoint-tree of a
graph. Publ. Math. Debrecen, 13:103–107, 1966.

[8] J. Hopcroft and R. Tarjan. Algorithm 447: efficient
algorithms for graph manipulation. Communications
of the ACM, 16:372–378, 6 1973.

[9] R. K. Kincaid. Exploiting structure: Location problems
on trees and treelike graphs. In Foundations of Location
Analysis, pages 315–334. Springer US, 2011.

[10] Y.-F. Lan, Y.-L. Wang, and H. Suzuki. A linear-time
algorithm for solving the center problem on weighted
cactus graphs. IPL, 71(5–6):205–212, 1999.

[11] Q. Shi. Efficient algorithms for network center/covering
location optimization problems. PhD thesis, School of
Computing Science-Simon Fraser University, 2008.

[12] B. Ç. Tansel. Discrete center problems. In Foundations
of Location Analysis, pages 79–106. Springer US, 2011.

25th Canadian Conference on Computational Geometry, 2013

180

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Cole’s Parametric Search Technique Made Practical

Michael T. Goodrich

Dept. of Computer Science
University of California, Irvine

Pawe l Pszona

Dept. of Computer Science
University of California, Irvine

Abstract

Parametric search has been widely used in geometric al-
gorithms. Cole’s improvement provides a way of saving
a logarithmic factor in the running time over what is
achievable using the standard method. Unfortunately,
this improvement comes at the expense of making an al-
ready complicated algorithm even more complex; hence,
this technique has been mostly of theoretical interest. In
this paper, we provide an algorithm engineering frame-
work that allows for the same asymptotic complexity
to be achieved probabilistically in a way that is both
simple and practical (i.e., suitable for actual implemen-
tation). The main idea of our approach is to show that
a variant of quicksort, known as boxsort, can be used to
drive comparisons, instead of using a sorting network,
like the complicated AKS network, or an EREW par-
allel sorting algorithm, like the fairly intricate parallel
mergesort algorithm. This results in a randomized opti-
mization algorithm with a running time matching that
of using Cole’s method, with high probability, while also
being practical. We show how this results in practical
implementations of some geometric algorithms utilizing
parametric searching and provide experimental results
that prove practicality of the method.

1 Introduction

Parametric search [24] has proven to be a useful tech-
nique in design of efficient algorithms for many geo-
metric and combinatorial optimization problems (e.g.,
see [2, 3, 28]). Example applications include ray shoot-
ing [1], slope selection [13], computing the Fréchet dis-
tance between two polygonal curves [6, 8], matching
drawings of planar graphs [5], labeling planar maps with
rectangles [22], and various other matching and approx-
imation problems (e.g., see [15, 16, 17]).

Although it has been superseded in some applications
by Chan’s randomized optimization technique [9, 10],
for many problems asymptotically best known results
still depend on parametric searching.

The technique is applied to a decision problem, B,
whose solution depends on a real parameter, λ, in a
monotonic way, so that B is true on some interval
(−∞, λ∗). The goal is to determine the value of λ∗,

the maximum for which B is true. To achieve this goal,
the parametric search approach utilizes two algorithms.
The first algorithm, C, is a sequential decision algorithm
for B that can determine if a given λ is less than, equal
to, or greater than λ∗. The second algorithm, A, is
a generic parallel algorithm whose inner workings are
driven by “comparisons,” which are either independent
of λ or depend on the signs of low-degree polynomi-
als in λ. Because A works in parallel, its comparisons
come in batches, so there are several independent such
comparisons that occur at the same time. The idea,
then, is to run A on the input that depends on the un-
known value λ∗, which will result in actually finding
that value as a kind of by-product (even though we do
not know λ∗, C can be used to resolve comparisons that
appear during the execution of A). The next step is
to simulate an execution of A sequentially. To resolve
comparisons that occur in a single step of this simu-
lation, we can use the algorithm C to perform binary
search among the (ordered) roots of the polynomials
in λ for these comparisons, which allows us to deter-
mine signs of all these polynomials, hence, allows us
to continue the simulation. When the simulation com-
pletes, we will have determined the value of λ∗. More-
over, the running time for performing this simulation is
O(P (n)T (n) + C(n)T (n) logP (n)), where C(n) is the
(sequential) running time of C, T (n) is the (parallel)
running time of A, and P (n) is the number of proces-
sors used by A.

Cole [11] shows how to improve the asymptotic per-
formance of the parametric search technique when sort-
ing is the problem solved by A. His improvement
comes from an observation that performing a separate
binary search for each step of the algorithm A will often
“waste” calls to C to resolve a relatively small number of
comparisons. Rather than resolve all the comparisons
of a single step of A, he instead assumes that A is im-
plemented as the AKS sorting network [4] or an optimal
EREW parallel sorting algorithm [12, 18], which allows
for comparisons on multiple steps of A to be considered
at the same time (so long as their preceding compar-
isons have been resolved). This improvement results
in a running time for the optimization problem that is
O(P (n)T (n) + C(n)(T (n) + logP (n))).

From an algorithm engineering perspective, the “clas-

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

181

25th Canadian Conference on Computational Geometry, 2013

sical” parametric search technique (utilizing a paral-
lel algorithm) is admittedly difficult to implement, al-
though some implementations do exist [29, 30, 31].
Cole’s improvement is even more complex, however, and
we are not familiar with any implementations of his
parametric search optimization.

Even without Cole’s improvement, a challenge for im-
plementing the parametric search technique is the sim-
ulation of a parallel algorithm on a sequential machine.
This difficulty has motivated some researchers to aban-
don the use of parametric searching entirely and instead
use other paradigms, such as expander graphs [21], ge-
ometric random sampling [23], and ε-cuttings [7] (see
also [2]).

Interestingly, van Oostrum and Veltkamp [31] show
that, for sorting-based parametric search applications,
one can use the well-known quicksort algorithm to
drive comparisons instead of a parallel sorting algo-
rithm. Unfortunately, as van Oostrum and Veltkamp
note in their paper, Cole’s improvement cannot be ap-
plied in this case. The main difficulty is that, when
viewed as a kind of parallel algorithm, comparisons to
be done at one level of quicksort become known only
after all the comparisons on the level above have been
resolved. Thus, comparisons cannot be pipelined in the
way required by Cole’s optimization when using this ap-
proach. The result, of course, is that this sets up an un-
fortunate tension between theory and practice, forcing
algorithm designers to choose between a practical, but
asymptotically inferior, implementation or an imprac-
tical algorithm whose running time is asymptotically
better by a logarithmic factor.

1.1 Our Results

We show that it is, in fact, possible to implement Cole’s
parametric search technique in a manner that is effi-
cient and practical (i.e., fast and easy to implement).
The main idea is to use a variant of quicksort, known
as boxsort [26], to drive comparisons (instead of sort-
ing networks, like the complicated AKS network or an
EREW parallel sorting algorithm). We apply a po-
tential function to comparisons in the boxsort algo-
rithm, which, together with a weighted-median-finding
algorithm, allows us to schedule these comparisons in
a pipelined fashion and achieve, with high probability,
the same asymptotic running time as Cole’s method,
while also being practical. Moreover, we provide exper-
imental results that give empirical evidence supporting
these claims for the “median-of-lines” problem [24] and
the geometric optimization problems of matching pla-
nar drawings [5] and labeling planar maps with rectan-
gles [22].

2 Parametric Search Explained

In this section, we provide a more in-depth description
of the parametric search technique. Recall that B is a
problem that we want to solve. Furthermore, we restrict
ourselves to the case where the generic algorithm A is
a sorting algorithm. We require of B the following.

1. There is a decision algorithm, C, which, for any
value λ, resolves a comparison λ < λ∗ in time C(n)
without actually knowing λ∗ (note that C(n) is a
function of the size of input to B). Typically, C(n)
is at least Ω(n), as opposed to O(1) comparison
time which is usual for classical sorting algorithms.

2. There is an efficient way of generating values xi
(with each xi being either a real value or a real-
valued function of λ) from an input to problem B.
Ideally, it produces O(n) such values.

3. For each xi < xj comparison, the answer is deter-
mined by the sign of a low-degree polynomial in λ
at λ = λ∗ (polynomials for different comparisons
may differ).

4. Critical values (values λ that, based on combina-
torial properties of B, have the potential of being
equal to λ∗) form a subset of the set of roots of the
polynomials determining answers to every possible
comparison xi < xj .

Then, as a by-product of sorting values xi, we get
(directly or indirectly) the answers to all comparisons
λ < λ∗, where λ’s are roots of all comparisons xi < xj .
Therefore, we are able to find λ∗.

We can solve B in the following way: generate xi’s,
sort them using algorithm A and recover λ∗ from the
answer. If A sorts n items in T (n) comparisons and
each comparison is resolved in time O

(
C(n)

)
(it requires

determining whether λ < λ∗ for a constant number of
roots λ), solving B this way takes time T (n)C(n).

It is important to note that if there are k comparisons
xi < xj , we can avoid calling C on every single root of
their polynomials, and still resolve them all. This is
because resolving λ < λ∗ automatically resolves com-
parisons for values λ′ ≤ λ (if the result was YES) or
λ′′ > λ∗ (if the result was NO). Therefore, we can solve
k comparisons in only O(log k) calls to C, if in every
iteration we use a standard median-finding algorithm
(e.g., see [14]) to find the median root λ, and then re-
solve it by a call to C (each iteration halves the number
of unresolved comparisons).

The above observation lies at the heart of the original
parametric search, as introduced by Megiddo [24]. Note
that we can group the comparisons in such a way only if
they are independent of each other. To assure this, one
chooses A to be a parallel sorting algorithm, running in

25th Canadian Conference on Computational Geometry, 2013

182

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

time T (n) on P (n) processors. At every step of A, there
are O(P (n)) independent comparisons, and they can be
resolved in time O

(
P (n) + log(P (n)) · C(n)

)
according

to the previous observation. Resolving comparisons at
all T (n) steps of A takes time O

(
T (n) · P (n) + T (n) ·

log(P (n))·C(n)
)
. Simulating A on a sequential machine

takes time O
(
T (n)P (n)

)
. Therefore, parametric search,

as originally introduced, helps solve B in time O
(
T (n) ·

P (n) + T (n) · log(P (n)) · C(n)
)
.

2.1 Cole’s Improvement

Cole [11] was able to improve on Megiddo’s result by
using a sorting network or an EREW parallel sorting
algorithm as A, and changing the order of comparison
resolution by assigning weights to comparisons and re-
solving the median weighted comparison at each step.

In the case of a sorting network, a straightforward
notion of active comparisons and active wires was in-
troduced. Initially, all input wires (and no others) are
active. A comparison is said to be active if it is not re-
solved and both its input wires are active. When active
comparison gets resolved, its output wires now become
active, possibly activating subsequent comparisons. In-
formally, active comparisons have not been resolved yet,
but both of their inputs are already determined.

Weight is assigned to every comparison, being equal
to 4−j for a comparison at depth j. The active weight
is defined as the weight of all active comparisons. The
weighted median comparison can be found in O(n)
time [27], and resolving it automatically resolves a
weighted half of the comparisons.

It is shown that for a sorting network of width
P (n) and depth T (n), or an EREW sorting algorithm
with P (n) processors and time T (n), the method of
resolving weighted median comparison requires only
O(T (n) + log(P (n))) direct calls to C. Including sim-
ulation overhead, we solve B in time O(P (n) · T (n) +(
T (n) + log(P (n))

)
· C(n)).

This is completely impractical, however, as the
bounds for the AKS network have huge constant fac-
tors. In a subsequent work [12], Cole shows that one
can substitute an EREW parallel sorting algorithm for
the AKS network, which makes using his optimization
more implementable, but arguably still not practical,
since the existing optimal EREW parallel sorting algo-
rithms [12, 18] are still fairly intricate.

2.2 Applying quicksort to Parametric Search

Van Oostrum and Veltkamp [31] have shown that the
quicksort algorithm [20] can be used as A. Recall
that in the randomized version of this algorithm we
sort a set of elements by picking one of them (called
the pivot) at random, and recursively sorting elements
smaller than the pivot and greater than the pivot. A

key observation here is that all the comparisons with
the pivot(s) at a given level of recursion are indepen-
dent of each other. It leads to a practical algorithm,
running in O(n log n+ log2 n ·C(n)) expected-time, for
solving B (it becomes O(n log n + log n · C(n)) under
additional assumption about distribution of the roots
of polynomials). Comparisons are resolved by resolving
the median comparison among unresolved comparisons
at the current level. As quicksort is expected to have
O(log n) levels of recursion, and O(n) comparisons at
each level can be resolved in time O(n + log n · C(n)),
time bound follows.

Cole’s improvement cannot be applied in this case,
because all comparisons at one level have to be re-
solved before we even know what comparisons have to
be done at the next level (that is, we don’t know the
splits around pivots until the very last comparison is
resolved).

3 Our Practical Version of Cole’s Technique

In this section, we describe our algorithm engineering
framework for making Cole’s parametric search tech-
nique practical. Our approach results in a random-
ized parametric search algorithm with a running time
of O(n log n+log n ·C(n)), with high probability, which
makes no assumptions about the input. Our framework
involves resolving median-weight comparison, according
to a potential function based on Cole-style weights as-
signed to comparisons of a fairly obscure sorting algo-
rithm, which we review next.

3.1 The boxsort Algorithm

We use the boxsort algorithm due to Reischuk [26] (see
also [25]) as A. This algorithm is based on an extension
of the main idea behind randomized quicksort, namely
splitting elements around pivots and recursing into sub-
problems. While quicksort randomly selects a single
pivot and recurses into two subproblems, boxsort ran-
domly selects

√
n pivots and recurses into

√
n+ 1 sub-

problems in a single stage. We think of it as a parallel
algorithm, in the sense that the recursive calls on the
same level are independent of each other. The pseu-
docode is shown in Algorithm 1.

Sorting in lines 3 and 6 is done in a brute-force man-
ner, by comparing all pairs of items, in time O(n2) in
line 3, and O(n) in line 6 (note that since all these com-
parisons are independent, they can all be realized in a
single parallel step).

Once the marked items are sorted in line 6, splitting
in line 7 is simply n−√n independent binary searches
through the marked items (to determine, for each un-
marked element, the subproblem where it lands). It
takes O(n log

√
n) time (when realized in a sequential

way). Equivalently, we think of the sorted set of marked

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

183

25th Canadian Conference on Computational Geometry, 2013

// N – original number of items
proc boxsort(A[i . . . j])
1: n← (j − i+ 1)
2: if n < logN then // base case
3: sort A[i . . . j]
4: else
5: randomly mark

√
n items

6: sort the marked items
7: use the marked items to split A[i . . . j] into sub-

problems A1, A2, . . . , A√n+1

8: for all i← 1 . . .
√
n+ 1 do

9: boxsort(Ai)

10: end for
11: end if

Algorithm 1: boxsort

items as forming a perfectly balanced binary search tree.
Locating a destination subproblem for an item is then
done by routing the item through this tree. The tree
has log

√
n levels, and all routing comparisons are inde-

pendent between different unmarked items. Therefore,
routing can be realized in log

√
n parallel steps.

3.2 Weighting Scheme

Motivated by Cole’s approach, we assign weight to ev-
ery active comparison, and resolve the weighted median
comparison in a single step. For simplicity, we iden-
tify each comparison xi < xj with a single comparison
against the optimum value, i.e., λij < λ∗ for real λij (in
essence, we assume that comparison polynomials have
degree 1). It is straightforward to extend the scheme for
the case of higher degrees of comparison polynomials.

It makes sense here to think of boxsort in a network-
like fashion, in order to understand how the weights are
assigned to comparisons. Here, nodes represent compar-
isons, and directed edges represent dependence on pre-
vious comparisons. Furthermore, we imagine the net-
work with edges directed downward, and refer to edge
sources as parents, and destinations as children. Com-
parison becomes active as soon as all its dependencies
become resolved (and stops when it gets resolved).

Our “network” also contains nodes for virtual com-
parisons. These are not real comparisons, and don’t
appear during actual execution of the algorithm. Their
sole purpose is to make it easy to assign weights to real
comparisons once they become active (we will later see
that, in fact, they are not necessary even for that; but
they make it easy to understand how the weights are
computed). When a virtual comparison becomes ac-
tive, it is automatically resolved (reflecting the fact that
there is no real work assigned to a virtual comparison).

Contrary to Cole’s weighting scheme for sorting net-
works, our scheme does not rely only on comparison’s
depth when assigning weights. In fact, different compar-

isons at the same level of the network may have different
weights. Weights are assigned to comparisons (virtual
or not) according to the following weight rule:

When comparison C of weight w gets resolved
and causes m comparisons C1, . . . , Cm to be-
come active, each of these comparisons gets
weight w/2m.

Informally, resolved comparison distributes half of its
weight among its newly activated children. Each com-
parison gets its weight only once, from its last resolved
parent (the scheme guarantees that all parents of a com-
parison have equal weight).

3.3 The Algorithm

Simulating a single recursive call of boxsort (including
the virtual parts) consists of the following steps.

1. Randomly mark
√
n items.

2. Create
√
n · (√n − 1)/2 = O(n) comparisons for

sorting marked items.

3. Construct a complete binary tree of virtual com-
parisons (comparisons from Step 2 are leaves).

4. Create routing trees from section 3.1 for routing
unmarked elements; make the root of each such tree
depend on the root of the tree from Step 3.

5. Route items through the tree of marked items;

6. Construct a binary tree of virtual comparisons
(leaves are last comparisons from routing trees).

7. Split items into boxes

8. Assign weights for comparisons in the next level of
recursion (after the items are split into boxes) by
making them children of the root from Step 6.

9. Recurse into subproblems (simultaneously).

Blue steps (3, 6) deal with trees of virtual compar-
isons, while red steps (4, 8) represent relationships that
make real comparisons depend on virtual ones. The idea
behind blue steps is to ensure synchronization (that is,
guarantee that all real comparisons on the levels above
have been resolved), and red steps are there to ensure
proper assignment of weights. For simplicity, we present
heights/weights as if there were exactly n (instead of√
n · (√n − 1)/2) comparisons between marked items,

and exactly n (instead of n−√n) unmarked items to be
routed. This assumption also applies to the following.

Steps 1 and 7 do not involve any comparisons, and
they do not affect weights. Comparisons from Step 2
start with weight w. The tree from Step 3 has height

25th Canadian Conference on Computational Geometry, 2013

184

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

log n, so its root, according to the weight rule gets
weight w/(2logn) = w/n. Dependencies introduced
in Step 4 between that root and roots of the routing
trees cause their weight to be w/2n2 (weight w/n di-
vided among n comparisons). Routing trees have height
log
√
n, so the comparisons at their bottom have weight

w/2n2.5 (w/2n2 divided by 2log
√
n, because, as the rout-

ing progresses, the routing trees get whittled down to
paths, and resolving a routing comparison activates at
most one new routing comparison. Step 6 is essentially
the same as Step 3, so the root of the second virtual
tree gets weight w/2n3.5. All initial comparisons in the
subsequent recursive calls (sorting of new marked items
and/or sorting in the base case) depend on this root
(Step 8), and they are given weight w/4n4.5 (much like
in Step 4). The height of the dependence network is
O(log n), and at any given moment the number of cur-
rently active comparisons does not exceed n.

From now on, comparisons are independent across
different subproblems. For subsequent subproblems, n
from the above discussion gets substituted by n̂, the size
of the subproblem. Since subproblem sizes may differ,
comparisons on the same level of the network (general
level, for the entire algorithm) are no longer guaranteed
to have same weights (weights of comparisons belonging
to the same subproblem are however equal).

The above discussion shows that, as advertised, we
don’t really need virtual comparisons in order to assign
weights to real comparisons, as these depend only on
n, the size of the subproblem. Therefore, the actual
algorithm only consists of steps 1, 2, 5, 7, and 9 and is
the following.

1. Randomly mark
√
n items

2. Sort marked items by comparing every pair in O(n)
comparisons, each of weight w.

3. When the last comparison finishes, activate com-
parisons for routing through the tree of marked
items, each of weight w/2n2.

4. Route items through the trees, following the weight
rule when a comparison gets resolved.

5. When the destination for the last item is deter-
mined, split items into boxes (no additional com-
parisons resolved here).

6. Assign weight w/4n4.5 to initial comparisons in new
subproblems.

7. Recurse into subproblems (simultaneously).

3.4 Analysis

Assume that initially all comparisons at the highest level
were given weight 1. Here, we also include virtual com-

parisons. Motivatad by Cole’s analysis [11], we get the
following (for details, refer to the full version [19]).

Lemma 1 O(f(n) + log n) rounds of resolving the
median-weight comparison suffice to resolve every com-
parison, where f(n) is the height of boxsort’s network.

We also have the following fact about boxsort.

Lemma 2 (Theorem 12.2 of [25]) There is a constant
b > 0 such that boxsort terminates in O(log n) parallel
steps with probability at least 1− exp(− logb n).

Originally, boxsort requires O(log n) parallel steps
to execute a single recursive call for a problem of size
n. We noted that the dependence network for a single
recursive call in our simulation has height O(log n) for
a problem of size n as well. This means that Lemma 2
applies here and proves that, with high probability, the
dependence network for the entire simulation has height
O(log n).

Combining that with Lemma 1 and the observation
that any level in the dependence network contains O(n)
comparisons, we get the following.

Theorem 3 With high probability, the presented al-
gorithm requires O(log n) calls to C, yielding an
O(n log n + log n · C(n)) time parametric search solu-
tion to problem B.

4 Conclusion

We have introduced a practical version of Cole’s op-
timization of the parametric search technique. Our
method results in a randomized algorithm whose run-
ning time matches that of using Cole’s technique, with
high probability, while being easily implementable. We
have implemented it and, based on experimentation per-
formed on some geometric problems (details in the full
paper [19]), showed that our approach is competitive
with the previous practical parametric search technique
of van Oostrum and Veltkamp [31], while having supe-
rior asymptotic performance guarantees.

References

[1] P. K. Agarwal and J. Matoušek. Ray shooting and
parametric search. SIAM Journal on Computing,
22(4):794–806, 1993.

[2] P. K. Agarwal and M. Sharir. Efficient algorithms
for geometric optimization. ACM Comput. Surv.,
30(4):412–458, 1998.

[3] P. K. Agarwal, M. Sharir, and S. Toledo. Appli-
cations of parametric searching in geometric opti-
mization. J. Algorithms, 17(3):292–318, 1994.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

185

25th Canadian Conference on Computational Geometry, 2013

[4] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting
in c log n parallel steps. Combinatorica, 3:1–19,
January 1983.

[5] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching
planar maps. Journal of Algorithms, 49(2):262–
283, 2003.

[6] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. Com-
put. Geometry Appl., 5:75–91, 1995.

[7] H. Brönnimann and B. Chazelle. Optimal slope
selection via cuttings. Computational Geometry:
Theory and Applications, 10(1):23–29, 1998.

[8] E. W. Chambers, E. Colin de Verdière, J. Erick-
son, S. Lazard, F. Lazarus, and S. Thite. Walking
your dog in the woods in polynomial time. In 24th
ACM Symp. on Computational Geometry, pages
101–109, 2008.

[9] T. M. Chan. Geometric applications of a random-
ized optimization technique. Discrete & Computa-
tional Geometry, 22(4):547–567, 1999.

[10] T. M. Chan. An optimal randomized algorithm
for maximum tukey depth. In J. I. Munro, editor,
SODA, pages 430–436. SIAM, 2004.

[11] R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms. J. ACM, 34(1):200–208,
1987.

[12] R. Cole. Parallel merge sort. SIAM J. Comput.,
17:770–785, August 1988.

[13] R. Cole, J. S. Salowe, W. L. Steiger, and E. Sze-
merédi. An optimal-time algorithm for slope selec-
tion. SIAM Journal on Computing, 18(4):792–810,
1989.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT
Press, 3rd edition, 2009.

[15] C. A. Duncan, M. T. Goodrich, and E. A. Ramos.
Efficient approximation and optimization algo-
rithms for computational metrology. In 8th ACM-
SIAM Symp. on Discrete algorithms (SODA),
pages 121–130, 1997.

[16] H. Fournier and A. Vigneron. A deterministic al-
gorithm for fitting a step function to a weighted
point-set. CoRR (arXiv ePrint), abs/1109.1152,
2011.

[17] M. Goodrich. Efficient piecewise-linear function ap-
proximation using the uniform metric. Discrete &
Computational Geometry, 14:445–462, 1995.

[18] M. T. Goodrich and S. R. Kosaraju. Sorting on
a parallel pointer machine with applications to set
expression evaluation. J. ACM, 43:331–361, March
1996.

[19] M. T. Goodrich and P. Pszona. Cole’s paramet-
ric search technique made practical. CoRR (arXiv
ePrint), abs/1306.3000, 2013.

[20] C. A. R. Hoare. Algorithm 64: Quicksort. Com-
mun. ACM, 4:321–, July 1961.

[21] M. J. Katz and M. Sharir. Optimal slope selec-
tion via expanders. Information Processing Letters,
47(3):115–122, 1993.

[22] A. Koike, S.-I. Nakano, T. Nishizeki, T. Tokuyama,
and S. Watanabe. Labeling points with rectangles
of various shapes. International Journal of Com-
putational Geometry and Applications, 12(6):511–
528, 2002.

[23] J. Matoušek. Randomized optimal algorithm for
slope selection. Information Processing Letters,
39(4):183–187, 1991.

[24] N. Megiddo. Applying parallel computation algo-
rithms in the design of serial algorithms. J. ACM,
30(4):852–865, 1983.

[25] R. Motwani and P. Raghavan. Randomized algo-
rithms. Cambridge University Press, New York,
NY, USA, 1995.

[26] R. Reischuk. Probabilistic parallel algorithms
for sorting and selection. SIAM J. Comput.,
14(2):396–409, 1985.

[27] A. Reiser. A linear selection algorithm for sets of el-
ements with weights. Inf. Process. Lett., 7(3):159–
162, 1978.

[28] J. S. Salowe. Parametric search. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Dis-
crete and Computational Geometry, Second Edi-
tion, pages 969–982. Chapman & Hall/CRC Press,
Inc., 2004.

[29] J. Schwerdt, M. H. M. Smid, and S. Schirra. Com-
puting the minimum diameter for moving points:
An exact implementation using parametric search.
In ACM Symp. on Computational Geometry, pages
466–468, 1997.

[30] S. Toledo. Extremal Polygon Containment Prob-
lems and Other Issues in Parametric Searching.
MS Thesis, Dept. Comput. Sci., Tel Aviv Univ.,
Tel Aviv, 1991.

[31] R. van Oostrum and R. C. Veltkamp. Parametric
search made practical. Computational Geometry:
Theory and Applications, 28(2-3):75–88, 2004.

25th Canadian Conference on Computational Geometry, 2013

186

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Polynomial Time Algorithms for Label Size Maximization on Rotating Maps

Yusuke Yokosuka∗ Keiko Imai†

Abstract

Map labeling is a problem of placing labels at corre-
sponding graphical features on a map. There are two
optimization problems: the label number maximization
problem and the label size maximization problem. In
general, both problems are NP-hard for static maps.
Recently, the widespread use of several applications,
such as personal mapping systems, has increased the
importance of dynamic maps and the label number max-
imization problem for dynamic cases has been studied.
In this paper, we consider the label size maximization
problem for points on rotating maps. Our model is as
follows. For each label, a point is chosen inside the la-
bel or on its boundary as an anchor point. Each label
is placed such that the anchor point coincides with the
corresponding point on the map. Furthermore, while
the map fully rotates from 0 to 2π, the labels are placed
horizontally according to the angle of the map. Our
problem consists of finding the maximum scale factor
for the labels such that the labels do not intersect, and
deciding the place of the anchor points. We propose an
O(n log n)-time and O(n)-space algorithm for the case
where each anchor point is inside the label. Moreover,
if the labels are of unit-height (or unit-width) and the
anchor points are on the boundary, we also present an
O(n log n)-time and O(n)-space algorithm.

1 Introduction

Map labeling is the problem of placing text or symbol la-
bels corresponding to graphical features on input maps
such that the labels are pairwise disjoint. This problem
is important in several areas, such as geographic infor-
mation system (GIS), cartography, and graph drawing.
On maps, labels of regions, rivers, stations, etc., are
placed in appropriate positions so that the correspond-
ing features in the map can be understood. In map
labeling, points, polylines, and polygons are considered
as graphical features. In this paper, we consider map
labeling for points.

A lot of map labeling research has been presented [15].
There are two optimization problems in map labeling.

∗Department of Information and System Engineering, Grad-
uate School of Science and Engineering, Chuo University,
yoyu@imai-lab2.ise.chuo-u.ac.jp

†Department of Information and System Engineering, Chuo
University, imai@ise.chuo-u.ac.jp

L A

L C

L D

L B

L E

L A
L C

L D
L B

L E
L A

L C

L D

L B

L E

L A
L C

L D
L B

L E

Figure 1: Example of label size maximization problem
for rotating maps.

One is the label number maximization problem of finding
the placement of a maximum cardinality subset of labels
with fixed size. The other is the label size maximization
problem of placing all labels such that the sizes of the
labels are maximized under a global scale factor. Most
research has considered static maps.

Recently, the importance of dynamic maps has in-
creased due to several applications such as personal
mapping systems. There are a lot of dynamic cases, for
example, panning, rotating, and zooming maps, trans-
lating points, moving points with different velocity. In
this context, research on map labeling for dynamic cases
has been presented [2, 3, 9, 10]. Mainly, the dynamic
label number maximization problem was investigated in
their research. In contrast to this, it is a natural direc-
tion to consider label size maximization problems for
dynamic maps.

In this paper, we consider rotating maps. Since com-
mercial GIS applications (e.g., navigation) often rotate
maps dynamically according to the direction in which
the user is facing, we assume that labels are placed hori-
zontally according to the angle of the map. We consider
the problem of maximizing the label size such that the
labels are pairwise disjoint over all rotations θ ∈ [0, 2π)
(Figure 1).

1.1 Problem Definition and Our Results

Let M be a map that includes a set of points P =
{p1, . . . , pn} in the plane with a set of labels L =
{ℓ1, . . . , ℓn}. In this paper, the labels are considered to
be open axis-aligned rectangles of different sizes. Each
initial size of ℓi ∈ L is expressed by its width wi > 0
and height hi > 0. When the scale factor is σ, the label
size of ℓi is wiσ × hiσ.

Each label is placed such that a point called an an-
chor point coincides with the corresponding point pi

(Figure 2 (a)). The anchor point is inside the label ℓi

or on its boundary. When the label ℓi is fixed in place,

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

187

25th Canadian Conference on Computational Geometry, 2013

p

ℓ
anchor point

p

vbrvbl

vtl vtrtp

bplp rp

(a) (b) (c)

Figure 2: Definitions.

Table 1: Our results (running time). All solvable prob-
lems can be computed in O(n) space.

Rectangle shape MSR MSBR

Unit squares O(n log n)

(Theorem 4)

O(n log n)

(Corollary 5)
Squares -

Unit-height
rectangles

O(n log n)

(Theorem 6)

O(n log n)

(Corollary 9)
Rectangles -

we say that it is anchored at pi. While M fully rotates
from 0 to 2π with the anchor points touching the corre-
sponding points, the labels are placed horizontally, and
should not intersect each other. Our problem is finding
the maximum scale factor σ∗ such that the labels do not
intersect, and deciding the place of the anchor points.
In ordinary map labeling, each label is placed such that
the anchor point is on the boundary of its label. How-
ever, we also consider the case that the point is inside
the label. We call the former problem the maximization
problem of the size of labels with boundary anchor points
on rotating maps (MSBR), and the latter problem the
maximization problem of the size of labels on rotating
maps (MSR). This formulation on dynamic maps is a
natural extension of the label size maximization prob-
lem on static maps.

Our results are summarized in Table 1. We address
several rectangular label shapes (e.g., unit squares and
unit-height rectangles). Although static label size max-
imization is NP-hard [8], MSR and MSBR can be solved
in polynomial time, which is surprising.

In the following, we treat the clockwise rotation of M
as the counterclockwise rotation of labels around their
anchor points (Figure 2 (b)), as did Gemsa et al. [9].
Both rotations are equivalent and yield exactly the same
results.

1.2 Related Work

In map labeling, two models have been considered w.r.t.
the number of label candidates for each point: the fixed-
position model [8] and the slider model [14]. In both
models, each label is placed such that the corresponding
point is on the boundary of the label. The fixed-position
model has a finite number of label candidates (e.g., the

2-position and 4-position model). The label candidates
of the slider model are the specified sides of the labels
(e.g., in the 2-slider model, two sides of the label serve
as a set of label candidates).

It is known that the static label size maximiza-
tion problems, except for the 1-position and 2-position
model, are APX-hard, even for unit square labels [8].
A lot of constant-factor approximation algorithms have
been proposed for several axis-parallel rectangles [8, 11].
Doddi et al. [6] dealt with unit square labels with dif-
ferent orientations, and Zhu and Qin [16] considered
the case that all the square labels have the same ori-
entation. Furthermore, the static label number maxi-
mization problems in several models are known to be
NP-hard (e.g., [8, 14]). Therefore, many approximation
algorithms have already been presented (e.g., [1, 14]).

In dynamic map labeling, Been et al. [2] proposed
consistency desiderata for dynamic map labeling, which
are that labels should not pop and jump during pan-
ning and zooming. Been et al. [3] treated the problems
of maximizing the lengths of active ranges, where the ac-
tive range of a label ℓ is a contiguous range of map scales
at which ℓ is displayed. Moreover, the problem satisfies
that the labels are pairwise disjoint at any scale and
satisfy the consistency desiderata. They proved that
the problems for points in the plane are NP-hard, and
proposed several exact and approximation algorithms
for points in 1D and 2D. Gemsa et al. [10] extended
the above problems to the slider model, and also dealt
with selecting the slider positions. Moreover, Gemsa
et al. [9] considered similar dynamic map labeling for
rotating maps. They also proved that the problem is
NP-hard, and proposed approximation algorithms.

In the circular labeling problem [13], the correspond-
ing point in the plane is on the boundary of the circular
label. However, in MSR and MSBR, during the rota-
tion, the point is inside the label or on the boundary,
and it may not be on the circle obtained by rotation of
the label.

2 Properties

In this section, first, we investigate locations of anchor
points such that the scale factor is maximized. Next, for
the locations, we calculate the maximum scale factor.

Let ℓp be a label anchored at a point p with the initial
width wp and the initial height hp. Further, the top-
left, top-right, bottom-left, and bottom-right point of ℓ
rotated by angle 0 are denoted by vtl, vtr, vbl, and vbr,
respectively. Draw the segments passing through p in
parallel with the edges of ℓp. We assume that p divides
the horizontal segment and vertical segment internally
in the ratio lp : rp (where rp = 1− lp) and tp : bp (where
bp = 1− tp), respectively (Figure 2 (c)). We define each
parameter for a point p′ in the same way. Thus, ℓp′ is

25th Canadian Conference on Computational Geometry, 2013

188

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

p p′vbr

v′tl
vbl v′bl

v′br

vtl

vtr v′tr

p p′

vbr

v′tl

vbl

v′bl

v′br

vtl

vtr
v′tr

(a) vbr = v′
tl (b) vbl = v′

tr

p p′
vbr

v′tl

vbl v′bl

v′br

vtl

vtr v′tr

p p′

vbr

v′tl

vbl v′bl
v′br

vtl

vtr

v′tr

(c) vtl = v′
br (d) vtr = v′

bl

Figure 3: Four possible cases that the corner points of
two labels ℓp and ℓp′ intersect.

the label of p′. wp′ and hp′ are the initial width and
initial height of ℓp′ , respectively. Moreover, the above
parameters of ℓp′ are defined as v′

tl, v′
tr, v′

bl, v′
br, lp′ , rp′ ,

tp′ and bp′ . Finally, let d be the distance between p and
p′, and σpp′ be the maximum scale factor for p and p′.

Lemma 1 Let ℓp and ℓp′ be two labels, which are an-
chored at points p and p′, respectively. ℓp and ℓp′ can be
placed with the maximum scale factor σpp′ if and only
if the anchor points of ℓp and ℓp′ satisfy (1 − 2lp)wp =
(1 − 2lp′)wp′ and (1 − 2tp)hp = (1 − 2tp′)hp′ .

Proof. Without loss of generality, we assume that p
and p′ lie on a horizontal line. Let σ be the scale factor
for p and p′. Note that ℓp and ℓp′ touch at their corner
points. Otherwise, if ℓp and ℓp′ touch on their boundary
segments, they overlap by slight rotation. Moreover,
ℓp and ℓp′ are parallel. Therefore, there are only the
following four possible cases: vbr = v′

tl, vbl = v′
tr, vtl =

v′
br, and vtr = v′

bl (Figure 3).
We consider the case that vtl = v′

br (Figure 4). Since
ℓp and ℓp′ are parallel, we have (lpwpσ+(1−lp′)wp′σ)2+
(tphpσ + (1 − tp′)hp′σ)2 ≤ d2. Therefore,

σ ≤ d/
√

(lpwp+(1−lp′)wp′)2+(tphp+(1−tp′)hp′)2. (1)

In the same way, if vtr = v′
bl,

σ ≤ d/
√

((1−lp)wp+lp′wp′)2+(tphp+(1−tp′)hp′)2, (2)

if vbr = v′
tl,

σ ≤ d/
√

((1−lp)wp+lp′wp′)2+((1−tp)hp+tp′hp′)2, (3)

and if vbl = v′
tr,

σ ≤ d/
√

(lpwp+(1−lp′)wp′)2+((1−tp)hp+tp′hp′)2. (4)

First, we focus on the inequalities (1) and (2) (or, (3)
and (4)). As the denominators of the right-hand sides

p p′
v′br

vtl

lpwpσ + (1− lp′)wp′σ

tphpσ + (1− tp′)hp′σ

Figure 4: The case that vtl = v′
br.

of (1) and (2) become smaller, the maximum possible
σ becomes greater. (tphp + (1 − tp′)hp′)2 is appeared
in both right-hand sides of (1) and (2). The smaller
(lpwp +(1− lp′)wp′)2 becomes, the greater ((1− lp)wp +
lp′wp′)2 becomes. Therefore, if (lpwp + (1 − lp′)wp′)2 =
((1 − lp)wp + lp′wp′)2, σ is maximized among values
satisfying (1) and (2). This condition is equivalent to
the equation (1 − 2lp)wp = (1 − 2lp′)wp′ . Similarly, in
case that the inequalities (1) and (4) (or, (2) and (3)),
if (1 − 2tp)hp = (1 − 2tp′)hp′ , σ is maximized among
values satisfying (1) and (4). The above two equations
are satisfied simultaneously. Therefore, if (1− 2lp)wp =
(1 − 2lp′)wp′ and (1 − 2tp)hp = (1 − 2tp′)hp′ , σ is the
maximum scale factor σpp′ .

The converse is also true. □

From Lemma 1, we can obtain the following lemma.

Lemma 2 For given points p and p′ with labels ℓp and
ℓp′ , if the anchor point of each label is the intersection
of two diagonals of the label, ℓp and ℓp′ can be placed
with the maximum scale factor σpp′ .

Proof. Let p and p′ be two points. In the case that the
anchor points lie in the label centers, lp = tp = lp′ =
tp′ = 1/2. Therefore, (1−2×1/2)wp = (1−2×1/2)wp′ =
0 and (1 − 2 × 1/2)hp = (1 − 2 × 1/2)hp′ = 0. The
conditions in Lemma 1 are satisfied, and hence, the scale
factor σpp′ is maximized. □

From Lemma 2, the maximum scale factor σpp′ of

MSR for p and p′ is 2d/
√

(wp + wp′)2 + (hp + hp′)2.
Therefore, we can solve MSR for more than two points
by computing the maximum scale factor σij for all point
pairs pi and pj , and choosing the minimum among
those. This naive algorithm runs in Θ(n2) time. More-
over, if all heights (or widths) of labels are equal to each
other, we obtain the following proposition.

Proposition 3 MSBR for unit-height (or unit-width)
rectangular labels can be computed in Θ(n2) time.

Proof. The naive algorithm of MSR gives the maxi-
mum scale factor σ∗ for the unit-height rectangular la-
bels. We consider points obtained by translating the
anchor points placed at the center of rectangles in MSR
to the top or bottom (or, left or right) boundary. Those
points satisfy the equations (1)–(4) in Lemma 1. There-
fore, the points are the anchor points in MSBR and σ∗

is also the maximum scale factor in MSBR. □

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

189

25th Canadian Conference on Computational Geometry, 2013

In the following sections, we will improve the time
complexity of these algorithms for MSR and MSBR to
O(n log n).

3 Square Labels

When the labels of all points are squares, the prob-
lem has a strong connection to the weighted closest pair
problem [7]: The input is a set of disks. Each disk has a
point in P as its center, a weight W , and a radius Wσ,
where σ is a scale factor. The goal is to find the max-
imum scale factor σ∗ such that the disks are pairwise
disjoint.

Theorem 4 MSR for square labels can be computed in
O(n log n) time and O(n) space.

Proof. Let p and p′ be two points that have square
labels, and lie on a horizontal line. Let σpp′ be the
maximum scale factor for p and p′. Since the labels are
square, we have wp = hp and wp′ = hp′ . When the
labels are anchored at p and p′, and their anchor points
are their centers by Lemma 2, the distance between p

and p′ is
√

2
2 (w + w′)σpp′ . Then, σpp′ is determined by

the angles π/4, 3π/4, 5π/4, and 7π/4. We consider the
disks drawn by fully rotating the square labels around
the points p and p′. The maximum scale factor σpp′ is
obtained by maximizing the size of the disks such that
they are pairwise disjoint.

Therefore, MSR for square labels is considered as the

weighted closest pair problem with weight W =
√

2
2 wp

for each point p. For the weighted closest pair problem,
Formann [7] proposed an O(n log n)-time and O(n)-
space algorithm based on a plane sweep. Therefore,
this completes the proof. □

Corollary 5 MSBR for unit square labels can be com-
puted in O(n log n) time and O(n) space.

4 Rectangular Labels

For the rectangular labels, the algorithm of square la-
bels does not work directly because the disks obtained
by sweeping the rectangular labels around their anchor
points can intersect when the scale factor is maximized.
However, Formann’s idea [7] used in weighted closest
pair problem can be modified to MSR and MSBR for
rectangular labels. Our modified algorithm overesti-
mates the maximum scale factor, and then fixes the
maximum value using the intersection graph of disks
drawn by fully rotation of the labels. In the algorithm,
we use the Delaunay triangulation [5, 12] of P , DT(P),
which is a triangulation with the empty circle property :
for any triangle T in DT(P), the circumcircle of T con-
tains no points of P in its interior. We call a triangle of
DT(P) a Delaunay triangle. When points p and q are

vertices of a Delaunay triangle in DT(P), q is called a
neighbor of p.

Our algorithm can be described as Algorithm 1.

Algorithm 1 Algorithm for MSR.

1: Compute DT(P) for P .
2: For each point p, calculate the maximum scale fac-

tor σp with all the neighbors in DT(P). Take the
minimum scale factor σpre = minp∈P σp of all the
scale factors.

3: For each point p ∈ P , draw a closed disk with cen-

ter p and radius
σpre

2

√
w2

p + h2
p. Enumerate all in-

tersections of disks using the standard intersection
detecting algorithm of Bentley and Ottmann [4].

4: Calculate the maximum scale factor for all intersec-
tions of disks, and take the minimum value among
them as σ∗.

The following theorem shows the correctness of Algo-
rithm 1 and its complexity. In the following, let Dp be
the disk centered at p in Step 3 of Algorithm 1, and let

Rp be its radius
σpre

2

√
w2

p + h2
p.

Theorem 6 MSR can be computed in O(n log n) time
and O(n) space.

In order to prove Theorem 6, we present some lem-
mas.

Lemma 7 Each disk obtained after Step 3 of Algo-
rithm 1 contains no points in P other than its center
point.

Proof. For each p ∈ P , let Dp be the disk with center

p and radius Rp =
σpre

2

√
w2

p + h2
p. From the definition

of σpre, the labels of p and q do not intersect during
rotation for a neighbor q. Therefore, Dp cannot con-
tain neighbors of p. In the Delaunay triangulation, the
nearest point q of p is a neighbor of p in DT(P). There-
fore, the radius of Dp is less than |pq|. From this, Dp

cannot contain points that are not the neighbors of p in
DT (P). □

Lemma 8 The number of intersecting pairs in the set
of disks obtained at Step 3 of Algorithm 1 is at most
3n − 6.

Proof. First, we draw straight line segments between
the points whose closed disks intersect at Step 3 of Al-
gorithm 1. We will show that the straight line graph G
having the line segments as edges is planar. We consider
the case that two closed disks Dp and Dp′ intersect. In
G, p and p′ are connected by a straight line edge. If
there is no other disk Dq centered at a point q ̸= p, p′

25th Canadian Conference on Computational Geometry, 2013

190

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

p = (0, 0) p′
s

Dp

Dp′

q

p p′
s

Dp Dp′

q

˜Rpq

˜Cpq

Figure 5: Assumption of
Lemma 8.

Figure 6: Case 1.

which intersects the line segment pp′, no two line seg-
ments in G intersect without endpoints. This shows
that the graph G is planar.

Without loss of generality, we assume that p and p′

lie on a horizontal line and the x-coordinate of p′ is
greater than that of p (Figure 5). We denote the x-
and y-coordinates of p and p′ by xp, yp, xp′ , and yp′ ,
respectively. We denote the x- and y-coordinates of the
other points in the same way. Let s be the intersection
of the boundary of Dp and pp′. In the following, we
assume 0 = xp ≤ xq ≤ xs and 0 = yp = yp′ ≤ yq. q is in
the shaded area in Figure 5. When xq < 0 or xp′ < xq,
Dp cannot intersect pp′, by Lemma 7. Moreover, when
yq < 0 = yp = yp′ or xs < xq ≤ xp′ , these cases can be
proved in the same way.

We consider separately the cases that q is or is not a
neighbor of p in DT(P).
Case 1: q is a neighbor of p in DT(P).

We denote
σpre

2

√
(wp + wq)2 + (hp + hq)2 by R̃pq. In

this case, by the definition of σpre, we have |pq| ≥ R̃pq.

Moreover, since wq, hq > 0, R̃pq is greater than Rp. Let

C̃pq be a circle centered at p with radius R̃pq. C̃pq is
shown as a dotted circle in Figure 6. Note that the
vertical distance between q and pp′ is greater than or
equal to the length of a vertical straight segment from
s to C̃pq. Then, we consider the case that xq = xs.

Because |pq| ≥ R̃pq and |ps| = Rp =
σpre

2

√
w2

p + h2
p, we

have that

|sq|2 = |pq|2 − |ps|2

≥
(σpre

2

)2

((wp + wq)
2 + (hp + hq)

2)

−
(σpre

2

)2

(w2
p + h2

p)

=
(σpre

2

)2

(w2
q + h2

q + 2wpwq + 2hphq).

Since Rq =
σpre

2

√
w2

q + h2
q and wp, hp, wq, hq > 0, we

have that |sq|2 − R2
q ≥

(σpre

2

)2
(2wpwq + 2hphq) > 0.

Therefore, Dq cannot intersect pp′.
Case 2: q is not a neighbor of p in DT(P).

In this case, we can show that there is a Delaunay tri-
angle with p whose circumcircle contains pp′ ∩Dp in the
following way. If p′ is a neighbor of p, the circumcircle

p p′s

Dp
Dp′

t

v
q

r

D△

v′

p p′
s

Dp

Dp′

t

v

q

r

v′

u u′

D△

D△′

Figure 7: Case 2-1. Figure 8: Case 2-2a.

of a Delaunay triangle that has the edge pp′ completely
contains pp′ ∩ Dp. If p′ is not a neighbor of p, there is
a Delaunay triangle △pvv′ that has an edge that inter-
sects the inside of pp′. Since v, v′ ̸∈ Dp by Lemma 7,
the circumcircle of △pvv′ completely contains pp′ ∩Dp.
Therefore, we consider such a Delaunay triangle △pvv′.
In this case, v′ might be p′. Let v and v′ be points such
that yv > 0 and yv′ ≤ 0, respectively. Further, let t be
the intersection point of the circumcircle of △pvv′ and
pp′. Since the circumcircle contains pp′ ∩ Dp regardless
of whether p′ is a neighbor of p, we have xq ≤ xs < xt.
In the case that xv = xq, since yv < yq and by Lemma 7,
Dq cannot intersect pp′. Therefore, we consider two
cases: xv < xq ≤ xs and xq < xv < xs. In the follow-
ing, we denote the closed disk whose boundary is the
circumcircle of △pvv′ by D△.

Case 2-1: xv < xq ≤ xs.

Let t be the intersection of pp′ and the boundary of
D△, and r be the intersection of pp′ and a perpendicular
from q to pp′ (Figure 7). Since D△ completely contains
pp′ ∩ Dp, xr ≤ xs < xt. Because ∠prq = π/2 and
xt − xs > 0, ∠ptq < π/2. Moreover, since q ̸∈ D△ by
the empty circle property, ∠pvq +∠ptq ≥ π. Therefore,
we have ∠pvq ≥ π − ∠ptq > π/2. Because r ∈ Dp and
v ̸∈ Dp, |pr| < |pv| and ∠pvr ≤ ∠prv. Then, we have
∠qvr = ∠pvq −∠pvr > π/2−∠prv = ∠qrv. Therefore,
we have |qv| < |qr|. Since Rq < |qv| by Lemma 7, Dq

cannot contain r. Therefore, Dq cannot intersect pp′.
Case 2-2: xq < xv < xs.

First, we show that there is a Delaunay triangle
△puu′ such that xu ≤ xq ≤ xu′ . Since q is not a
neighbor of p in DT(P), there is a Delaunay triangle
△pzz′ that has an edge zz′ that intersects pq at an
interior point of pq. Moreover, v is a vertex of a Delau-
nay triangle that has p as its vertex. Since p is in the
polygon consisting of Delaunay triangles that have p as
their vertex, when we visit the Delaunay triangles clock-
wise from △pzz′ to △pvv′, there is a Delaunay triangle
△puu′ that satisfies the condition. In the following, we
denote the closed disk whose boundary is the circum-
circle of △puu′ by D△′ , and the boundary of D△′ by
C△′ . We consider the cases that r ∈ D△′ \ C△′ and
r ̸∈ D△′ \ C△′ .

Case 2-2a: r ∈ D△′ \ C△′ .

Let t be the intersection of C△′ and the inside of pp′

(Figure 8). Since r ∈ D△′ \ C△′ , we have xr < xt.
Therefore, we can use the same proof as for Case 2-1 by

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

191

25th Canadian Conference on Computational Geometry, 2013

p p′
s

Dp

Dp′

v

q

r

v′

u
u′

D△

D△′

Figure 9: Case 2-2b.

replacing u with v. It is shown that Dq cannot intersect
pp′.
Case 2-2b: r ̸∈ D△′ \ C△′ .

In this case, we consider the quadrilateral uqu′r (Fig-
ure 9). By Lemma 7, u is not contained inside Dq.
Therefore, if Dq intersects pp′, |qr| ≤ Rq < |qu| or
|qr| ≤ Rq < |qu′|. First, we consider the case |qr| ≤
Rq < |qu|. Since ∠qur < ∠qru in △qur, we have
∠qur < π/2. Since q and r are outside D△′ , we have
∠qu′r + ∠qur ≥ π. Therefore, we have ∠qu′r > π/2
and ∠qru′ < π/2. This means that |qu′| < |qr| ≤ Rq

and u′ is inside Dq. This contradicts Lemma 7. The
case |qr| ≤ Rq < |qu′| can be proven in the same way.
Therefore, Dq cannot intersect pp′. □

Proof of Theorem 6. First, we show the correctness.
From the definition of σpre in Step 2 of Algorithm 1,
two labels whose corresponding points are neighbors in
DT(P) do not intersect. In Step 4, the disks can be
drawn by fully rotating the labels from 0 to 2π. Each
label has the anchor point at its center, and is scaled by
σpre. Moreover, since σpre ≥ σ∗, we can obtain σ∗ by
checking intersecting disks.

Next, we show the complexity. Step 1 can be com-
puted in O(n log n) time and O(n) space [5, 12]. Step 2
calculates the maximum scale factor between neighbors.
Since the number of edges in Delaunay triangulation
is O(n), Step 2 can be computed in O(n) time and
O(1) space. In Step 3, the algorithm of Bentley and
Ottmann [4] can be computed in O((n + K) log n) time
and O(n+K) space where K is the number of intersect-
ing pairs. Moreover, Step 4 can be computed in O(K)
time and O(1) space. Since K ≤ 3n − 6 by Lemma 8,
this completes the proof. □

Corollary 9 MSBR for unit-height (or unit-width)
rectangular labels can be computed in O(n log n) time
and O(n) space.

From Theorem 4, MSR and MSBR are generalizations
of the closest pair problem. The time complexity of this
problem is lower-bounded by Ω(n log n) [12], which may
also apply to our problems.

5 Conclusion

We considered the label size maximization problem for
rotating maps. In general, label size maximization

problems for static maps are APX-hard. However, we
showed that the problem for rotating maps can be solved
in polynomial time, and we presented efficient algo-
rithms for finding the maximum scale factor.

Acknowledgments.

The work of the second author was supported in part
by Grant-in-Aid for Scientific Research of Japan Society
for the Promotion of Science.

References

[1] P. K. Agarwal, M. J. van Kreveld, and S. Suri. Label
placement by maximum independent set in rectangles.
Comput. Geom., 11(3-4):209–218, 1998.

[2] K. Been, E. Daiches, and C.-K. Yap. Dynamic map
labeling. IEEE Trans. Vis. Comput. Graph., 12(5):773–
780, 2006.

[3] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wolff. Op-
timizing active ranges for consistent dynamic map la-
beling. Comput. Geom., 43(3):312–328, 2010.

[4] J. L. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Trans.
Computers, 28(9):643–647, 1979.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, 3rd edition, 2008.

[6] S. Doddi, M. V. Marathe, A. Mirzaian, B. M. E. Moret,
and B. Zhu. Map labeling and its generalizations. In
SODA, pages 148–157, 1997.

[7] M. Formann. Weighted closest pairs. In STACS, pages
270–281, 1993.

[8] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. In ACM Symposium
on Computational Geometry, pages 281–288, 1991.

[9] A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent
labeling of rotating maps. In WADS, pages 451–462,
2011.

[10] A. Gemsa, M. Nöllenburg, and I. Rutter. Sliding labels
for dynamic point labeling. In CCCG, pages 205–210,
2011.

[11] J.-W. Jung and K.-Y. Chwa. Labeling points with given
rectangles. Inf. Process. Lett., 89(3):115–121, 2004.

[12] F. P. Preparata and M. I. Shamos. Computational Ge-
ometry - An Introduction. Springer, 1985.

[13] T. Strijk and A. Wolff. Labeling points with circles.
Int. J. Comput. Geometry Appl., 11(2):181–195, 2001.

[14] M. J. van Kreveld, T. Strijk, and A. Wolff. Point label-
ing with sliding labels. Comput. Geom., 13(1):21–47,
1999.

[15] A. Wolff and T. Strijk. The map-labeling bibliography,
2009.

[16] B. Zhu and Z. Qin. New approximation algorithms
for map labeling with sliding labels. J. Comb. Optim.,
6(1):99–110, 2002.

25th Canadian Conference on Computational Geometry, 2013

192

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Drawing some 4-regular planar graphs with integer edge lengths

Timothy Sun∗

Abstract

A classic result of Fáry states that every planar graph
can be drawn in the plane without crossings using only
straight line segments. Harborth et al. conjecture that
every planar graph has such a drawing where every edge
length is integral. Biedl proves that every planar graph
of maximum degree 4 that is not 4-regular has such
a straight-line embedding, but the techniques are in-
sufficient for 4-regular graphs. We further develop the
rigidity-theoretic methods of the author and examine an
incomplete construction of Kemnitz and Harborth to ex-
hibit integral drawings of families of 4-regular graphs.

1 Introduction

All graphs in this paper are simple and finite. Let
G = (V,E) be a planar graph. A Fary embedding
φ : V → R2 of a planar graph is an embedding such that
the straight-line drawing induced by φ has no crossing
edges. Fáry [3] proved that all planar graphs have such
an embedding. A natural extension of Fáry’s theorem is
to require that every edge has integral length, but it is
not known if every planar graph has such an embedding,
which we call an integral Fary embedding.

Conjecture 1 (Harborth et al. [7]) All planar
graphs have an integral Fary embedding.

Analogously, we call a Fary embedding with ratio-
nal edge lengths a rational Fary embedding. For the
remainder of the paper, we consider only rational Fary
embeddings, since an appropriate scaling yields an in-
tegral one.

Kemnitz and Harborth [8] show that every planar 3-
tree has a rational Fary embedding. However, their so-
lution for the analogous operation for 4-valent vertices
does not always work. Geelen et al. [4] use a technical
theorem of Berry [1] to prove Conjecture 1 for cubic pla-
nar graphs. Biedl [2] notes that their proof extends to
even more graphs. One family of interest are the almost
4-regular graphs, namely the connected graphs of max-
imum degree 4 that are not 4-regular. These results
actually yield rational Fary embeddings with rational
coordinates, and we call such embeddings fully-rational.

∗Department of Computer Science, Columbia University,
ts2578@columbia.edu

Biedl strongly conjectures that all 4-regular graphs
have rational Fary embeddings. The aforementioned
methods all rely on inductively adding vertices of degree
at most 3 into a rational Fary embedding, but unfortu-
nately, there are no known general methods for adding
vertices of degree 4. It is even unknown whether or not
there is a point in the interior of a unit square at rational
length from each of the four vertices [6].

A previous paper by the author [11] details a con-
struction of rational Fary embeddings of graphs using
elementary results from rigidity theory. We use these
rigidity-theoretic techniques for drawing planar graphs
with small edge cuts and synthesize the aforementioned
results to prove the existence of rational Fary embed-
dings for two families of 4-regular planar graphs, namely
those that are not 4-edge-connected and those with a di-
amond subgraph.

2 Berry’s Theorem and 3-Eliminable Graphs

Perhaps the most general technique known for con-
structing rational Fary embeddings is the following re-
sult of Berry [1].

Theorem 1 (Berry [1]) Let A, B, and C be points in
the plane such that AB, (BC)2, and (AC)2 are rational.
Then the set of points P at rational distance with all
three points is dense in the plane.

Geelen et al. [4] show that this leads to an inductive
method for finding rational Fary embeddings of a cer-
tain family of graphs. If G is a graph on n vertices, a se-
quence of those vertices v1, v2, . . . , vn is a 3-elimination
order [2] if

1. G is the graph on one vertex, or

2. vn has degree at most 2 and v1, . . . , vn−1 is a 3-
elimination order for G− vn, or

3. vn has degree 3 and v1, . . . , vn−1 is a 3-elimination
order for some graph (G − vn) ∪ uw, where u and
w are two of the neighbors of vn.

A graph is said to be 3-eliminable if it is has a 3-
elimination order. For any two maps p, p′ : V → R2,
let d(p, p′) be the Euclidean distance between p and p′,
interpreted as points in R2|V |. We say that a Fary em-
bedding φ can be approximated by a type of Fary em-
bedding (e.g. rational Fary embedding) if for all ε > 0,

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

193

25th Canadian Conference on Computational Geometry, 2013

there exists a Fary embedding φ′ of that type such that
d(φ, φ′) < ε. Geelen et al. essentially prove the follow-
ing:

Theorem 2 (Geelen et al. [4], Biedl [2]) Any
Fary embedding φ of a 3-eliminable graph can be
approximated by a fully-rational Fary embedding.

We do not have a non-inductive characterization of 3-
eliminable graphs, but some partial results are known.
A graph G = (V,E) is called (k, l)-sparse if for every
subset of vertices V ′ of size at least k, the induced sub-
graph of G on V ′ has at most k|V ′| − l edges.

Theorem 3 (Biedl [2]) Every (2, 1)-sparse graph is
3-eliminable, and hence any Fary embedding of a (2, 1)-
sparse planar graph can be approximated by a fully-
rational Fary embedding.

The family of (2, 1)-sparse graphs contains many
other interesting classes of graphs, some of which can
be found in [2]. Our interest lies mostly in the following
corollary, as it is used in our constructions of rational
Fary embeddings for both families of 4-regular planar
graphs.

Corollary 4 (Biedl [2]) Any Fary embedding of an
almost 4-regular planar graph can be approximated by
a fully-rational Fary embedding.

3 Rigidity Theory and Graphs With Small Edge Cuts

A framework is a pair (G, p) where G is equipped with
a configuration p : V (G) → Rd which sends vertices
to points in d-dimensional Euclidean space. A generic
configuration is one where its |V |d coordinates are inde-
pendent over the rational numbers, and a generic frame-
work is one with a generic configuration. A framework
is flexible if there is a continuous motion of the vertices
preserving edge lengths that does not extend to a Eu-
clidean motion of Rd, and it is said to be rigid otherwise.

The rigidity of a framework can be tested by examin-
ing its rigidity matrix. Let G be a graph on n vertices
and m edges, and fix an ordering of the edges e1, . . . , em.
Define fG : Rnd → Rm to be the function that takes
a configuration p to a vector (||p(e1)||2, . . . , ||p(em)||2)
consisting of the squares of the edge lengths. The rigid-
ity matrix of (G, p) is defined to be 1

2dfG(p), where d is
the Jacobian, and its dimensions are m×nd. Then, the
kernel of the rigidity matrix corresponds to so-called
“infinitesimal motions” of the framework. A regular
point is a configuration that maximizes the rank of the
rigidity matrix over all possible configurations. It is easy
to see that generic configurations are all regular points.
We say that a Fary embedding is regular if it is a regular
point.

An edge is independent if the corresponding row in the
rigidity matrix is linearly independent from the other
rows. Otherwise, it is said to be redundant, since delet-
ing it does not change the space of infinitesimal motions.
For d > 2, it is a long-standing open problem to find a
combinatorial characterization of graphs with all inde-
pendent edges. However, a complete characterization is
known in two dimensions.

Theorem 5 (e.g. Graver et al. [5]) A generic
framework of a graph in R2 has all independent edges
if and only if it is (2, 3)-sparse.

A framework is minimally rigid if it is rigid and delet-
ing any edge makes it flexible. Perhaps the most well-
known restatement of this result is known as Laman’s
theorem.

Corollary 6 (Laman [9]) A generic framework of a
graph G = (V,E) is minimally rigid in R2 if and only
if it is (2, 3)-sparse and has 2|V | − 3 edges.

One consequence of this result is that all planar (2, 3)-
sparse graphs have rational Fary embeddings, as proved
by the author in [11], but we are more concerned with
how rigidity theory allows us to draw graphs with small
edge cuts. An edge cut of a connected graph G = (V,E)
is a subset of E whose deletion disconnects the graph.
A minimal edge cut has no edge cuts as proper sub-
sets. For example, consider a Fary embedding of a pla-
nar graph with a bridge uv that splits the graph into
subgraphs G1 and G2. Deleting uv yields a new flex,
namely the one that allows us to translate G1 or G2 in
a direction parallel to uv, and we move along this flex
until the distance between uv is rational and replace the
edge. Such a technique can be generalized to cuts of up
to three edges, using the main trick from [11].

Lemma 7 (Sun [11]) Let φ be a regular Fary embed-
ding of G, and let uv be an independent edge. Then,
φ can be approximated by a regular Fary embedding φ′

such that ||φ′(u)− φ′(v)|| is rational, and all other edge
lengths remain the same.

Theorem 8 Let G = (V,E) be a graph with a mini-
mal edge cut {e1, e2, e3} which separates G into G1 and
G2. Furthermore, suppose that e1, e2, and e3 are not
all incident with the same vertex. Then, each ei is in-
dependent in a generic framework.

Proof. Assume without loss of generality that G1 =
(V1, E1) and G2 = (V2, E2) are minimally rigid graphs.
If G is also minimally rigid, then each of the edges in
the cut must be independent. Furthermore, assume that
V1 and V2 are just the vertices incident with the ei’s, in
which case G1 and G2 are one of the complete graphs K2

or K3. We can make this assumption because any flex

25th Canadian Conference on Computational Geometry, 2013

194

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

on G induces a rigid motion on G1 and G2, so replac-
ing each graph with K2 or K3 still results in a flexible
graph. There are just three graphs under this assump-
tion, which are depicted in Figure 1. By Corollary 6, all
three are rigid. �

Figure 1: The three minimally rigid graphs in Theorem
8. The edge cuts are thickened.

The previous theorem is the best possible in terms of
the number of edges in the cut, since for an edge cut of
size 4, there are |E1|+|E2|+4 ≥ (2|V1|−3)+(2|V2|−3)+
4 > 2|V | − 3 edges (we have strict inequality when |V1|
or |V2| is 1), so one of the edges in the cut is redundant.
Furthermore, we require that the ei’s not meet at the
same vertex for the same reason.

Using this result and those of the previous section, we
obtain our first result for 4-regular graphs.

Theorem 9 All connected 4-regular planar graphs that
are not 4-edge-connected have rational Fary embeddings.

Proof. By a degree-counting argument, a 4-regular
graph cannot have a minimal edge cut of size 3, so the
edge cut must consist of two edges. Let G be a 4-regular
planar graph that is not 4-edge-connected, and let φ be
a Fary embedding of G. We can perturb φ to a generic
(and hence regular) Fary embedding φ′. In the frame-
work (G,φ′), the edges of the cut are independent by
Theorem 8. There exists an open neighborhood around
φ′ consisting of only regular Fary embeddings, so if our
perturbations of φ′ are suitably small, every edge of the
cut stays independent.

Deleting the edge cut yields two almost 4-regular
graphs G1 and G2. By Corollary 4, each Gi can be
approximated by a rational Fary embedding. Combin-
ing these two approximations yields a Fary embedding
of G such that the only edges that are possibly not ratio-
nal are those in the cut. By applying Lemma 7 on each
edge of the cut, we obtain a rational Fary embedding of
G. �

4 An Operation of Kemnitz and Harborth

The inductive step in proving Fáry’s theorem possibly
deletes edges and inserts a new k-valent vertex into the
interior of the resulting polygon, as in Figure 2. We
call this operation a k-addition if we start and end with

rational Fary embeddings. Kemnitz and Harborth [8]
tried to find k-additions for k = 3, 4, 5, following the
proof of Fáry’s theorem. Geelen et al. [4] remarked
that Theorem 1 suffices for the case k = 3. For adding
a vertex of degree 4 into a quadrilateral Q, Kemnitz and
Harborth chose to place the new vertex on the diagonal
so that one of the constraints is eliminated.

⇒

Figure 2: Adding a vertex of degree 4 after deleting an
edge.

Consider a quadrilateral Q with a diagonal D of
length f , as in Figure 3. Kemnitz and Harborth at-
tempt to find a point P on D such that for rational
lengths a, b, c, d, and f , the lengths x, y, and z are
rational as well. They do not accomplish this for all
quadrilaterals, though they always find a point on the
line containing D. We briefly review their solution of
the associated Diophantine equations.

a

b

c

d

f ⇒
P

x

y

z

Figure 3: Variables for the Diophantine equations of
Kemnitz and Harborth.

Let s = y−a
x and t = z−d

x . Note that for nondegener-
ate Q, s and t cannot be ±1. We can express x as

x =
2afs+ a2 + f2 − b2

f(1− s2)
=

2dft+ d2 + f2 − c2
f(1− t2)

.

It suffices to find suitable values of s and t such that the
second equality holds. Let

K = a2 + f2 − b2
L = 2af

M = d2 + f2 − c2
N = 2df.

t and s are related by

t =
1

2(K + Ls)
(N(s2 − 1)±

√
R)

where

R = N2s4 + 4LM3 + 2(2KM + 2L2 −N2)s2

+4L(2K −M)s+ 4K(K −M)2 +N2.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

195

25th Canadian Conference on Computational Geometry, 2013

We wish for
√
R to be rational, so if we let

q =
√
R,

S = 4LM,

T = 2(2KM + 2L2 −N2),

U = 4L(2K −M),

V = 4K(K −M) +N2,

we obtain the Diophantine equation

N2s4 + Ss3 + Ts2 + Us+ V = q2,

which has already been solved in Mordell [10]. The so-
lution of this equation gives one for the original Dio-
phantine equation via substitution.

Theorem 10 (Kemnitz and Harborth [8]) If
4N2ST − S3 − 8N4U 6= 0, then there exists a solution
for P where x, y, and z are all rational that satisfies

s =
64N6V − 4(N2T − S2)2

8N2(4N2ST − S3 − 8N4U)

q =
4N2(2N2s2 + Ss+ T)− S2

8N3
.

Kemnitz and Harborth analyze the case where the
denominator of s vanishes, but for our purposes, Theo-
rem 10 is sufficient. Unfortunately the solution to the
Diophantine equation does not guarantee that P lies in-
side the quadrilateral, so it cannot be used as a general
operation on rational Fary embeddings. For drawing 4-
regular graphs with diamond subgraphs, we make use of
permissible quadrilaterals, namely those where P does
land on the diagonal. All we need is the existence of
just one permissible quadrilateral.

Proposition 11 The quadrilateral with lengths

a = b = 3, c = d = 4, f = 5

is permissible.

Proof. Tracing through Theorem 10 yields a value of
x = 282240/357599, which yields a point inside the
quadrilateral. �

Directly using Theorem 10 requires a 5-vertex wheel
subgraph, but it turns out that we can relax the condi-
tions slightly.

Proposition 12 Theorem 10 still produces rational so-
lutions even under the weaker condition that only b2 and
c2 have to be rational.

When we only require that b2 and c2 are rational when
adding the new vertex, we call the operation a gener-
alized 4-addition. For a fully-rational Fary embedding,
the square of the distance between any two vertices is al-
ways rational, so Proposition 12 can be used when the
corresponding edges are missing. Ultimately, we per-
form the generalized 4-addition on a slightly perturbed
quadrilateral, so we need an additional result for quadri-
laterals nearby.

Proposition 13 Let Q be a permissible quadrilateral.
There exists ε > 0 such that every Q′ satisfying
d(Q,Q′) < ε is also permissible.

Proof. The solution for x is a continuous function of
the edge lengths of Q, and hence a continuous function
of the coordinates of the vertices. �

5 4-Regular Graphs With Diamonds

We use the results of the previous section to find a ratio-
nal Fary embedding of a 4-regular graph with a diamond
subgraph. The diamond graph is the simple graph on
four vertices and five edges, and the name comes from
the common visualization as two triangles sharing an
edge. For a 4-regular graph G with a diamond sub-
graph, label the vertices of that subgraph and the other
neighbor of one of the 3-valent vertices as in the left-
most graph in Figure 4. Let G′ be the graph formed by
deleting P from G and adding the edge v2v4, and let
GT be the graph formed by deleting P and adding the
edges v1v4 and v3v4.

v1

v2

v3

v4

P

v1

v2

v3

v4

v1

v2

v3

v4

Figure 4: Local drawings of our graphs G, G′, GT .
Dashed lines are possibly missing edges.

The main idea of our construction is to perform a gen-
eralized 4-addition on a fully-rational Fary embedding
of G′ to get one of G, but some preliminary results are
needed to ensure that the quadrilateral formed by the
vi’s is permissible and that adding P does not create any
crossing edges. We want to show that the quadrilateral
Q = v1v2v3v4 is a face in some planar embedding of GT ,
and by using a modification of Tutte’s spring theorem,
we can devise a Fary embedding where Q is permissible
and empty in the interior.

The figure suggests that v1v2P and v2v3P are faces
in the planar embedding. Luckily for the graphs we
consider, this is true for any planar embedding.

25th Canadian Conference on Computational Geometry, 2013

196

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Proposition 14 Let G be a planar 4-edge-connected 4-
regular graph. Then, every K3 subgraph bounds a face
in any planar embedding of G.

Proof. Consider any K3 subgraph with vertices w1, w2,
and w3. The edges of the subgraph form a simple cycle
C, so consider the remaining six edges incident with the
wi’s. We assert that the neighbors of w1, w2, and w3,
besides each other, are either all inside C or all outside
C. If this is not the case, then there are g > 0 and
h > 0 edges that are incident with vertices inside and
outside of C, respectively. Since g + h = 6, either g
or h is less than 4. However, this implies that one of
those sets of edges is a cut of size less than 4, which is
a contradiction. Thus, one of g or h must be 0, so C is
a face. �

Corollary 15 Q is a face of some planar embedding of
GT .

Proof. For any planar embedding of G, Proposition 14
implies that the cyclic rotation of vertices around P
is v1, v2, v3, v4 or its mirror, so we may add the edges
v1v4 and v3v4 into this embedding without violating pla-
narity. Deleting P yields a planar embedding ofGT with
Q as a face. �

Now that we know that Q is a face of GT , we need to
draw it in the shape of a permissible quadrilateral. A
well-known result in graph theory, sometimes referred to
as Tutte’s spring theorem, states that for a 3-connected
plane graph G with exterior face F , we can make F
whatever convex polygon we desire and obtain a Fary
embedding with all convex interior faces. If the 3-
connectedness condition is dropped, we can add vertices
and edges into the graph to make the graph 3-connected,
but the faces induced on the original graph might not
be convex.

Theorem 16 (Tutte [12]) Let G be a plane graph
with a simple face F and a prescribed convex embed-
ding φF : V (F) → R2 of F . Then, there exists a Fary
embedding φ of G such that φ restricted on the vertices
of F is equal to φF and F is the exterior face.

Corollary 17 Theorem 16 can be modified so that in
φ, F is an interior face.

Proof. Let P : R2 → S2 be the Riemann stereographic
projection, where we view S2 as the unit sphere centered
at the origin of R3 and R2 as the hyperplane in R3 that is
zero in the last coordinate. Define r : S2 → S2 to be the
reflection of the sphere across the plane R2. Let U be the
map P−1rP , which is defined for all non-origin points
in the plane. Intuitively, U “inverts” a Fary embedding,
since any face containing the north pole in the sphere
will now contain the south pole, and hence, that face
goes from being exterior to interior.

Translate φF so that the origin lies inside the face.
The embedding φ′F = UφF is an embedding of an in-
verted face F . Using Theorem 16 on φ′F gives a Fary
embedding φ′ with the inverted F , so φ = Uφ′ restricted
to the vertices of F is φF . Furthermore, F is now an
interior face of φ. �

We now prove Conjecture 1 for the 4-regular graphs
with diamonds.

Theorem 18 Let G be a connected 4-regular planar
graph with a diamond subgraph. Then, G has a rational
Fary embedding.

Proof. If G is not 4-edge-connected, the result follows
from Theorem 9. Otherwise, Q is a face of GT by Corol-
lary 15. By using Corollary 17, we can construct a Fary
embedding φT of GT such that Q is empty and has the
edge lengths prescribed in Proposition 11. φT is also
a valid Fary embedding for G′ since Q was drawn as a
convex quadrilateral.

The vertex v1 is 3-valent in G′, so G′ is almost 4-
regular. By Corollary 4, φT can be approximated by a
fully-rational Fary embedding φ′. Q is still permissible
in φ′ by Proposition 13, and since φ′ is fully-rational,
Proposition 12 enables us to perform a generalized 4-
addition on φ′, yielding a rational Fary embedding φ of
G. �

6 Conclusion

In this paper, we construct integral Fary embeddings
of some 4-regular planar graphs, making progress on a
conjecture of Biedl [2]. Perhaps surprisingly, one of the
families we prove Conjecture 1 for has triangles close
together, which seemingly make finding integral Fary
embeddings difficult. The proof unfortunately does not
extend to 4-regular graphs where the triangles are far
apart. For every 4-regular planar graph, we can add an
edge so that a diamond subgraph is formed, but undo-
ing the generalized 4-addition operation does not always
yield a 3-eliminable graph. Nonetheless, we believe that
the techniques presented here can be extended to cover
all 4-regular planar graphs.

References

[1] T. Berry, Points at rational distance from the ver-
tices of a triangle, Acta Arith. 62 (1992) No. 4,
391-398.

[2] T. Biedl, Drawing some planar graphs with inte-
ger edge lengths, Proc. 23rd Canad. Conf. Comp.
Geom. (2011), 291-296.

[3] I. Fáry, On straight-line representation of planar
graphs, Acta Sci. Math. 11 (1948), 229-233.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

197

25th Canadian Conference on Computational Geometry, 2013

[4] J. Geelen, A. Guo, D. McKinnon, Straight line em-
beddings of cubic planar graphs with integer edge
lengths, J. Graph Theory 58 (2008) No. 3, 270-274.

[5] J. Graver, B. Servatius, H. Servatius, Combina-
torial rigidity, Grad. Stud. Math., Vol. 2, Amer.
Math. Soc. (1993).

[6] R. Guy, Unsolved Problems In Number Theory, 2nd
Ed. Springer, New York (1994).

[7] H. Harborth, A. Kemnitz, M. Moller, A. Sussen-
bach, Ganzzahlige planare Darstellungen der pla-
tonischen Korper, Elem. Math. 42 (1987), 118-122.

[8] A. Kemnitz, H. Harborth, Plane Integral Drawings
of Planar Graphs, Discrete Math. 236 (2001), 191-
195.

[9] G. Laman, On graphs and rigidity of plane skeletal
structures, J. Eng. Math. 4 (1970), 331-340.

[10] L. Mordell, Diophantine Equations, Academic
Press, London (1969).

[11] T. Sun, Rigidity-theoretic constructions of integral
Fary embeddings, Proc. 23rd Canad. Conf. Comp.
Geom. (2011), 287-290.

[12] W. Tutte, How to draw a graph, Proc. London
Math. Soc. 13 (1963), 743-767.

25th Canadian Conference on Computational Geometry, 2013

198

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Hyperbanana Graphs

Christopher Clement∗ Audrey Lee-St.John† Jessica Sidman‡§

Abstract

A bar-and-joint framework is a finite set of points to-
gether with specified distances between selected pairs.
In rigidity theory we seek to understand when the re-
maining pairwise distances are also fixed. If there exists
a pair of points which move relative to one another while
maintaining the given distance constraints, the frame-
work is flexible; otherwise, it is rigid.

Counting conditions due to Maxwell give a neces-
sary combinatorial criterion for generic minimal bar-
and-joint rigidity in all dimensions. Laman showed
that these conditions are also sufficient for frameworks
in R2. However, the flexible “double banana” shows
that Maxwell’s conditions are not sufficient to guaran-
tee rigidity in R3. We present a generalization of the
double banana to a family of hyperbananas. In dimen-
sions 3 and higher, these are (infinitesimally) flexible,
providing counterexamples to the natural generalization
of Laman’s theorem.

1 Introduction

A bar-and-joint framework is composed of universal
joints whose relative positions are constrained by fixed-
length bars. An embedding of such a framework in Rd

associates a point in Rd to each joint with the property
that the distance between joints connected by a bar is
satisfied by the embedding. Bar-and-joint frameworks
can be used to model structures arising in many appli-
cations, including sensor networks, proteins, and Com-
puter Aided Design (CAD) systems. In combinatorial
rigidity theory we seek an understanding of the struc-
tural properties of such a framework, and ask whether it
is flexible (i.e., admits an internal motion that respects
the constraints) or rigid.

In this paper, we assume that we are given an em-
bedding of a bar-and-joint framework from which the
lengths of bars can be inferred.

∗Department of Mathematics, University of Michigan,
crclement@umich.edu
†Department of Computer Science, Mount Holyoke College,

astjohn@mtholyoke.edu. Research partially supported by the
Clare Boothe Luce Foundation.
‡Department of Mathematics & Statistics, Mount Holyoke Col-

lege, jsidman@mtholyoke.edu
§All three authors were partially supported by NSF grant

DMS-0849637.

Figure 1: The double banana is a Maxwell graph in R3,
but is flexible. Each “banana” can rotate about the
implied hinge (dotted).

Definition 1 A bar-and-joint framework F = (G,p)
embedded in Rd is composed of a graph G = (V,E) with
|V | = n and |E| = m and an embedding p : V → Rd,
which assigns a position vector pi to each vertex vi.

We only concern ourselves with generic embeddings of
these frameworks, which can be thought of as embed-
dings with the properties we would expect if we chose
an embedding at random. To formally define generic-
ity we require the notion of a rigidity matrix, which
encodes the infinitesimal behavior of the framework.

Definition 2 For a framework F = (G,p) embedded
in Rd we define a rigidity matrix MF to be an m × dn
matrix in which the columns are grouped into n sets of
d coordinates for each vertex. Each row of the rigidity
matrix corresponds to an edge ij and has the following
pattern.

v1 . . . vi · · · vj . . . vn

[]ij 0 · · · 0 · · · pi − pj · · · 0 · · · pj − pi · · · 0 · · · 0

If F is a framework, MF determines if it is infinites-
imally flexible or rigid; for brevity, we omit “infinitesi-
mally” for the remainder of this paper. We say that F
is rigid if the insertion of any new bar between vertices
does not change the rank of MF ; otherwise it is flexible.
A rigid framework is minimally rigid if the rows of MF

are independent.
The infinitesimal motions of F can be encoded by

assigning a velocity vector p′i ∈ Rd to each vertex
vi so that (p′1, . . . ,p

′
n) is nonzero and is in the null

space of MF (intuitively, these are instantaneous veloc-
ities that do not shrink or stretch the bar constraints).
There is always a set of trivial motions corresponding
to rigid body motions of Rd; the space of rigid motions
of Rd has dimension

(
d+1
2

)
and is generated by rota-

tions about (d − 2)-dimensional affine linear subspaces

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

199

25th Canadian Conference on Computational Geometry, 2013

and translations. In general, then, a framework on at
least d vertices is minimally rigid if and only if its rigid-
ity matrix has nullity

(
d+1
2

)
. However, if a framework

F is contained in an affine subspace H ⊂ Rd where
dimH ≤ d − 2, then there is a rigid motion of Rd that
fixes F ; hence, the null space of MF has dimension less
than

(
d+1
2

)
.

Combinatorial counting conditions, first observed by
Maxwell [5], give a necessary condition for minimal bar-
and-joint rigidity. Throughout this paper, we will use
the convention that, if V ′ is a subset of the vertices of a
graph G and E is a subset of the edges of G, then E(V ′)
is the set of edges in E induced by the vertices in V ′.

Definition 3 A Maxwell graph G = (V,E) in dimen-
sion d satisfies

1. |E| = d|V | −
(
d+1
2

)

2. |E(V ′)| ≤ d|V ′|−
(
d+1
2

)
, for all V ′ ⊆ V where |V ′| ≥

d.

For almost all frameworks F = (G,p) on a fixed graph
G, the rank of MF is constant, as the set of special
embeddings for which MF drops rank is parameterized
by a closed subset of Rdn. We formally define genericity
as follows.

Definition 4 A framework (G,p) is generic if its rigid-
ity matrix achieves the maximum rank over all frame-
works (G,q).

We call a framework generically minimally rigid if there
exists a generic framework with the same underlying
graph that is minimally rigid. We analyze the generic
behavior of a framework purely by the combinatorial
structure of the graph. Therefore, from here on we will
write MG to denote the rigidity matrix associated to a
generic embedding of G.

In R2, Laman proved that the Maxwell conditions are
sufficient for generic minimal rigidity.

Theorem 5 (Laman [3]) A bar-and-joint framework,
with underlying graph G = (V,E), embedded in R2 is
generically minimally rigid if and only if it satisfies the
following conditions:

1. |E| = 2|V | − 3

2. |E(V ′)| ≤ 2|V ′| − 3, for all V ′ ⊆ V where |V ′| ≥ 2

However, the sufficiency of the Maxwell counting con-
ditions for rigidity does not generalize to higher di-
mensions. In R3, the well-known “double banana” is
a Maxwell graph that is flexible [2]. This structure is
composed of two “bananas” joined on a pair of vertices
(refer to Figure 1) and exhibits a hinge motion about

the dotted line. This denotes the existence of an implied
edge between two vertices that are not incident to each
other, yet whose distance is fixed as a consequence of
the other constraints. Since a rotation is allowed about
the edge, it is called an implied hinge.

Counterexamples like the double banana can provide
insight into the challenges presented in dimension 3 and
higher for which no combinatorial characterization of
bar-and-joint rigidity is known.

Contributions. In this paper, we describe a class of
graphs called hyperbananas that generalize the double
banana to higher dimensions. We present hyperbananas
that are Maxwell graphs and show these to be (infinites-
imally) flexible. To the best of our knowledge, this is
the first family of counterexamples to the sufficiency of
the Maxwell conditions for minimal bar-and-joint rigid-
ity addressing all dimensions of 3 and higher.

Related work. Other generalizations of the double ba-
nana include the banana spider graphs of Mantler and
Snoeyink [4]. These were developed to address an at-
tempt at classifying 3D bar-and-joint rigidity by vertex
connectivity, as it was conjectured that all graphs with
implied hinges must be 2-connected (like the double ba-
nana). The banana spider graphs provide examples with
higher vertex connectivity, answering this conjecture in
the negative. The key idea was to add “spider” com-
ponents to the double banana, increasing vertex con-
nectivity while maintaining flexibility about the implied
hinge.

Another class of counterexamples to Maxwell’s con-
ditions in 3D was developed by Cheng et al. [1]. These
“ring of roofs” frameworks, first described by Tay [7],
provide examples of flexible Maxwell graphs that ad-
mit no non-trivial rigid subgraphs, i.e., rigid subgraphs
larger than a tetrahedron. This countered an earlier
attempt by Sitharam and Zhou [6] to characterize 3D
bar-and-joint rigidity by detecting rigid components and
adding the resulting implied edges.

2 Maxwell hyperbananas

We now present a family of graphs called hyperbanana
graphs; under certain conditions, hyperbananas are
Maxwell graphs. We generalize the double banana,
which consists of two minimally rigid “bananas” glued
together on a pair of vertices. Each banana can be built
using the following inductive construction.

Definition 6 Fix a positive integer d. A d-Henneberg
0-extension on a graph G results in a new graph by
adding a single vertex and connecting it to d distinct
vertices in G.

When a d-Henneberg 0-extension is applied to a min-
imally rigid framework in Rd, minimal rigidity is pre-
served, and hence so are the Maxwell conditions [8]. In

25th Canadian Conference on Computational Geometry, 2013

200

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

(a)

V1 V2
U

(b)

Figure 2: The hyperbanana H5,3 is a flexible Maxwell
graph R5; there are 3 implied edges (dotted) among the
vertices in U .

the double banana, each individual banana is created
by two 3-Henneberg 0-extensions on a triangle (which
is minimally rigid in R3), connecting each new vertex to
the 3 vertices of the triangle.

Before generalizing the banana construction, we give
some additional notation. If U and W are finite sets,
let KU denote the complete graph with vertex set U
and KU,W be the complete bipartite graph on the two
disjoint sets U and W .

Definition 7 A banana bunch is a graph Bd,b obtained
by performing b d-Henneberg 0-extensions on a Kd. The
b vertices added by the Henneberg extensions are called
banana vertices.

Since Kd embedded in Rd is minimally rigid for any d,
Bd,b is generically minimally rigid in dimension d.

Hyperbananas are composed of two banana bunches
glued together along the banana vertices.

Definition 8 For i = 1, 2, let Gi be a copy of Bd,b with
vertex set partitioned into Vi ∪ Ui, where the Kd has
vertex set Vi and the set Ui consists of banana vertices.
We define the hyperbanana Hd,b to be G1 ∪ G2/ ∼,
where ∼ identifies banana vertices based on some fixed
bijection from U1 to U2. The vertex set of Hd,b is the set
V = V1 ∪ V2 ∪ U, where U is the set of banana vertices.

The double banana is simply H3,2. An example of
a higher dimensional hyperbanana, H5,3, is pictured in
Figure 2. While this is a Maxwell graph, not all choices
of b and d satisfy the counting conditions. For exam-
ple, simply checking the counts on the total number of
edges for the hyperbanana H4,3 confirms that this graph
has too many edges to be Maxwell. In fact, it is rigid
in R4, but overconstrained. Therefore, it is not mini-
mally rigid as its rigidity matrix contains dependencies.
Checking the counts on the total number of edges for
the hyperbanana H6,3 shows that it is underconstrained
and therefore flexible in R6.

2.1 Odd-dimensional hyperbananas

When d is odd and equal to 2b − 1, we obtain hyper-
bananas that are Maxwell graphs. We begin with a
more general lemma that will be used in proving the
counting conditions. In the proofs that follow, we de-
fine V ′i = V ′ ∩ Vi and U ′ = V ′ ∩ U for a subset V ′ of
the vertex set of Hd,b,

Lemma 9 If Hd,b = (V,E) and V ′ ⊆ V, and |V ′i ∪U ′| ≥
d for i = 1, 2, then

|E(V ′)| ≤ d|V ′| − 2
(
d+1
2

)
+ d|U ′|.

Proof. As each banana bunch is minimally rigid we
have

|E(V ′i ∪ U ′)| ≤ d|V ′i ∪ U ′| −
(
d+1
2

)
(1)

for each i. Adding the inequalities yields

|E(V ′)| ≤ d(|V ′1 |+ |V ′2 |+ 2|U ′|)− 2
(
d+1
2

)

= d(|V ′1 |+ |V ′2 |+ |U ′|)− 2
(
d+1
2

)
+ d|U ′|

= d|V ′| − 2
(
d+1
2

)
+ d|U ′|.

(2)

�

We can now show that the specific class of hyper-
bananas in odd-dimensional spaces are Maxwell graphs.

Theorem 10 The hyperbanana Hd,b embedded in Rd

with d = 2b− 1 is a Maxwell graph.

Proof. We check condition 1 of Definition 3 by vertex
and edge counts. The graph Hd,b has d vertices from
each complete Kd graph and b banana vertices, total-
ing 2d + b vertices. Since d = 2b − 1, there are 5d+1

2

vertices. Each Kd has
(
d
2

)
edges, and each banana ver-

tex is incident to 2d edges. This sums to an edge count
of 2

(
d
2

)
+ 2d(d+1

2). Simplifying, we can verify that the
edge count is |E| = 2d2. Substituting the vertex count
|V | = 5d+1

2 , we see that Maxwell condition 1 is satisfied:

d|V | −
(
d+1
2

)
= d

(
5d+1

2

)
−
(
d+1
2

)
= |E|

Now we check Maxwell condition 2. If V ′ is contained
within a single banana bunch, the condition is satisfied
as Bd,b is minimally rigid and therefore Maxwell. If
V ′ intersects both banana bunches non-trivially, then
there are three cases which depend on whether the in-
tersection with each banana bunch contains at least d
vertices.

If |V ′i ∪U ′| ≥ d for both i, then combining |U ′| ≤ b =
d+1
2 with Lemma 9 gives the result.
Now suppose, without loss of generality, that |V ′1 ∪

U ′| ≥ d, but |V ′2 ∪ U ′| < d. We know that

|E(V ′2 ∪ U ′)| =
(|V ′

2 |
2

)
+ |U ′||V ′2 | (3)

=
(|V ′2 | − 1)|V ′2 |

2
+ |U ′||V ′2 | (4)

≤ (d− 2)|V ′2 |
2

+ b|V ′2 | (5)

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

201

25th Canadian Conference on Computational Geometry, 2013

Since b = d+1
2 , we obtain |E(V ′2 ∪U ′)| ≤ d|V ′2 |. Combin-

ing this with Inequality 1 gives the desired inequality in
the second case.

Finally, suppose that both |V ′i ∪ U ′| < d and |V ′1 | ≥
|V ′2 |. As |V ′1 ∪V ′2 ∪U ′| ≥ d, there exists a subset W ⊆ V ′2
so that |V ′1 ∪W ∪ U ′| = d. Let W ′ = V ′2\W. The set
|E(V ′2)| consists of the edges of KW , the edges of KW ′

and the edges of KW,W ′ .
Now suppose we had a set V ′′1 satisfying V1 ⊇ V ′′1 ⊃

V ′1 and |V ′′1 ∪ U ′| = d. Then

|E(V ′1 ∪W ∪ U ′)|+ |E(KV ′
1 ,W

)| = |E(V ′′1 ∪ U ′)|,
and by Inequality 1,

|E(V ′1 ∪W ∪U ′)|+ |E(KV ′
1 ,W

)| ≤ d|V ′1 ∪W ∪U ′|−
(
d+1
2

)
.

(6)
Applying the argument in the second case to the set
W ′ ∪U ′ and adding the inequality to 6, gives the result
in this final case as |E(KW,W ′)| < |E(KV ′

1 ,W
)|.

�

2.2 Even-dimensional hyperbananas

We observed earlier that hyperbananas may be ei-
ther overconstrained or underconstrained in even-
dimensional spaces and are not Maxwell graphs. How-
ever, by making a small modification to our definition,
we obtain Maxwell graphs for even-dimensional spaces.

Definition 11 For even d, we define the even hyper-
banana to be a graph H+

d,b consisting of a hyperbanana

Hd,b together with an additional d
2 edges connecting dis-

tinct vertices of the complete graphs in the two banana
bunches.

This addition of d
2 edges between the complete graphs

in Hd,b results in H+
d,b being a Maxwell graph for the

even-dimensional spaces for certain values of d relative
to b. One example of an even hyperbanana, H+

4,2, is

shown in Figure 3. Note that H+
d,b = (V, F), is built

from Hd,b = (V,E); let E+ be the additional d
2 edges

so that F = E ∪ E+. In Figure 3, for example, E+ is
composed of the 2 dashed edges.

Theorem 12 The even hyperbanana H+
d,b = (V, F) em-

bedded in Rd with d = 2b is a Maxwell graph.

Proof. Since d = 2b, the number of vertices in H+
d,b is

|V | = 2d + b = 5
2d, as there are two Kd graphs and

b banana vertices. There are 2 complete graphs with(
d
2

)
edges, b banana vertices connecting to the 2d com-

plete graph vertices, and d
2 edges between the complete

graphs, resulting in |F | = 2d2 − d
2 . By substituting the

vertex count, we can verify Maxwell condition 1.

d|V | −
(
d+1
2

)
= 2d2 − d

2
= |F |.

Now let V ′ ⊆ V with |V ′| ≥ d. If V ′ is completely
contained in a banana bunch, Maxwell condition 2 is

Figure 3: The even hyperbanana H+
4,2 is a flexible

Maxwell graph; it is built from the hyperbanana H4,2

by an additional 2 (dashed) edges.

satisfied as Bd,b is Maxwell. Assume, then, that V ′

non-trivially intersects both vertex sets V1 and V2.

If |V ′i ∪ U ′| ≥ d for both i = 1, 2, then by Lemma 9,

|E(V ′)| ≤ d|V ′| − 2
(
d+1
2

)
+ d|U ′|).

The number of banana vertices is b = d
2 , so |U ′| ≤ d

2 .
Therefore,

|E(V ′)| ≤ d|V ′| − 2
(
d+1
2

)
+
d2

2

= d|V ′| −
(
d+1
2

)
− d2 + d

2
+
d2

2

= d|V ′| −
(
d+1
2

)
− d

2
.

Since F = E∪E+, |F (V ′)| = |E(V ′)|+ |E+(V ′)|. By
adding |E+(V ′)| to both sides of the previous inequality
we obtain

|F (V ′)| ≤ d|V ′| −
(
d+1
2

)
− d

2
+ |E+(V ′)|.

By definition, |E+| = d
2 , implying |E+(V ′)| ≤ d

2 . There-
fore, we can conclude that Maxwell condition 2,

|F (V ′)| ≤ d(|V ′|)−
(
d+1
2

)
,

holds in this case.

Now suppose, without loss of generality, that |V ′1 ∪
U ′| ≥ d, but |V ′2 ∪ U ′| < d. Since b = d

2 , Inequality 5
implies

|E(V ′2 ∪ U ′)| ≤ (d− 1)|V ′2 |. (7)

We can combine this with

|E(V ′1 ∪ U ′)| ≤ d|V ′1 ∪ U ′| −
(
d+1
2

)

and the edges in E+(V ′) to obtain

|F (V ′)| ≤ d|V ′1 ∪ U ′| −
(
d+1
2

)
+ (d− 1)|V ′2 |+ |E+(V ′)|

= d|V ′| −
(
d+1
2

)
− |V ′2 |+ |E+(V ′)|

≤ d|V ′| −
(
d+1
2

)

as |E+(V ′)| ≤ |V ′2 |.

Finally, suppose that both |V ′i ∪ U ′| < d. Assume
that |V ′1 | ≥ |V ′2 | and define W and W ′ as in the proof
of Theorem 10. Adding Inequalities 6 and 7 (with W ′

25th Canadian Conference on Computational Geometry, 2013

202

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

replacing V ′2),

|E(V ′1 ∪W ∪ U ′)|+ |E(KV ′
1 ,W

)|+ |E(W ′ ∪ U ′)|
≤ d|V ′1 ∪W ∪ U ′| −

(
d+1
2

)
+ (d− 1)|W ′|

= d|V ′| −
(
d+1
2

)
− |W ′|,

and hence

|E(V ′1 ∪W ∪ U ′)|+ |E(KV ′
1 ,W

)|+ |E(W ′ ∪ U ′)|+ |W ′|
≤ d|V ′| −

(
d+1
2

)
.

Since |F (V ′)| is equal to

|E(V ′1∪W∪U ′)|+|E(KW,W ′)|+|E(W ′∪U ′)|+|E+(V ′)|,
it will suffice to show that

|E(KW,W ′)|+ |E+(V ′)| ≤ |E(KV ′
1 ,W

)|+ |W ′|,
or that

|W | · |W ′|+ |E+(V ′)| ≤ |V ′1 | · |W |+ |W ′| (8)

Now let t = |V ′1 | − |W ′|. Since |V ′1 | ≥ |V ′2 | and |V ′1 | <
d, |W | > 0, which implies that |V ′1 | > |W ′| and hence
that t ≥ 1. Setting |W ′| = |V ′1 | − t, we have

|W | · |W ′|+ |E+(V ′)|
= |W | · (|V ′1 | − t) + |E+(V ′)|
= |V ′1 | · |W | − t|W |+ |E+(V ′)|
≤ |V ′1 | · |W | − |W |+ |E+(V ′)|,

as t ≥ 1. Then

|V ′1 | · |W | − |W |+ |E+(V ′)| ≤ |V ′1 | · |W |+ |W ′|
if and only if

|V ′1 | · |W |+ |E+(V ′)| ≤ |V ′1 | · |W |+ |W ′|+ |W |.
Indeed, since |W ′| + |W | = |V ′2 | ≥ |E+(V ′)|, this in-
equality holds, completing the proof. �

3 Flexible hyperbananas

In this section, we prove that the Maxwell hyperbananas
are flexible.

We begin by considering the rigidity matrix MBd,b

for a generic framework on the banana bunch Bd,b in

dimension d, which has d(d + b) columns and
(
d
2

)
+ db

rows. Since the banana bunch is minimally rigid, the
rank of its rigidity matrix is maximal and equal to the
number of rows

(
d
2

)
+ db. Let the vertex set of Bd,b be

partitioned into sets V1 and U , where the set U consists
of banana vertices. Assume that the columns of MBd,b

are arranged so that the columns corresponding to the
vertices in V1 come first, followed by the columns for U .

Lemma 13 Each row of the block matrix[
0 MKU

]

with d2 columns of zeros (d columns for each vertex in
the V1), is in the row space of MBd,b

.

Proof. Since the banana bunch is minimally rigid and
spans Rd, MBd,b

has nullity
(
d+1
2

)
. If we add an edge

from KU , the new rigidity matrix will still have nullity(
d+1
2

)
. Thus, each such row must be a linear combination

of the rows of MBd,b
. �

Proposition 14 If Bd,b = (V1 ∪ U,E) is embedded in

Rd, and the rank of MKU
is
(
b
2

)
, then MBd,b

is row-
equivalent to a matrix of the form[]

M∗Bd,b

0 MKU
,

where M∗Bd,b
consists of |E| −

(
b
2

)
rows of the original

matrix MBd,b
.

Proof. Let R be a row in [0 MKU]. By Lemma 13,
R may be written as a linear combination of rows of
MBd,b

. Any row of MBd,b
appearing in such a linear

combination with a nonzero coefficient may be replaced
by R through a sequence of elementary row operations.
Any subsequent row R′ of [0 MKU] will remain de-
pendent on the rows of the modified matrix. Moreover,
when we express R′ as a linear combination of the cur-
rent set of rows, some remaining row of the original
matrix MBd,b

must appear with a nonzero coefficient as
the rows of MKU

are independent. Thus, we can insert
each row of [0 MKU] in this way.

�

With this we can prove the following theorem.

Theorem 15 If G is the hyperbanana Hd,b ⊂ Rd where
d = 2b − 1 or H+

d,b ⊂ Rd where d = 2b and b ≥ 2, then
G is flexible.

Proof. Consider the hyperbanana Hd,b partitioned into
two bunches Bd,b(1) and Bd,b(2). Let MBd,b

(1) be the
rigidity matrix for Bd,b(1), MBd,b

(2) be the rigidity ma-
trix for Bd,b(2) and M be the rigidity matrix for Hd,b.
If we put the vertices in an order with (V1, U, V2) and
order the columns of M accordingly, then M is a block
matrix of the form

V1 U V2[]
Bd,b(1) MBd,b

(1) 0
Bd,b(2) 0 MBd,b

(2)

By Proposition 14 M is row equivalent to

V1 U V2

Bd,b(1)
MBd,b

(1)∗
0

0 MKU

Bd,b(2) 0
MBd,b

(2)∗

MKU
0

We can see that there are at least
(
b
2

)
dependencies

in M , since the [0|MKU
|0] is seen twice in the matrix.

Therefore, since the number of columns is d|V | and the
number of rows is |E|, the nullity of M is at least

(
d+1
2

)
+(

b
2

)
. Thus, since a framework with at least d vertices is

minimally rigid in Rd if and only if it has nullity
(
d+1
2

)
,

Hd,b is flexible. Moreover, since M is a submatrix of

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

203

25th Canadian Conference on Computational Geometry, 2013

the rigidity matrix of H+
d,b, which satisfies the Maxwell

counts, we see that H+
d,b is also flexible. �

For odd-dimensional bananas, we can show this
bound is tight using the following proposition.

Proposition 16 Any linear combination of rows of
M∗Bd,b

of the form

V1 U
[]0 ∗ ,

must be trivial, where the ∗ represents potentially
nonzero entries.

Proof. Suppose for contradiction that there is a linear
combination of rows of M∗Bd,b

equal to R where R has
nonzero entries only in columns corresponding to U . Let
R be the projection of R to the columns corresponding
to U.

If R is dependent on the rows in MKU
, then the rank

of MBd,b
is not maximal, which is a contradiction. So,

we must assume that R is independent of these rows.
Thus, the nullspace of MKU

augmented by the row R
is smaller than the nullspace of MKU

. But all of the
elements of the nullspace of MKU

are obtained from
rigid motions of Rd. So there is a nonzero vector p′ ∈
Rdb in the null space of MKU

which assigns velocities to
vertices in U and has the property that R · p′ 6= 0.

Since KU is rigid, p′ must be obtained by restricting a
rigid motion of Rd to KU . Applying this rigid motion to
all of Bd,b gives a vector q′ that assigns velocities to all
vertices in Bd,b and is equal to p′ for the vertices in U.
As R has nonzero entries only in columns corresponding
to U, q′ ·R = p′ ·R 6= 0. R is in the row space of MBd,b

,
so this implies that the nullspace of MBd,b

is missing

one of the rigid motions of Rd. This is a contradiction
because MBd,b

is a rigidity matrix. �

Theorem 17 The hyperbanana Hd,b ⊂ Rd where d =
2b − 1 has rigidity matrix MHd,b

with nullity exactly(
d+1
2

)
+
(
b
2

)
.

Proof. We will show that

M ′ =

V1 U V2[]
Bd,b(1)

MBd,b
(1)∗

0
0 MKU

Bd,b(2) 0 MBd,b
(2)∗

has full rank and hence nullity
(
d+1
2

)
+
(
b
2

)
.

Since MBd,b
(1) has full rank, we know that the top

block of M ′ has linearly independent rows. Similarly,
the rows in [0|MBd,b

(2)∗] are also an independent set.
Now suppose there is a row R ∈ [0|MBd,b

(2)∗] that is
dependent on the upper block of M ′; then R is a linear
combination of the rows of [MBd,b

(1)∗|0] and [0|MKd
|0].

There must be at least one row of [MBd,b
(1)∗|0] with a

nonzero coefficient or we would contradict the indepen-
dence of [0|MBd,b

(2)]. Since R is zero in the columns
corresponding to vertices in V1, this implies that there
is a linear combination of rows of [MBd,b

(1)∗|0] that is
nonzero only in the banana vertex columns, which con-
tradicts Proposition 16.

�

4 Conclusions and Future Work

We presented a family of hyperbanana graphs and
showed that they are Maxwell graphs under certain con-
ditions. We further proved that they are flexible, pro-
viding counterexamples to the sufficiency of the Maxwell
counts for bar-and-joint rigidity in dimensions 3 and
higher.

For hyperbananas embedded in odd-dimensional
spaces, we gave a precise analysis of the space of in-
finitesimal motions. However, it remains an open prob-
lem to give an exact analysis for the even hyperbananas,
as the addition of the d

2 edges prevents us from extend-
ing our proof. Based on Mathematica calculations on
randomized embeddings of even hyperbananas, we con-
jecture the following:

Conjecture 1 The even hyperbanana H+
d,b ∈ Rd where

d = 2b and b ≥ 2 has a rigidity matrix with nullity
exactly

(
d+1
2

)
+
(
b
2

)
.

Since counterexamples provide an increased under-
standing of barriers to finding combinatorial charac-
terizations of higher-dimensional bar-and-joint rigidity,
it would also be interesting to further generalize the
hyperbananas by parametrizing the number of banana
bunches instead of always gluing two.

References

[1] Jialong Cheng, Meera Sitharam, and Ileana Streinu.
Nucleation-free 3d rigidity. In CCCG, pages 71–74, 2009.

[2] Henry Crapo. Structural rigidity. Structural Topology,
(1):26–45, 1979.

[3] Gerard Laman. On graphs and rigidity of plane skeletal
structures. Journal of Engineering Mathematics, 4:331–
340, 1970.

[4] Andrea Mantler and Jack Snoeyink. Banana spiders: A
study of connectivity in 3d combinatorial rigidity. In
CCCG, pages 44–47, 2004.

[5] J. C. Maxwell. On the calculation of the equilibrium and
stiffness of frames. Philosophical Magazine, 27:294, 1864.

[6] Meera Sitharam and Yong Zhou. A tractable, approxi-
mate characterization of combinatorial rigidity in 3d. 5th
Automated Deduction in Geometry (ADG), 2004.

[7] Tiong-Seng Tay. On generically dependent bar frame-
works in space. Structural Topology, (20):27–48, 1993.

[8] Tiong-Seng Tay and Walter Whiteley. Generating iso-
static frameworks. Structural Topology, (11):21–69, 1985.

25th Canadian Conference on Computational Geometry, 2013

204

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Theta-3 is connected

Oswin Aichholzer∗ Sang Won Bae † Luis Barba ‡ § Prosenjit Bose ‡ Matias Korman ¶

André van Renssen ‡ Perouz Taslakian ‖ Sander Verdonschot ‡

Abstract

In this paper, we show that the θ-graph with three cones
is connected. We also provide an alternative proof of the
connectivity of the Yao-graph with three cones.

1 Introduction

Introduced independently by Clarkson [6] in 1987 and
Keil [9] in 1988, the θ-graph of a set P of points in the
plane is constructed as follows. We consider each point
p ∈ P and partition the plane into m ≥ 2 cones (regions
in the plane between two rays originating from the same
point) with apex p, each defined by two rays at consecu-
tive multiples of 2π/m radians from the negative y-axis.
We label the cones C0 through Cm−1, in clockwise order
around p, starting from the cone containing the positive
y-axis from p if m is odd, or having this axis as its left
boundary if m is even; see Figure 1. If the apex is not
clear from the context, we use Cp

i to denote the cone Ci

with apex p. We sometimes referred to Cp
i as the i-cone

of p. To build the θ-graph, we consider each point p
and connect it by an edge with the closest point in each
of its cones. We measure distance by projecting each
point onto the bisector of that cone instead of using the
Euclidean distance. We use this definition of distance in
the remainder of the paper, except for Section 4, which
deals with Yao graphs. For simplicity, we assume that
no two points of P lie on a line parallel to either the

∗Institute for Software Technology, Graz University of Tech-
nology. Research of OA partially supported by the ESF EURO-
CORES programme EuroGIGA - CRP ‘ComPoSe’, Austrian Sci-
ence Fund (FWF): I648-N18.
†Department of Computer Science, Kyonggi University. Work

by S.W. Bae was supported by the Contents Convergence Soft-
ware Research Center funded by the GRRC Program of Gyeonggi
Province, South Korea.
‡School of Computer Science, Carleton University. Research

supported in part by NSERC.
§Boursier FRIA du FNRS, Département d’Informatique, Uni-

versité Libre de Bruxelles
¶Departament de Matemática Aplicada II, Universitat

Politécnica de Catalunya. Received support of the Secre-
tary for Universities and Research of the Ministry of Economy
and Knowledge of the Government of Catalonia, the European
Union, and projects MINECO MTM2012-30951, Gen. Cat.
DGR2009SGR1040, ESF EUROCORES programme EuroGIGA
– CRP ‘ComPoSe’: MICINN Project EUI-EURC-2011-4306.
‖College of Science and Engineering, American University of

Armenia

boundary or the angle bisector of a cone, guaranteeing
that each point connects to at most one point in each
cone. We call the θ-graph with m cones the θm-graph.

For θ-graphs with an even number of cones, proving
connectedness is easy. As the first m/2 cones cover ex-
actly the right half-plane, each point will have an edge
to a point to its right, if such a point exists. Thus, we
can find a path from any point to the rightmost point
and, by concatenating these, a path between any pair
of points. Unfortunately, if m is odd this property does
not hold, as no set of cones covers exactly the right half-
plane. Therefore, a point is not guaranteed to have an
edge to a point to its right, even if such point exists.

The fact that θ-graphs with more than 6 cones are
connected has been known for a long time. In fact, they
even guarantee the existence of a short path between
every pair of points. The length of this path is bounded
by a constant times the straight-line Euclidean distance
between the two points [3, 5, 6, 9, 11]. Graphs that have
this property are called geometric t-spanners for some
constant t > 0. For more information on geometric
t-spanners, see the book by Narasimhan and Smid [10].

For a long time, very little was known about θ-graphs
with fewer than 7 cones. Bonichon et al. [2] broke
ground in this area in 2010, by showing that the θ6-
graph is a geometric spanner. Subsequently, both the
θ4- and θ5-graphs have been shown to be constant span-
ners [1, 4]. El Molla [8] already showed that the θ2- and
θ3-graphs are not constant spanners. The θ3-graph is
the last θ-graph for which connectedness has not been
proven. In this paper, we settle this question by proving
that the θ3-graph is always connected.

C0

C1C2
pp

Figure 1: Left: A point p and its three cones in the θ3-
graph. Right: Point p adds an edge to the closest point in
each of its cones, where distance is measured by projecting
points onto the bisector of the cone.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

205

25th Canadian Conference on Computational Geometry, 2013

a

b

c

a

b

c

Figure 2: Left: A point set for which θ-routing does not
find a path from a to c, as it keeps cycling between a and
b. Right: The directed version of the graph is not strongly
connected, as there is no path from either a or b to c.

The question of connectedness about the θ3 graph is
interesting because the θ3-graph has some unique prop-
erties that cause standard proof techniques for θ-graphs
to fail. As such, we hope that the techniques we de-
velop here will lead to more insight into the structure
of other θ-graphs. As an example, most proofs for a
larger number of cones show that the θ-routing algo-
rithm (always follow the edge in the cone that contains
the destination) returns a short path between any two
points. But in the θ3-graph, θ-routing is not guaran-
teed to ever reach the destination. The smallest point
set that exhibits this behavior has three points, such
that for each point, both other points lie in the same
cone; see Figure 2. In fact, this example shows not only
that this exact routing strategy fails; it shows that if we
consider the edges to be directed (from the point that
added them, to the closest point in its cone), the graph is
not strongly connected. Our proof requires more global
methods than previous proofs on θ-graphs.

Most proofs for a larger number of cones use induc-
tion on the distance between points or on the size of the
empty triangle between a point and its closest point.
In the θ3-graph however, both of these measures can
increase when we follow an edge. Thus, applying in-
duction on these distances seems a difficult task. An
induction on the number of points similarly fails, as in-
serting a new point may remove edges that were present
before, and it is not obvious that the endpoints of those
edges are still connected in the new graph.

The θ3-graph is strongly related to the Yao-3-graph,
where each point also connects to the closest point in
each cone, but the distance measure is the standard
Euclidean distance. This graph was shown to be con-
nected by Damian and Kumbhar [7]. Their proof uses
induction on a rhomboid distance-measure that was tai-
lored specifically for the Yao-3-graph. Since the ‘closest’
point for the θ3-graph can be much further away than
in the Yao-3-graph, this method of induction does not
translate to the θ3-graph either. Conversely, we show
that our proof extends to the Yao-3-graph, providing
an alternative proof for its connectivity.

2 Properties of the θ3-graph

For i ∈ {0, 1, 2}, the edge connecting a point with its
closest point in cone Ci is called an i-edge. Note that
an edge can have one or two roles depending on the
position of its endpoints. An example is depicted in
Figure 2, where edge ab is both the 0-edge of a and the
1-edge of b.

Lemma 1 For all i ∈ {0, 1, 2}, no two i-edges of the
θ3-graph can cross.

Proof. We consider only 0-edges of P ; the proof is anal-
ogous for 1- and 2-edges. For a contradiction, assume
that there are two 0-edges that cross at a point s. Call
these edges u1v1 and u2v2, such that v1 is in the 0-cone
of u1 and v2 in the 0-cone of u2. Assume without loss
of generality that the y-coordinate of v1 is smaller than
that of v2; see Figure 3 for an illustration. Because s
lies on segments u1v1 and u2v2, s lies in the 0-cones of
both u1 and u2. Therefore, the 0-cone of s is contained
in the intersection of the 0-cones of u1 and u2. As v1
lies in cone C0 of s, point v1 lies in cone C0 of u2 as
well. Because we assumed that the y-coordinate of v1 is
less than that of v2, we conclude that v1 is closer to u2
than v2. Thus, the edge u2v2 is not a 0-edge yielding a
contradiction. �

v1

u2

u1

s

v2

Figure 3: Two 0-edges u1v1 and u2v2 such that v1 ∈ Cu1
0

and v2 ∈ v1 ∈ Cu2
0 cannot cross because the lowest point

among v1 and v2 will be adjacent to both u1 and u2.

We say that a cone is empty if it contains no point
of P in its interior. A point having an empty i-cone is
called an i-sink.

Given a point p of P , the i-path from p is defined
recursively as follows: If the i-cone of p is empty, the
i-path from p consists of the single point p. Otherwise,
let q be the closest point to p in its i-cone. The i-path
from p is defined as the union of edge pq with the i-path
from q.

Lemma 2 Every i-path of the θ3-graph is well-defined
and has an i-sink as one of its endpoints.

Proof. We consider only 0-paths; the proof is analo-
gous for the other paths. A 0-path from a point p is
well defined because the closest point in the 0-cone of p
always lies above p. Therefore, the sequence of points

25th Canadian Conference on Computational Geometry, 2013

206

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

u

x

y

Cu
0

Cx
1

`

Figure 4: The last case in the proof of Lemma 3 where it is
shown that empty i-cones cannot be crossed by edges of the
θ3-graph.

in the 0-path from p is monotonically increasing in the
y-coordinate. Because P is a finite set, the depth of the
recursion is finite and must end at a point having an
empty 0-cone. �

Lemma 3 If a cone of a point is empty, then no edge
of the θ3-graph can cross this cone.

Proof. We consider only 0-cones for this proof; anal-
ogous arguments hold for the other cones. Let u be a
point of P with an empty 0-cone. We prove the lemma
by contradiction, so assume that there exists an edge xy
that crosses Cu

0 . Since no edge between two points in
the same cone can cross another cone, assume without
loss of generality that x ∈ Cu

2 and y ∈ Cu
1 .

Note that y cannot lie in Cx
0 , since either Cx

0 does not
intersect Cu

1 (if u /∈ Cx
0) or the line segment between x

and y does not intersect Cu
0 (if u ∈ Cx

0). Therefore, y
lies in Cx

1 .

If u ∈ Cx
0 , then Cx

1 does not intersect Cu
0 and hence,

the line segment between x and y cannot intersect Cu
0

either. Therefore, both u and y lie in Cx
1 . Let ` be the

perpendicular to the bisector of Cx
1 that passes through

u. For the edge xy to exist, the projection of y on the
bisector of Cx

1 must be closer to x than that of u, i.e.,
y must lie to the left of `. However, all points lying
to the left of ` are contained in Cu

0 ∪ Cu
2 yielding a

contradiction as y ∈ Cu
1 ; see Figure 4 for an illustration

of this case. �

As a consequence of Lemmas 1 and 3, two sinks con-
nected by an i-path partition the remaining points into
two sets such that no i-path can connect a point in one
set to a point in the other set, as any such path would
cross either the i-path between the sinks, or the empty
cone of one of the sinks. Such a construction is called
an i-barrier ; see Figure 5 for an illustration.

1

a′

1

a

Figure 5: A 1-barrier, defined by the 1-path joining a with
a′, splits the remaining points into two sets such that no two
points in different sets can be joined by a 1-path.

3 Proving connectedness

In this section we prove that the θ3-graph of any given
point set is connected. We start by proving that three
given 0-sinks in a specific configuration are always con-
nected. We then prove that if the θ3-graph has at
least two disjoint connected components, then there ex-
ist three 0-sinks that are in this configuration and are
not all in the same component.

Although the edges of the θ3-graph are not directed,
by Lemma 2 we can think of an i-path as oriented to-
wards the i-sink it reaches. An i-path oriented from
point a to point b is denoted by a → b. The following
lemma is depicted in Figure 6.

Lemma 4 Given three 0-sinks a, b, and c, such that
(i) a lies to the left of b and b lies to the left of c, and
(ii) the 1-path from a ends at a 1-sink a′, whose 0-path
ends at c, then a, b, and c belong to the same connected
component.

Proof. Since there is a path from a to c via a′, a and c
must be in the same component. We show that b belongs
to this same connected component. The proof proceeds
by induction on the number of 0-sinks to the right of c.

In the base case, there are no 0-sinks to the right of c.
Consider the 1-sink b′ at the end of the 1-path from b;
see Figure 6 (right). If b′ and a′ are the same point,

b

1 0
1

0

a c

a′

0

b′
1

a
c

b

a′

Figure 6: Left: The configuration of three 0-sinks described
in Lemma 4. Right: The configuration in the base case of
the induction where no 0-sink lies to the right of c.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

207

25th Canadian Conference on Computational Geometry, 2013

a
c

a′

1

0

1

d

0

b

b′

Figure 7: The configuration of the inductive step where the
induction hypothesis can be applied on 0-sinks b, c and d.

then b is in the same connected component as a and
we are done, so assume that this is not the case. Since
the 1-path a → a′ forms a 1-barrier, b′ must lie to the
right of a′. The 1-path b → b′ also has to cross the 0-
path a′ → c, as otherwise a′ → c would cross the empty
cone of b′, which is impossible by Lemma 3. Because
the 0-path a′ → c forms a 0-barrier, the 0-path from b′

cannot end up to the left of c. Moreover, since there are
no 0-sinks to the right of c, the 0-path from b′ must end
at c. Thus, there is a path connecting b and c, which
proves the lemma in the base case.

For the inductive step, let k be the number of 0-sinks
to the right of c and assume that the lemma holds for
any triple of 0-sinks with fewer than k 0-sinks to their
right. By the same argument as in the base case, we
have a 1-path from b to a 1-sink b′ that lies to the right
of a′. Now consider the 0-sink d at the end of the 0-path
from b′; see Figure 7. Since the 0-path a′ → c forms a
0-barrier, d cannot lie to the left of c. If d and c are the
same point, we have a path connecting b and c as in the
base case, so assume that this is not the case. Thus d
lies to the right of c. Now b, c, and d form a triple of
0-sinks that satisfy criteria (i) and (ii). And since d is
a 0-sink to the right of c, there are fewer than k 0-sinks
to the right of d. Thus, by induction, we have that b
is in the same connected component as c, which proves
the lemma. �

Theorem 5 The θ3-graph is connected.

Proof. Assume for sake of a contradiction that there
exists a point set P whose θ3-graph G is not connected.
From each point, we can follow its 0-path to end up at
a 0-sink. Therefore, G must contain at least one 0-sink
for each connected component. Let a be the leftmost
0-sink, and let A be the connected component of G that
contains a. Now let b be the leftmost 0-sink that does
not belong to A.

We use Lemma 4 to show that, in fact, b must belong
to A as well. Before we can do this, we need to define
two barriers. The first barrier is formed by the 2-path
from b, ending at a 2-sink b′. Because a lies in Cb

2,

a b

b′

2
c

0

a′

1

d

0

Figure 8: Two 0-sinks a and b are assumed to lie in different
components such that both a and b are the leftmost 0-sinks
in their component. The 1-path from a ends at a 1-sink a′

whose 0-path ends at a 0-sink d lying to the right of b. The
0-sinks a, b and d jointly satisfy the criteria of Lemma 4.

point b does not have an empty 2-cone and hence, b′

differs from b. The second barrier is formed by the 0-
path from b′, which ends at a 0-sink c; see Figure 8.
Since b is the leftmost 0-sink that does not belong to A,
either c and b are the same point, or c lies to the right
of b.

Now consider the 1-sink a′ at the end of the 1-path
from a. This point has to lie to the right of both barriers
b → b′ and b′ → c, as otherwise these paths would
cross the empty cone C1 of a′, which is not allowed by
Lemma 3. Because the path a → a′ is a 1-path and
the barriers in question consist of 0- and 2-edges, these
crossings are possible. Now let d be the 0-sink at the
end of the 0-path from a′. Since this path cannot cross
the 0-barrier b′ → c, d cannot lie to the left of c.

Because d belongs to component A, if c and d are
the same point, c belongs to component A. Otherwise,
if c and d are distinct points, then a, b, and d jointly
satisfy the criteria of Lemma 4, which gives us that b
belongs to component A as well—a contradiction since b
is the leftmost 0-sink that does not belong to A. This
contradiction comes from our assumption that G is not
connected. Therefore, the θ3-graph of any point set is
connected. �

4 The Yao-3-graph

The construction of the Yao-3-graph is very similar to
that of the θ3-graph. The only difference is in the way
distance is measured: the θ-graph uses the length of
the projection onto the bisector, whereas the Yao-graph
uses the Euclidean distance. Therefore, in every cone
a point is connected to its closest Euclidean neighbor.
We denote by |pq| the Euclidean distance between two
points p and q.

We show that like the θ3-graph, the Yao-3-graph is
also connected. To this end, we re-introduce the three
basic lemmas we had for the θ3-graph and show that
the same properties hold for the Yao-3-graph.

25th Canadian Conference on Computational Geometry, 2013

208

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

v

z

rx r′
b

C

u

D

Figure 9: Point x lies to the left of point u and the arcs vr′

and r′z are enclosed by circle C centered at u, having radius
|uv|.

We first prove a geometric auxiliary lemma depicted
in Figure 9.

Lemma 6 Given a non-vertical line b and a circle C
centered at a point u on b, let v and z be two points on
C such b bisects the segment vz. Let x be a point on b
and let D be the circle centered at x having radius |xv|.
If x lies to the left of u, then the right-side arc of D
between v and z is enclosed by C; otherwise, the left-
side arc of D between v and z is enclosed by C.

Proof. Assume that x lies to the left of u; the proof of
the other case is analogous. Let r and r′ respectively
be the right intersections of C and D with line b; see
Figure 9. Hence, arcs vr′ and r′z lie either entirely
inside C or entirely outside C. Therefore, it suffices to
show that r′ is enclosed by C, i.e., |ur′| ≤ |ur|. Since x
lies to the left of u, we can rewrite |ur′| as |xr′| − |xu|.
Since |xr′| = |xv| and |ur| = |uv|, we thus need to show
that |xv| ≤ |xu| + |uv|. This follows from the triangle
inequality. �

The proof of the following lemma is similar to that of
Lemma 1.

Lemma 7 For all i ∈ {0, 1, 2}, no two i-edges of the
Yao-3-graph can cross.

Proof. We look at the 0-edges. The cases for the other
edges are analogous. Let uv be a 0-edge such that
v ∈ Cu

0 and assume without loss of generality that v
lies to the right of u. We prove the lemma by contradic-
tion, so assume that some 0-edge xy crosses uv and let
y ∈ Cx

0 . Note that for xy to cross uv, Cx
0 must contain

some part of uv. Hence v lies in Cx
0 .

Let k be the line through the right boundary of Cu
0

and let l be the line through u such that the angle be-
tween l and the vertical line through u is π/6. We con-
sider four cases, depending on the location of x with
respect to u; see Figure 11 (left): (a) x ∈ Cu

0 to the left

u

v

x

z

u

l

π
6

v

k

Figure 10: Left: The four cases. Right: The case when x
lies in Cu

2 and above k.

of the line uv, (b) x ∈ Cu
2 above k, (c) x ∈ Cu

2 below k
or x ∈ Cu

1 below l, (d) x ∈ Cu
1 above l or x ∈ Cu

0 to the
right of the line uv.

Case (a): x ∈ Cu
0 to the left of the line uv. Since v

lies inside Cx
0 and v lies to the right of u, x lies in the cir-

cle centered at u having radius |uv|. Thus, x lies closer
to u than v, contradicting the existence of edge uv.

Case (b): x ∈ Cu
2 above k. We apply Lemma 6

as follows, see Figure 11 (right): Let C be the circle
centered at u having radius |uv|. Let the line through u
and x be bisector b, the bisector of v and z. Note that
this implies that z lies outside Cu

0 . Let D be the circle
centered at x having radius |xv|. Since x lies to the left
of u, Lemma 6 gives us that the right arc vz of circle D
is enclosed by circle C. Since the area in which y must
lie for xy to cross uv is bounded by the right boundary
of Cx

0 , edge uv, and the right arc vz of circle D, it is
enclosed by C. Therefore, there does not exist a point
y ∈ Cx

0 such that xy intersects uv.

Case (c): x ∈ Cu
2 below k or x ∈ Cu

1 below l. Since u
lies in Cx

0 , y needs to be closer to x than u for edge xy
to exist. Hence it must lie inside the circle C centered
at x having radius |xu|. Look at the lower half-plane
defined by the line through u perpendicular to C and
note that C is contained in this half-plane. However,
the half-plane does not intersect Cu

0 to the right of u
and hence no point y inside the half-plane can be used
to form an edge xy that crosses uv.

Case (d): x ∈ Cu
1 above l or x ∈ Cu

0 to the right
of the line uv. We apply Lemma 6 as follows, see Fig-
ure 11 (right): Let C be the circle centered at u having
radius |uv|. Let the line through u and x be bisector b.
Note that z lies outside Cx

0 . Let D be the circle cen-
tered at x having radius |xv|. Since x lies to the right
of u, Lemma 6 gives us that the left arc vz of circle D
is enclosed by circle C. Since the area in which y must
lie for xy to cross uv is bounded by edge uv, the left
arc vz of circle D, and either the left boundary of Cx

0

(if u /∈ Cx
0) or the line ux (if u ∈ Cx

0), it is enclosed
by C. Therefore, there does not exist a point y ∈ Cx

0

such that xy intersects uv. �

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

209

25th Canadian Conference on Computational Geometry, 2013

u

v

x

z

u

v

x

Figure 11: Left: The case when x ∈ Cu
2 below k or x ∈ Cu

1

below l. Right: The case when x ∈ Cu
1 above l or x ∈ Cu

0 to
the right of the line uv.

Lemma 8 Every i-path of the Yao-3-graph is well-
defined and has an i-sink as one of its endpoints.

Proof. The proof of this lemma is analogous to
Lemma 2 for the θ3-graph. �

Lemma 9 If a cone of a point is empty, then no edge
in the Yao-3-graph can cross this cone.

Proof. We assume without loss of generality that Cu
0

does not contain any points. We prove the lemma by
contradiction, so assume that there exists an edge xy
that crosses Cu

0 . Since no edge between two points in
the same cone can cross another cone, let x ∈ Cu

2 and
y ∈ Cu

1 .

Point y cannot lie in Cx
0 , since either Cx

0 does not
intersect Cu

1 (if u /∈ Cx
0) or the line segment between x

and y does not intersect Cu
0 (if u ∈ Cx

0). Hence y must
lie in Cx

1 .

If u ∈ Cx
0 , Cx

1 does not intersect Cu
0 and thus the line

segment between x and y cannot intersect Cu
0 either.

Therefore both u and y lie in Cx
1 . For the edge xy to

exist, y must be closer to x than u, i.e., y must lie in
the circle centered at x having radius |xu|. This cir-
cle is contained in the half-plane to the left of the line
through u perpendicular to the circle.

If x lies on or above the horizontal line through u,
the half-plane does not intersect Cu

1 . If x lies below
the horizontal line through u, the half-plane does not
intersect Cu

1 above u and thus xy would not cross Cu
0 .

Since y is enclosed by the circle, the circle is contained
in the half-plane, and there is no point p in the half-
plane such that p ∈ Cu

1 and px crosses Cu
0 , xy cannot

cross Cu
0 either. �

Using Lemmas 7, 8 and 9, the proof of Theorem 5
translates directly to the Yao-3-graph yielding the fol-
lowing result.

Theorem 10 The Yao-3-graph is connected.

Acknowledgments. This problem was introduced dur-
ing the Fields Workshop on Discrete and Computa-
tional Geometry held at Carleton University in Ottawa,
Canada.

References

[1] L. Barba, P. Bose, J.-L. De Carufel, A. van
Renssen, and S. Verdonschot. On the stretch fac-
tor of the Theta-4 graph. In To appear in WADS,
2013.

[2] N. Bonichon, C. Gavoille, N. Hanusse, and D. Il-
cinkas. Connections between theta-graphs, Delau-
nay triangulations, and orthogonal surfaces. In
Graph-theoretic concepts in computer science, vol-
ume 6410 of Lecture Notes in Computer Science,
pages 266–278, 2010.

[3] P. Bose, J.-L. De Carufel, P. Morin, A. van
Renssen, and S. Verdonschot. Optimal bounds on
theta-graphs: More is not always better. In Pro-
ceedings of CCCG, pages 305–310, 2012.

[4] P. Bose, P. Morin, A. van Renssen, and S. Verdon-
schot. The θ5-graph is a spanner. To appear in the
proceedings of WG’13, 2013.

[5] P. Bose, A. van Renssen, and S. Verdonschot. On
the spanning ratio of theta-graphs. In Proceedings
of WADS, 2013.

[6] K. L. Clarkson. Approximation algorithms for
shortest path motion planning. In STOC, pages
56–65, 1987.

[7] M. Damian and A. Kumbhar. Undirected connec-
tivity of sparse yao graphs. In FOMC, pages 25–32,
2011.

[8] N. M. El Molla. Yao spanners for wireless ad hoc
networks. PhD thesis, Villanova University, 2009.

[9] J. M. Keil. Approximating the complete Euclidean
graph. In SWAT, volume 318 of Lecture Notes in
Computer Science, pages 208–213, 1988.

[10] G. Narasimhan and M. Smid. Geometric Spanner
Networks. Cambridge University Press, 2007.

[11] J. Ruppert and R. Seidel. Approximating the d-
dimensional complete Euclidean graph. In CCCG,
pages 207–210, 1991.

25th Canadian Conference on Computational Geometry, 2013

210

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

How to Cover Most of a Point Set with a V-Shape of Minimum Width

Boris Aronov∗

aronov@poly.edu
John Iacono†

jiacono@poly.edu
Özgür Özkan

ozgurozkan@gmail.com
Mark Yagnatinsky‡

myag@cis.poly.edu

Polytechnic Institute of NYU, Brooklyn, New York

Abstract

A V-shape is an infinite polygonal region bounded by
two pairs of parallel rays emanating from two vertices
(see Figure 1). We describe a randomized algorithm
that, given n points and an integer k ≥ 0, finds the
minimum-width V-shape enclosing all but k of the points
with probability 1− 1/nc for any c > 0, with expected
running time O(cn2(k + 1)4 log n(log n log log n+ k)).

1 Introduction

Motivation. The motivation for this problem comes
from curve reconstruction: given a set of points sampled
from a curve in the plane, find a shape approximating
the original curve. It has been suggested in [AD13]
that in an area where the curve makes a sharp turn,
it makes sense to model the curve by a V-shape. The
authors remark that it would be natural to investigate
a variant that can handle a small number of outliers,
to accommodate a few bad data points. We investigate
that variant here. The problem is an instance of a large
class of problems known as geometric optimization or
fitting questions, (see [AS98] for a survey).

Previous work. In [AD13], the authors develop an al-
gorithm for covering a point set in general position1

with a V-shape of minimum width (allowing no out-
liers) that runs in O(n2 log n) time and uses quadratic
space. They also find a constant-factor approxima-
tion algorithm with running time O(n log n), and a
(1 + ε)-approximation algorithm with a running time of
O((n/ε) log n+ n/(ε3/2) log2(1/ε)), which is O(n log n)
for a constant ε > 0.

∗Research supported by NSF Grants CCF-08-30691, CCF-11-
17336, and CCF-12-18791, and by NSA MSP Grant H98230-10-1-
0210.
†Research supported by NSF Grant CCF-1018370.
‡Research supported by NSF Grant CCF-11-17336, NSA MSP

Grant H98230-10-1-0210, and GAANN Grant P200A090157 from
the US Department of Education.

1We use the same general position assumptions as [AD13]: no
vertical line goes through two points, no three points are collinear,
and no lines defined by pairs of points are parallel.

Figure 1: Left to right: a V-shape with six outliers, and
both-outer, inner-outer, and both-inner V-shapes.

Our Result. Given a set P of n points in the plane and
an integer k ≥ 0, we show how to find the minimum-
width V-shape enclosing all but k of the points.

Definitions and notation. A V-shape is an infinite
polygonal region bounded by two pairs of parallel rays
emanating from two vertices (see Figure 1). The rays on
the region’s convex hull are the outer rays. The others
are the inner rays.

The line segment connecting the vertices of the outer
and inner rays separates the V-shape V into its left arm
and right arm. The width of an arm is the distance
between its two delimiting rays. The width of V is the
width of its wider arm. An outlier of V is a point of P
not contained in V . Each arm has an associated strip,
defined by the pair of directed parallel lines going through
its boundary. The left and right strips together uniquely
determine a V-shape. This is in fact how our algorithm
works: by trying to find a pair of strips determining the
thinnest V-shape.

Given a point set P , a k-edge (see Figure 2) of P
is a directed edge between two points in the set such
that exactly k points of P lie to the left of the directed
line through the edge (so in general position there are
n − k − 2 points to the right). For example, a 0-edge
is a directed edge on the convex hull. A k-edge is also
said to be an edge at level k. Let L(e, P) denote the
level of edge e in point set P . The set H(k, P) of edges
at level k or less are known as the at-most-k-edges, or
more concisely, the (≤ k)-edges.

It will also be useful to talk about levels in a line
arrangement A (see Figure 3). We use the following
definition: an edge of A is on the k-level if there are

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

211

25th Canadian Conference on Computational Geometry, 2013

Figure 2: The edges at level 1 of a point set.

Figure 3: The 2-level of a line arrangement with six
lines.

exactly k lines of A strictly above it.

2 The algorithm

2.1 Overview

We need only consider locally optimal V-shapes. In
[AD13], it was shown that there are three types of locally
optimal configurations, which they called both-outer,
inner-outer, and both-inner (see Figure 1). A both-outer
V-shape is a V-shape where both outer rays have two
points on them (and the inner rays have one). A both-
inner V-shape is a V-shape where both inner rays have
two points on them (and the outer rays have one). An
inner-outer V-shape is a V-shape where one of the outer
rays and one of the inner rays has two points on it and
the other two rays have one point each. (Note that
even for point sets in general position, one of the arms
may have its two rays coincide, and thus the V-shape
will have only five points on its boundary instead of
six.) A V-shape with k outliers is called a k-outlier V-
shape of the point set. Our algorithm works by finding
the minimum-width k-outlier V-shape of each type, and
returning the one that has the smallest width of all three.

Our approach for the both-outer case and the inner-
outer case was inspired by the approach of [AD13] for
the inner-outer case, except we use a binary search for
one step where they use total enumeration. When there
are zero outliers, our algorithm for the both-outer and

inner-outer cases would be easier to implement than
theirs, at the cost of a logarithmic factor in the running
time. However, most of the complexity of their solution
was in the both-outer case, and we use their both-outer
algorithm as a black box in our both-outer algorithm,
by running it on random subsets of the point set.

We handle both-outer V-shapes and inner-outer V-
shapes in almost the same way (see Figure 4). We
begin by enumerating the (≤ k)-edges of the point set.
Each such j-edge e is considered in turn as a candidate
for one of the outer rays to go through, with j ≤ k
outliers already accounted for. For a fixed e, we do a
binary search among remaining points of P , ordered by
perpendicular distance from e; this distance is the width
of the first candidate strip. For each point of the search
we find the second strip that has the smallest possible
width and still covers the remaining points, except for
the outliers. If the second strip is wider than the first, the
binary search moves farther out from e so that the second
strip has fewer points, otherwise it moves closer. To find
the second strip, we again enumerate the edges at levels 0
through k of the remaining points. The precise definition
of “remaining” here is the key difference between the
both-outer and the inner-outer algorithm; see detailed
discussion below. By now we have chosen three rays,
and have no freedom for the fourth: it is dictated by
how many more outliers we need. The running time is
O(n2(k + 1)2 log2 n) (see Lemma 3 for proof).

To find the minimum-width both-inner k-outlier V-
shape, we use a randomized algorithm that takes random
samples of the given point set. For each sample, it
enumerates all both-inner 0-outlier V-shapes using the
algorithm from [AD13]. We show that with enough
samples, the minimum-width both-inner k-outlier V-
shape will be one of the V-shapes enumerated with
probability at least 1 − 1/nc for any real number c >
0 (given as an input parameter). The V-shapes we
enumerate might have more than k outliers, so we use
a range searching data structure from [CY84] to detect
and discard such V-shapes. The running time of the
both-inner case is O(cn2(k+1)4 log n(log n log log n+k)),
which dominates the running time of the other two cases.

Theorem 1 There is a randomized algorithm that,
given n points and an integer k ≥ 0 denoting the desired
number of outliers, finds the minimum-width k-outlier
V-shape for the points with probability 1− 1/nc for any
c > 0, requiring O(n2) space with expected running time
O(cn2(k + 1)4 log n(log n log log n+ k)).

Proof. We find the thinnest k-outlier V-shape of each of
the three types separately and return the thinnest. The
both-inner algorithm dominates the running time. The
running time and correctness of the algorithms handling
the three cases is established in Lemmas 2, 3, and 5. �

25th Canadian Conference on Computational Geometry, 2013

212

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

e p

S1

S2 e p

S1 S2

Figure 4: Snapshot of inner-outer algorithm (left) and
both-outer algorithm (right).

2.2 Both-Outer and Inner-Outer

The following two algorithms find the thinnest inner-
outer k-outlier V-shape and the thinnest both-outer k-
outlier V-shape. The algorithms have the same structure:
for each candidate first strip S1, find the thinnest possible
second strip S2:

Algorithms 1 and 2. Part I: Finding S1.

Input: integer k, point set P such that |P | = n.
For each edge e ∈ H(k, P):
P ′ = points to the right of e, and the two points on e.
Sort P ′ by distance from the line through e.
//Perform binary search on P ′.
For each point p of the binary search:
S1 = points contained in strip defined by e and p.
Find thinnest strip S2. //see part 2 of algorithm
The binary search is guided by which strip is thicker:

If S1 is thicker, move p closer to e, else further.

It remains to explain how to find the thinnest S2 and
this depends on whether the k-outlier V-shape we seek
is an inner-outer V-shape or a both-outer V-shape. First
we define a function find-line (described in Lemma 4)
that takes a directed edge e, an integer i, and point
set P , and finds the (i+ 1)st furthest line from e going
through a point in P right of e.

The two cases are similar, so the steps that differ
are marked with an asterisk. It may help to refer to
Figure 4. To find a both-outer k-outlier V-shape, we
use Algorithm 1, and to find an inner-outer k-outlier
V-shape, we use Algorithm 2.

Algorithm 1. Part II: Finding S2 of a both-outer V-
shape.

i = L(e, P)
For each edge f ∈ H(k − i, P ′): *
j = k−i−L(f, P ′). * //number of outliers still needed
Let ` = find-line(f, j, P ′ − S1).*//` may not exist
Let S2 = the strip formed by f and `.
Record the thinnest S2 found so far.

If ` from Algorithm 1 does not exist, because P ′ − S1

has less than j points, then the strip determined by S1

is too wide, and we can proceed to the next f .

Figure 5: Invalid V-shapes that looks like a T or an X.

Algorithm 2. Part II: Finding S2 of an inner-outer
V-shape.

i = L(e, P)
For each edge f ∈ H(k − i, P ′ − S1): *
j = k− i−L(f, P ′−S1). * //# of outliers still needed
Let ` = find-line(f, j, P ′).*
Let S2 = the strip formed by f and `.
Record the thinnest S2 found so far.

Lemma 2 The above algorithms are correct.

Proof. There are three ways these algorithms can fail.
It can fail to find a valid V-shape, the V-shape it finds
can have the wrong number of outliers, or it can overlook
the thinnest V-shape with k outliers. How do we know
that all the V-shapes we just enumerated with the above
algorithms are valid? Two arbitrary strips may form a
shape that looks like an X or a T instead of a V (see
Figure 5). More formally, we want to avoid S1 having
points on both sides of S2. The points covered by S1

might indeed be split by S2, but this can only happen
when the points that were split off were among the k
outliers. This is because only the outer ray of S2 can
split off points from S1, and it only splits off points near
the convex hull: the outliers.

The algorithms never create more than k outliers,
because they keep track of how many are needed and
at each step never create more than that. Do they ever
create less than k? This can only happen if the algorithm
counts some outlier more than once. The algorithms
choose outliers three times: first when they choose e,
then when choosing f , and finally when choosing `. The
outliers caused by e (that is, the i points to its left) are
never double-counted, because they are invisible to the
rest of the algorithm, which works with P ′ instead of P .
The outliers created by f and those created by ` are on
opposite sides of f , so they can not be counted twice
either.

Lastly, can the thinest both-outer or inner-outer V-
shape be overlooked? For both-outer and inner-outer
V-shape, there is at least one outer ray defined by two
points, and we consider all edges e that could possibly
define it. For a fixed choice of e and p, we look at all

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

213

25th Canadian Conference on Computational Geometry, 2013

feasible choices of f . For a fixed choice of e, p and f ,
we have no freedom in choosing `, so no wrong choice
is possible. The only place where we do not look at all
possibilities is in choosing p, where we do binary search.
This is perfectly safe, because if, say, S1 is thinner than
S2, moving p closer to e forces S2 to cover more points,
which can not make it any thinner. �

Lemma 3 The running time of the above algorithms is
O(n2(k + 1)2 log2 n).

Proof. The algorithms are structured as a triply nested
loop, so it suffices to count the number of iterations of
each loop. It is well known that the set of (≤ k)-edges
has size O((k + 1)n) [GP84, AG86], so the loops for e
and f both iterate at most that many times. The binary
search for p iterates O(log n) times. We can enumerate
the j-edges, for all j ≤ k, in sorted order along the
j-level, in O((k + 1)n log n) time using the algorithm in
[EW86, pages 272–278]2. By Lemma 4 we can implement
find-line to run in O(log n) time. The claimed running
time follows. �

Lemma 4 After O((k+1)n log n) preprocessing, we can
find the (i + 1)st furthest point from a directed line e
among points to the right of e, where 0 ≤ i ≤ k, in
O(log n) time.

Proof. Finding the desired point is equivalent to finding
the line ` parallel to e which goes through the point in P
such that there are i points in P right of `. (This is the
line that find-line returns.) To do this, we go to the dual
and let A be the line arrangement induced by P ∗, where
` dualizes to a point `∗. The requirement in the primal
that there be k points right of ` means that `∗ must
lie on an edge in the k-level or the (|P | − k − 1)-level
of A, and the fact that ` must be right of e eliminates
one of these two possibilities. Again using [EW86], we
can compute the i-levels, and the (|P | − 1 − i)-levels,
for all i ≤ k, in sorted order by x-coordinate, in time
O((k + 1)n log n). Since we know the x-coordinate of `∗

(it is given by the slope of e in the primal), we can do
binary search on the i-level to identify the two vertices
that `∗ lies between. These two vertices lie on a line
of P ∗, which corresponds to a point of P in the primal.
This is the desired point. �

2.3 Both-Inner

The following algorithm finds the thinnest both-inner
k-outlier V-shape with high probability.

Lemma 5 Algorithm 3 finds the thinnest both-inner k-
outlier V-shape with probability at least 1− 1/nc for any

2The algorithm of [EW86] depends on a data structure for
dynamic convex hull. At the time, the best available such structure
was that of [OvL81, pages 169–181]. Using the one described in
[J02] instead gives the claimed running time.

Algorithm 3. Finds a min-width both-inner k-outlier
V-shape for P with high probability.

Input: integer k, point set P , real number c > 0
Let n = |P |, and let K = k + 1
Repeat K6ce lnn times:

Initialize R to the empty set
For each point in P , add it to R with probability 1/K
W = Find-empty-V-shapes(R) //[AD13, pp 303–304]
Remove V-shapes with more than k outliers from W

Return the thinnest V-shape seen.

c > 0, in O(cn2(k+1)4 log n(log n log log n+k)) expected
time and O(n2) space.

Proof. By [AD13], the above algorithm always produces
the right answer if k = 0, albeit with needless redundant
sampling of the entire point set, so we restrict our at-
tention to the case where k > 0. Denote the thinnest
both-inner k-outlier V-shape by V . Clearly, V is defined
by (at most) six points of P . Consider a subset R of
P , which contains the six points defining V but does
not contain the k outliers. V is a valid both-inner 0-
outlier V-shape for R, though perhaps not the thinnest
one. The algorithm simply samples P over and over, in
the hopes of eventually picking such a subset R. For
each sample R, it enumerates all both-inner 0-outlier
V-shapes using the algorithm from [AD13], and checks
whether they end up having at most k outliers in P .
Note that if all the V-shapes we consider end up result-
ing in more than k outliers, our algorithm fails to find
any valid V-shape. However, we show that this is very
unlikely: the probability that the algorithm fails to find
the optimal V-shape is less than 1/nc, where c is the
given positive constant.

Each point in P is independently chosen to be part
of R with probability 1/K. Thus, R has expected size
n/K. Now, what is the probability that the optimal
thinnest both-inner k-outlier V-shape is one of the valid
both-inner 0-outlier V-shapes for R? The probability of
having the required six defining points is 1/K6, and the
probability of avoiding the k outliers is (1−1/K)k = (1−
1/(k+1))k > 1/e, since (1−1/(k+1))k converges to 1/e
from above. So, the probability of our random sample
containing the six points we need and not containing the
k points we should avoid is at least p = 1/eK6. If we
call this the probability of success, then the probability
of failure is at most 1− p. If instead of taking just one
such random sample, we take m = K6 samples, the
probability of them all failing is at most (1− p)m. Now
using the fact that, for all x, 1− x < e−x, we conclude
that the probability q of all m samples failing to contain
the optimum both-inner V-shape is (1 − p)m < e−pm.
Since pm = (1/eK6)(K6) = 1/e, we have q < e−pm =
e−1/e. If we increase the number of samples from m to
mce lnn, then the probability of failure q reduces to at

25th Canadian Conference on Computational Geometry, 2013

214

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

most

e−pmce lnn = e−(ce lnn)/e = (elnn)−c = 1/nc,

which concludes the high-level description of the algo-
rithm, and the proof that its probability of failure is at
most 1/nc.

The crucial operation in the above algorithm is to
check that the V-shapes returned by the algorithm
from [AD13] do not have too many outliers. This can
be done using range searching with wedges, which is
a special case of simplex range searching, for which
there are a variety of data structures with various
space/time trade-offs. (A wedge is simply the convex
region bounded by two rays with a common vertex.) We
use a data structure that takes O(n2) space and gives
O(log n log log n + k) query time [CY84, pages 41–45].
The time taken by the algorithm from [AD13] to enu-
merate all both-inner 0-outlier V-shapes of a point set
with O(n/k) points is O((n2/k2) log n). The subset may
have as many as O(n2/k2) V-shapes, each of which take
O(log n log log n + k) time to check to make sure the
number of outliers is not too high, for a total time of
O((n2/k2)(log n log log n+ k)) per random sample.

We have glossed over a statistical subtlety here. If the
expected value of a random variable X is E[X], then
in general E[X2] may not be O(E[X]2), or indeed, it
might not even be finite. In this case, how do we know,
just because the expected size of R is O(n/k), that the
expected number of V-shapes is O(n2/k2)? What is true
for all random variables X from distributions with finite
mean and variance is that E[X2] = E[X]2+Variance[X].
The size of R follows the binomial distribution with
mean n/K and variance n(1/K)(1− 1/K), so we have

E(|R|2) = n2/K2 + n(1/K)(1− 1/K) < n2/K2 + n/K,

which is O(n2/k2).
Since we are taking O(ck6 log n) random samples, find-

ing the best both-inner k-outlier V-shape takes time
O(cn2(k + 1)4 log n(log n log log n+ k)). �

Remark. We have calculated how many samples we
need in order to find a particular both-inner k-outlier
V-shape with high probability (specifically, the thinnest
one). A natural question to ask is how many samples
we would need to find all both-inner k-outlier V-shapes.

If the probability of failing to find an arbitrary both-
inner V-shape is q, then the probability of there being
at least one both-inner V-shape we fail to find is at
most q times the number of both-inner V-shapes present
in the point set. Clearly, regardless of the value of k,
this number is at most n6, and we already computed
q < 1/nc. By choosing c > 7, we have q < 1/n7, and
thus our probability of failure is less than 1/n.

Acknowledgments

We would like to thank Sariel Har-Peled for the random-
ized algorithm, and Muriel Dulieu for participating in
discussions of a simpler version of the problem.

References

[AD13] B. Aronov and M. Dulieu, How to cover a
point set with a V-shape of minimum width, Comput.
Geom.: Theory Appl., 46(3) (2013) 298–309.

[AG86] N. Alon and E. Györi, The number of small
semispaces of a finite set of points in the plane, J.
Combinatorial Theory, Ser. A, 41(1) (1986) 154–157.

[AS98] P.K. Agarwal and M. Sharir, Efficient algorithms
for geometric optimization, ACM Computing Surveys,
30(4) (1998) 412–458.

[CY84] R. Cole and C.K. Yap, Geometric retrieval prob-
lems, Information and Control, 63(1–2) (1984) 39–57.

[EW86] H. Edelsbrunner and E. Welzl, Constructing
belts in two-dimensional arrangements with applica-
tions, SIAM J. Computing, 15(1) (1986) 271–284.

[GP84] J.E. Goodman and R. Pollack, On the num-
ber of k-subsets of a set of n points in the plane, J.
Combinatorial Theory, Ser. A, 36(1) (1984) 101–104.

[J02] R. Jacob, Dynamic Planar Convex Hull, PhD
thesis, May 2002, University of Aarhus, Denmark,
http://brics.dk/DS/02/3.

[OvL81] M.H. Overmars and J. van Leeuwen, Mainte-
nance of configurations in the plane, J. Computer
System Sciences, 23(2) (1981) 166–204.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

215

25th Canadian Conference on Computational Geometry, 2013

216

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Computing Covers of Plane Forests∗

Luis Barba†‡ Alexis Beingessner† Prosenjit Bose† Michiel Smid†

Abstract

Let φ be a function that maps any non-empty subset
A of R2 to a non-empty subset φ(A) of R2. A φ-cover
of a set T = {T1, T2, . . . , Tm} of pairwise non-crossing
trees in the plane is a set of pairwise disjoint connected
regions such that

1. each tree Ti is contained in some region of the cover,

2. each region of the cover is either

(a) φ(Ti) for some i, or

(b) φ(A ∪B), where A and B are constructed by
either 2a or 2b, and A ∩B 6= ∅.

We present two properties for the function φ that make
the φ-cover well-defined. Examples for such functions φ
are the convex hull and the axis-aligned bounding box.
For both of these functions φ, we show that the φ-cover
can be computed in O(n log2 n) time, where n is the
total number of vertices of the trees in T .

1 Introduction

Let a geometric tree be a plane straight-line embedding
of a tree in R2. Consider a set T = {T1, T2, . . . , Tm}
of m pairwise non-crossing geometric trees with a to-
tal of n vertices in general position. The coverage of
these trees is the set of all points p in R2 such that ev-
ery line through p intersects at least one of the trees.
Beingessner and Smid [1] showed that the coverage can
be computed in O(m2n2) time. They also presented
an example of m = n/2 pairwise non-crossing geomet-
ric trees (each one being a line segment) whose coverage
has size Ω(n4). Thus, the worst-case complexity of com-
puting the coverage is Θ(n4).

Since the worst-case inputs are rather artificial, we
consider the following heuristic for reducing the run-
ning time. Let Conv denote the convex hull. We ob-
serve that the coverage of the trees in T is equal to the
coverage of their convex hulls. Moreover, if two convex
hulls Conv(Ti) and Conv(Tj) overlap, then we can re-
place them by the convex hull of their union without

∗The authors were supported by NSERC. A.B. was supported
by Carleton University’s I-CUREUS program.
†School of Computer Science, Carleton University, Ottawa,

Canada.
‡Boursier FRIA du FNRS, Département d’Informatique, Uni-

versité Libre de Bruxelles

changing the coverage. By repeating this process, we
obtain a collection of pairwise disjoint convex polygons
whose coverage is equal to the coverage of the input
trees. Ideally, the number of these convex polygons and
their total number of vertices are much less than m and
n, respectively. If this is the case, then running the al-
gorithm of [1] on the convex polygons gives the coverage
of the input trees in a time that is much less than Θ(n4)
time, provided that we are able to quickly compute the
collection of pairwise disjoint convex polygons. In this
paper, we show that this is possible, by providing an
O(n log2 n)–time algorithm.

We now formally state the above process.

1. Let C = {Conv(Ti) | 1 ≤ i ≤ m}.

2. While the elements of C are not pairwise disjoint:

(a) Take two arbitrary elements C and C ′ in C for
which C 6= C ′ and C ∩ C ′ 6= ∅.

(b) Let C ′′ = Conv(C ∪ C ′).

(c) Set C = (C \ {C,C ′}) ∪ {C ′′}.

3. Return the set C.

The output C is a collection of pairwise disjoint convex
polygons, which we refer to as the hull-cover of T . See
Figure 1 for two examples. Since in Step 2(b), the two
elements C and C ′ are chosen arbitrarily (as long as
they are distinct and overlap), the reader may object
to the use of the word “the” in front of “hull-cover”.
In Section 2 we justify the use of this word by proving
that, no matter what choices are made in Step 2(b), the
output C is always the same.

Figure 1: Two examples of hull-covers. Note that the
hull-cover on the right demonstrates what is in some
sense the worst case for the number of times intersec-
tions will need to be re-evaluated.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

217

25th Canadian Conference on Computational Geometry, 2013

2 φ-Covers

Consider a function φ that maps any non-empty subset
A of R2 to a non-empty subset φ(A) of R2. We assume
that this function satisfies the following properties:

Property 1: For any non-empty subset A of R2,

A ⊆ φ(A).

Property 2: For any two non-empty subsets A and B
of R2,

if A ⊆ φ(B), then φ(A) ⊆ φ(B).

Both the convex hull and axis-aligned bounding box
functions satisfy these properties. However, the min-
imum enclosing circle function does not satisfy Prop-
erty 2.

We rewrite the algorithm described in Section 1 using
the function φ instead of Conv. We also use a forest F of
binary trees to keep track of the history of the process;
each node u in this forest stores a value φ(u). The forest
helps us to prove that the φ-cover is well-defined.

1. For each i with 1 ≤ i ≤ m, let Ti be the tree con-
sisting of the single node ri, whose value φ(ri) is
equal to φ(Ti).

2. Initialize the forest F = {Ti | 1 ≤ i ≤ m}.

3. Let C = {φ(ri) | 1 ≤ i ≤ m}.

4. While the elements of C are not pairwise disjoint:

(a) Take two arbitrary roots r and r′ in the forest
F for which r 6= r′ and φ(r) ∩ φ(r′) 6= ∅.

(b) Let T and T ′ be the trees in F whose roots
are r and r′, respectively.

(c) Let r′′ be a new node and set its value φ(r′′)
to φ(φ(r) ∪ φ(r′)).

(d) Create a new tree T ′′ whose root is r′′ and
make T and T ′ the two children of r′′.

(e) Set F = (F \ {T , T ′}) ∪ {T ′′}.
(f) Set C = (C \ {φ(r), φ(r′)}) ∪ {φ(r′′)}.

5. Return the forest F and the set C.

We refer to the output set C as the φ-cover of T . In
Theorem 2 below, we prove that the φ-cover is well-
defined. Before we prove this theorem, we present a
third property of the function φ:

Property 3: For any two non-empty subsets A and B
of R2,

φ(A) ⊆ φ(φ(A) ∪ φ(B)).

Note that this property follows trivially from Prop-
erty 1, because

φ(A) ⊆ φ(A) ∪ φ(B) ⊆ φ(φ(A) ∪ φ(B)).

Lemma 1 Let C and C′ be two φ-covers with corre-
sponding forests F and F ′, respectively. For each node u
in F , there exists a root r′ in F ′ such that φ(u) ⊆ φ(r′).

Proof. We prove the lemma by induction on the height
of the subtree rooted at u. First assume that u is a leaf
in F . Let i be the index such that φ(u) = φ(Ti), let u′

be the leaf in F ′ for which φ(u′) = φ(Ti), let T ′ be the
tree in F ′ that has u′ as a leaf, and let r′ be the root of
T ′. We prove that φ(u) ⊆ φ(r′).

Let u′1 = u′, u′2, . . . , u
′
k = r′ be the nodes in T ′ on the

path from u′ to r′. For each i with 1 ≤ i < k, let v′i be
the sibling of u′i. Since

φ(u′i+1) = φ(φ(u′i) ∪ φ(v′i)),

it follows from Property 3 that φ(u′i) ⊆ φ(u′i+1). From
this, it follows that

φ(u) = φ(u′) = φ(u′1) ⊆ φ(u′2) ⊆ . . . ⊆ φ(u′k) = φ(r′).

Now assume that u is not a leaf. Let v and w be
the children of u. Observe that φ(v) ∩ φ(w) 6= ∅. By
induction, there exist roots r′ and r′′ in F ′ such that
φ(v) ⊆ φ(r′) and φ(w) ⊆ φ(r′′). Since φ(r′)∩φ(r′′) 6= ∅,
we must have r′ = r′′. Thus, since φ(v) ∪ φ(w) ⊆ φ(r′),
Property 2 implies that

φ(u) = φ(φ(v) ∪ φ(w)) ⊆ φ(r′).

�

Theorem 2 The φ-cover is well-defined.

Proof. Let C and C′ be two φ-covers with correspond-
ing forests F and F ′, respectively. We have to prove
that C = C′. Observe that

C = {φ(r) | r is a root in F}

and
C′ = {φ(r′) | r′ is a root in F ′}.

Let r be a root in F . By Lemma 1, there exists a root
r′ in F ′ such that φ(r) ⊆ φ(r′). Again by Lemma 1,
applied with the roles of F and F ′ interchanged, there
exists a root r′′ in F such that φ(r′) ⊆ φ(r′′). Thus, we
have

φ(r) ⊆ φ(r′) ⊆ φ(r′′).

Since φ(r)∩φ(r′′) 6= ∅, we must have r = r′′. Therefore,
φ(r) = φ(r′). We conclude that C ⊆ C′. By a symmetric
argument, we can show that C′ ⊆ C. �

Thus, the φ-cover is well-defined for both the convex
hull and the axis-aligned bounding box. If φ is the min-
imum enclosing circle function, then, in addition to not
satisfying Property 2, the φ-cover is not well-defined:
In Figure 2, an example is given for which the order
in which merges are performed can result in different
outputs.

25th Canadian Conference on Computational Geometry, 2013

218

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

(a) (b)

(c) (d)

1 2

3

4

Figure 2: (a) The input forest with trees numbered;
(b) The minimum enclosing circle of each tree; (c) Merg-
ing 1 and 2 first results in no intersection with 4;
(d) Merging 1 and 3 first results in an intersection with
4.

3 Computing the Hull-Cover

In this section, we take for φ the convex hull func-
tion and show that the φ-cover can be computed in
O(n log2 n) time.

3.1 Weakly Disjoint Polygons

Finding the convex hull of two convex polygons can be
a relatively expensive operation due to the fact that
their boundaries can cross in Ω(n) different places. For
example, consider a regular n-gon being merged with
a copy of itself rotated ε degrees. In this section we
demonstrate that, because our convex polygons are the
convex hulls of disjoint trees, they behave much nicer
than general convex polygons.

Let a weakly disjoint pair of convex polygons P , Q
be a pair of convex polygons such that P \Q and Q \P
are both connected sets of points, and P does not share
a vertex with Q. Then a weakly disjoint set of poly-
gons is a set of polygons such that all pairs of polygons
are weakly disjoint. For simplicity, we assume that the
convex hull of a line segment is a valid degenerate con-
vex polygon consisting of two edges. We also assume all
vertices are in general position. In this section we prove
that weakly disjoint polygons are better behaved than
general convex polygons, and that the convex hulls of
disjoint trees are weakly disjoint.

Lemma 3 If two convex polygons P,Q are weakly dis-
joint, then their boundaries intersect at at most two

points.

Proof. Assume the intersection of their boundaries,
∂P ∩ ∂Q, contains more than two points. Further, as-
sume without loss of generality that P contains points
outside of Q. Start at a point on P ’s boundary ∂P that
is outside of Q, and walk along ∂P . Eventually we in-
tersect ∂Q, and now P is separated into two connected
regions: points inside of Q, and points outside of Q. If
we continue walking along ∂P , we eventually cross ∂Q
again. Now there are three regions of P : two outside
Q, and one inside Q, but the two outside Q may be the
same. Continuing along ∂P we must eventually inter-
sect Q again. Now the second outside region has been
completed, and is clearly disconnected from the first.
Therefore P and Q aren’t weakly disjoint. �

Lemma 4 If two convex polygons P,Q are weakly dis-
joint, but not disjoint, then one contains a vertex of the
other.

Proof. If two convex polygons are not disjoint, then
they have a non-empty intersection. If this intersection
has no area, then they only share part of a boundary.
However the vertices are in general position, so this can-
not be the case. So their intersection has some non-zero
area. Remark that the vertices of P ∩Q are either ver-
tices of P , Q, or points on ∂P ∩ ∂Q. Since P ∩ Q has
positive area, it must have at least 3 vertices. However,
by Lemma 3, we know that there are at most two points
in ∂P ∩∂Q. So it follows that one of these three vertices
must be a vertex of P or Q. Therefore a vertex of one
is inside the other. �

Lemma 5 The convex hulls of two disjoint trees are
weakly disjoint.

Proof. Assume there exists two disjoint trees R, S,
but their convex hulls are not weakly disjoint. Let
P = Conv(R) and Q = Conv(S). If R and S share
a vertex, then clearly they are not disjoint, and we have
a contradiction. Then either P \ Q is disconnected, or
Q\P is. Assume without loss of generality that P \Q is
disconnected. Then there exists two points p, p′ ∈ P \Q
such that there exists no path between p and p′ inside
of P \Q. Since both P and Q are convex and share no
vertices, the connected components p and p′ are part of
must contain a vertex of P . Therefore, without loss of
generality, we may assume p and p′ are vertices of P .
However, that means p and p′ are points on R, which
has by definition a path that connects them. So either
R and S intersect, or there exists a path between p and
p′; both of which are contradictions. Therefore, if two
trees are disjoint, their convex hulls must be weakly dis-
joint. �

Since the convex hulls of disjoint trees are weakly dis-
joint, unlike general convex polygons, finding the convex

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

219

25th Canadian Conference on Computational Geometry, 2013

hull of their union is simply a matter of finding at most
two tangents to join them by. However, in merging two
convex hulls it is no longer guaranteed that the new set
of convex hulls has this property. Therefore, it would
be desirable to merge convex hulls in some way in which
we can maintain this property as an invariant.

3.2 Shoot and Insert

If two trees R and S in T have intersecting convex hulls,
and we can find an edge to connect R and S without
intersecting any other tree in T , then we have effectively
merged the two trees, while maintaining the invariant
of having a set of pairwise non-crossing trees.

Lemma 6 Assume R and S are two non-crossing trees
whose convex hulls intersect. Then the convex hull of
one is strictly inside the other, or there exists a pair of
adjacent vertices on the convex hull of one whose visi-
bility is blocked by the other tree.

Proof. By Lemma 4, we know that one contains a ver-
tex of the other. Assume without loss of generality
that a vertex r of Conv(R) is inside of Conv(S). If
every other vertex of Conv(R) is inside of Conv(S),
then Conv(R) is strictly inside of Conv(S) and we are
done. Assume this is not the case. Then there exists
some path along R from r to the outside of Conv(S).
This path must pass between two vertices of Conv(S),
and therefore obstruct their visibility. �

Consider shooting a ray between the two vertices p, q
of Conv(S) that are obstructed by one or more other
trees. This ray will necessarily intersect some other
tree R first at a point q′. By definition, the edge pq′

is an edge that joins R and S without intersecting any
other tree. If this is the case, then we can stop shoot-
ing rays along S, replace S and R with S ∪ R ∪ pq′,
and starting shooting rays along the convex hull of that
new connected component. Furthermore, if we perform
this process for all adjacent pairs of vertices of Conv(S),
and every ray reached the target vertex, we can conclude
that either S is disjoint from all other convex hulls, or
part of a well-nested hierarchy of boundary-disjoint con-
vex hulls. If the former, then S is part of our output. If
the latter, then the largest convex hull that contains S
is part of our output.

Ishaque et al.[3] provide a ray shooting data struc-
ture that supports shooting rays from the boundary of
obstacles, that are themselves inserted into the obsta-
cles. Using their structure, a set of n pairwise disjoint
polygonal obstacles can be preprocessed in O(n log n)
time and space to support m permanent ray shootings
in O((n + m) log2 n + m logm) time. Therefore shoot-
ing n rays takes O(n log2 n) time. We refer to this data
structure as permashoot.

3.3 Algorithm

We start by computing the sets

C = {Conv(Ti)|1 ≤ i ≤ m}

and

E = {e| e is an edge of some element of C}.

We build a permashoot instance R on T , and a union-
find data structure U on T . The latter structure is used
for determining what connected component a given edge
is part of.

As long as E is non-empty, we do the following: Take
an arbitrary edge e in E and remove it from E. If e is
not stored in R, search in U for s, the component e is
part of. Shoot a ray in R from one endpoint of e along
e, and return the component r that was hit. If s 6= r,
then merge Conv(s) and Conv(r) in C; remove and add
edges from E to reflect the new state of C; and union s
and r in U .

At this moment, the set E is empty. We perform a
plane-sweep on C, and return all the convex hulls that
are not contained inside another convex hull.

An example is given in Figure 3.

1

2

4

3

5

6

7

8

9

(a) (b)

(c) (d)

Figure 3: (a) The input; (b) Initial convex hulls of the
input; (c) Rays shot by the algorithm (numbered in or-
der they were shot), with rays that caused a merge in
red; (d) Well nested hierarchy of hulls that results

Our algorithm shoots a ray for every edge of every
convex hull. If any two convex hulls intersect, but are

25th Canadian Conference on Computational Geometry, 2013

220

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

not well-nested, then they are found during this pro-
cess, and replaced by the convex hull of their union with
an edge that joins them without intersecting any other
components. This ensures that the invariant of having
a set of pairwise weakly disjoint polygons holds. This
continues until no more intersections are found in this
way. By Lemma 6, we can conclude that we now have
a set of convex hulls that are either disjoint, or part of
a well-nested hierarchy. Our plane-sweep then finds all
the maximal hulls, and returns only these.

3.4 Analysis

Because we maintain the invariant of having a set of
pairwise weakly disjoint polygons, we know that each
union adds at most two edges to the set of edges (the
tangents between the two hulls). At worst, we perform
O(m) = O(n) unions, which adds O(n) edges to check.
Initially, there are O(n) edges to check from the starting
hulls. Therefore we end up shooting O(n) rays, which
takes O(n log2 n) time.

For each ray shot we perform a constant amount of
union and find operations to our union-find structure,
each of which can easily be done in O(log n) time [2,
Chapter 21]. So union-find only takes us O(n log n) time
in total.

Merging two weakly disjoint convex hulls takes
O(log n) time if we maintain them using height bal-
anced binary search trees [5, Section 3.3.7]. Since we
merge at most O(m) = O(n) trees, merging the trees
takes O(n log n) time.

Finally, the plane-sweep takes O(n log n) time to find
all the maximal convex hulls.

Therefore our algorithm takes O(n log2 n) time. This
proves the following theorem.

Theorem 7 The hull-cover of a set of pairwise non-
crossing trees with a total of n vertices can be computed
in O(n log2 n) time.

4 Computing the Box-Cover

We now assume that φ is the axis-aligned bounding box
cover. We refer to the φ-cover as the box-cover.

Let Box(S) be the axis-aligned bounding box of a tree
S. A simple solution to box-cover is as follows. Create a
dynamic range searching data structure that stores axis-
aligned line segments and supports queries for those line
segments in an axis-aligned query box. For each tree S
in the input, query the structure for the segments found
in the Box(S). For each segment found, remove its
parent bounding box from the structure. Then perform
a query on the structure with the bounding box of all
the boxes found in this way, plus the bounding box we
just queried with. Repeat this until no segments are
found. Then insert the last box we queried with into

the structure. Then run a plane sweep to find all the
outermost boxes.

When our algorithm finishes inserting boxes we have
a set of boundary-disjoint boxes, as in our hull-cover
algorithm. Therefore, as before, it is correct.

Dynamic structures for axis-aligned segment queries
exist that take O(log2 n+ k) time for queries, insertion,
and deletion[4]. Since we start with an empty struc-
ture, preprocessing time is irrelevant. When we find an
intersection, we replace O(k) boxes with a single box.
Since there are O(m) = O(n) boxes, and each box gets
inserted and removed at most once, it follows that our
algorithm takes O(n log2 n) time to perform this pro-
cess in total. The plane sweep takes only O(n log n)
time. Therefore, our algorithm takes O(n log2 n) time
in total. This proves the following theorem.

Theorem 8 The box-cover of a set of pairwise non-
crossing trees with a total of n vertices can be computed
in O(n log2 n) time.

5 Conclusions and Open Problems

We are able to compute the solutions to hull-cover and
box-cover in O(n log2 n) time. However this is not obvi-
ously optimal. It remains to be seen whether there are
better algorithms for these problems.

While the hull-cover is a potentially powerful pre-
processing step for computing the actual coverage, the
relationship between the two is fairly weak. In the best
case the hull-cover is the convex hull of the input, and
the two are the same. However in the worst case the
hull-cover is exactly the input, but the coverage is some-
thing of size Ω(n4).

Given a set O of orientations, an O-convex set S is a
set of points such that every line with an orientation in
O has either an empty or connected intersection with S.
The O-hull of a set T of points is then the intersection of
all O-convex sets that contain T . When O = {[0, 180)},
the O-hull is the convex hull. When O = ∅, the O-hull
is the identity function. The O-hull satisfies our proper-
ties for being well-defined [6]. However, an algorithm for
the general O-hull is not immediately obvious. Further,
it is unclear as to whether there are other non-trivial
well-defined covering functions beyond the O-hull and
the axis-aligned bounding box. The geodesic hull does
satisfy our properties, but without a bounding domain
the geodesic hull is just the convex hull. We know from
the start of the paper that the minimum enclosing cir-
cle does not produce well-defined results, and a similar
argument applies to the minimum enclosing square.

Remark that our proof that general φ-covers are well-
defined does not rely on the fact that we are work-
ing in two dimensions. This allows us to easily ex-
tend the problem into higher dimensions, where the
convex hull and bounding box still work. However,

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

221

25th Canadian Conference on Computational Geometry, 2013

while our technique for bounding boxes generalizes to
d-dimensions nicely, our technique for the convex hull
does not. Therefore, a technique for computing the hull-
cover that generalizes well would be desirable.

Acknowledgement

Special thanks to Pat Morin for consultation on certain
proofs.

References

[1] A. Beingessner and M. Smid. Computing the coverage
of an opaque forest. pages 95–99. Canadian Conference
on Computation Geometry, 2012.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT press, 2001.

[3] M. Ishaque, B. Speckmann, and C. Tóth. Shooting per-
manent rays among disjoint polygons in the plane. SIAM
Journal on Computing, 41(4):1005–1027, 2012.

[4] M. Overmars. The Design of Dynamic Data Structures.
Lecture Notes in Computer Science. Springer, 1983.

[5] F. Preparata and M. Shamos. Computational geometry:
an introduction. Texts and monographs in computer sci-
ence. Springer-Verlag, 1988.

[6] G. J. Rawlins and D. Wood. Restricted-oriented convex
sets. Information sciences, 54(3):263–281, 1991.

25th Canadian Conference on Computational Geometry, 2013

222

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

An Efficient Exact Algorithm for the Natural Wireless Localization Problem∗

Bruno E. Crepaldi† Pedro J. de Rezende† Cid C. de Souza†

Abstract

Considered a variation of the art gallery problem, the
wireless localization problem deals with the placement
of the smallest number of broadcasting antennas re-
quired to satisfy some property within a given polygon.
The case dealt with here consists of antennas that prop-
agate a unique key within a certain antenna-specific an-
gle of broadcast, so that the set of keys received at any
given point is sufficient to determine whether that point
is inside or outside the polygon. To ascertain this local-
ization property, a Boolean formula must be produced
along with the placement of the antennas.

In this paper, we propose an exact algorithm based
on integer linear programming for solving the NP-hard
natural wireless localization problem. The efficiency of
our algorithm is certified by experimental results which
include the solution of instances of up to 600 vertices in
less than five minutes on a standard desktop computer.

1 Introduction

The Art Gallery Problem (AGP) [9, 10, 8] is a long-
standing research topic in Computational Geometry.
New problems of this type arose upon the introduction
of a novel concept of visibility in which guards are able
to see through the gallery boundary [7]. The motiva-
tion for this formulation originated from applications to
wireless networks, where signals from antennas are not
blocked by walls.

To illustrate this situation consider the following folk-
loric example, which captures the essence of the problem
[1]. The owner of a café would like to provide wire-
less internet access to her customers while preventing
those outside her shop to access the network infrastruc-
ture. To accomplish this, antennas may be installed,
each of which broadcasting a unique (secret) key within
an arbitrary but fixed angular range. The goal is to
place these antennas and to adjust their angles of broad-
cast so that customers within the area of the café could
be distinguished from those outside simply by having
them name the keys received at their location. In a
more formal way, one seeks to characterize the poly-

∗This work was partially supported by grants from CNPq
(Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico),
FAPESP (Fundação de Amparo à Pesquisa do Estado de São
Paulo) and Faepex/Unicamp.
†Institute of Computing, University of Campinas, Campinas,

Brazil, brunoecrepaldi@gmail.com,{rezende|cid}@ic.unicamp.br

gon corresponding to the area of the shop by means of
a monotone Boolean formula whose variables are the
keys transmitted by the antennas. Since installation
and maintenance of the antennas carry a cost, a natu-
ral optimization problem amounts to finding a solution
with the minimum number of such devices.

Similarities between this problem and the traditional
art gallery problem are self-evident, e.g., guards of the
latter correspond to antennas in the former. Notwith-
standing that the notions of visibility differ, henceforth
we will use the term guard and antenna indistinctly.

As in the classical AGP, the wireless localization prob-
lem (WLP) has several variants depending on the choice
of potential locations for guards, their angular range and
maximum visibility distance. In this paper, we assume
visibility to be unbounded.

Now, assume that the gallery floor plan is described
by a simple polygon P . In the most general situation,
guards may be placed anywhere inside P and can broad-
cast in any direction, in which case they are called inter-
nal guards.In a more restricted version, guard placement
is limited to the vertices of P , and they are referred to as
vertex guards. Moreover, another situation often found
in the literature is the one known as natural guarding.
Here, the guards are limited to lie on vertices or edges
of P and to transmit their signals within the range cor-
responding to the interior angle of the polygon at that
point.

The corresponding Natural Wireless Localization
Problem (NWLP) is known to be NP-hard [2].

In [1] an alternative NP-hardness proof is given, which
can be extended to more general types of guards, such
as vertex and internal guards. There are also results
[7, 6, 3] that lead to upper bounds on the number of
guards sufficient for coverage, but these bounds are not
always tight.

To the best of our knowledge, no exact algorithm has
been proposed to this date to solve the NWLP. Fur-
thermore, we are also unaware of any computational
experiments reported in the literature for this problem.

Contribution This paper aims at filling these two gaps.
To this end, in Sections 3 to 6, we model the NWLP
problem as an integer program and in Section 7 we de-
scribe ingenious ways to use this formulation algorith-
mically. Computational results are presented in Sec-
tion 8 validating this technique as a viable method for
computing optimal solutions for instances comprised of
hole-free polygons with up to 600 vertices. Conclusions

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

223

25th Canadian Conference on Computational Geometry, 2013

Figure 1: Polygon with guards on vertices a, b, c and d
and Boolean formula a · b+ a · c · d.

and future directions follow.

2 Problem Definition and Terminology

A guard can be viewed as a wireless station positioned
at a given location, which broadcasts a signal in a pre-
defined angle and direction. The region, Vis(g), covered
by a guard g positioned at a point p is the cone with
apex at p defined by two rays emanating from it. The
bounding rays establish the angle and the direction of
transmission of the corresponding guard in a natural
way. Hence, from this point on, a guard will be iden-
tified to its cone of broadcast: the position of its apex
and its angle of transmission.

We may now associate to a guard g a Boolean vari-
able that, for every point p in the plane, takes a true
value if and only if p belongs to Vis(g). Given a poly-
gon P and set of guards G, one may ask whether there
exists a Boolean formula B on these variables that is
satisfied uniquely on the points in P . In the affirmative
case, G is said to form a guarding of P . Figure 1 illus-
trates this idea. For simplicity, in the remainder of the
text, Boolean formulas are assumed to be in disjunctive
normal form.

In the context of WLP, one is given a guard candidate
setG known to contain a guarding of P . When a unitary
cost is assigned to each guard in a guarding subset of G,
the optimization problem seeks a guarding subset with
minimum total cost. Variants of the problem depending
on how the set of candidate guards G is defined can be
formulated. Usually, G consist of a predefined finite set
of locations, broadcasting angles and directions. Com-
mon locations for guards are the vertices and edges of P .
In this work, we focus on the so-called natural guardings
and on the resulting optimization problem, NWLP. A
guard placed on a vertex of the polygon P is a natural
vertex guard if its angle is the interior angle at that ver-
tex, relative to P . A guard placed anywhere on an edge
of P and broadcasting within an angle of π directed to
the interior of P is called a natural edge guard. Since
any two of these guards on a single edge would cover
the same region, we can restrict the placement of natu-
ral edge guards to midpoints of edges. Accordingly, we
will refer to a guarding consisting only of natural vertex
and edge guards as a natural guarding [7].

3 Discretization

Viewing the NWLP as a continuous problem, for any
point in the plane, the resulting Boolean formula should
correctly identify whether it is inside or outside the poly-
gon. In this section, we show that it actually suffices to
ensure the validity of the formula for a finite set of points
in the plane.

The rays on the boundary of the visibility regions of
all natural guards define a planar arrangement. Notice
that this arrangement coincides with the one obtained
from the lines that support the edges of P . Moreover,
since P has n edges, the planar subdivision induced by
this arrangement has O(n2) faces. From here on, we
use the term face to refer to a face of this subdivision.
The next result shows that the correctness of a Boolean
formula that solves the NWLP follows from its validity
on any single point in each of these faces.

Lemma 1 Given a simple polygon, let G be the set of
its natural guards. Denote by Sub(G) the planar subdi-
vision induced by the visibility regions of all guards in
G. A guard g ∈ G covers one point in the interior of a
face f of Sub(G) if and only if g covers all points in f .

Proof. Let g ∈ G and let p be a point in the interior of
a face f of Sub(G) so that p is guarded by g. Suppose,
by contradiction, that there exists a point q in f that
is not guarded by g. Then, one of the rays that form
the boundary of Vis(g) must separate p from q. This
contradicts the fact that f is a face of Sub(G). The
converse is immediate. �

Recall that a Boolean formula that solves NWLP
must be satisfied at all points in the closure of P but
not at the external ones. Lemma 1 establishes that it
suffices to verify this property at a single point per face
of the resulting subdivision and hence on O(n2) points.

4 An Integer Programming Model

We now turn our attention to the algorithm we propose
for solving the NWLP to optimality. It is divided into
two phases: a preprocessing phase, where the discretiza-
tion described in Section 3 is computed and a solution
phase, where we create and solve an Integer Linear Pro-
gramming (ILP) model. In this section, we describe this
model.

Consider an instance of the NWLP in which a polygon
P is given. Recall that a solution consists of a Boolean
formula, in disjunctive normal form, that discriminates
the points in P from the points in the exterior of P . We
say that a Boolean variable accepts (rejects) a point if
it is true (false) for that point. Similarly, it accepts (re-
jects) a face if it accepts (rejects) all points of that face.
Therefore, it suffices to create a clause that accepts the
points (a single point actually will do) of each inter-
nal face while rejecting the points of all external faces.

25th Canadian Conference on Computational Geometry, 2013

224

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Clearly, redundant clauses (covering the same internal
faces) may be eliminated in a post-processing phase.

Let G be the set of all natural guards of P and F be
the set of faces of the corresponding planar subdivision.
Denote by FP ⊂ F (FP ⊂ F) the subset of faces internal
(external) to P . Furthermore, we denote by Cf ⊂ G the
set of guards which cover face f , and by Nfh ⊂ Cf the
subset of its guards that, while covering face f , do not
cover face h.

To each g ∈ G, we associate a binary variable xg,
which is 1 whenever guard g is used in the solution and
0 otherwise. Moreover, to each guard g and interior face
f ∈ FP , we relate a binary variable ygf , which is 1 if and
only if the Boolean variable corresponding to guard g is
part of the clause built to ensure that face f is satisfied
by the Boolean formula. We now formulate the Integer
Linear Program:

min
∑

g∈G

xg,

s.t.
∑

g∈Cf

ygf ≥ 1,∀f ∈ FP , (1)

∑

g∈Nfh

ygf ≥ 1,∀f ∈ FP ,∀h ∈ FP , (2)

ygf ≤ xg,∀f ∈ FP ,∀g ∈ Cf , (3)

xg ∈ {0, 1}, ygf ∈ {0, 1},∀g ∈ G,∀f ∈ FP .

The objective function seeks to minimize the number
of natural guards used. It is easy to see that the re-
quired Boolean formula may be built from the ygf vari-
ables in the following fashion. A clause is associated to
each f ∈ FP and the Boolean variable corresponding
to a guard g will be part of this clause if, and only if,
ygf = 1. Constraints (1) guarantee that the internal
faces are accepted, since at least one guard covers each
face in FP . Constraints (2) assure that exterior faces
are not accepted by the formula, since for every pair
of an internal face f and an external face h there is at
least one guard accepting f and rejecting h. Constraints
(3) prevent a clause from containing Boolean variables
associated with a unused guard.

It is easy to modify this model so that the resulting
Boolean formula is minimized along the process.

5 Strengthening the Model

Usual techniques to increase the computational effi-
ciency of an ILP model amount to making it stronger in
relation to dual bounds and more compact by reducing
the number of constraints and variables in the formula-
tion. In this section, we describe how these techniques
can be applied to the model given in the previous sec-
tion.

Firstly, notice that any single guard always covers
external faces of the polygon, so, there is no point al-

lowing for a clause consisting of a single Boolean vari-
able.Therefore, we can tighten constraints (1) to require
at least two guards to cover any given internal face.
This already leads to a slightly more restricted linear
relaxation. However, we can strengthen the model even
further as a consequence of the following lemma:

Lemma 2 For every edge e of a polygon P , any feasi-
ble solution of P includes a guard whose visibility cone
contains e on its boundary.

Proof. Since e is an edge of P , there is a pair of faces
f ∈ FP and h ∈ FP adjacent to e on the subdivision
induced by the (natural) guard candidates. If p and q
are interior points of f and h, respectively, any Boolean
formula that accepts p and rejects q must contain a
Boolean variable that corresponds to a guard g whose
cone contains p and excludes q. This is only possible if
Vis(g) is bounded by a ray that contains e, otherwise,
both f and h would not be faces. �

Let E denote the set of edges of P and Ge the set
of natural guards g such that one of the rays that de-
fine Vis(g) contains e. By Lemma 2, we can add the
following constraints to the model:

∑

g∈Ge

xg ≥ 1,∀e ∈ E (4)

6 Shadow and Light Faces

Solving the ILP model proposed in Section 4 using all
faces can be very costly. However, we can significantly
reduce the number of faces considered in constraint (2)
and still guarantee that the algorithm finds a valid for-
mula using the minimum number of guards. To accom-
plish this, we can extend to the NWLP the notion of
shadow and light faces, presented in [4].

Firstly, define a partial order ≺ both on FP and on FP
as follows. If f, f ′ ∈ FP (∈ FP) then f ≺ f ′ if and only
if Cf ′ ⊂ Cf . We call f ∈ FP (∈ FP) an internal shadow
face (external light face) if f is minimal (maximal) with
respect to ≺.

Lemma 3 If a Boolean formula accepts all internal
shadow faces, then it accepts all internal faces.

Proof. Let B be a Boolean formula that accepts all
internal shadow faces. Let f be any internal face. If f
is a shadow face, we are done. Suppose f is not a shadow
face. Then, there must exist an internal shadow face f ′

such that Cf ′ ⊂ Cf . Since B accepts f ′, there is at
least one clause of B whose Boolean variables represent
guards that cover f ′. Since Cf ′ ⊂ Cf , this clause also
accepts f . �

Lemma 4 If a Boolean formula rejects all external light
faces, then it rejects all external faces.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

225

25th Canadian Conference on Computational Geometry, 2013

Figure 2: Example of internal shadow and external light
faces of a polygon.

Proof. Analogous to the previous proof. �

From Lemmas 3 and 4, the following theorem follows.

Theorem 5 A Boolean formula is a solution to an in-
stance of the NWLP if and only if it accepts all internal
shadow faces and rejects all external light faces.

Let SP be the set of internal shadow faces and LP
be the set of external light faces. Theorem 5 implies
that we can replace the sets FP and FP by the sets
SP and LP , respectively, hence reducing the size of the
ILP model. Based on our experimental results, this re-
duction has a significant impact on the efficiency of our
algorithm.

7 An Efficient Iterative Algorithm

In this section, we further enhance the model proposed
in Section 4, by incorporating the strengthening and
compression refinements proposed in Sections 5 and 6.
Furthermore, we propose a more effective way for solv-
ing the model in order to arrive at a more efficient algo-
rithm able to quickly handle instances of considerable
size.

From constraints (3), the Boolean variable associated
to a used guard might not be present in the clause liable
for accepting a face covered by that guard. However, in
order to make the model more compact, we may tighten
the constraints (3) to ygf = xg, effectively requiring
the clause responsible for accepting face f to contain all
variables associated to used guards that cover f . There-
fore, we can remove all variables ygf , obtaining following

ILP model:

min
∑

g∈G

xg,

s.t.
∑

g∈Cf

xg ≥ 2,∀f ∈ LP , (5)

∑

g∈Nfh

xg ≥ 1,∀f ∈ LP ,∀h ∈ SP , (6)

∑

g∈Ge

xg ≥ 1,∀e ∈ E (7)

xg ∈ {0, 1},∀g ∈ G.

This model finds a solution that minimizes the number
of guards, but the resulting formula may be much larger
than necessary, since the clause responsible for accept-
ing a face f will have all variables that represent used
guards that cover f . However, this model can be solved
much more efficiently than the initial model and, for
now, we are not particularly concerned with the length
of the Boolean formula.

Let us look into the growth of the number of con-
straints (6) compared to the increase in the size of the
instances (i.e., the number of edges of the input poly-
gons). While the model contains only n constraints (7),
the number of constraints (5) is O(n2) – proportional
to the number of internal shadow faces. However, there
is one constraint (6) for each pair of internal shadow
and external light faces, leading to O(n4) of these con-
straints. Hence, if we found constraints (6) that we
could avert checking, we might end up with a much
smaller and more efficient model.

We observed, experimentally, that if a small set of
constraints (6) are satisfied by the guards and clauses
used, many other constraints (6) are automatically sat-
isfied as well. Building upon this observation, we de-
vised the following iterative algorithm.

Preprocessing phase. Two procedures are exe-
cuted: the first one computes the visibility regions of the
guards (cones) while the second one creates the planar
subdivision and identifies the light and shadow faces.

Solution phase. The model is built without the con-
straints (6). Iteratively, the restricted model is solved
to optimality and any violated constraints (6) are added
to the model prior to the next iteration, until a viable
(and optimal) solution is found.

8 Computational Experiments

In this section, we discuss the experimental investiga-
tion we carried out to evaluate the algorithm proposed
in Section 7.

Our programs were coded in C++, compiled with GNU

g++ 4.6, and made use of CGAL 4.1 (Computational
Geometry Algorithms Library). The solver used to com-
pute the ILP models was IBM ILOG CPLEX 12.2. As for

25th Canadian Conference on Computational Geometry, 2013

226

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Table 1: Average number of faces.
Internal Shadow External Light

Vertices Faces Int Faces Faces Ext Faces

20 49 12 161 22
40 211 38 610 69
60 493 73 1338 134
80 852 116 2389 233
100 1331 175 3720 355
200 5541 604 14560 1268
300 12566 1278 32585 2762
400 22549 2191 57652 4829
500 35124 3336 90127 7386
600 51968 4815 128333 10477

hardware, a desktop PC featuring an AMD Phenom II
X6 1055T @ 2.80GHz and 8GB RAM was employed.

The instances tested correspond to simple poly-
gons randomly generated by a procedure present in
CGAL. This procedure starts off by randomly dis-
tributing the vertices of the polygon uniformly on
a given rectangle and then applies the method of
elimination of self-intersections using 2-opt moves.
The instances that comprise our benchmark may
be downloaded from www.ic.unicamp.br/ c̃id/Problem-
instances/Wireless-Localization.

The number of vertices of the polygons associated to
these instances was chosen in the ranges: [20, 100] with
step size 20 and (100, 600] with step size of 100. For
each polygon size, 30 instances were created.

The first aspect to be considered in our analysis re-
lates to the reduction on the size of the original ILP
model described in Section 4 as a consequence of the
application of Theorem 5. Recall that the number of
faces on the planar subdivisions is the main determin-
ing factor of the number of constraints in the model.
Table 8 show the average number of internal, exter-
nal, shadow internal and light external faces per polygon
size. Using only the internal shadow and external light
faces, we reduced the number of internal and external
faces to be considered on average by 86.7%± 4.7% and
90.4% ± 1.7%, respectively. Taking into account that
in the original model there is one constraint of type (2)
for each pair of internal and external faces, when we
limited these pairs to the internal shadow and external
light faces, the number of constraints in the ILP formu-
lation dropped by 98.6%± 0.8% on average. This huge
decrease in the model size evoked by the results pre-
sented in Section 6 was one of the key ideas that made
solutions of instances of hundreds of vertices possible.

As our algorithm has two phases, the next analysis
focus on how the computation time breaks up between
them. Figure 3 summarizes the average percentage of
the time spent by the iterative algorithm in the pre-
processing and solution phases. The average total time
to solve an instance is displayed over each bar. Notice

40 60 80 100 200 300 400 500 600
Vertices

0,03s 0,11s 0,27s 0,58s 1,15s 8,81s 28,0s 70,8s 148,0s 257,8s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

20 40 60 80 100 200 300 400 500 600

Ti
m

e

Vertices

Preprocessing phase Solution phase

Figure 3: Average computation times, total and per
phase.

that solutions we found for all instances in less than
five minutes and the preprocessing phase took on av-
erage 23.7% ± 16.6% of that time. These results show
that our approach is a very good choice for calculating
optimal solutions for the NWLP on polygons of several
hundreds of vertices as they can be obtained in only a
few minutes. The fact that preprocessing requires about
one-third of the time spent by the solution phase may
seem surprising at first. After all, the former is a poly-
nomial time procedure while the latter involves multiple
solutions of an NP-hard problem. However, as observed
earlier in experiments on the classical AGP (see [5]),
the current technology of ILP solvers is extremely ad-
vanced and allows for handling difficult problems very
efficiently in practice.

0

2

4

6

8

10

12

14

20 40 60 80 100 200 300 400 500 600

It
e

ra
ti

o
n

s

Vertices

Figure 4: Number of iterations by polygon size.

An important point on the analysis of our algorithm
relates to how the number of iterations increases with
the size of the instances. This can be assessed by an-
alyzing the data displayed in Figure 4. We see that,
on average, 4.5 ± 1.2 iterations were sufficient to reach
the optimum and that no instance in our benchmark re-
quired more than 12 iterations. Preliminary tests, where
the entire initial ILP model was given as input to the
solver, failed to attain optimal solutions on polygons
of 50+ vertices within acceptable times. On the other

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

227

25th Canadian Conference on Computational Geometry, 2013

hand, the data in Figure 4 show that the number of it-
erations until convergence is reached is small. Bringing
to mind that each iteration requires the solution of a
much lighter ILP, we conclude that the iterative com-
putation is indeed crucial in achieving the small com-
putation times shown in Figure 3.

To perceive how much smaller the ILP models solved
at each iteration are compared to the full model given
in Section 7, we measured the number of constraints
(6) added along the iterations and compared it to the
total of constraints of this type. On average, in the last
iteration of the algorithm, the model has only 0.6% ±
1.1% of all constraints (6).

0,510

0,515

0,520

0,525

0,530

0,535

0,540

0,545

0,550

2
0
4
0
6
0
8
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

G
u

ar
d

s/
V

e
rt

ic
e

s

Vertices

Figure 5: Ratio of guards to vertices by polygon size.

Lastly, an interesting insight on the guards per ver-
tices ratio. It is known that, for a polygon of n edges,
n/2 is a lower bound for the number of guards on an
optimal solution. Figure 5 shows that for the random
polygons in our benchmark, the number of guards used
in the optimal solutions approaches n/2 as n increases.

9 Comments and Future Directions

To the best of our knowledge, this investigation on prac-
tical solutions to the natural wireless localization prob-
lem is unprecedented. Besides being known as an NP-
hard problem [2] only a few theoretical studies on the
NWLP have been undertaken [7, 6, 3].

The algorithm we proposed in this paper is based on
an integer linear programming model and derives its ef-
fectiveness from an elaborate reduction on the number
of constraints. An iterative approach has lead to sig-
nificant gains in efficiency, which yielded solutions to
instances of up to 600 vertices in less than five minutes
of computation.

Extensions to this approach that might solve in-
stances where the polygons contain holes or when an-
tennas are not restricted to polygon vertices are worth
investigating.

Heuristics or alternative ILP models may be com-
pared to the results we described here by accessing our

set of benchmark instances made public together with
the optimal solutions we found.

Lastly, we believe that the knowledge of exact solu-
tions to a large collection of instances may lead to new
theoretical developments on the NWLP, hence improv-
ing the understanding of the problem.

References

[1] Tobias Christ and Michael Hoffmann. Wireless
localization with vertex guards is NP-hard. In
Canadian Conference on Computational Geometry
(CCCG), pages 149–152, 2009.

[2] Tobias Christ, Michael Hoffmann, and Yoshio
Okamoto. Natural wireless localization is NP-
hard. In Proceedings of the 25th European Work-
shop Comput. Geom., pages 175–178, 2009.

[3] Tobias Christ, Michael Hoffmann, Yoshio
Okamoto, and Takeaki Uno. Improved bounds for
wireless localization. In Proceedings of the 11th
Scandinavian Workshop on Algorithm Theory,
pages 77–89, Berlin, 2008. Springer-Verlag.

[4] Marcelo C. Couto, Pedro J. de Rezende, and Cid C.
de Souza. Experimental evaluation of an exact al-
gorithm for the orthogonal art gallery problem. In
7th International Workshop on Experimental Algo-
rithms, volume 5038 of Lecture Notes in Computer
Science, pages 101–113, 2008.

[5] Marcelo C. Couto, Cid C. de Souza, and Pedro J. de
Rezende. An exact algorithm for minimizing vertex
guards on art galleries. International Transactions
in Operational Research, 18:425–448, 2011.

[6] Mirela Damian, Robin Y. Flatland, Joseph
O’Rourke, and Suneeta Ramaswami. A new lower
bound on guard placement for wireless localization.
CoRR, abs/0709.3554, 2007.

[7] David Eppstein, Michael T. Goodrich, and Nodari
Sitchinava. Guard placement for efficient point-in-
polygon proofs. In Symposium on Computational
Geometry, pages 27–36, 2007.

[8] Alexander Kröller, Tobias Baumgartner, Sándor P.
Fekete, and Christiane Schmidt. Exact solutions
and bounds for general art gallery problems. ACM
Journal of Experimental Algorithmics, 17(1), 2012.

[9] Joseph O’Rourke. Art gallery theorems and algo-
rithms. Oxford University Press, Inc., New York,
NY, USA, 1987.

[10] Jorge Urrutia. Art gallery and illumination prob-
lems. In Handbook of Computational Geometry,
pages 973–1027. North-Holland, 2000.

25th Canadian Conference on Computational Geometry, 2013

228

On k-Enclosing Objects in a Coloured Point Set

Luis Barba∗ Stephane Durocher†‡ Robert Fraser† Ferran Hurtado§¶ Saeed Mehrabi†

Debajyoti Mondal† Jason Morrison† Matthew Skala† Mohammad Abdul Wahid†

Abstract

We introduce the exact coloured k-enclosing object
problem: given a set P of n points in R2, each of
which has an associated colour in {1, . . . , t}, and a vec-
tor c = (c1, . . . , ct), where ci ∈ Z+ for each 1 ≤ i ≤ t,
find a region that contains exactly ci points of P of
colour i for each i. We examine the problems of find-
ing exact coloured k-enclosing axis-aligned rectangles,
squares, discs, and two-sided dominating regions in a
t-coloured point set.

1 Introduction

Given a set P of n points in R2 and a positive in-
teger k, the problem of finding a region (e.g., a disc,
square, or rectangle) that encloses exactly k points of
P while optimizing specific parameters (e.g., minimiz-
ing area or perimeter) has been examined extensively
[3, 17, 19, 20, 25]. In many applications, the input data
are classified into categories, or colours, leading us to
consider the following natural generalization. Given a
set P of n points in R2, each of which has an associated
colour in {1, . . . , t}, and a vector c = (c1, c2, . . . , ct),
where ci ∈ Z+ for each 1 ≤ i ≤ t, find a region enclosing
at least ci points in P of colour i for each i. Such prob-
lems commonly appear in pattern recognition [25] (e.g.,
when features are represented as a point set, and the ob-
jective is to identify a precise cluster with the prescribed
number of features), as database queries (e.g., find a hol-
iday destination with five tourist attractions, two hotels,
and six restaurants), and in facility location [1] (e.g., se-
lecting a location for a bus stop in a densely populated
area). Unlike the smallest k-enclosing rectangle or disc
problems, the solution to the exact coloured k-enclosing
object problem may not always exist. Therefore, in the

∗Carleton University, Canada, and Université Libre de Brux-
elles, Belgium. luis barbaflores@carleton.ca
†University of Manitoba, Canada.

{durocher,fraser,mehrabi,jyoti}@cs.umanitoba.ca,
Jason.Morrison@umanitoba.ca, {mskala,wahid}@cs.umanitoba.ca
‡Work of the author is supported in part by the Natural Sci-

ences and Engineering Research Council of Canada (NSERC).
§Universitat Politècnica de Catalunya (UPC), Spain.

Ferran.Hurtado@upc.edu
¶Work of the author is supported in part by projects MINECO

MTM2012-30951, Gen. Cat. DGR2009SGR1040, and ESF-
EuroGIGA-CRP ComPoSe, MICINN EUI-EURC-2011-4306.

exact coloured k-enclosing object problem, the primary
objective is to find any coloured k-enclosing object that
contains exactly the required number of points of each
colour (if such a region exists), rather than finding the
smallest such object. The problem is defined formally
as follows.

Exact Coloured k-Enclosing Object Problem

INPUT: A set P of n points in R2, each of which
is assigned a colour in {1, . . . , t}, and a t-tuple c =
(c1, . . . , ct), where ci ∈ Z+ for each i.

QUESTION: Find a region (such as an axis-aligned
rectangle, square, or disc) in R2 that encloses exactly ci
points of P of colour i for each i.

Although smallest k-enclosing object problems are
well explored, very little is known about the exact
coloured k-enclosing object problem. In this paper we
introduce the exact coloured k-enclosing object problem
for axis-aligned rectangles, squares, discs, and two-sided
dominance regions in polychromatic point sets. Sec-
tion 2 begins with an examination of related work. In
Sections 3–5, we show that exact coloured k-enclosing
axis-aligned rectangles, discs, and two-sided dominance
regions can be found in O(n2k), O(KVD(n, k)), and
O(n log n) time, respectively, where KVD(n, k) denotes
the time required to construct the kth order Voronoi
diagram. In Section 6, we discuss generalizations to
higher dimensions.

Throughout the paper, n denotes the number of
points in P , t denotes the number of distinct colours
of points in P , and k denotes the number of points to
be contained in the bounding object, i.e., k =

∑t
i=1 ci.

Also, we assume that points are in general position.

2 Related Work

The exact coloured k-enclosing object problem general-
izes several known problems, and was motivated by a de-
sire to generalize the jumbled pattern matching problem
to higher dimensions. Jumbled pattern matching [9, 10]
asks whether a given sequence contains any permutation
of some given query string. Given an arbitrary binary
sequence of length n (i.e., t = 2), Burcsi et al. [9] show
how to construct an O(n)-space data structure in O(n2)
preprocessing time that supports queries in O(k) time

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

229

25th Canadian Conference on Computational Geometry, 2013

for any arbitrary query string of length k. Given an ar-
bitrary sequence of length n (i.e., any t ≥ 2), Burcsi et
al. gave an O(n)-space data structure with O(n) prepro-
cessing time to report all occurrences of a query string in
O(n

√
t/(k log t)) expected time. The one-dimensional

exact coloured k-enclosing problem reduces to jumbled
pattern matching, since a t-coloured set of n points in R
can be mapped to an array A of length n. One can slide
an interval of width k over A to find an exact coloured
k-enclosing interval in O(n) time (or O(n log n) time if
the point set is unsorted).

The problem of finding a smallest axis-aligned square,
rectangle or disc that encloses k of n uncoloured points
in R2 has been studied for over two decades. In 1991,
Aggarwal et al. [3] showed that a smallest k-enclosing
rectangle or square can be computed in O(nk2 log n)
time and O(nk) space. Both the time and space com-
plexities were subsequently improved several times [11,
17, 20, 29], and the current best known algorithms
in R2 require O(nk2 + n log n) time and O(n) space
for rectangles [20] and O(n log n + n log2 k) time and
O(n) space for squares [17]. The smallest k-enclosing
disc problem also has a long history. The current best
known algorithms require O(n log n+nk log k) time and
O(nk + k log2 k) space [20], and O(nk log2 n) time and
O(nk) space [19]. The lower bound on time is believed
to be Ω(nk) [26].

A generalization of the smallest k-enclosing object
problem with respect to a t-coloured point set is to find
the smallest colour-spanning object, i.e., the smallest
rectangle or disc that contains at least one point of each
colour. Abellanas et al. [1] showed how to compute the
smallest colour-spanning rectangle in O(n(n− t) log2 t)
time, which was later improved to O(n(n− t) log t) [16].
The best known algorithm for computing the smallest
colour-spanning disc takes O(nt log n) time [22].

In R2, the exact coloured k-enclosing rectangle prob-
lem reduces to a subarray sum problem considered by
Takaoka [30] that, given an m × m array and a value
v, asks to find a subarray such that the sum of its val-
ues is v. Takoaka showed that such a subarray can be
computed in O(m3 logm) time. The exact coloured k-
enclosing rectangle problem can be solved in O(n3 log n)
time by reduction to this reverse range query problem.
In Section 3, we show how to achieve O(n2k) time, im-
proving the running time by a linear factor for small
values of k.

Problems that involve finding discs that enclose a pre-
scribed set of points with few outliers can be viewed as
variants of the exact coloured k-enclosing object prob-
lem. For example, consider a point set with r red and
b blue points, and the problem of finding a disc that
encloses all of the red points and at most cb blue points.
Cheung and Daescu [13] showed that the existence of

such a disc can be decided in O(n+n1/4c
11/4
b logO(1) n)

time, and later gave an improved O(rb log b + r log r)-
time algorithm to find the smallest disc that minimizes
the number of blue points [7]. Backer and Keil [5]
showed that given a red-blue point set, an axis-aligned
rectangle with the maximum number of red points but
no blue points can be computed in O(n log3 n) time.
Dobkin et al. [18] considered the problem of computing
a rectangle that maximizes the difference between the
numbers of enclosed red and blue points, and gave an
O(n2 log n)-time algorithm to find such a rectangle.

Finding an exact coloured k-enclosing object is an in-
verse formulation of the range query problem in a poly-
chromatic point set. One may consider such inverses for
a variety of different shapes of query ranges. For exam-
ple, in Section 5 we examine an inverse problem of the
dominance range query that, given a t-coloured point
set P in R2, asks whether there is a point in P that
dominates exactly ci points of P of colour i for each i.
JáJá et al. [23] gave an O(n log n/ log log n)-space data
structure for dominance counting queries, i.e., counting
the number of points dominated by the query point, in
O(log n/ log log n) time. One could use such data struc-
tures for every colour class to determine whether there
is a point in P that dominates exactly ci points of P of
colour i for each i, but it is not obvious how to combine
the dominance counts efficiently since the dominating
points returned will not coincide in general. In Sec-
tion 5, we give an algorithm to solve this problem in
O(n log n) time.

3 Axis-Parallel Rectangles

In this section, we study the exact coloured k-enclosing
rectangle problem. Given a set P of n coloured points in
R2, where the colour of a point is an integer in {1, . . . , t},
and given a query as a t-tuple c = (c1, . . . , ct), where
∀i, ci ∈ Z+, the problem is to determine whether there
exists an axis-aligned rectangle which covers exactly ci
points of colour i for all i. The algorithm works by
considering every possible choice for the top and bottom
of the rectangle. That is, the algorithm checks whether
a solution exists within any of the horizontal strips of the
plane determined by a pair of horizontal lines passing
through points of P .

We proceed by fixing the bottom of the strip and then
increasing its height monotonically, i.e., new points are
added to the strip, one by one, in order of increasing
y-coordinates. We store all the points contained in the
strip in a linked list L sorted by x-coordinates in in-
creasing order. As the height of the strip increases, new
points are inserted to L. Upon insertion of a point, we
check each window of width k (i.e., a horizontal interval
on the strip containing exactly k points) containing the
new point (recall that k =

∑t
i=1 ci). Since this involves

sliding a fixed window from left to right, this check may

25th Canadian Conference on Computational Geometry, 2013

230

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

be performed in O(k) time. For example, keep an ar-
ray A of width t, where A[i] is the number of points of
colour i in the window, and a counter a that tracks the
current number of colours satisfied in the query. When
the window moves one step, a single point is added to
the window and one is removed. For each of these, up-
date A[i] accordingly and compare A[i] with ci to see
whether a should be updated. If a = t, then a solution
exists containing the points in the window.

To insert a point in L, we use a preprocessing step
that allows us to perform this insertion in O(1) time.
Prior to starting the algorithm, sort the points of P
and store them in order of increasing x-coordinates in a
linked list Lx.

With the bottom of the strip fixed on a line through
some point pj of P , we assume that list Lx is updated
to store only the points of P that lie above pj . The
preprocessing is described as follows. We copy list Lx
into a list L in O(n) time. Then, remove points from
list L, one by one, in order of decreasing y-coordinates.
Before removing a point p, we store two pointers p.left
and p.right to the predecessor and successor of p in L.

After preprocessing, to insert a point pi into L, we
splice it between pi.left and pi.right. Because points
were removed from top to bottom, both pi.left and
pi.right have y-coordinates less than pi. Thus, as the
insertions into L occur from bottom to top, both pi.left
and pi.right belong to L when pi is inserted. Since Lx
stored the points in sorted order by x-coordinates, pi
lies to the right of pi.left and to the left of pi.right.
Moreover, no point with y-coordinate less than pi and
larger than pj lies between pi.left and pi.right. The cor-
responding pseudocode is given in Algorithm 1.

Theorem 1 The exact coloured k-enclosing rectangle
problem can be solved in O(n2k) time.

Proof. The outer for-loop iterates n times, and O(n)-
time preprocessing is performed on each iteration. An
insert operation is performed in the inner loop in
Step 11. As each insert requires only to splice a new
point in the list, it is performed in O(1) time. By
Step 31, list Lx always contains the points at or above
pj sorted by x-coordinates and, consequently, list L is
also kept sorted in order of increasing x-coordinates.

Each iteration of the inner loop to determine whether
a solution exists around the inserted point takes O(k)
time, resulting in a total running time of O(n2k).

For correctness, consider a solution whose lowest
(resp., highest, leftmost, rightmost) point is pbot (resp.,
ptop, p`, pr). We consider all pairs of top and bottom
points, so one iteration of the inner loop exists where
i = top and j = bot. Since ptop is the point inserted into
the linked list at this step, the algorithm checks all rect-
angles whose highest and lowest points are ptop and pbot
and also contain exactly k points, one of which is ptop.
Every solution, if any exists, is such a rectangle. �

Algorithm 1 RECT(P, c)

1: Sort P ∪ {(0,−∞), (0,∞)} by x-coordinates and
store its points in order of increasing x-coordinates
in a linked list Lx.

2: Sort P in order of increasing y-coordinates. Let pi
be the i-th point in this ordering.

3: k ←∑t
i=1 ci

4: for j := 0 to n− 1 do
5: Copy list Lx into a list L.
6: for i := n− 1 to j + 1 do
7: pi.left← predL(pi), pi.right← succL(pi).
8: Remove pi from list L.
9: L ← [(0,−∞), pj , (0,∞)]

10: for i := j + 1 to n− 1 do
11: Splice pi into L between pi.left and pi.right.
12: A[1 . . . t]← 0, a← 0
13: prev← pi, next← pi
14: % Put the nodes for the k predecessors and

successors of pi into an array C.
15: for l := 0 to k do
16: C[k − l]←prev, prev← predL(prev)
17: C[k + l]←next, next← succL(next)
18: % Slide a window of width k along the array.
19: for l := 0 to 2k − 1 do
20: cur←col(C[l])
21: Increment A[cur]
22: If A[cur] = ccur then increment a.
23: If A[cur] = ccur + 1 then decrement a.
24: if l ≥ k then
25: cur←col(C[l − k])
26: Decrement A[cur]
27: If A[cur] = ccur then increment a.
28: If A[cur] = ccur − 1 then decrement a.
29: if a = t then
30: return a rectangle bounded by pj , pi,

C[l], and C[l − k + 1]
31: Remove pj from list Lx.
32: % There is no rectangle satisfying the query in P .
33: return ∅

See Section 6.1 for a discussion of modifications to
Algorithm 1 to reduce running time.

4 Discs and Axis-Parallel Squares

The kth order Voronoi diagram of a set P of n points
in the plane is a partition of the plane into maximal
convex cells such that any two points in a common cell
have the same k nearest neighbours in P . The number
of kth order Voronoi cells is Θ(k(n − k)) [24]. Thus,
if C is a kth order Voronoi cell whose set of nearest
neighbours is PC = {p1, . . . , pk} ⊆ P , for any point
p ∈ C, there exists a disc Dp centered at p such that
Dp∩P = PC . If the points of P are coloured, it suffices

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

231

25th Canadian Conference on Computational Geometry, 2013

to verify whether there exists a kth order Voronoi cell
C such that the frequencies of the colours of the points
in PC correspond to the input colour t-tuple c.

Traversing the cells of the kth order Voronoi dia-
gram by a breadth-first or depth-first search on the
dual graph requires O(k(n − k)) steps. The sets of k
nearest neighbours in any two adjacent cells Ca and
Cb differ in exactly two points. Specifically, there exist
points {pa, pb} ⊆ P such that the edge e common to
Ca and Cb is on the bisector of pa and pb and for any
point in Ca close to e, pa and pb are respectively its
kth and (k + 1)st closest points in P , whereas the re-
lationship is reversed for Cb. When transitioning from
Ca to Cb, the set of k nearest neighbours is updated in
O(1) time by PCb

= (PCa ∪ {pb}) \ {pa}. We find the
k nearest neighbours for the first cell in the traversal
in O(n) time using selection and partitioning, compute
the frequencies of the corresponding colours, and initial-
ize a count s of the number of frequencies that match
the input t-tuple c. Upon moving from the cell Ca to
its neighbouring cell Cb during the traversal, it suffices
to increment the frequency count for the colour of pb,
check whether this new value matches the correspond-
ing value in c, decrement the frequency count for the
colour of pa, check whether this new value matches the
corresponding value in c, and update s accordingly. If
s = t, then a disc centered at any point in Cb with ra-
dius r = maxq∈PCb

dist(p, q) is a solution to the exact
coloured k-enclosing disc problem. Since the kth order
Voronoi diagram has size Θ(k(n − k)) in general, con-
structing it requires Ω(k(n− k)) time in the worst case.
This gives the following theorem.

Theorem 2 The exact coloured k-enclosing disc prob-
lem can be solved in O(KVD(n, k)) time, where
KVD(n, k) denotes the time required to construct the
kth order Voronoi diagram.

Efficient deterministic algorithms for constructing the
kth order Voronoi diagram include those of Chazelle
and Edelsbrunner in O(n2 + k(n − k) log2 n) time us-
ing O(n2) space and O(n2 log n + k(n − k) log2 n) time
using O(k(n − k)) space [12], Lee in O(nk2 log n) time
using O(n2(n − k)) space [24], and Aurenhammer in
O(nk2 log n) time using O(k(n − k)) space [4]. Effi-
cient randomized algorithms include those of Clarkson
in O(n1+εk) expected time for any fixed ε > 0 [14],
Ramos in O(n log n + nk2c log

∗ n) expected time, where
c is constant [28], and Agarwal et al. inO(k(n−k) log n+
n log3 n) expected time [2].

Under `∞ distance, a disc of radius r centered at
a point p is realized as an axis-parallel square of side
length 2r centered at point p. Consequently, just as we
did for discs under `2 distance, the kth order Voronoi
diagram under `∞ distance can be used to find a square
that contains exactly ci points of P of colour i for each
i, if any such square exists. Equivalently, `1 distance

can be used with a π/4 rotation of the axes. Sev-
eral of the algorithms for constructing the kth order
Voronoi diagram under `2 distance can be applied un-
der `1 or `∞ distance. For example, Lee [24] states that
his O(nk2 log n)-time algorithm applies to the `∞ and
`p distance metrics for any p ∈ [1,∞). This gives the
following corollary.

Corollary 3 The exact coloured k-enclosing axis-
parallel square problem can be solved in O(KVD(n, k))
time, where KVD(n, k) denotes the time required to con-
struct the kth order Voronoi diagram under the `∞ dis-
tance metric.

5 Two-Sided Dominating Regions

Let P be a set of n points in the plane, each with a
colour from {1, . . . , t}. For each i, let Pi denote the
subset of P of colour i and let ni = |Pi|. The point p =
(px, py) dominates the point q = (qx, qy) if px > qx and
py > qy. We show how to determine in O(n log n) time
if there exists some point r in the plane that dominates
c = (c1, . . . , ct) points of P , i.e., r dominates ci points of
Pi for each i, and to return such a point r if one exists.

For each i, the region of points that dominate at least
ci points of Pi is bounded by a monotonic non-increasing
orthogonal polygonal chain. The region of points that
dominate exactly ci points of Pi is bounded by two such
chains. This boundary is defined by Bose and Morrison
[8] as the ci- and ci+1-levels in Pi, consisting of a stair-
case that can be partitioned into an x-monotone set
of O(ni) rectangles, as shown in Figure 1. Any solution
point r must be contained in one of these rectangles. For
each colour i, the corresponding rectangles are bounded
by O(ni) segments [8] and can be constructed in O(ni)
time (or O(ni log ni) time if the points must be sorted).

Once the t sets of candidate rectangles are con-
structed and stored in t lists, each in order of increas-
ing x-coordinates, the rectangles for any pair of colours
(i, j) can be intersected in O(ni + nj) time. The time
bound follows from the constant complexity of each set
of rectangles for any given y-coordinate using Bentley
and Ottman’s line sweep [6]. Since any pair of rectan-
gles intersect in either zero or one rectangle, recursive
pairwise intersection of these sets requires only O(n)
space with O(n) time per round and O(log t) rounds.
Thus our algorithm requires O(n log t) time, O(n log n)
preprocessing time for sorting, and O(n) space.

Theorem 4 The exact coloured k-enclosing two-sided
dominating region problem can be solved in O(n log n)
time.

6 Discussion

In this section, we address generalizations and refine-
ments of the exact coloured k-enclosing object problem.

25th Canadian Conference on Computational Geometry, 2013

232

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 1: Points in the shaded region dominate exactly
two black points. The partition into O(ni) rectangles is
illustrated, at most one of which intersects any horizon-
tal line. Analogous candidate regions are constructed
for each colour set Pi. Their common intersection is
non-empty if and only if there exists a solution to the
k-enclosing two-sided dominating region problem.

6.1 Improved Time for Axis-Parallel Rectangles

Considering that the fastest known algorithm for the un-
coloured version of the problem takes O(nk2 + n log n)
time in the worst case [20], the running time of Theo-
rem 1 compares relatively favourably. Nevertheless, in
this section we present two refinements which slightly
improve our upper bound.

Since a solution must contain at least k points, Algo-
rithm 1 can be modified so that the two outer loops skip
k points and iterate O(n − k) times each. This results
in a running time of O(n log n + (n − k)2k). In the re-
mainder of this section, we discuss reducing the factor k
of the running time. Complete details are omitted due
to space constraints.

Let m denote the most frequent colour in the query,
i.e., cm = maxi∈{1...t} ci. A point that does not have
colour m is called m-coloured. Let k′ = k − cm denote
the number of m-coloured points in the query.

To improve the running time, the approach described
in Algorithm 1 is used to search for a solution satisfy-
ing the query on the m-coloured points. Upon finding a
match, it is determined whether a rectangle (still an in-
terval of the strip) containing exactly these m-coloured
points may also contain cm m-coloured points.

To address this, the linked list L of Section 3 is built
containing only m-coloured points. Given a point pi in
the strip, let succjL(pi) denote the jth successor in L.

Let succ0
L(pi) = pi, and let nm(succjL(pi)) denote the

number of m-coloured points with x-coordinate between
succj−1L (pi) and succjL(pi) in this strip. A rightmost
dummy point p∞ at x = ∞ is used so that nm(p∞)
counts the m-coloured points to the right of the last
m-coloured point. Therefore, a solution exists with a

leftmost m-coloured point pi if the query (except cm)
is satisfied by pi and its k′ − 1 successors in L, and∑i+k′

j=i+1 nm(succjL(pi)) ≤ cm ≤
∑i+k′+1
j=i nm(succjL(pi)).

The challenge is to update the values of nm(i) and
nm(i+1) following the insertion of an m-coloured point.
The preprocessing step may be augmented to track the
number of m-coloured points on each side of an inserted
m-coloured point. For example, the disjoint set union
data structure of Gabow and Tarjan [21] would allow
(with some extra bookkeeping) to track the numbers
of m-coloured points between consecutive m-coloured
points using find when encountering an m-coloured
point, and storing the sizes of the sets prior to using
union upon the removal of an m-coloured point. Com-
plete details are omitted due to space constraints. O(n)
union and find operations are performed on the data
structure, which requires O(n) time total. Therefore,
the algorithm runs in O(n log n+n2(k−maxi ci)) time,
which may again be improved by substituting (n− k)2

for n2 as discussed at the beginning of this section. Note
that for a binary alphabet, this yields an overall running
time of O(n log n+ (n− k)2 mini ci).

6.2 Smallest Exact Coloured k-Enclosing Object

The algorithms described are straightforward to modify
to return the smallest exact coloured k-enclosing ob-
ject with at most an O(k) increase in running time.
For example, in the case of discs it suffices to compute
the minimum enclosing disc of the k points associated
with each candidate kth order Voronoi cell, which can
be achieved in O(k) time per cell using the algorithm of
Megiddo [27]. In the case of axis-parallel rectangles, Al-
gorithm 1 can be easily modified to compute the area of
every window and return the smallest rectangle without
any asymptotic increase in running time.

6.3 Higher Dimensions

Several of the algorithms described have natural gen-
eralizations to higher dimensions. For example, a kth
order Voronoi diagram in Rd has O(nbd/2ckdd/2e) cells
[15], and so generalizing Theorem 2 to Rd gives a run-
ning time of O(d ·KVDd(n, k)), where KVDd(n, k) de-
notes the time required to construct the d-dimensional
kth order Voronoi diagram. Similarly, Theorem 1 gen-
eralizes to give a running time of O(n2(d−1)kd).

6.4 Directions for Future Research

Several questions remain open. Can the time com-
plexity be reduced in R2? For discs and axis-parallel
squares, can the problem be solved faster than the time
required to construct a kth order Voronoi diagram? Can
the time complexity be improved if the input set of
points is bichromatic (i.e., when t = 2)?

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

233

25th Canadian Conference on Computational Geometry, 2013

Acknowledgements

The authors thank the participants of the 2013 Bellairs
Workshop on Geometry and Graphs for stimulating dis-
cussion of ideas related to this paper. The authors also
thank Sharma Thankachan for discussion of query data
structures for jumbled pattern matching in strings.

References

[1] M. Abellanas, F. Hurtado, C. Icking, R. Klein,
E. Langetepe, L. Ma, B. Palop, and V. Sacristan. Small-
est color-spanning objects. In Proc. ESA, volume 2161
of LNCS, pages 278–289, 2001.

[2] P. K. Agarwal, M. de Berg, J. Matoušek, and
O. Schwarzkopf. Constructing levels in arrangements
and higher order Voronoi diagrams. SIAM J. Comp.,
27(3):654–667, 1998.

[3] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding
k points with minimum diameter and related problems.
J. Algorithms, 12(1):38–56, 1991.

[4] F. Aurenhammer. A new duality result concerning
Voronoi diagrams. Disc. & Comp. Geom., 5:243–254,
1990.

[5] J. Backer and J. M. Keil. The bichromatic square and
rectangle problems. Technical Report 2009-01, Univer-
sity of Saskatchewan, 2009.

[6] J. L. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Trans-
actions on Computers, C-29:643–647, 1979.

[7] S. Bitner, Y. K. Cheung, and O. Daescu. Minimum
separating circle for bichromatic points in the plane. In
Proc. ISVD, pages 50–55, 2010.

[8] P. Bose and J. Morrison. Translating a star over a point
set. In Proc. CCCG, pages 179–182, 2005.

[9] P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták. Algo-
rithms for jumbled pattern matching in strings. Int. J.
Found. Comput. Sci., 23(2):357–374, 2012.

[10] P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták. On ap-
proximate jumbled pattern matching in strings. Theory
Comput. Syst., 50(1):35–51, 2012.

[11] T. M. Chan. Geometric applications of a random-
ized optimization technique. Disc. & Comp. Geom.,
22(4):547–567, 1999.

[12] B. Chazelle and H. Edelsbrunner. An improved al-
gorithm for constructing kth-order Voronoi diagrams.
IEEE Trans. Comp., 36(11):1349–1354, 1987.

[13] Y. Cheung and O. Daescu. Minimum separating circle
for bichromatic points by linear programming. In Proc.
FWCG, 2010.

[14] K. L. Clarkson. New applications of random sampling
to computational geometry. Disc. & Comp. Geom,
2:195–222, 1987.

[15] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Disc. & Comp.
Geom., 4:387–421, 1989.

[16] S. Das, P. P. Goswami, and S. C. Nandy. Smallest color-
spanning object revisited. Int. J. Comp. Geom. & App.,
19(5):457–478, 2009.

[17] A. Datta, H.-P. Lenhof, C. Schwarz, and M. H. M.
Smid. Static and dynamic algorithms for k-point clus-
tering problems. J. Algorithms, 19(3):474–503, 1995.

[18] D. P. Dobkin, D. Gunopulos, and W. Maass. Comput-
ing the maximum bichromatic discrepancy with appli-
cations to computer graphics and machine learning. J.
Comp. & Sys. Sciences, 52(3):453–470, 1996.

[19] A. Efrat, M. Sharir, and A. Ziv. Computing the smallest
k-enclosing circle and related problems. Comp. Geom.:
Theory & App., 4(3):119–136, 1994.

[20] D. Eppstein and J. Erickson. Iterated nearest neighbors
and finding minimal polytopes. Disc. & Comp. Geom.,
11:321–350, 1994.

[21] H. N. Gabow and R. E. Tarjan. A linear-time algorithm
for a special case of disjoint set union. J. Comp. & Sys.
Sci., 30(2):209 – 221, 1985.

[22] D. P. Huttenlocher, K. Kedem, and M. Sharir. The
upper envelope of Voronoi surfaces and its applications.
Disc. & Comp. Geom., 9:267–291, 1993.

[23] J. JáJá, C. W. Mortensen, and Q. Shi. Space-efficient
and fast algorithms for multidimensional dominance re-
porting and counting. In Proc. ISAAC, volume 3341 of
LNCS, pages 558–568, 2004.

[24] D. T. Lee. On k-nearest neighbor Voronoi diagrams in
the plane. IEEE Trans. Comp., C-31:478–487, 1982.

[25] P. R. S. Mahapatra, A. Karmakar, S. Das, and P. P.
Goswami. k-enclosing axis-parallel square. In Proc.
ICCSA, volume 6784 of LNCS, pages 84–93, 2011.

[26] J. Matoušek. On geometric optimization with few vi-
olated constraints. Disc. & Comp. Geom., 14:365–384,
1995.

[27] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM J. Comp.,
4:759–776, 1983.

[28] E. A. Ramos. On range reporting, ray shooting and
k-level construction. In Proc. SoCG, pages 390–399,
1999.

[29] M. Segal and K. Kedem. Enclosing k points in
the smallest axis parallel rectangle. Inf. Proc. Let.,
65(2):95–99, 1998.

[30] T. Takaoka. The reverse problem of range query. Elec.
Notes Theor. Comp. Sc., 78:281–292, 2003.

25th Canadian Conference on Computational Geometry, 2013

234

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

On the Rectangle Escape Problem

Sepehr Assadi∗ Ehsan Emamjomeh-Zadeh∗ Sadra Yazdanbod∗ Hamid Zarrabi-Zadeh∗†

Abstract

Motivated by a bus routing application, we study the
following rectangle escape problem: Given a set S of n
rectangles inside a rectangular region R, extend each
rectangle in S toward one of the four borders of R so
that the maximum density over the region R is mini-
mized, where the density of each point p ∈ R is defined
as the number of extended rectangles containing p. We
show that the problem is hard to approximate to within
a factor better than 3/2 in general. When the opti-
mal density is sufficiently large, we provide a random-
ized algorithm that achieves an approximation factor of
1 + ε with high probability improving upon the current
best 4-approximation algorithm available for the prob-
lem. When the optimal density is one, we provide an
exact algorithm that finds an optimal solution in O(n4)
time, improving upon the current best O(n6)-time al-
gorithm.

1 Introduction

Consider a set of electrical components (e.g., chips)
placed on a printed circuit board (PCB), where both
the board and the chips are axis-parallel rectangles. We
want to connect each chip to one of the four sides of the
board using a rectangular bus (see Figure 1). The goal
is to find a routing direction for the chips so that the
maximum number of bus conflicts at any single point
over the board is minimized. This is equivalent to min-
imizing the number of layers needed for routing all the
chips on the board. The problem is called the rectangle
escape problem [3], and has been extensively studied in
the literature (see, e.g., [1, 2, 3, 4, 5, 7, 8, 9, 10]). The
problem is formally defined as follows:

Problem 1 (Rectangle Escape Problem (REP))
Given an axis-parallel rectangular region R, and a set
S of n axis-parallel rectangles inside R, extend each
rectangle in S toward one of the four borders of R, so
that the maximum density over R is minimized, where
the density of a point p ∈ R is defined as the number of
extended rectangles containing p.

∗Department of Computer Engineering, Sharif University of
Technology. {s asadi,emamjomeh,yazdanbod}@ce.sharif.edu,
zarrabi@sharif.edu
†School of Computer Science, Institute for Research in Funda-

mental Sciences (IPM), Tehran, Iran.

Figure 1: An instance of the rectangle escape problem.
Chips are shown in dark, and buses in light gray.

An example of the rectangle escape problem is illus-
trated in Figure 1. In this example, the optimal density,
which is equal to the minimum number of layers needed
for routing the chips is two.

The rectangle escape problem is known to be NP-
hard [3]. The decision version of the problem, called
k-REP, is defined as follows: Given an instance of the
rectangle escape problem and an integer k > 1, deter-
mine whether any routing is possible with a density of
at most k. It is known that the k-REP problem is NP-
complete, even for k = 3 [3]. The best current ap-
proximation algorithm for the optimization version of
the problem is due to Ma et al. [3] that achieves an
approximation factor of 4, using a deterministic linear
programming (LP) rounding technique.

For a special case when the optimal density is 1 (i.e.,
when all chips can be routed with no conflict), the prob-
lem can be solved exactly using a polynomial-time al-
gorithm for the related maximum disjoint subset prob-
lem, for which an O(n6)-time algorithm is proposed by
Kong et al. [1].

Our results. In this paper, we obtain some new re-
sults on the rectangle escape problem, a summary of
which is listed below.

• We show that the k-REP problem is NP-complete
for any k > 2. Given that the problem is polyno-
mially solvable for k = 1, this fully settles the com-
plexity of the problem for all values of k. An impor-
tant implication of this result is that the rectangle
escape problem is hard to approximate to within
any factor better than 3/2, unless P = NP.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

235

25th Canadian Conference on Computational Geometry, 2013

• We present a new algorithm that solves the 1-REP
problem in O(n4) time, improving upon the current
best solution for the problem that requires O(n6)
time [1]. Our algorithm can indeed solve the follow-
ing more general optimization version of the prob-
lem: given an instance of the rectangle escape prob-
lem, find a maximum-size subset of rectangles in S
that can be routed disjointly.

• Despite the fact that the problem is hard to ap-
proximate to within a constant factor when the op-
timal density is low, we present a randomized al-
gorithm that achieves an approximation factor of
1 + ε with high probability, when the optimal den-
sity is at least cε log n, for some constant cε. This
improves, for instances with high density, upon the
current best algorithm of Ma et al. [3] that guaran-
tees an approximation factor of 4 for all instances.
Our algorithm is based on a randomized rounding
technique applied to a linear programming formu-
lation of the problem.

2 Hardness Result

We first show that the k-REP problem is NP-complete,
for any k > 2. As a corollary, we show that the rectangle
escape problem is hard to approximate to within any
factor better than 3/2, unless P = NP. Our hardness
result holds even in a more restricted setting where the
input rectangles are all disjoint.

Theorem 1 The k-REP problem is NP-complete for
k > 2, even if all input rectangles are disjoint.

Proof. We prove by reduction from 3-SAT. The reduc-
tion is similar to that of [3], but uses a more clever
construction to handle the special case of k = 2, and a
more restricted setting where all rectangles are disjoint.
Given an instance of 3-SAT, we create an instance of
2-REP as follows. Fix a rectangular region R. We par-
tition R into four (virtual) sub-regions, labeled with top,
left, variables, and clauses, as shown in Figure 2. Then,
we start building a set of rectangles S inside R as fol-
lows. We first add one long rectangle to the right side
of the variables region, and three long rectangles to the
left, right, and bottom sides of the clauses region, as
shown in Figure 2. The following rectangles are then
added to S.

• For each variable xi, we add a pair of “variable
rectangles” vi and v̄i along each other to the vari-
ables region in such a way that no two rectangles
from different variables can be stabbed by a single
horizontal or vertical line.

• For each clause Cj , we add three “literal rectangles”
in a horizontal row in the clauses region. Each lit-
eral rectangle is placed beneath a variable rectangle

Variables Region

Clauses Region

Top Region

Left Region

(a ∨ b̄ ∨ c)

(a ∨ b ∨ c̄)

a ā

b b̄

c c̄

Figure 2: Reduction from 3-SAT to 2-REP.

corresponding to the literal appeared in the clause.
Again, no two literal rectangles intersect, and no
two of them can be stabbed by a vertical line.

• For each variable, we add a “block gadget” to the
left region, directly to the left of the correspond-
ing variable row. Each gadget is composed of five
smaller rectangles in a cross-shape arrangement, as
shown in Figure 2. Likewise, for each literal in each
clause, we add a block gadget to the top region di-
rectly above the corresponding literal rectangle. If
a literal appears in no clause, we add a block gad-
get above the corresponding variable rectangle in
the top region. The block gadgets are placed in a
way that no two rectangles from different gadgets
can be stabbed by a single horizontal or vertical
line.

Now, we claim that the answer to the constructed in-
stance of 2-REP is yes if and only if the corresponding
3-SAT instance is satisfiable. First, suppose that the
answer to the 2-REP is yes, i.e., there is a proper rout-
ing of rectangles with a density of at most 2. We show
that there is a satisfying assignment for the 3-SAT in-
stance, in which a literal is set to true (resp., false), if
the corresponding variable rectangle is routed rightward
(resp., downward). To show this, first observe that for
each variable vi, the two variable rectangles vi and v̄i
cannot be routed simultaneously to the right, because
otherwise, they will cause a density of 3 on the rectangle
located to the right side of the variables region. More-
over, for each gadget in the top and the left region, the
density over at least one of the gadget rectangles is more
than one, and hence, in a proper routing of rectangles,
no variable rectangle can be routed neither to the top,
nor to the left side.

For each clause, observe that none of its three lit-
eral rectangles can escape upward because of the block
gadgets in the top region, and no two of them can es-
cape simultaneously to neither left nor right, because

25th Canadian Conference on Computational Geometry, 2013

236

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

QRk

Rk−1

Rk−1

Rk−1

Rk−1

Rk

Figure 3: Constructing an instance of k-REP from four
instances of (k − 1)-REP.

of the rectangles put on the left and the right sides
of the clauses region. Therefore, at least one literal
rectangle from each clause must be routed downward.
Furthermore, notice that if a variable rectangle escapes
downward, none of the literal rectangles below it can be
routed downward, because of the rectangle put at the
bottom side of the clauses region.

Now, given a proper routing of the 2-REP instance,
we set variable vi in the 3-SAT instance to 1 if rect-
angle vi escape to the right, otherwise, we set it to 0.
Note that rectangles for vi and v̄i cannot simultane-
ously escape to the right, so this assignment is feasible.
Moreover, for each clause, at least one of its literal rect-
angles, say xi, must escape downward, meaning that its
corresponding variable xi is set to 1 for sure, and thus
the clause is satisfied. Therefore, the 3-SAT instance is
satisfiable. The opposite side can be proved using the
same exact mapping, and taking into account the fact
that there is a proper routing for the top and the left
gadget rectangles, in which they do not interfere with
the rectangles in the variables and the clauses regions.
This completes the NP-completeness proof for k = 2.

To show NP-completeness for other values of k > 2,
we use the following recursive construction. Let Rk−1
be an instance of (k−1)-REP. We construct an instance
Rk of k-REP by putting a large rectangle Q in the mid-
dle, and four instances of Rk−1 around Q, as shown in
Figure 3. The four instances are placed in a way that no
horizontal or vertical line can simultaneously stab any
two of them. Now, suppose that Rk has a proper rout-
ing of density k. In this routing, Q escapes to one of
the four directions, and hence, one of the Rk−1 instances
must have a proper routing of density k− 1. Therefore,
the corresponding 3-SAT instance is satisfiable by in-
duction. The opposite side can be proved analogously
(details are omitted in this version). �

As a corollary of Theorem 1, we obtain the following
inapproximablity result.

Theorem 2 For any α < 3/2, there is no α-
approximation algorithm for the rectangle escape prob-
lem, even if all input rectangles are disjoint, unless P =
NP.

Proof. Suppose by way of contradiction that there is
an algorithm with an approximation factor of α < 3/2.
If we run this algorithm on an instance of the rectan-
gle escape problem with an optimal density of 2, the
algorithm must return a solution with density less than
3/2× 2, which is at most 2 due to the integrality of the
density. Such an algorithm solves the 2-REP problem
exactly, which is a contradiction. �

3 An Exact Algorithm for Unit Density

In this section, we present a dynamic programming algo-
rithm that solves the 1-REP problem in O(n4) time, im-
proving upon the previous solution due to Kong et al. [1]
that requires O(n6) time. Our algorithm solves the fol-
lowing optimization problem.

Problem 2 (Maximum Disjoint Routing) Given
an instance of the rectangle escape problem (Problem 1)
with disjoint rectangles, find the maximum number of
rectangles that can be routed disjointly, i.e., with unit
density.

It is easy to observe that any algorithm for Problem 2
can also solve 1-REP: we first find the maximum num-
ber of rectangles that can be routed disjointly, and then
verify if this number is equal to n. Note that in the
above definition, the initial locations of unescaped rect-
angles are also important: an escaped rectangle cannot
collide with any other rectangle, even if that rectangle
is not escaped.

Let R1, . . . , Rn be the input rectangles, sorted in de-
creasing order of the y-coordinates of their bottom sides.
For a rectangle Ri, the direction d ∈ {left, right, up,
down} is said to be free if by escaping toward that di-
rection, Ri does not collide with any other rectangle in
its initial place. Note that the freeness of direction d
for Ri is independent of the escaping direction of other
rectangles. Furthermore, we define the set {v1, . . . , vk}
(k 6 2n) as the set of all vertical lines obtained by ex-
tending the vertical sides of the rectangles, sorted from
left to right.

To solve Problem 2, we first solve two simpler cases in
which the escaping directions are only vertical. Given
integers 0 6 i 6 n and 1 6 l, r 6 k, we define the
following two subroutines:

• One-Direction(i, l, r): returns the maximum
number of rectangles among R1, . . . , Ri that are be-
tween vl and vr and can be routed upward in unit
density.

• Two-Directions(i, l, r): returns the maximum
number of rectangles among R1, . . . , Ri that are be-
tween vl and vr and can be routed either upward
or downward in unit density.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

237

25th Canadian Conference on Computational Geometry, 2013

vb vl vr

Figure 4: Illustrating Problem 3.

For each triple (i, l, r), the value of both One-
Direction(i, l, r) and Two-Directions(i, l, r) can be
calculated by the following simple greedy algorithm. For
each rectangle Rj (1 6 j 6 i) between vl and vr, find a
free direction upward (and downward, depending on the
subproblem). If such direction exists, route R through
that direction. Note that routing a rectangle vertically
poses no additional restriction on other rectangles in
these two subproblems. Next, we define the following
additional subproblem.

Problem 3 (No-Left-Escape) Given integers 0 6
i 6 n and 1 6 b, l, r 6 k, No-Left-Escape(i, b, l, r),
is defined as the maximum number of rectangles among
R1, . . . , Ri which can be routed in unit density under the
following restrictions:

• only rectangles to the right of vb are allowed to es-
cape,

• no rectangle is allowed to escape leftward, and

• only rectangle between vl and vr are allowed to es-
cape downward.

See Figure 4 for an illustration. To find the value of
No-Left-Escape(i, b, l, r) recursively, we consider all
possible actions for Ri. The first possible action for Ri
is not to escape at all. In this case, the solution is equal
to the solution of No-Left-Escape(i − 1, b, l, r). The
other possible three actions for Ri are listed below. In
what follows, we assume that the considered direction
is free for Ri, and that Ri is allowed to escape through
that direction according to the problem restrictions de-
scribed above. Otherwise, we simply rule out that di-
rection from the possible actions of Ri. Let vα and vβ
be the vertical lines obtained by extending the left and
the right sides of Ri, respectively.

• Downward If Ri escapes downward, the maximum
number of rectangles among R1, . . . , Ri−1 that can
escape is equal to No-Left-Escape(i − 1, b, l, r),
since routing Ri imposes no new restriction on
R1, . . . , Ri−1.

Algorithm 1 Max-Route(i, l, r)

1: if i = 0 then

2: return 0

3: ansn ← Max-Route(i− 1, l, r)

4: ansd ← ansu ← ansl ← ansr ← 0

5: α, β ← indices of the vertical lines through the left

and the right sides of Ri, respectively.

6: if down is feasible for Ri then

7: ansd ← Max-Route(i− 1, l, r) + 1

8: if left is feasible for Ri then

9: ansl ← Max-Route(i− 1,max{l, β}, r) + 1

10: if right is feasible for Ri then

11: ansr ← Max-Route(i− 1, l,min{r, α}) + 1

12: if up is feasible for Ri then

13: ansu ← No-Right-Escape(i−1, α, l, r) + No-

Left-Escape(i− 1, β, l, r) + 1

14: return max{ansn, ansd, ansu, ansl, ansr}

• Upward If Ri escapes upward, one additional re-
striction must be considered: rectangles not to
the right of vβ cannot escape rightward. There-
fore, by the problem definition, each rectangle be-
tween vb and vβ can only escape upward or down-
ward. As such, escaping the maximum number of
rectangles between vb and vβ can be solved inde-
pendently using subroutines One-Direction and
Two-Directions, depending on the position of
vl and vr. The rectangles to the right of vβ form
another subproblem, whose optimal answer is No-
Left-Escape(i− 1, β, l, r).

• Rightward By escaping rightward, one more re-
striction is posed to other rectangles: for any 1 6
j < i, Rj can escape downward if its initial place is
not only to the left of vr, but is also to the left of
vα. It means that if initial position of Rj is not to
the left of vmin{r,α}, it cannot be routed downward.
Therefore, the optimum answer for R1, . . . , Ri−1 in
this case is No-Left-Escape(i−1, b, l,min{r, α}).

The No-Right-Escape is analogously defined, and can
be solved similarly. Now, we have all ingredients neces-
sary to solve Problem 2. Indeed, we solve the following
more general problem:

Problem 4 (Max-Route) Given integers 0 6 i 6 n
and 1 6 l, r 6 k, find the maximum number of rectan-
gles among R1, . . . , Ri that can be routed in unit density
under the following restriction: if a rectangle is not be-
tween vl and vr, it is not allowed to escape downward.

The procedure Max-Route(i, l, r) defined in Algo-
rithm 1 solves the problem as follows. We consider all

25th Canadian Conference on Computational Geometry, 2013

238

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

possible actions for Ri. Except for escaping upward, all
remaining actions can be solved like the previous prob-
lems. When Ri escapes upward, it is enough to cal-
culate the sum of No-Left-Escape(i − 1, β, r, l) and
No-Right-Escape(i − 1, α, r, l), since routing rectan-
gles to the left of vα and routing rectangles to the right
of vβ are two independent subproblems.

Lemma 3 Problem 4 can be solved in O(n4) time.

Proof. To solve this problem, consider a dynamic-
programming version of Max-Route algorithm. First,
using a greedy algorithm, solve the One-Direction
and Two-Directions problems for any tuple (i, l, r),
and store them in a table. This can be done in O(n4)
time. Then, by the definition of problem 3, we can
solve No-Left-Escape and No-Right-Escape inde-
pendently using dynamic programming. Note that in
dynamic programming, the value of each tuple (i, b, l, r)
can be obtained in O(1) time from four previously-
calculated values as described above. Putting all to-
gether, by using the description of Problem 4, each
value of Max-Route(i, l, r) can be obtained from the
previously-calculated values of this function, or solu-
tions of No-Left-Escape and No-Right-Escape.
This can be done in O(1) time assuming that the previ-
ous values are stored in a table. Thus, using a dynamic
programming algorithm, Problem 4 can be solved in
O(n4) time and space. �

The following theorem summarizes the result of this
section.

Theorem 4 1-REP can be solved in O(n4) time.

Proof. Observe that the answer to 1-REP is yes iff the
answer to Problem 4 for (n, 1, k) is equal to n, where k
is the index of the rightmost vertical line. The running
time therefore follows from Lemma 3. �

4 A Randomized Approximation Algorithm

As noted in Section 2, the rectangle escape problem is
NP-hard, even when the optimal density is 2. Therefore,
it is natural to look for approximation algorithms for the
problem. The current best approximation algorithm is
due to Ma et al. [3], which achieves an approximation
factor of 4. The algorithm is based on a determinis-
tic rounding of an integer programming formulation of
the problem. In this section, we show that a standard
randomized rounding technique [6] applied to the same
integer programming formulation of the problem, yields
an approximation factor of 1+ε, when the optimal den-
sity is at least cε log n, for some constant cε.

The integer programming formulation of the problem
is as follows. Let S = {r1, . . . , rn} be the set of input
rectangles inside a region R. We build a grid on top of R

Figure 5: The grid cells for an instance of the rectangle
escape problem.

Algorithm 2 Randomized-Rounding

1: find an optimal solution x∗ to the LP relaxation

2: route each ri to exactly one direction λ according

to the probability distribution x∗i,λ

by extending each side of the rectangles in S into a line
(see Figure 5). This partitions R into a set C of O(n2)
grid cells, where the density over each cell is fixed.

For each rectangle ri, we define four 0-1 variables
xi,l, xi,r, xi,u, and xi,d, corresponding to the four di-
rections left, right, up, and down, respectively. For a
direction λ ∈ {l, r, u, d}, we set xi,λ = 1 if ri is escaped
toward direction λ, otherwise, xi,λ = 0. Since any rect-
angle ri can escape toward only one direction, we have
the constraint xi,l +xi,r +xi,u +xi,d = 1. For each grid
cell c ∈ C, let Pc = {(i, λ) | ri passes c if it goes toward
direction λ}. Note that if cell c is contained in ri, then
(i, λ) ∈ Pc for all directions λ. Let Z be the maximum
density over the region R. Then, for each grid cell c ∈ C

we can add the constraint
∑

(i,λ)∈Pc
xi,λ 6 Z. Now,

the problem can be formulated as the following integer
program.

minimize Z

subject to
∑

(i,λ)∈Pc

xi,λ 6 Z ∀c ∈ C

xi,l + xi,r + xi,u + xi,d > 1 ∀ 1 6 i 6 n
xi,l, xi,r, xi,u, xi,d ∈ {0, 1} ∀ 1 6 i 6 n

The randomized rounding algorithm for the rectangle
escape problem is provided in Algorithm 2. The algo-
rithm works as follows. We first relax the integer pro-
gram to a linear program by replacing the constraints
xi,λ ∈ {0, 1} with xi,λ > 0, and solve the linear pro-
gramming relaxation to obtain a solution x∗ with objec-
tive value Z∗. Then, we randomly route each rectangle
to exactly one direction by interpreting the value of x∗i,λ
as the probability of routing ri toward direction λ.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

239

25th Canadian Conference on Computational Geometry, 2013

Theorem 5 Algorithm 2 is a (1+ε)-approximation al-
gorithm for the rectangle escape problem with high prob-
ability, when Z∗ > 9/ε2 lnn.

Proof. For each cell c, let Dc be the density of c in
the solution returned by the algorithm. Define random
variables Xi,λ, where Xi,λ = 1 if rectangle ri is routed
toward direction λ by the algorithm, and Xi,λ = 0 oth-
erwise. Then, we have Dc =

∑
(i,λ)∈Pc

Xi,λ. Therefore,

E[Dc] =
∑

(i,λ)∈Pc

E[Xi,λ]

=
∑

(i,λ)∈Pc

Pr{Xi,λ = 1}

=
∑

(i,λ)∈Pc

x∗i,λ (by line 2 of algorithm)

6 Z∗. (by LP constraint)

Moreover, for each cell c, the variables Xi,λ for all
(i, λ) ∈ Pc are independent. To see this, notice that
there are two types of variables contributing to the den-
sity of c. If c is contained in a rectangle ri, then Xi,λ,
for all directions λ, pass through c. In this case, we can
replace these four variables in the constraint of c by just
a number 1, since one and exactly one of these variables
will be 1 in any optimal solution of LP. If c is not con-
tained in ri, then (i, λ) contributes to the density of c
for at most one value of λ, since no two directions of
ri can pass through c simultaneously. Therefore, after
substituting the first type of variables in the constraint
of cell c by 1, all other variables Xi,λ for all (i, λ) ∈ Pc
are independent, due to the fact that the direction of
rectangles are chosen independently.

We can now use Chernoff bound to show that Dc is
close to Z∗ with high probability. We use the following
statement of Chernoff bound: If X1, . . . , Xn are inde-
pendent 0-1 random variables, X =

∑
Xi, E[X] 6 U ,

and 0 6 ε 6 1, then Pr {X > (1 + ε)U} 6 e−Uε
2/3.

Since E[Dc] 6 Z∗, by Chernoff bound we have

Pr {Dc > (1 + ε)Z∗} 6 e−Z∗ε2/3.

The solution produced by our algorithm has density
maxc {Dc}. Since there are at most (2n)2 grid cells,
assuming Z∗ > cε lnn for some constant cε > 0, we get

Pr {max
c
{Dc} > (1 + ε)Z∗} 6

∑

c

Pr {Dc > (1 + ε)Z∗}

6 (2n)2 × n−cεε2/3

= 4n2−(cεε
2/3).

Therefore, for a proper constant cε > 9/ε2, the prob-
ability that the solution returned by our algorithm is
greater than (1 + ε)Z∗ is at most 4

n . Taking into ac-
count that Z∗ 6 OPT, it shows that our algorithm has
an approximation factor of 1 + ε with high probability
if Z∗ > cε lnn. �

5 Conclusions

In this paper, we presented some new results on the
rectangle escape problem. In particular, we presented a
lower bound of 3/2 on the approximability of the prob-
lem, and a (1+ε)-approximation algorithm for the prob-
lem when the optimal density is high enough. It remains
open what the best approximation factor is for the prob-
lem in general case.

Acknowledgments The authors would like to thank
Hesam Monfared for suggesting the rectangle escape
problem, and the anonymous referees for their helpful
comments.

References

[1] H. Kong, Q. Ma, T. Yan, and M. D. F. Wong.
An optimal algorithm for finding disjoint rectan-
gles and its application to PCB routing. In Proc.
47th ACM/EDAC/IEEE Design Automation Conf.,
DAC ’10, pages 212–217, 2010.

[2] H. Kong, T. Yan, and M. D. F. Wong. Au-
tomatic bus planner for dense PCBs. In Proc.
46th ACM/EDAC/IEEE Design Automation Conf.,
DAC ’09, pages 326–331, 2009.

[3] Q. Ma, H. Kong, M. D. F. Wong, and E. F. Y. Young.
A provably good approximation algorithm for rectan-
gle escape problem with application to PCB routing.
In Proc. 16th Asia South Pacific Design Automation
Conf., ASPDAC ’11, pages 843–848, 2011.

[4] Q. Ma, E. Young, and M. D. F. Wong. An optimal al-
gorithm for layer assignment of bus escape routing on
PCBs. In Proc. 48th ACM/EDAC/IEEE Design Au-
tomation Conf., pages 176–181, 2011.

[5] M. M. Ozdal, M. D. F. Wong, and P. S. Honsinger. An
escape routing framework for dense boards with high-
speed design constraints. In Proc. 2005 IEEE/ACM
Internat. Conf. Computer-Aided Design, ICCAD ’05,
pages 759–766, 2005.

[6] P. Raghavan and C. D. Thompson. Randomized round-
ing: a technique for provably good algorithms and al-
gorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[7] P.-C. Wu, Q. Ma, and M. D. Wong. An ILP-based au-
tomatic bus planner for dense PCBs. In Proc. 18th Asia
South Pacific Design Automation Conf., ASPDAC ’13,
pages 181–186, 2013.

[8] J. T. Yan and Z. W. Chen. Direction-constrained
layer assignment for rectangle escape routing. In Proc.
2012 IEEE Internat. System-on-Chip Conf., SOCC ’12,
pages 254–259, 2012.

[9] J. T. Yan, J. M. Chung, and Z. W. Chen. Density-
reduction-oriented layer assignment for rectangle es-
cape routing. In Proc. Great Lakes Sympos. VLSI,
GLSVLSI ’12, pages 275–278, 2012.

[10] T. Yan, H. Kong, and M. D. F. Wong. Optimal layer
assignment for escape routing of buses. In Proc. 2009
IEEE/ACM Internat. Conf. Computer-Aided Design,
ICCAD ’09, pages 245–248, 2009.

25th Canadian Conference on Computational Geometry, 2013

240

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Grid Proximity Graphs: LOGs, GIGs and GIRLs

River Allen∗ Laurie Heyer† Rahnuma Islam Nishat∗ Sue Whitesides∗

Abstract

This paper discusses three types of proximity graphs
called LOGs, GIGs and GIRLs, defined on unit grids.
We show that it can be decided in linear time whether
a LOG graph is a GIG graph. We also show that it is
NP-complete to recognize LOGs and GIGs, and explore
the relationship between these graph classes and their
properties. Enumeration results and open problems are
also presented.

1 Introduction

Consider an m × n unit grid and define on this grid a
limited outdegree grid directed graph, or LOG graph, as
follows: the vertices are the mn vertices of the unit grid,
the underlying edges are a subset of the unit grid edges
such that each edge has unit length and each vertex has
outdegree at most one. In other words, each vertex can
point to at most one of its neighbors in the underlying
grid. See Figure 1 for an example of a 3×4 LOG graph.

a b c d

e f g h

i j k l

Figure 1: A LOG graph with 12 vertices.

Let G = (V,E) be an m× n LOG graph with vertex
set V and edge set E. For each vertex u in V , let N(u)
denote the set of the vertices of G that have unit dis-
tance from u in the underlying grid. We call N(u) the
potential neighbors of u.

One way to obtain a LOG graph is to make a one-
to-one assignment of the labels 1, 2, . . . ,mn to the mn
vertices of the grid, then include a directed edge (u, v)
if the label at v is greater than the label of u and the

∗Department of Computer Science, University of Vic-
toria, BC, Canada, riverallen@gmail.com,rnishat@uvic.ca,

sue@uvic.ca
†Mathematics Department, Davidson College, NC, USA,

laheyer@davidson.edu

greatest among all the labels of N(u). This construction
motivates the following definition, where we denote the
label of vertex u by L(u).

Definition 1 A Greatest Increase Grid directed graph
or a GIG graph is a LOG graph in which the vertices
can be labeled with distinct integers 1, 2, . . . ,mn such
that (u, v) ∈ E if and only if v ∈ N(u), L(v) > L(u)
and L(v) > L(w) for all w ∈ N(u), w 6= v.

See Figure 2 for an example construction of a 3 × 3
GIG graph. In [2], a GIG graph is interpreted as a
representation of a discrete 3-dimensional search space
in which the vertices of G are the states, and L(u) is
the utility of the state. A hill-climbing algorithm with
initial state u would succeed in finding the global max-
imum state if and only if there is a directed path from
u to that state.

5 61

4 9 2

3 8 7

5 61

4 9 2

3 8 7

(a) (b)

Figure 2: (a) A random labeling of the vertices of a 3×3
grid, and (b) a GIG graph generated from the labeling.

In this paper, we present an alternative interpretation
of a GIG as a representation of a folded map. An m×
n map is a rectangular piece of paper that is divided
into mn unit squares by a m × n square grid on the
paper. The edges of the grid on the paper (not on the
boundary of the paper) are called creases. A map can
be folded only along the creases. Figure 3(a) shows a
2×3 map and it has seven creases, three horizontal and
four vertical.

A famous open problem in map folding posed by Jack
Edmonds asks whether it can be decided in polynomial
time whether a map can be folded into a unit square or
not [4]. Suppose that a map can be folded into a unit
square. Then in such a folded state, there is a linear
ordering of the faces of the map from top to bottom [6]
as shown in Figure 3(b).

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

241

25th Canadian Conference on Computational Geometry, 2013

f0,0

f1,1

f0,2f0,1

f1,2f1,0

f1,2

f1,0

f1,1

f0,1
f0,0

f0,2

(b)(a)

Figure 3: (a) A 2 × 3 map with the faces labeled, (b)
the map folded on a unit square.

We represent each face of the map as a fixed vertex of
a GIG G depending on the row and column of the face
as shown in Figure 4(a). We then label the vertices of
the GIG G as shown in Figure 4(b), where each vertex of
G gets a label depending on its height from the plane on
which the faces are stacked, and add the directed edges
according to the definition of a GIG graph. A directed
edge (u, v) in this graph G denotes that u is below v in
the stack of faces and v is the topmost among all the
neighbors of u.

4 65

2 3 1

4 65

3 1 2

f0,0

f1,0

f1,1

f0,1 f0,2

f1,2

(b) (c)

(a)

Figure 4: (a) The faces of the map in Figure 3(a) shown
as vertices of G, (b) labeling of the vertices G according
to the ordering in Figure 3(b), (c) another labeling of
the same GIGG which causes the paper to self-intersect.

Now, suppose a GIG G is given that represents a pos-
sible linear ordering of the faces of a map. Depending
on the labeling of the vertices of G, we might or might
not get a linear ordering of the faces that is valid. Fig-
ures 4(b) and (c) show two different labelings of the
same GIG associated with a 2 × 3 map. Although the
labeling of Figure 4(b) gives the valid linear ordering
for the folded state in Figure 3(b), the ordering from
Figure 4(c) cannot be obtained.

Figure 5(a) and (b) show a 2 × 4 map and a GIG
representing a possible linear ordering of its faces. In
this GIG, the faces f0,2 and f1,3 must receive the labels
7 and 8, respectively. For this reason, any labeling of
this GIG gives an ordering of the faces of the map such
that the paper would have to self-intersect.

f0,0

f1,1

f0,2f0,1

f1,2f1,0

f0,3

f1,3

5 76

4 3 2 8

1

(b)(a)

Figure 5: (a) A 2× 4 map with the faces labeled, (b) a
GIG that gives no linear ordering.

The rest of the paper is organized as follows. Sec-
tion 2 gives an algorithm to decide whether a given LOG
graph is a GIG graph. Section 3 presents an algorithm
to generate all possible labelings of the vertices of a GIG
graph. In Section 4, we show that it is NP-complete to
decide whether a graph is a LOG or a GIG. Section 5
and 6 give generalizations and variations. Section 7 con-
cludes the paper.

2 Recognizing GIG graphs

Since the set of GIG graphs on an m×n grid is a proper
subset of the set of LOG graphs on the same size grid
(e.g., edge-free LOG graphs are not GIG graphs), we are
interested in deciding whether a given LOG graph is a
GIG graph. Here, we give a polynomial time algorithm
to solve this decision problem. The algorithm rests on
the construction of a new graph that represents a set of
inequalities implied by the edges in G. We define this
new graph as follows:

Definition 2 The augmented graph G = (V, E) of a
LOG graph G = (V,E) is a directed graph that satisfies
the following conditions.

(a) V = V and E ⊂ E.

(b) If there is an edge from u to v in G, then G also has
edges from all other potential neighbors of u to v. In
other words, (w, v) ∈ E for each w ∈ N(u), w 6= v.

(c) If the outdegree of u is 0 in G, then for every w ∈
N(u), there must be an edge (w, u) in E.

Figure 6 shows an example of the augmented graph
of GIG graph on a 3× 3 grid.

If a G is an augmented graph of a LOG graph that
is a GIG graph, then G can be reconstructed from the
labeled grid vertices of the GIG. Thus the labeled ver-
tices provide a geometric and compressed representation
of G.

Theorem 3 Let G be a LOG graph with mn vertices
and let G be the augmented graph of G. Then G is a
GIG graph if and only if G is acyclic.

25th Canadian Conference on Computational Geometry, 2013

242

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

5 61

4 9 2

3 8 7

5 61

4 9 2

3 8 7

(a) (b)

Figure 6: (a) A GIG graph on a 3× 3 grid, and (b) its
augmented graph.

Proof. If G is a GIG graph then there exists a labeling
of the vertices of G such that every vertex points to
its biggest potential neighbor that has a bigger label
than the vertex itself in the grid embedding of G. Then
by the definition of augmented graphs, each directed
edge (u, v) in G denotes that v > u. Suppose there
is a directed cycle v1, v2, . . . , vk, v1 in G. Then we get
v1 < v2 < . . . < vk < v1, which is a contradiction.
Therefore, G is acyclic.

We now assume that the augmented graph G is
acyclic. Then we can get a topological sort [3] of the ver-
tices of G and we assign the resulting labels 1, 2, . . . ,mn
to the vertices of G. We now show that any of these
labelings satisfies the definition of GIG graphs. Let u
be a vertex in G. We have to consider two cases:

(a) G contains an outgoing edge (u, v) inG. Then in the
augmented graph G, we have an edge (w, v) for each
w ∈ N(u), where w 6= v. Thus, all the potential
neighbors of u receive smaller index than v.

(b) There is no outgoing edge from u in G. Then all its
potential neighbors points to it in G and therefore
they all receive smaller index than v.

Therefore, the labeling of G obtained above satisfies
the definition of GIGs and hence G is a GIG graph. �

3 Generating all the Labelings

In this section, we give an algorithm to generate all
possible labelings of the vertices of a GIG graph since a
GIG graph can have multiple labelings (see Figure 7).

1 96

2 4 3

5 8 7

3 87

6 5 1

2 9 4

(a) (b)

Figure 7: Two labelings of the same GIG graph.

Pruesse and Ruskey [7] gave an output sensitive algo-
rithm to generate all possible linear extensions of a given
poset. Let P be a poset and let E(P) be the set of all
linear extensions of P. Then their algorithm generates
all linear extensions in time O(|E(P)|), which results in
constant amortized time. We can use this algorithm to
generate all possible labelings of a given GIG graph in
constant amortized time. Here we give a sketch of a
simpler recursive algorithm which suffices for our pur-
pose.

Let G be the given GIG graph with n vertices and
let G be the augmented graph of G. Then G must be
a directed acyclic graph. Since there are no cycles in
G, there must be at least one vertex in G that has no
incoming edges. We denote by sources the vertices with
no incoming edges in G. We now label any of the sources
with the least available index from 1, . . . , n. Let the
source be v and label of the source be l(v) = i. We then
remove v from G and recurse the procedure for G \ v,
where the least available index is i + 1. A pseudocode
of our algorithm LabelGIG is given below. The initial
call is LabelGIG(G, 1).

Algorithm 1: LabelGIG(G, i)

1 S is the set of all the sources in G
2 if G = ∅ then
3 print the labeling.
4 return.

5 for each v ∈ S do
6 l(v) = i
7 LabelGIG(G \ v, i+ 1)

4 Complexity of Embedding a GIG on a Grid

In this section, we show that it is NP-complete to deter-
mine whether a given abstract graph is a LOG graph.
We also show that the recognition problem remains NP-
complete for GIGs.

A formal definition of the LOG recognition problem
is given below.

Problem : LOG-Recog

Instance : Two integers m,n > 0 and a planar di-
rected graph G with mn vertices such that the maxi-
mum degree of G is less than or equal to four and each
vertex has outdegree less than or equal to one.

Question : Does G have a plane rectilinear embed-
ding on an m× n integer grid?

We reduce the 3-Partition problem to LOG-Recog
to prove the NP-hardness. The 3-Partition problem
is described as follows.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

243

25th Canadian Conference on Computational Geometry, 2013

Problem : 3-Partition

Instance : A set of integers S = {x1, x2, . . . , x3p},
where p > 0, and an integer B > 0 such that

∑3p
i=1 xi =

pB and B/2 > xi > B/4, 1 ≤ i ≤ 3p.

Question : Can S be partitioned into p disjoint sets
such that each set contains exactly three integers that
sum up to B?

We use a very similar construction as Dolev et al. [5].
We create a directed frame tree as shown in Figure 8(b)
from the frame tree of Dolev et al. shown in Figure 8(a).
We choose the degree four vertex r as the root and direct
each edge from the child node to the parent node.

(a)

B

p/2 holes

points

r

(b)

Figure 8: (a) The frame tree used by Dolev et al. [5],
and (b) the corresponding directed frame tree.

We now prove the NP-completeness of LOG-Recog.

Theorem 4 LOG-Recog is NP-complete.

Proof. If a rectilinear embedding of G is given on
an m × n grid, it can be checked in polynomial time
whether each edge has unit length. Thus the prob-
lem is in NP. To prove that it is NP-hard, take an
instance S = {x1, x2, . . . , x3p} of 3-Partition, where∑3p

i=1 xi = pB and B/2 > xi > B/4, 1 ≤ i ≤ 3p, and
construct an instance of LOG-Recog from the instance
of 3-Partition as follows.

First assume that p is even. Create a directed frame
tree T with (2p+ 3)(2B + 3)− pB vertices as shown in
Figure 8(b). Then create a directed path of xi vertices
for each of the integers xi ∈ S, 1 ≤ i ≤ 3p. The graph
G containing T and all the 3p directed paths has (2p+
3)(2B + 3) vertices. Finally, choose m = 2p + 3 and
n = 2B + 3. We now show that the given instance of
the 3-Partition problem has a solution if and only if
G has a rectilinear embedding on an m×n integer grid.

First assume that the instance of 3-Partition has a
solution, so S can be partitioned into p disjoint sets
S1, S2, . . . , Sp such that each of the sets has exactly
three integers that sum to B. From Lemma 6 of [5],
T has only two possible embeddings on an m× n grid,

and in each of the cases there are p holes of B grid points
each. Therefore, for each Sj , 1 ≤ j ≤ p, lay the paths
corresponding to the integers in Sj in one hole and get
a rectilinear embedding of G.

Now assume that G has an embedding on the integer
grid. Since any embedding of T leaves p holes of B grid
points and the number of grid points is equal to the
number of vertices in G, each of the holes must contain
three paths that have B vertices in total. Take the
integers corresponding to the paths in a hole to form a
subset. In this way we get a partition of S into p disjoint
subsets as required.

Now assume that p is odd. Create a directed frame
tree T with (2(p+1)+3)(2B+3)−(p+1)B vertices and
the 3p directed paths representing 3p integers as before.
We also create a directed path of B vertices as shown
in Figure 9. In this case G contains (2p + 5)(2B + 3)
vertices and hence, we take m = 2p+5 and n = 2B+3.
As in the previous case, it can be proved that the given
instance of 3-Partition has a solution if and only if G
has a rectilinear embedding on an m×n integer grid. �

r

Figure 9: The directed frame tree and the directed path
of B vertices when p is odd.

We now define the GIG recognition problem.

Problem : GIG-Recog

Instance : Two integers m,n > 0 and a planar di-
rected graph G with mn vertices such that the maxi-
mum degree of G is less than or equal to four and each
vertex has outdegree less than or equal to one.

Question : Does G have a plane rectilinear embed-
ding on an m×n integer grid such that the augmented
graph is a directed acyclic graph?

Now we prove that GIG-Recog is NP-complete.

Theorem 5 GIG-Recog is NP-complete.

Proof. If a rectilinear embedding of G is given on an
m×n grid, it can be checked in polynomial time whether
each edge has unit length and whether the augmented
graph is a directed acyclic graph . Thus the problem
is in NP. To prove that it is NP-hard, reduce the 3-
Partition problem to GIG-Recog as in the proof of
Theorem 4.

25th Canadian Conference on Computational Geometry, 2013

244

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Create a directed frame tree T with 3p(B+3)+4(p−
1) + 12× 2 = 3pB + 13p+ 20 vertices as shown in Fig-
ure 10. Choose m = 4 and n = p(B+3)+p−1+3×2 =
pB + 4p + 5. On an m × n grid, T has the unique em-
bedding shown in Figure 10, which creates p holes with
B+3 grid points in each. Then create a directed path of
xi+1 vertices for each of the integers xi ∈ S, 1 ≤ i ≤ 3p.
The graph G containing T and all the 3p directed paths
has 3pB + 13p + 20 + pB + 3p = 4(pB + 4p + 5) ver-
tices in total. As in the proof of Theorem 4, it can be
shown that the given instance of 3-Partition has a so-
lution if and only if G has a rectilinear embedding on
the m×n integer grid, where each edge on the directed
paths points right to left. We now show that the aug-
mented graph obtained from such an embedding of G is
acyclic.

holesp

B+3 points pointspointsB+3 B+3

Figure 10: The frame tree for the proof of Theorem 5.

Figure 11(a) shows the augmented graph of the left-
most portion of the directed frame tree T with just one
hole, and Figure 11(b) shows the augmented graph when
the directed paths representing the integers in a subset
of S are laid out such that each edge on the directed
paths points right to left. Because of the symmetric
structure of the augmented graph, it is easy to see that
the augmented graph in Figure 11(b) is acyclic and
hence, the augmented graph of such a rectilinear em-
bedding of G on the grid is an acyclic directed graph.

�

(b)

(a)

.....

.....

Figure 11: Illustration for the proof of Theorem 5. The
dot dashed lines in (a) are not shown in (b).

5 Generalizations of LOGs and GIGs

In this section, we show that the concepts of LOG
graphs and GIG graphs extend to Rd, where d ≥ 2,
and also to other kinds of grids than rectangular grids.

Figure 12(a) and (b) show a LOG and a GIG in R3.
Each vertex here has at most 6 potential neighbors and

14

15

13

11

9

4

1

2

3

5

6

8

12

7

17

18
1610

(a) (b)

Figure 12: (a) A 3× 3× 2 LOG, (b) a 3× 3× 2 GIG.

outdegree at most one. Therefore, in Rd, each vertex
has at most 2d potential neighbors. In other words, if
we have a directed graph with outdegree at most one
and maximum degree ∆, a necessary condition for it to
be represented as a LOG in Rd is that d ≥ ∆/2. Fig-
ure 13(a) and (b) show examples of LOG graphs on a
triangular grid and a hexagonal grid in R2, respectively.
Each vertex of a LOG has at most 6 and 3 potential

(a) (b)

Figure 13: LOGs on (a) a triangular grid, and (b) a
hexagonal grid.

neighbors on a triangular and on a hexagonal grid, re-
spectively. This observation raises the following open
problem.
Open Problem: Let G be a directed graph with outde-
gree at most one, maximum degree 6 and lmn vertices.
What is the complexity of determining whether it is a
LOG graph on a rectangular (l×m×n) unit grid in R3

or a LOG graph on a triangular grid in R2?

6 Labeling LOGs with Repetition

In this section, we introduce another subclass of LOG
graphs: the Greatest Increase with Repeated Labels Al-

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

245

25th Canadian Conference on Computational Geometry, 2013

lowed Grid directed graphs, or GIRL graphs for short.
GIRL graphs are a modification of GIG graphs where

we allow repeated use of labels, but at each vertex the
labels of its neighbors must be distinct; the label of a
vertex may appear among the labels of its neighbors.

Definition 6 A Greatest Increase with Repeated La-
bels Allowed Grid directed graph is a LOG graph
in which the vertices can be labeled with integers
1, 2, . . . ,mn such that the directed edge (u, v) ∈ E
if and only if v ∈ N(u), L(v) > L(u) and
L(v) = max({L(w)|w ∈ N(u)}); furthermore ∀v ∈
V, ‖N(v)‖ = ‖{L(w)|w ∈ N(v)}‖, i.e. for each vertex
the labels of its neighbors must be distinct.

3 87

6 5 1

2 9 4

1 43

2 2 3

1 4 3

2 21

3 3 1

4 4 1

(a) (b)

(c) (d)

Figure 14: (a) A GIG graph, where each vertex has
a unique label, (b) an equivalent GIRL representation,
(c) A GIRL graph that is not a GIG graph and (d) the
augmented graph of the underlying LOG graph for (c)
which has a directed cycle shown in bold dashed lines.

Note that, since we can determine if a LOG graph
is a GIG graph, we can determine if a GIRL graph is
a GIG graph. For example, the GIRL graph in Fig-
ure 14(c) cannot be a GIG graph because its augmented
graph contains a directed cycle as shown in Figure 14(d).
Also note that there are LOG graphs that are not GIRL
graphs: for example, a 3 × 3 LOG graph without any
edges is not a GIRL graph. Thus the inclusions in Fig-
ure 15 are strict.

The possiblity of repeated labels leads to several ques-
tions:

• Given a LOG graph, is it a GIRL graph?

It is easy to check that Figure 14(b) uses a minimum
label set.

LOG

GIRL

GIG

Figure 15: The inclusions are strict.

• Given a GIG graph, what is the minimum set of
labels needed to represent it as a GIRL graph?

7 Conclusion

We have studied the LOG graphs and GIG graphs, in-
troduced the augmented graphs of a GIG graph and
characterized GIG graphs in terms of their augmented
graphs. We show that LOG graph and GIG graph recog-
nition is NP-complete. We have also introduced gener-
alizations of LOG graphs and a significant superclass of
GIG graphs called the GIRL graphs. We close with the
following question, similar in spirit to graph decompo-
sition problem such as linear arboricity [1].
Open problem: Given any directed acyclic graph G,
can we decompose G into (a minimum number of) aug-
mented graphs of GIG or GIRL graphs?

References

[1] Noga Alon. The linear arboricity of graphs. Israel
Journal of Mathematics, 62(3):311–325, 1988.

[2] Joshua Chester, Linnea Edlin, Jonah Galeota-
Sprung, Bradley Isom, Andrew Lantz, Alexander
Moore, Virginia Perkins, E. Tucker Whitesides,
A. Malcolm Campbell, Todd T. Eckdahl, Laurie J.
Heyer, and Jeffrey L. Poet. On counting limited
outdegree grid digraphs and greatest increase grid
digraphs. Unpublished manuscript, 2012.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algo-
rithms (3. ed.). MIT Press, 2009.

[4] Erik D. Demaine and Joseph O’Rourke. Geometric
Folding Algorithms: Linkages, Origami, Polyhedra.
Cambridge University Press, NY, USA, 2007.

[5] Danny Dolev, Tom Leighton, and Howard Trickey.
Planar embedding of planar graphs. In Advances in
Computing Research, pages 147–161, 1984.

[6] Rahnuma Islam Nishat. Map folding. Master’s the-
sis, University of Victoria, BC, Canada, April 2013.

[7] Gara Pruesse and Frank Ruskey. Generating lin-
ear extensions fast. SIAM Journal on Computing,
23(2):373–386, 1994.

25th Canadian Conference on Computational Geometry, 2013

246

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Bounding the Locus of the Center of Mass for a Part with Shape Variation

Fatemeh Panahi A. Frank van der Stappen ∗

Abstract

The shape and center of mass of a part are crucial pa-
rameters to algorithms for planning automated manu-
facturing tasks. As industrial parts are generally manu-
factured to tolerances, the shape is subject to variations,
which, in turn, also cause variations in the location of
the center of mass. Planning algorithms should take
into account both types of variation to prevent failure
when the resulting plans are applied to manufactured
incarnations of a model part.

We study the relation between variation in part shape
and variation in the location of the center of mass for
a convex part with uniform mass distribution. We con-
sider a general model for shape variation that only as-
sumes that every valid instance contains a polygon PI
while it is contained in another polygon PE . We charac-
terize the worst-case displacement of the center of mass
in a given direction in terms of PI and PE . The charac-
terization allows us to determine an adequate polygonal
approximation of the locus of the center of mass. We
also show that the worst-case displacement is small if
PI is fat and the distance between the boundary of PE
and PI is bounded.

1 Introduction

Many automated part manufacturing tasks involve ma-
nipulators that perform physical actions—such as push-
ing, squeezing [1], or pulling [2]—on the parts. Over the
past two decades, researchers in robotics in general and
algorithmic automation in particular have thoroughly
studied the effect of physical actions as well as their
potential role in accomplishing high-level tasks like ori-
enting or sorting. It is evident that shape and—in many
cases (see e.g. [1, 3, 4, 5, 6, 7])—location of the center
of mass are important parameters in determining the
effect of a physical action on a part.

Industrial parts are always manufactured to toler-
ances as no production process is capable of deliver-
ing parts that are perfectly identical. Tolerance models
[12, 13] are therefore used to specify the admitted varia-
tions with respect to the CAD model. A consequence of

∗Department of Information and Computing Sciences, Utrecht
University, PO Box 80089, 3508 TB Utrecht, The Netherlands,
email:{F.Panahi,A.F.vanderStappen}@uu.nl F. Panahi is sup-
ported by the Netherlands Organization for Scientific Research
(NWO).

these variations [8, 9] is that actions that are computed
on the basis of a CAD model of a part may easily lead
to different behavior when executed on a manufactured
incarnation of that part, and thus to failure to accom-
plish the higher-level task. It is important to note that
the shape variations not only directly affect the behav-
ior of the part but indirectly as well because they also
cause a displacement of the center of mass of the part.

To extend the planning algorithms to imperfect man-
ufactured incarnations, it is important to understand
the effects of variations and take them into account
during planning. Larger variations in part shape and
center-of-mass location inevitably result in a larger
range of possible part behaviors, which reduces the like-
liness that a manufacturing task can be accomplished.
Therefore we will study how variations in part shape
influence the location of the center of mass. (Note that
variations in shape and center of mass are not the only
sources of uncertainty in robotics. Additional uncer-
tainty can result from the inaccuracy of the actuators
and manipulators [11] and sensors [10].)

Several geometric approaches have been proposed to
overcome the problems occurring in the presence of un-
certainty and to smooth the effects of errors. Among
the existing approaches are the model of ε−geometry
[14], tolerance and interval geometry [15, 16] and region-
based models [17]. Generally, in all these models an
uncertain point is represented by a region in which it
may vary. The model of ε−geometry assumes that a
point can vary within a disk of radius ε. Tolerance and
interval-geometry take into account coordinate errors
which results in an axis-aligned rectangular region in
which a point can vary. In general, region-based models
represent a point by any convex region. After model-
ing uncertainty as a point surrounded by a region, it is
possible to study worst (and best) cases for a problem
under the specific uncertainty model.

As observed before, variation of the shape causes vari-
ation of the center of mass of a part. The locus of the
centroid of a set of points with approximate weights has
been studied by Bern et al. [19]. Akella et al. [18] es-
timated the locus for a polygon under the ε−geometry
model [18]. The problem of finding the locus of the
center of mass of a part with shape variation and uni-
formly distributed mass has been mentioned as an open
problem [9, 18]. Akella et al. [18] studied rotating a con-
vex polygon whose vertices and the center of mass lie
inside predefined circles centered at their nominal loca-

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

247

25th Canadian Conference on Computational Geometry, 2013

tions. The problem of orienting a part by fence has been
studied by Chen et al. [9]. They define disk and square
regions for the vertices of a part and proposed a method
for computing the maximum allowable uncertainty ra-
dius for each vertex. They also discussed in a more
general way the key role of the center of mass and the
successfulness of part feeding (or orienting) algorithms
in a setting of shape variation. Chen el al. [20] pre-
sented algorithms for squeezing and pushing problems.
Kehoe et al. [21] explored cloud computing in a context
of grasping and push-grasping under shape variation.

All the previous models for shape variation only allow
the vertices to vary. In this paper we use a more gen-
eral model for shape variation. For given convex shapes
PI and PE such that PI ⊆ PE we consider the family
of shapes P satisfying PI ⊆ P ⊆ PE . In the practical
setting of toleranced parts the shapes PI and PE will be
fairly similar. We will show in Section 3 that the valid
instance that yields the largest displacement of the cen-
ter of mass in a given direction is a shape that combines
a part of PI with a part of PE . The corresponding dis-
placement is computable in O(n) time where n is the
complexity of PI and PE ; it can be used to obtain a
k-vertex outer approximation of the set of all possible
loci of the center of mass in O(kn) time.

In Section 4, we will study the size of the set of pos-
sible center-of-mass loci. Fatness of the objects under
consideration has led to lower combinatorial complexi-
ties and more efficient algorithms for various problems,
including union complexities [24], motion planning [22],
hidden surface removal [25], and range searching [26].
We show that fatness of PI together with the assump-
tion that no point in PE has a distance larger than ε to
PI leads to a bound on the distance between the cen-
ters of mass of any two valid instances of a part which
is proportional to ε and the fatness of PI .

2 Preliminaries

In this section, we first present a general model for shape
variations, then review the notion of a center of mass,
and finally introduce a few notions that allow us to char-
acterize the shapes that maximize the displacement of
the center of mass. Let PM be the model part. The
part PM has a uniform mass distribution.

No production process ever delivers parts that are
perfectly identical to the model part PM and therefore
industrial parts are manufactured to tolerances. We
use a very general model for permitted shape variations
that only requires that any manufactured instance of
PM contains a given convex subshape PI of PM while
it is contained in a convex supershape PE of PM . As a
result, the set of acceptable instances of PM is a family
of shapes V (PI , PE) = {P ⊂ R2|PI ⊆ P ⊆ PE} for
given PI and PE satisfying PI ⊆ PM ⊆ PE . In other

Figure 1: A family of shapes specified by a subshape PI
and a supershape PE of a model part PM , along with a
valid instance P ∈ V (PI , PE).

words, the boundary ∂P of an instance P ∈ V (PI , PE)
should be entirely contained in Q = PE− int(PI) where
int(P) denotes the interior of the set P . The region
Q is referred to as the tolerance zone. The objects PI
and PE are assumed to be closed polygons with a to-
tal of n vertices. (Figure 1 shows and example of a
model part PM , shapes PI and PE , and a valid instance
P ∈ V (PI , PE).) We denote by COM (PI , PE) the set
of all centers of mass of instances P ∈ V (PI , PE).

We let Xc(P) denote the x-coordinate of the center
of mass and A(P) be the area of the object P . The
x-coordinate of the center of mass of an object with
uniform mass distribution satisfies

Xc(P) =
1

A

∫

A

xdA,

where A is the area of the object. A similar equality
holds for the y-coordinate of the center of mass. In the
case of uniform mass distribution the center of mass
corresponds to the centroid of the object. We will often
decompose an object P into sub-objects Pi (1 ≤ i ≤ n)
and then express its center of mass as a function of the
centers of mass of its constituents, through the equation

Xc(P) =

∑n
i=1Xc(Pi)A(Pi)∑n

i=1A(Pi)
. (1)

We conclude this section by defining useful objects.
Disks play a prominent role in Section 4. We denote by
Dr(p) the closed disk with radius r centered at p, and
use the abbreviation Dr = Dr(O) where O is the origin.

For an object P and a value m we define its right
portion P+[m] with respect to m by P+[m] = {(x, y) ∈
P |x ≥ m}. Similarly, we define its left portion P−[m]
with respect to m by P−[m] = {(x, y) ∈ P |x ≤ m}.
With these portions we can define minmax objects,
which allow us to capture the intuition that the largest
displacement of the center of mass in a given direction
is achieved by the object from V (PI , PE) that ’maxi-
mizes mass’ in that direction and ’minimizes mass’ in
the opposite direction. The minmax object P ∗[m] con-
sists of a left portion of PI and a right portion of PE
with respect to the same m, so P ∗[m] = P−I [m]∪P+

E [m]

25th Canadian Conference on Computational Geometry, 2013

248

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 2: A minmax object

(see Figure 2). Note that an alternative way to describe
P ∗[m] is by the equation P ∗[m] = PI ∪Q+[m]

3 Displacement of the center of mass

In this section, we find an upper bound on the displace-
ment of the center of mass in a given direction. The
resulting bound allows us to determine a good polyg-
onal outer approximation of the set COM (PI , PE) of
possible loci of the center of mass.

3.1 Bounding the displacement in one direction

Without loss of generality we assume that PI and PE are
positioned and oriented in such a way that the center
of mass of PI coincides with the origin (so Xc(PI) =
0) and that the direction in which we want to bound
the displacement aligns with the positive x-axis. This
assumption and the equation P ∗[m] = PI∪Q+[m] allow
us to simplify Equation 1 to

Xc(P
∗[m]) =

Xc(Q
+[m])A(Q+[m])

A(PI) +A(Q+[m])
. (2)

Although we will bound the displacement with respect
to the center of mass of PI we observe that the result
also induces a bound with respect to the center of mass
of PM as PM ∈ V (PI , PE) by definition. We let Xr =
max(x,y)∈PE

x.
Our first lemma establishes a connection between the

minmax objects P ∗[x] for 0 ≤ x ≤ Xr and the location
of their centers of mass.

Lemma 1 There is exactly one minmax object P ∗[m]
(0 ≤ m ≤ Xr) that satisfies Xc(P

∗[m]) = m. Moreover
x < Xc(P

∗[x]) ≤ m for all 0 ≤ x < m and Xc(P
∗[x]) <

m for all m < x ≤ Xr.

Proof. From Xc(PI) = 0 and Xc(Q
+[0]) ≥ 0 and the

fact that P ∗[0] = PI ∪Q+[0] it follows that Xc(P
∗[0]) ≥

0; moreover, it is clear that Xc(P
∗[Xr]) ≤ Xr. As

the center of mass of P ∗[x] moves continuously as x
increases from 0 to Xr there must be at least one x
such that Xc(P

∗[x]) = x. It remains to show that
there is also at most one such x. Let m be such that

Xc(P
∗[m]) = m. We consider a minmax object P ∗[x]

for x 6= m and distinguish two cases: (i) 0 ≤ x < m and
(ii) m < x ≤ Xr.

Consider case (i). Using the notation Q′ = Q+[m]
and Q′′ = P ∗[x] − P ∗[m] = Q+[x] − Q+[m] we have
that P ∗[m] = PI ∪Q′ and P ∗[x] = PI ∪Q′ ∪Q′′. Note
that Q′′ ⊂ [x,m]× R and thus

x ≤ Xc(Q
′′) ≤ m.

As x < Xc(P
∗[m]) = Xc(PI ∪ Q′) = m it follows from

Equation 1 that

x(A(PI)+A(Q′)) < Xc(Q
′)A(Q′) ≤ m(A(PI)+A(Q′)).

After observing that Xc(PI) = 0 we apply Equation 1
to P ∗[x] = PI ∪ Q′ ∪ Q′′ and use the aforementioned
inequalities to obtain

Xc(P
∗[x]) =

Xc(Q
′)A(Q′) +Xc(Q

′′)A(Q′′)
A(PI) +A(Q′) +A(Q′′)

>
x(A(PI) +A(Q′)) + xA(Q′′)
A(PI) +A(Q′) +A(Q′′)

= x

and

Xc(P
∗[x]) =

Xc(Q
′)A(Q′) +Xc(Q

′′)A(Q′′)
A(PI) +A(Q′) +A(Q′′)

≤ m(A(PI) +A(Q′)) +mA(Q′′)
A(PI) +A(Q′) +A(Q′′)

= m.

Consider case (ii). Using the notation Q′ = Q+[x]
and Q′′ = P ∗[m] − P ∗[x] = Q+[m] − Q+[x] we have
that P ∗[x] = PI ∪Q′ and P ∗[m] = PI ∪Q′ ∪Q′′. Note
that Q′′ ⊂ [m,x]× R and thus

m ≤ Xc(Q
′′) ≤ x.

As Xc(P
∗[m]) = Xc(PI ∪Q′ ∪Q′′) = m it follows from

Equation 1 that

Xc(Q
′)A(Q′) = m(A(PI)+A(Q′))+(m−Xc(Q

′′))A(Q′′).

We apply Equation 1 to P ∗[x] = PI ∪ Q′ and use the
aforementioned equations and inequality to obtain

Xc(P
∗[x]) =

Xc(Q
′)A(Q′)

A(PI) +A(Q′)

≤ m(A(PI) +A(Q′))− (Xc(Q
′′)−m)

A(PI) +A(Q′)

≤ m(A(PI) +A(Q′))
A(PI) +A(Q′)

= m.

Combining both cases we find that there is no x 6= m
that satisfies Xc(P

∗[x]) = x. �

In addition to the fact that there is only one minmax
object P ∗[m] that satisfies Xc(P

∗[m]) = m, Lemma

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

249

25th Canadian Conference on Computational Geometry, 2013

1 also reveals that Xc(P
∗[x]) > x for x < m and

Xc(P
∗[x]) < x for x > m. Moreover, it shows that

Xc(P
∗[x]) < m for all x 6= m which means that the

minmax object P ∗[m] with Xc(P
∗[m]) = m achieves

larger displacement of the center of mass in the direc-
tion of the positive x-axis than any other minmax object
P ∗[x] with x 6= m. The following theorem shows that
P ∗[m] in fact achieves the largest displacement of the
center of mass among all objects in V (PM).

Theorem 2 Let P ∗[m] (0 ≤ m ≤ Xr) be the unique
minmax object that satisfies Xc(P

∗[m]) = m. Then
Xc(P) < Xc(P

∗[m]) for all P ∈ V (PI , PE), P 6= P ∗[m].

Proof. Let P ∈ V (PI , PE), P 6= P ∗[m] be the object
that yields the largest displacement m′ ≥ m of the cen-
ter of mass, so Xc(P) = m′. If P = P ∗[m′] then it
follows immediately from Lemma 1 that m′ = m. Now
assume for a contradiction that P 6= P ∗[m′] = P−I [m′]∪
P+
E [m′] which implies that (i) P+

E [m′] − P+[m′] 6= ∅ or
(ii) P−[m′]− P−I [m′] 6= ∅.

Consider case (i) and let R be a closed connected
subset with A(R) > 0 of P+

E [m′] − P+[m′]. Observe
that P ∪ R ∈ V (PI , PE). Note that R ⊂ (m′,∞) × R
and thus Xc(R) > m′. We get

Xc(P ∪R) =
Xc(P)A(P) +Xc(R)A(R)

A(P) +A(R)

>
m′A(P) +m′A(R)

A(P) +A(R)
= m′

which contradicts the assumption that P is the object
in V (PI , PE) that achieves the largest displacement of
the center of mass.

Consider case (ii) and let R be a closed connected
subset with A(R) > 0 of P−[m′] − P−I [m′]. Observe
that P −R ∈ V (PM). Note that R ⊂ (−∞,m′)×R and
thus Xc(R) < m′. We get

Xc(P −R) =
Xc(P)A(P)−Xc(R)A(R)

A(P)−A(R)

>
m′A(P)−m′A(R)

A(P)−A(R)
= m

which again contradicts the assumption that P is the ob-
ject in V (PI , PE) that achieves the largest displacement
of the center of mass. As a result we find that P ∗[m]
with Xc(P

∗[m]) = m is the unique object in V (PI , PE)
that achieves the largest displacement of the center of
mass. �

The theorem shows that the set COM (PI , PE) does
not extend beyond (i.e., to the right of) the line x = m
where m is such that Xc(P

∗[m]) = m. The bound is
tight because P ∗[m] ∈ V (PI , PE). In fact, the theorem
shows that P ∗[m] is the only instance in V (PI , PE) that
has its center of mass on that line. Since the result
holds in any direction, this implies that COM (PI , PE)
is convex.

Figure 3: Outer approximations of COM (PI , PE) with
(a) 4, (b) 8, (c) 16, and (d) 64 vertices.

3.2 A k-vertex approximation for COM (PI , PE)

The results in the previous subsection suggest an easy
approach to determine an outer approximation of the set
COM (PI , PE) of possible centers of mass of instances in
V (PI , PE). If we select k different directions that pos-
itively span the plane and apply Theorem 2 in each of
these directions then we obtain a bounded polygon with
k edges enclosing COM (PI , PE). To find the largest
displacement in the positive x-direction, we sweep a
vertical line from x = 0 to x = Xr while maintain-
ing Xc(P

∗[m]) using Equation 2. The mathematical
descriptions of A(Q+[m]) and Xc(Q

+[m]) only change
when the line hits a vertex of PI or PE , as the bound-
ary of these two shapes determine the boundary of Q.
The corresponding update of these mathematical de-
scriptions at such a vertex can be accomplished in con-
stant time. Moreover, the check to decide whether the
equation Xc(P

∗[m]) = m has a solution between the
current vertex and the next vertex hit by the line also
takes constant time as it requires (for polygonal PI and
PE) computing the roots of a polynomial function of
degree four. Since PI and PE have n vertices we obtain
the following theorem.

Theorem 3 A polygonal k-vertex outer approximation
of COM (PI , PE) can be computed in O(kn) time.

Lemma 1 suggests that we can use binary search to iden-
tify the m satisfying Xc(P

∗[m]) = m. Unfortunately it
seems impossible to evaluate A(Q+[m]) and Xc(Q

+[m])
for an arbitrary m in o(n) time, which would be crucial
to improve the time bound reported in Theorem 3.

Figure 3 shows 4-, 8-, 16-, and 64-vertex outer ap-
proximations of COM (PI , PE) for a given PI and PE .
Recall that every edge of the polygonal approximation
contains one point of the convex set COM (PI , PE), so
COM (PI , PE) strongly resembles its approximation.

25th Canadian Conference on Computational Geometry, 2013

250

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

4 Bounding the size of COM (PI , PE)

The admitted shape variation for a manufactured part
is usually small compared to the dimensions of the part
itself. As a result, the enclosed shape PI and enclosing
shape PE do not deviate much from the model shape
PM , and therefore also not from each other. To capture
this similarity we will assume that PI ⊆ PE ⊆ PI ⊕
Dε, where Dε is the disk of radius ε centered at the
origin and ⊕ denotes the Minkowski sum. Note that
this means that every point in PE is within a distance
of at most ε from some point in PI . In Subsection 4.1 we
will see that this distance constraint alone is not enough
to obtain a bound on the diameter of COM (PI , PE) that
is independent of the size of PI and PE . In Subsection
4.2 we show that the additional assumption that PI is
fat leads to a bound on the diameter of COM (PI , PE)
that depends on ε and the fatness.

4.1 A thin part

When PI is a sufficiently long and narrow box the set
V (PI , PE) contains shapes whose centers of mass are
a distance proportional to the diameter of PI apart.
Let L � ε and pick δ such that 0 < δ < ε2/(2L − ε).
We define PI = [−L/2, L/2] × [−δ/2, δ/2] and PE =
[−(L+ ε)/2, (L+ ε)/2]× [−(δ+ ε)/2, (δ+ ε)/2], and note
that PE ⊆ PI⊕Dε. Now consider the object P ∗[L/2] =
P−I [L/2] ∪ P+

E [L/2] = PI ∪ P+
E [L/2]. We observe that

A(PI) = δL, Xc(PI) = 0, A(P+
E [L/2]) = ε(ε+ δ)/2, and

Xc(P
+
E [L/2]) = L/2 + ε/4 > L/2. The upper bound

on δ implies that A(P+
E [L/2]) > A(PI). From Equation

1 it follows that Xc(P
∗[L/2]) > L/4 showing that the

diameter of COM (PI , PE) is not proportional to ε in
this case.

4.2 Fat parts

In this subsection we add the assumption that PI is fat
to deduce a bound on the diameter of COM (PI , PE)
that depends on ε and the fatness. There are many
different definitions of fatness and we will use the one by
De Berg et al. [23], which is based on a similar definition
presented in the thesis of van der Stappen [22].

Definition 1 Let P ⊆ R2 be an object and let β be a
constant with 0 < β ≤ 1. Define U(P) as the set of
all disks centered inside P whose boundary intersects
P . We say that the object P is β-fat if for all disks
D ∈ U(P) we have A(P ∩D) ≥ β · A(D). The fatness
of P is defined as the maximal β for which P is β-fat.

For bounded objects the value of β is at most 1/4; larger
values only occur for unbounded objects [22].

In the remainder of this section we assume that PI
is β-fat (0 < β ≤ 1). The main implication of this

assumption is that it provides us with a lower bound on
the area of PI in terms of its diameter.

The following lemma is not strictly necessary yet it
leads to a better bound in our main theorem. We omit
the proof and immediately apply it in the theorem.

Lemma 4 Let P be a convex polygon with diameter d.
Then no point in P has distance larger than 2d

3 to the
center of mass of P .

Theorem 5 Let PI be a bounded convex β-fat object
(0 < β ≤ 1) and let PE be a bounded object satis-
fying PI ⊆ PE ⊆ PI ⊕ Dε. Then the diameter of
COM (PI , PE) is bounded by 5

2β
−1ε.

Proof. We use d to denote the diameter of PI and
once again assume without loss of generality that the
center of mass of PI coincides with the origin. Theo-
rem 2 shows that it suffices to consider objects P ∗[m]
(0 ≤ m ≤ Xr) to bound the size of COM (PI , PE).
Lemma 4 says that PI lies completely inside the disk
D(2d/3). As a consequence, the object P ∗[m] must
lie entirely inside D(2d/3 + ε), which implies that
Xc(P

∗[m]), Xc(Q
+[m]) ≤ 2d/3 + ε. We distinguish two

cases based on the ratio of ε and d.
If ε ≥ d/6 then Xc(P

∗[m]) ≤ 2d/3 + ε ≤ 5ε. Since
P ∗[m] is bounded we know that β ≤ 1/4 and thus
Xc(P

∗[m]) ≤ 5ε ≤ 5β−1ε/4.
If ε ≤ d/6 we use Equation 2 to obtain an up-

per bound Xc(P
∗[m]) by combining the upper bound

Xc(Q
+[m]) ≤ 2d/3+ε with a lower bound on A(PI) and

upper and lower bounds on A(Q+[m]). The lower bound
on A(PI) follows from the fatness of PI . As d is the di-
ameter of PI there must be two points p1, p2 ∈ PI that
are d apart. The boundary of the disk Dd(p1) contains
p2 and thus belongs to the set U(PI). The β-fatness of
PI implies that A(PI) ≥ β ·A(Dd(p1)) = βπd2.

It remains to bound A(Q+[m]). Recall that Q = PE−
int(PI). Due to our assumption PE ⊆ PI⊕Dε we obtain
that Q ⊆ Q′ = (PI⊕Dε)−int(PI), from which it follows
that A(Q+[m]) ≤ A(Q) ≤ A(Q′). We observe that the
convexity of PI implies that A(Q′) = lε + πε2, where
l denotes the perimeter of PI . As PI is contained in
D(2d/3) the perimeter l of PI is bounded by 4πd/3.
Combining these observations with a trivial lower on
A(Q+[m]) we get 0 ≤ A(Q+[m]) ≤ 4πεd/3 + πε2.

Plugging all the inequalities into Equation 2 and using
ε/d ≤ 1/6 yields

Xc(P
∗[m]) =

Xc(Q
+[m])A(Q+[m])

A(PI) +A(Q+[m])

≤ (2
3d+ ε)(4

3πεd+ πε2)

βπd2

= β−1ε(8
9 + 2(εd) + (εd)2)

≤ 5
4β
−1ε.

which shows COM (PI , PE) ⊆ D(5
4β
−1ε). �

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

251

25th Canadian Conference on Computational Geometry, 2013

Theorem 5 confirms the intuition that the variation of
the center of mass grows if the admitted shape variation
increases or the fatness decreases.

5 Conclusion

We have considered a very general model for admitted
shape variations of a model part, based on enclosed con-
vex shape PI and an enclosing convex shape PE . We
have identified the valid instance that maximizes the
displacement of the center of mass in a given direction,
and used this result to find a k-vertex polygonal outer
approximation of the set of all possible center-of-mass
loci in O(kn) time, where n is the number of vertices
of PI and PE . If PI is β-fat and every point of PE is
within a distance ε of PI then the diameter of the set of
all center-of-mass loci can be shown to be O(β−1ε).

We expect that our results will generalize to three-
dimensional objects. It is interesting to see under which
circumstances the results can be extended to non-convex
shapes PI (and PE), and to parts with non-uniform
mass distribution.

References

[1] K. Goldberg, Orienting polygonal parts without
sensors. Algorithmica, 10(2), pp. 201–225, 1993.

[2] R.-P. Berretty, M.H. Overmars, A.F. van der Stap-
pen, Orienting polyhedral parts by pushing. Com-
putational Geometry: Theory and Applications, 21,
pp. 21–38, 2002.

[3] S. Akella, M.T. Mason, Posing polygonal objects
in the plane by pushing. Proc. IEEE Int. Conf. on
Robotics and Automation, pp. 2255–2262, 1992.

[4] M.A. Erdmann, M.T. Mason, An exploration of
sensorless manipulation. IEEE Journal of Robotics
and Automation, 4, pp. 367–379, 1988.

[5] K.M. Lynch, Locally controllable manipulation by
stable pushing. IEEE Transactions on Robotics and
Automation, 15, pp. 314–323, 1999.

[6] R.-P. Berretty, K. Goldberg, M.H. Overmars, A.F.
van der Stappen, Computing fence designs for ori-
enting parts. Computational Geometry: Theory
and Applications, 10(4), pp. 249–262, 1998.

[7] R.C. Brost, Automatic grasp planning in the
presence of uncertainty. International Journal of
Robotics Research, 7(1), pp. 3–17 , 1988.

[8] B.R. Donald, Error Detection and Recovery in
Robotics. Springer-Verlag, 1987.

[9] J. Chen, K. Goldberg, M.H. Overmars, D.
Halperin, K.-F. Böhringer, Y. Zhuang, Shape tol-
erance in feeding and fixturing. Robotics: the algo-
rithmic perspective, pp. 297–311. A.K. Peters, 1998.

[10] S.M. Lavalle, Planning Algorithms, chapter 12:
Planning Under Sensing Uncertainty. Cambridge
University press, 2006.

[11] M. Dogar, S.S. Srinivasa, A Framework for Push-
grasping in Clutter. Robotics: Science and Systems
2, 2011.

[12] A.A.G. Requicha, Toward a theory of geometric
tolerancing. International Journal of Robotics Re-
search, 2, 1983.

[13] H. Voelker. A current perspective on tolerancing
and metrology. Manufacturing Review, 6(4), 1993.

[14] L. Guibas, D. Salesin, J. Stolfi, Epsilon geometry:
Building robust algorithms for imprecise compu-
tations. Proc. of the 5th Annual ACM Symp. on
Computational Geometry, pp. 208–217, 1989.

[15] U. Roy, C. Liu, T. Woo. Review of dimensioning
and tolerancing. Computer-Aided Design, 23(7),
1991.

[16] Y. Ostrovsky-Berman, L. Joskowicz, Tolerance en-
velopes of planar mechanical parts with parametric
tolerances. Computer-Aided Design, pp. 531–534,
2005.

[17] M. Löffler, Data Imprecision in Computational Ge-
ometry. PhD Thesis, Utrecht University, 2009.

[18] S. Akella, M.T. Mason, Orienting Toleranced
Polygonal Parts. International Journal of Robotics
Research, 19(12), pp. 1147–1170, 2000.

[19] M. Bern, D. Eppstein, L.J. Guibas, J.E. Hersh-
berger, S. Suri, J. Wolter, The centroid of points
with approximate weights. Proc. 3rd Eur. Symp.
Algorithms, LNCS 979, pp. 460–472, 1995.

[20] Y.-B. Chen, D.J. Ierardi, The complexity of oblivi-
ous plans for orienting and distinguishing polygonal
parts. Algorithmica, 14, pp. 367–397, 1995.

[21] B. Kehoe, D. Berenson, K. Goldberg, Toward
Cloud-Based Grasping with Uncertainty in Shape:
Estimating Lower Bounds on Achieving Force Clo-
sure with Zero-Slip Push Grasps. Proc. IEEE Int.
Conf. on Robotics and Automation, 2012.

[22] A.F. van der Stappen, Motion Planning amidst Fat
Obstacles. Ph.D. Thesis, Utrecht University, 1994.

[23] M. de Berg, M.J. Katz, A.F. van der Stappen, J.
Vleugels, Realistic input models for geometric al-
gorithms, Algorithmica, 34, pp. 81–97, 2002.

[24] B. Aronov and M. de Berg, Unions of fat convex
polytopes have short skeletons. Discrete and Com-
putational Geometry, 48(1): 53-64 ,2012.

[25] M.J. Katz, M.H. Overmars, M. Sharir, Efficient
hidden surface removal for objects with small union
size, Computational Geometry: Theory and Appli-
cations, 2, pp. 223-234, 1992.

[26] M.H. Overmars, A.F. van der Stappen, Range
searching and point location among fat objects,
Journal of Algorithms, pp. 626-656, 1996.

25th Canadian Conference on Computational Geometry, 2013

252

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Geometric Separators and the Parabolic Lift

Donald R. Sheehy∗

Abstract

A geometric separator for a set U of n geometric ob-
jects (usually balls) is a small (sublinear in n) subset
whose removal disconnects the intersection graph of U
into roughly equal sized parts. These separators provide
a natural way to do divide and conquer in geometric set-
tings. A particularly nice geometric separator algorithm
originally introduced by Miller and Thurston has three
steps: compute a centerpoint in a space of one dimen-
sion higher than the input, compute a conformal trans-
formation that “centers” the centerpoint, and finally,
use the computed transformation to sample a sphere in
the original space. The output separator is the subset
of S intersecting this sphere. It is both simple and ele-
gant. We show that a change of perspective (literally)
can make this algorithm even simpler by eliminating
the entire middle step. By computing the centerpoint
of the points lifted onto a paraboloid rather than using
the stereographic map as in the original method, one can
sample the desired sphere directly, without computing
the conformal transformation.

1 Geometric Separators

A spherical geometric separator of a collection of n balls
in Rd is a sphere S that has at least n

d+2 balls cen-
tered inside, at least n

d+2 centered outside, and inter-

sects at most O(n1−
1
d) of them (see Section 2 for a

formal definition). The existence of such separators in
two and three dimensions was established by Miller and
Thurston, though their method was quickly adapted to
higher dimensions. Across a series of papers, Miller,
Thurston, Teng, and Vavasis laid out the theory of ge-
ometric separators and their applications to scientific
computing [14, 15, 13, 10, 12]. This line of work is a trea-
sure trove for computational geometers as it hinges on a
novel trick that combines projective and combinatorial
geometry to solve an important algorithmic problem,
solving linear systems arising in finite element analysis.

More generally, geometric separators give a natural
way to do divide and conquer for geometric problems.
They have been applied to various nearest neighbor
search problems [11] as well as to mesh compression [1].
Other variations of geometric separators have been used

∗Department of Computer Science and Engineering, University
of Connecticut, don.r.sheehy@gmail.com

for the Traveling Salesman and Minimum Steiner Tree
problems in geometric settings [18], or for packing and
piercing problems [2].

The Miller-Thurston algorithm for computing a geo-
metric separator maps the n points (the centers of the
balls) to a unit d-sphere in Rd+1 via a stereographic
map. It then computes a centerpoint, which is a geo-
metric generalization of a median (a formal definition
is given in Section 2). There exists a conformal trans-
formation of the points in Rd+1 so that this centerpoint
will lie exactly at the origin. To output a separator, one
samples a random unit vector in Rd+1. The hyperplane
through the origin normal to this vector intersects the
unit d-sphere at a (d − 1)-sphere. The output is just
the stereographic projection of this (d− 1)-sphere back
to Rd. With high probability, such a sphere will be a
geometric separator.

The one aspect of this algorithm that was left to the
reader, was the linear algebra required to compute the
desired conformal transformation. In the original pa-
per, it was simply asserted that it exists. Later pa-
pers explained that it can be computed via Householder
transformations and cited a textbook on matrix compu-
tations. In this paper, we show that this phase of the
algorithm is entirely unnecessary. By working initially
with the parabolic lifting

p 7→
[p

‖p‖2
]
,

rather than the stereographic map, the desired sphere
can be sampled directly.

Related work In addition to the previously mentioned
work on sphere separators and their applications by var-
ious combinations of Miller, Thurston, Teng, and Vava-
sis, the generalization to other types of contact graphs
and other shapes of separators (in particular hyper-
cubes) was performed by Smith and Wormald [18]. This
method was refined slightly by Chan to apply separators
to geometric hitting set problems [2]. Eppstein et al.
gave a linear-time, deterministic algorithm for finding
geometric separators based on core sets [5]. Har-Peled
gave a simple proof of the existence of geometric sepa-
rators for interior-disjoint disks in the plane (that easily
extends to higher dimensions) [6].

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

253

25th Canadian Conference on Computational Geometry, 2013

2 Definitions

Points We treat points in Euclidean space as column
vectors. As the algebra will be in both Rd as well as
Rd+1, we adopt the convention that a boldface vector p
is a vector of Rd and an overline such as in p indicates a
vector in Rd+1. In particular, we write 0 to indicate the
zero vector in Rd. Scalars are italic and when it is useful,
we add a subscript d+ 1 as in pd+1 to indicate a scalar
that is the (d+ 1)st coordinate of a vector in Rd+1. So,
for example, we will write p =

[p
pd+1

]
to indicate that

p ∈ Rd+1 with its first d coordinates matching those
of p and last coordinate equal to pd+1. Whenever we
speak of Rd as a subspace of Rd+1, it is always assumed
that we mean the hyperplane {p | pd+1 = 0} in Rd+1.

Projections Given a point f =
[

f
fd+1

]
, we define Π1

f
to

be the stereographic map from Rd to the sphere centered
at f with radius fd+1. That is, Π1

f
(p) is the intersec-

tion of the sphere with the line through
[p
0

]
and the

north pole,
[

f
2fd+1

]
(other than the pole itself). Sim-

ilarly, we define Π∞
f

to be the parabolic lifting map

from Rd to Rd+1 that lifts p to p =
[p
pd+1

]
so that

p lies on the paraboloid with focal point f and directrix
{pd+1 = −fd+1}. The reason for the notation comes
from the fact that the parabola is the limiting case of
an ellipse formed by moving one focal point to infinity.
We will consider more general stereographic projections
in Section 4. In all cases, these maps are invertible (ex-
cept at the north pole).

We abuse notation slightly and let Π1
f
(S) denote the

set {Π1
f
(p) | p ∈ S} and similarly for Π∞

f
. In par-

ticular, Π1
f
(Rd) denotes the sphere centered at f with

radius fd+1 and Π∞
f

(Rd) denotes the paraboloid with

focal point f and directrix {pd+1 = −fd+1}.

Centerpoints Given n points in Rd, a centerpoint is a
point c ∈ Rd such that any closed halfspace containing
more than nd

d+1 points also contains c. The existence
of centerpoints follows from Helly’s Theorem and the
pigeonhole principle. Let Centerpoint(P) denote the
set of all centerpoints of the set P .

It is not known how to find a centerpoint determinis-
tically in polynomial time for point sets in Rd. However,
there is an efficient randomized algorithm [3] known for
at least twenty years and some recent work on deter-
ministic approximation algorithms [9, 16].

Sphere Separators A graph separator is a subset
of vertices in a graph whose removal disconnects the
graph. Usually, the goal is to find a small separator
that separates the graph into roughly equal sized pieces.
The most famous example of graphs admitting small
separators is the Planar Separator Theorem of Lipton

and Tarjan [8], which states that a separator of size
O(
√
n) is always possible for planar graphs that has at

least n
3 vertices in each of the resulting components.

The early work on separators was directed at solv-
ing linear systems by generalized nested dissection, a
method for ordering pivots in Cholesky decomposition
of sparse, symmetric, positive definite matrices [7]. Of
particular interest were those linear systems arising in
the finite element method. These systems reflected the
underlying geometric structure of the problem domain
and thus it was natural to look to the geometry to find
small separators [12]. In particular, it often sufficed to
consider various definitions of intersection graphs of sys-
tems of balls.

Let B = {B1, . . . , Bn} be a collection of interior dis-
joint balls in Rd. Let S be a sphere in Rd and let BI(S),
BE(S), and BO(S) be the subsets of B that are interior
to, exterior to, and intersecting S respectively. The fol-
lowing theorem is a combination of the main existence
result for geometric separators with the algorithm used
to prove existence. We state it this way, to make clear
that the geometric challenge for computing a separator
this way lies in finding a stereographic projection to a
sphere that has a centerpoint at the center of the sphere.

Theorem 1 (Sphere Separator Thm.[14, 11, 12])
Let B be a collection of n interior disjoint balls with
centers P . Let v ∈ Rd+1 be chosen uniformly from the
unit d-sphere. If f is a point in Rd+1 such that f is a
centerpoint of Π1

f
(P) and H = {p | v>(p − f) = 0} is

the hyperplane through f normal to v, then the sphere

S = (Π1
f
)−1(Π1

f
(Rd) ∩H)

has the property that

|BO(S)| = O(n1−1/d), and

|BI(S)|, |BE(S)| ≤ (d+ 1)n

d+ 2

with probability at least 1
2 .

For ease of exposition, we only give this simplest ver-
sion of the theorem. However, it has also been proven
for k-ply neighborhood systems where the balls are per-
mitted to have up to k−wise interior intersections [11]
as well as for α-overlap graphs where two balls are con-
sidered neighbors if for both balls increasing the radius
of one by a factor of α causes them to intersect [12].
In these cases, the bounds depend on k and α respec-
tively, but the algorithm is the same and so the results
of this paper apply to these versions of the theorem as
well. The version stated above, when combined with the
Koebe-Andreev-Thurston embedding theorem for pla-
nar graphs is strong enough to prove the Planar Sepa-
rator Theorem.

25th Canadian Conference on Computational Geometry, 2013

254

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

3 The Algorithm

When Archimedes quipped that he could move the earth
if given a sufficiently long lever, he transferred the ma-
jority of the work to the lever builders of his day. We
will do likewise and assume that we are given a long
lever in the form of an algorithm to efficiently compute
a centerpoint of n points in Rd+1. Given such an algo-
rithm, the heavy lifting will be quite easy, and as with
Archimedes, that is entirely the point.

Let P = {p1, . . . ,pn} ⊂ Rd be a set of points. We
first present the Miller-Thurston algorithm for comput-
ing a separator and then present the new simplified ver-
sion.

3.1 The Miller-Thurston Algorithm

Let Π be the stereographic map from Rd to the unit
d-sphere centered at the origin in Rd+1. First, compute

c ∈ Centerpoint(Π(P)).

Find an orthogonal transformation Q such that

Q(c) =
[
0
θ

]
for some θ ∈ R.

Let D =
√

1−θ
1+θ I, where I is the identity on Rd.

Choose a random unit vector v ∈ Rd+1 and let S0 be
the d-sphere formed by intersecting the hyperplane {p |
v>p = 0} with the unit d-sphere centered at the origin.
Output S = Π−1(Q−1Π(DΠ−1(S0))).

3.2 A Simpler Algorithm Using the Parabolic Lift

First, compute

c =
[c
cd+1

]
∈ Centerpoint(

[p1

‖p1‖2
]
, . . . ,

[pn

‖pn‖2
]
).

Next, choose a random unit vector v =
[v
vd+1

]
∈ Rd+1.

Let

r =

√
cd+1 − ‖c‖2
|vd+1|

.

Output the sphere S with center (c − rv) and
radius r. In the improbable case that vd+1 = 0, the
output is just the hyperplane {p | v>(p− c) = 0}.

3.3 Correctness of the Algorithm

The remainder of this section will prove that the al-
gorithm works. According to the results of Miller et
al. [12], all we need is a stereographic projection of Rd
to a d-sphere such that the projected points have a cen-
terpoint at the center of the sphere. The trick presented
here is that we will instead show how to find a parabolic
lifting that has a centerpoint at the focal point of the
paraboloid. Then, we show that if we have a point f
such that Π∞

f
(P) has a centerpoint at f , then Π1

f
(P)

also has a centerpoint at f , thus giving the desired map.
For any vector v ∈ Rd+1 and any p ∈ Rd,

v>(Π1
f
(p)− f) = 0 iff v>(Π∞

f
(p)− f) = 0.

That is, for sampling spheres, there is no difference be-
tween using the stereographic map or the parabolic lift-
ing. In fact, we prove a much more general statement
about the equivalence of various stereographic projec-
tions in Theorem 3.

Theorem 2 Let B be a collection of n interior disjoint
balls with centers P = {p1, . . . ,pn} ⊂ Rd and let S be
the sphere output by the algorithm in Section 3.2. Then,

|BO(S)| = O(n1−1/d), and

|BI(S)|, |BE(S)| ≤ (d+ 1)n

d+ 2

with probability at least 1
2 .

Proof. Using Theorem 1, it will suffice to show there
exists f such that S = (Π1

f
)−1(Π1

f
(Rd) ∩H) where

H = {p | v>(p− f) = 0}

and f ∈ Centerpoint(Π1
f
(P)). The equivalence of dif-

ferent stereographic projections proven in Theorem 3
implies that it will suffice to prove the same facts re-
placing the stereographic map Π1

f
with the parabolic

lift Π∞
f

. We will show that the focal point that makes
this true is

f =
[c

1
2

√
cd+1−‖c‖2

]
,

where c =
[c
cd+1

]
is the centerpoint of Π∞

f
(P) computed

in the first step.
First, we show that S = (Π∞

f
)−1(Π∞

f
(Rd) ∩H). We

will assume without loss of generality that vd+1 > 0
since

[v
vd+1

]
and

[v
−vd+1

]
are sampled with equal prob-

ability and both yield the same sphere. We need only
check that S is the orthogonal projection of Π∞

f
(Rd)∩H

to Rd. The equation for Π∞
f

(Rd) is

pd+1 =
‖p− c‖2

2
√
cd+1 − ‖c‖2

=
‖p− c‖2
2rvd+1

,

and the equation for H can be rewritten as

pd+1 =
v>(c− p)

vd+1
+

1

2

√
cd+1 − ‖c‖2

=
v>(c− p)

vd+1
+

1

2
rvd+1.

So, for a point p =
[p
pd+1

]
in the intersection,

‖p− c‖2
2rvd+1

=
v>(c− p)

vd+1
+

1

2
rvd+1.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

255

25th Canadian Conference on Computational Geometry, 2013

Multiplying by −2 and completing the square twice
gives

‖p− (c− rv)‖2 = r2v2d+1 + ‖rv‖2 = r2,

which is precisely the equation for S.
Now, we show that the focal point f is a center-

point of Π∞
f

(P). There are several different ways to
show this, but one nice approach is to observe that for
any hyperplane normal to v passing through f there
is a corresponding hyperplane H normal to

[c−rv
− 1

2

]

passing through c. The hyperplane H intersects the
paraboloid Φ = {

[p
pd+1

]
| pd+1 = ‖p‖2} in an ellipse

that projects orthogonally to the very same sphere of
radius r centered at c − rv. It will suffice to show for
any p =

[p

‖p‖2
]
∈ H ∩Φ, that ‖p− (c− rv)‖2 = r2. By

the definition of H,

(c− rv)>p− 1

2
‖p‖2 = (c− rv)>c− 1

2
cd+1.

Multiplying by −2 and completing the square yields

‖p− (c− rv)‖2 = ‖c− rv‖2 − 2(c− rv)>c + cd+1

= r2‖v‖2 − ‖c‖2 + cd+1

= r2.

The last equality follows from the definition of r and
the fact that ‖v‖2 = 1.

This implies that f is a centerpoint of the points
Π∞

f
(P) because every hyperplane passing through f sep-

arates the same set of points as the corresponding hy-
perplane through c, which is a centerpoint by defini-
tion. �

Figure 1: Three examples of ER are illustrated for R =
1, R = 2, and R = ∞ from left to right. In each case,
the stereographic map of a single point is illustrated.
For the last case, the pole is at infinity, so the result is
a vertical projection.

4 Equivalence of Stereographic Maps

Let f =
[
0
1

]
. Let R be a real number and consider the

ellipsoid ER ⊂ Rd+1 defined as the points p =
[p
pd+1

]

such that

‖p‖2
2R− 1

+
(pd+1 −R)2

R2
= 1.

It is tangent to
[
Rd

0

]
at the origin, has major radius R

and all minor radii all equal to
√

2R− 1. The stereo-
graphic map ΠR

f
through

[
0
2R

]
, the north pole of this

ellipse, from Rd to ER is well-defined as is the inverse
map (except at

[
0
2R

]
).

As R goes to infinity, ER converges to the paraboloid
pd+1 = ‖p‖2/4. This is perhaps easier to see when one
observes that ER is the set of points equidistant from f
and the sphere centered at

[
0

2R−1
]

with radius 2R. As
R goes to infinity, this sphere becomes a plane and the
paraboloid is the set of points equidistant from a point
and a plane. See Figure 1.

If we intersect the ellipsoid ER with a hyperplane
through one if its focal points and then stereographi-
cally project that intersection to Rd from the pole of the
ellipse, then the result is a sphere. The following theo-
rem says that for a fixed hyperplane, it doesn’t matter
which ellipsoid ER we started with, we always get the
same sphere as illustrated in Figure 2.

Figure 2: The stereographic projection of the intersec-
tion of the ellipse and a plane through the focal point
is the same as the second focal point is moved up to
infinity.

Theorem 3 Let α and β be real numbers in [1,∞] and
let f ∈ Rd+1 be any point. If H is a hyperplane contain-
ing f , then

(Πα
f

)−1(Πα
f

(Rd) ∩H) = (Πβ

f
)−1(Πβ

f
(Rd) ∩H).

Proof. The sphere Sα = (Πα
f

)−1(Πα
f

(Rd)∩H) can also
be written as

Sα = {p ∈ Rd | v>(Πα
f

(p)− f) = 0},

where v is the normal vector of H. By translating the
points in Rd and scaling the space uniformly, we may
assume that f =

[
0
1

]
. Let R be any real number in

the range [1,∞] and let q ∈ Rd be any point. We will
show that ΠR

f
(q) lies on a line through f that does not

25th Canadian Conference on Computational Geometry, 2013

256

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

depend on R. Thus, v>(Πα
f

(q) − f) = 0 if and only if

v>(Πβ

f
(q) − f) = 0 and therefore, the spheres Sα and

Sβ must be equal for all values of α and β.
Let p =

[p
pd+1

]
be the projection ΠR

f
(q). All of the

relevant points 0, f , p, and q are contained in a plane,
so we proceed in two dimensions, letting x = ‖p‖, y =
pd+1, and a = ‖q‖.

Since p lies on ER, we have x2

2R−1 + (y−R)2

R2 = 1, or
equivalently,

x2R2 + y(y − 2R)(2R− 1) = 0. (1)

Since p is also on the line from
[

0
2R

]
, the north pole of

ER, to
[q
0

]
, its planar coordinates x and y satisfy the

equation

y =
−2R

a
x+ 2R.

It follows that

R =
ay

2(a− x)
, 2R− 1 =

a(y − 1) + x

a− x ,

and y − 2R =
−xy
a− x

Plugging these values into (1) gives the following.

x2(ay)2

4(a− x)2
+
y(−xy)(a(y − 1) + x)

(a− x)2
= 0.

Multiplying by 4(a−x)2
xy2 and collecting terms yields the

line
(a2 − 4)x− 4a(y − 1) = 0.

We observe that this is the equation of a line through
f = (0, 1) as desired. �

5 Concluding Remarks

The main story of this paper is not entirely new to
computational geometry. When the parabolic lifting
map was first introduced in the problem of comput-
ing Voronoi diagrams by Edelsbrunner and Seidel [4],
they replaced previous methods based on the stereo-
graphic map. Today, the parabolic lifting is the pre-
ferred method for reducing Delaunay triangulations to
convex hulls in one higher dimension.

Throughout, we have worked directly with the Eu-
clidean coordinates. This gave the benefit of making
the computations more immediately clear, but came at
the cost of considering several special cases at infinity.
An alternative approach would be to exploit the power
of projective geometry, which has been shown to be the
natural language for stereographic projections. Even
the parabola is just an ellipse in the projective plane.
For more on projective geometry, I highly recommend
the book by Richter-Gebert [17].

I would like to thank Marc Glisse for helpful conver-
sations and advice on high school algebra.

References

[1] D. K. Blandford, G. E. Blelloch, D. E. Cardoze, and
C. Kadow. Compact representations of simplicial
meshes in two and three dimensions. Int. J. Comput.
Geometry Appl., 15(1):3–24, 2005.

[2] T. M. Chan. Polynomial-time approximation schemes
for packing and piercing fat objects. J. Algorithms,
46(2):178–189, 2003.

[3] K. Clarkson, D. Eppstein, G. Miller, C. Sturtivant, and
S.-H. Teng. Approximating center points with iterated
Radon points. International Journal of Computational
Geometry and Applications, 6(3):357–377, Sep 1996. in-
vited submission.

[4] H. Edelsbrunner and R. Seidel. Voronoi diagrams and
arrangements. Discrete & Computational Geometry,
1(1):25–44, 1986.

[5] D. Eppstein, G. L. Miller, and S.-H. Teng. A determin-
istic linear time algorithm for geometric separators and
its applications. Fundamenta Informatica, 22(4):309–
329, 1995.

[6] S. Har-Peled. A simple proof of the existence of a planar
separator, July 10 2011.

[7] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Gener-
alized nested dissection. SIAM Journal on Numerical
Analysis, 16(2):346–358, 1979.

[8] R. J. Lipton and R. E. Tarjan. A separator theorem for
planar graphs. SIAM J. Appl. Math, 36:177–189, 1979.

[9] G. L. Miller and D. R. Sheehy. Approximate center-
points with proofs. Computational Geometry: Theory
and Applications, 43(8):647–654, 2010.

[10] G. L. Miller, S.-H. Teng, W. Thurston, and S. A.
Vavasis. Automatic mesh partitioning. In A. George,
J. Gilbert, and J. Liu, editors, Graphs Theory
and Sparse Matrix Computation, The IMA Volumes
in Mathematics and its Application, pages 57–84.
Springer-Verlag, 1993. Vol 56.

[11] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vava-
sis. Separators for sphere-packings and nearest neigh-
borhood graphs. Journal of the ACM, 44(1):1–29, 1997.

[12] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vava-
sis. Geometric separators for finite-element meshes.
SIAM J. Comput., 19(2):364–386, 1998.

[13] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified
geometric approach to graph separators. In Proceedings
of the 32nd Annual IEEE Symposium on Foundations
of Computer Science, pages 538–547, 1991.

[14] G. L. Miller and W. Thurston. Separators in two and
three dimensions. In Proceedings of the 22th Annual
ACM Symposium on Theory of Computing, pages 300–
309. ACM, 1990.

[15] G. L. Miller and S. A. Vavasis. Density graphs and
separators. In Proceedings of the Second Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 331–
336. ACM-SIAM, 1991.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

257

25th Canadian Conference on Computational Geometry, 2013

[16] W. Mulzer and D. Werner. Approximating Tverberg
points in linear time for any fixed dimension. In Pro-
ceedings of the 28th ACM Symposium on Computational
Geometry, pages 303–310, 2012.

[17] J. Richter-Gebert. Perspectives on Projective Geome-
try. Springer, 2011.

[18] W. D. Smith and N. C. Wormald. Geometric separator
theorems and applications. In Proceedings of the 39th
Annual IEEE Symposium on Foundations of Computer
Science, pages 232–243, 1998.

25th Canadian Conference on Computational Geometry, 2013

258

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

How To Place a Point to Maximize Angles

Boris Aronov∗

aronov@poly.edu
Mark V. Yagnatinsky†

myag@cis.poly.edu

Polytechnic Institute of NYU, Brooklyn, New York

Abstract

We describe a randomized algorithm that, given a set of
points in the plane, computes the best location to insert
a new point, such that the Delaunay triangulation of
the resulting point set has the largest possible minimum
angle. The expected running time of our algorithm is at
most cubic on any input, improving the roughly quartic
time of the best previously known algorithm.

1 Introduction

The subject of meshing and specifically constructing
“well behaved” triangulations has been researched exten-
sively [B04]. One of the problems extensively addressed
in the literature is that of refining or improving an ex-
isting mesh by incremental means. Motivated by this,
Aronov et al. [AAF10] considered the following prob-
lem: Given a set of points in the plane, where would
you place one additional point, so as to maximize the
smallest angle in a good triangulation of the point set.
Since Delaunay triangulations are known to maximize
the smallest angle over all possible triangulations with
a given vertex set [S78], the question can be rephrased
as: “Given a point set, where do we place an additional
point, so as to maximize the minimum angle in the De-
launay triangulation of the resulting set?” In the rest
of the paper we always picture the new point as lying
within the convex hull of the existing points, but the
algorithm is essentially the same without this simpli-
fication. (Another variant of the problem mentioned
in [AAF10] involved incrementally improving an existing
triangulation by “tweaking” the position of an existing
interior vertex, one at a time, so that, again, the small-
est angle is maximized.) They also discuss the more
challenging question of how to position several points
in the best possible coordinated way; we do not address
this variant of the problem in the current paper.

The previous algorithm [AAF10] for placing an ad-
ditional point runs in worst-case O(n4+ε) time, for
any ε > 0, with the constant of proportionality de-
pending on ε. We propose a randomized algorithm
whose expected running time is roughly an order of

∗Supported by NSF grants CCF-11-17336 and CCF-12-18791.
†Supported by NSF grant CCF-11-17336.

magnitude lower. Somewhat surprisingly, Aronov et
al. considered and rejected the approach we use in this
paper [AAF10, page 96].

We present our algorithm in the following section. The
analyses of this and the precursor algorithm [AAF10]
are misleading in that they reflect situations unlikely
to happen for “reasonable” inputs. We discuss how to
quantify reasonableness of the inputs and the resulting
behavior of both algorithms in section 3 and conclude
in section 4.

2 The Algorithm

Our algorithm takes a set P of n points in the plane and
computes the best location for a new point p, such that
the Delaunay triangulation of P ∪ {p} has the largest
possible minimum angle; for ease of presentation we
will assume that the points of P are in general position,
that is no three points of P lie on a line and no four
on a circle. We start by recalling an argument detailed
in [AAF10] which duplicates the insertion step of the
standard incremental Delaunay triangulation algorithm
[GS85]. Let T be the Delaunay triangulation of P . We
begin by computing the arrangement A induced by the
Delaunay circles of P , i.e., of the circumcircles of the
triangles of T . Although there are only a linear number of
such circles, in the worst case every pair of them intersect,
so that A has quadratic complexity. We examine how
the Delaunay triangulation Tp of P ∪ {p} differs from T .
Let c be the face of A containing p. Recall that a triangle
is present in a Delaunay triangulation if and only if its
Delaunay disk is empty of vertices. Point p invalidates
some triangles of T by appearing in the interior of the
corresponding disks. After we have inserted p, we no
longer have a triangulation; instead we have a star-
shaped polygonal hole H in T containing p; see Figure 1.
Since the insertion of p only invalidates previously valid
triangles, but cannot make an invalid triangle valid (since
insertion of p can not turn nonempty disks into empty
ones), new edges of Tp must have p as an endpoint. So,
connecting p to all vertices of H (Figure 1, right) is
the way to complete Tp. This suggests this algorithm
outline:

1. Compute the Delaunay triangulation T .
2. Build the arrangement A of Delaunay circles of T .

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

259

25th Canadian Conference on Computational Geometry, 2013

p

T

p

Tp

Figure 1: The new point p is in the kernel of the shaded star-shaped polygonal hole H. Removed edges of T are
shown dashed (left) and added edges are dotted (right).

3. For each of the O(n2) cells c ∈ A:
(a) Find the set of O(n) triangles invalidated by

placing p in c, the union of which forms the
hole H.

(b) Optimize the placement of p in c.
4. Return the best placement of p found.

This outline was in fact used in [AAF10]. The main
contribution of this paper is to use a different approach
for step 3b. Specifically, in [MSW96], it was shown that
the following is an LP-type problem.1

Given a star-shaped polygonH, find the point p
in its kernel that maximizes the smallest angle
in the triangulation that results by connecting p
to all vertices of H.

Being an LP-type problem, it can be solved in expected
time linear in the number of polygon vertices, while the
approach from [AAF10], based on explicitly computing
lower envelopes of bivariate functions, takes time roughly
quadratic in the number of vertices. However, this LP-
type problem is not quite the problem we actually wish
to solve, as we need the optimal placement of p within
the current cell c, which is why this idea was rejected
in [AAF10]. Fortunately, there is a conceptually simple
fix. In the region search stage of our procedure, for each
cell c, we run the algorithm from [MSW96] discarding
the result if the returned optimum lies outside c. A
simple argument (see Lemma 1 below) shows that if
the solution to the unconstrained problem results in a
point not in c, then the optimum within c must lie on
its boundary. So in a separate boundary search step
detailed below, we find the best placement of p on any
cell boundary. Combining the results from the two steps
we obtain the globally optimal placement for p.

Lemma 1 If the optimum solution to the unconstrained
LP-type problem corresponding to cell c is not in c, then
the optimum solution for c lies on its boundary.

Proof. Consider the locus R(x) of points p such that
the smallest angle in the new triangulation of H is at

1In [ABE99], this and related problems are presented in a
unified framework.

least x. It was shown in [MSW96] that R(x) is a convex
region; it is easy to see that it varies continuously with x,
when non-empty. Clearly, R(x) ⊂ R(y) for y < x. As x
decreases from its optimum unconstrained value, R(x)
will gradually grow from a single point outside c and
eventually intersect c; as it is connected and changes
continuously with x, the first intersection must occur
along the boundary of c. �

It remains to find the best placement for p on each
cell boundary. A cell boundary has two sides, and we
process each separately. First consider each edge of
A separately. For a fixed side of a fixed edge e, we
know which cell of A we are in, and thus the hole H.
If H has h vertices, the triangulation has 3h angles.
The measure of each of these angles is a function of
the position of p. To maximize the smallest of these
functions, find the maximum of their lower envelope by
computing the envelope explicitly. We will show that
the graphs of any pair of these functions intersect at
most 16 times. A well-known result from the theory of
Davenport-Schinzel sequences immediately implies that
the maximum complexity E(n) of the lower envelope
is O(λ16(n)), which is o(n log∗ n), where λs(n) is the
maximum length of a DS(s, n) sequence [AS00]. If the
worst-case complexity of the lower envelope of h functions
from some class is E(h), then we can compute the lower
envelope of n functions from that class in O(E(n) log n)
time using a simple divide-and-conquer algorithm [AS00].

Lemma 2 The complexity of the lower envelope of n
angle functions is O(λ16(n)).

Proof. There are two kinds of angles to consider: angles
at the boundary of H, and angles at the new point p.
We consider first angles at p. Let p = (x, y), and let
q and r be two consecutive vertices of H. Note that
the coordinates of q and r are known constants. We
are interested in the angle ∠qpr at which p sees the
segment qr; see Figure 2 (left). Let s, t be another
pair of consecutive vertices. The angle that p makes
with the segment st is ∠spt. Now consider the locus of
points p specified by the equation ∠qpr = ∠spt; a point p

25th Canadian Conference on Computational Geometry, 2013

260

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

p
q

r

s

t

p

s t

q
r

pq
r

t
s

Figure 2: “Artist’s impression” of the curves defined by
the three types of angle equality constraints.

satisfying this equation will see qr and st at the same
angle; refer to Figure 2 (left). An intersection between
this curve and an edge of A corresponds precisely to an
intersection of the graphs of two angle functions. Once
we prove that there are at most 16 such intersections,
we are done. For convenience, we will equate the cosines
of the angles instead of the angles themselves. Using
| · | to denote distances, the law of cosines gives |qr|2 =
|pr|2 + |pq|2 − 2|pr||pq| cos∠qpr. Solving for cos∠qpr
gives

cos∠qpr =
|pr|2 + |pq|2 − |qr|2

2|pr||pq| .

Setting cos∠qpr equal to cos∠spt produces

|pr|2 + |pq|2 − |qr|2
|pr||pq| =

|ps|2 + |pt|2 − |st|2
|ps||pt| .

After squaring both sides and reshuffling, we get

(|pr|2 + |pq|2 − |qr|2)2|ps|2|pt|2 =

(|ps|2 + |pt|2 − |st|2)2|pr|2|pq|2.

Now each side of the equation is a polynomial in x and
y of total degree eight. So, the question now is: how
many times can a curve of degree eight intersect an edge
of A? An edge is an arc of a circle, which is the zero set
of a polynomial of degree two. According to Bézout’s
theorem [B1779], the number of intersection points is at
most the product of the degrees, so there can be at most
16 intersection points. So, the complexity of the envelope
is O(λ16(n)), and we are done. A similar argument is
needed for ∠qpr = ∠pst and also ∠pqr = ∠pst (refer
to Figure 2 (right)), but they also result in polynomial
equations of degree at most eight; we omit the entirely
analogous calculation. �

The approach outlined above is inefficient in that there
may be a quadratic number of arcs, and since we spend
more than linear time on each, this would become this
bottleneck of the algorithm. However, we are duplicating
much work: if we follow a Delaunay circle as it crosses
another circle, very little changes when we cross: either
one triangle of T ceases to be valid, or else one triangle
becomes valid. (This assumes that we only cross one

circle at at time. At a vertex, we may cross many circles
at once, so the total change is large, but it is still true
that each circle we cross does only one triangle’s worth
of damage.) Suppose that a triangle becomes valid when
we cross (the other case is symmetric). Then H loses a
boundary vertex, and our triangulation of H loses two
old triangles and gains one new one, which means our
set of angle functions gains 3 new angles and loses 6
old ones. The other angle functions remain unchanged.
Thus, we can define the functions over the an entire
circle (provided we are consistent whether we are on the
inside or outside of the circle.) On a given arc, there are
at most 3n functions. If there are m circles, then the
boundary of a fixed circle can only have 2(m− 1) < 2m
intersections with other circles, and for each of those
intersections, at most 6 new functions appear. The
number of circles equals the number of triangles, which
is less than 2n. Thus for the entire circle, there are at
most a linear number of functions (2n × 2 × 6 + 3n ≤
27n). It is still the case that any pair of function graphs
intersect at most 16 times, but because each is not
defined over the entire circle, but only a contiguous arc
on it, the complexity of the lower envelope can increase
slightly, up to λ18(n) [AS00]. Thus, the running time of
the boundary search stage is O(nλ18(n) log n) and the
total (expected) running time is dominated by the O(n3)
region search time. (The boundary search can be sped
up slightly to O(nλ17(n) log n) by using the algorithm
of Hershberger [H89].)

3 Realistic inputs

In the long tradition in computational geometry, exem-
plified by [BKSV02], we would like to be able to analyze
our problem in non-worst-case situations. To this end,
we introduce several parameters, besides n that measures
the number of input points, that quantify the “badness”
of the input point set and express the running time of
the algorithms in terms of them.

Consider the arrangement A of Delaunay disks of P
and let k be its complexity, that is the total number of
vertices, edges, and faces; let d be the maximum depth of
the arrangement, that is the maximum, over all points in
the plane, of the number of disks covering the point. In
the worst case k is Θ(n2) and d is Θ(n). In well-behaved
point sets, such as those corresponding to uniformly
distributed points, k is Θ(n); one would also expect d
to be near-constant, however, somewhat surprisingly, an
unfortunate, but arbitrarily small perturbation of the√
n × √n grid can cause d to be Θ(

√
n) (we omit the

details in this version).
We now express the running times in terms of n, k,

and d. Our algorithm starts by computing the Delaunay
triangulation, which can be done in O(n log n) time. We
then compute the arrangement of circles in O(k log n)

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

261

25th Canadian Conference on Computational Geometry, 2013

time using a standard sweepline algorithm (better run-
ning times are possible using more involved techniques).
Our algorithm and that of [AAF10] share the first two
steps of the outline. Their analog of the region search
runs in time O(kd2+ε), for any positive ε, since for every
cell c ∈ A, it performs an independent bivariate lower
envelope calculation on O(d) functions, for a total time
of O(kd2+ε + k log n). We analyze the region search and
the boundary search stages of our proposed algorithm
separately. The region search runs in expected time
O(kd), as its bottleneck is solving k LP-type problems
of size at most d each. (Note that this requires that we
quickly determine the set of constraints that correspond
to a cell. This is easy to arrange if we visit adjacent cells
in order.)

We now turn our attention to the boundary search.
Our analysis here needs stronger general position as-
sumptions than the algorithm itself does. In particular,
we require that if two circles intersect in some point not
in P , no third circle goes through that point.

The running time for one circle is affected by how many
functions we need to take the lower envelope of along that
circle. We earlier derived a bound of 27n for the number
of functions on a given circle. We now make this more
precise. Let fi denote the number of functions along
circle Ci. If Ci intersects xi other circles, and further is
not adjacent to any cell having depth more than di, then
by our previous analysis fi ≤ 3(di + 1) + 12xi. Note that
since these circles are Delaunay, no disk fully contains
another. Hence, any circle containing a cell of large
depth must intersect many other circles. In particular,
xi ≥ di − 1. Thus, we have fi ≤ 3(di + 1) + 12xi ≤
3(xi + 2) + 12xi = 15xi + 6, which is O(xi).

We now show that the sum of xi over all circles is
at most proportional to the arrangement complexity k.
Note first that this sum is simply twice the number of
pairs of intersecting circles. Our approach will thus be to
show that most pairs of intersecting circles contribute a
vertex of degree 4 to the arrangement A, that is, a vertex
that no third circle goes through. Indeed, consider a
pair of intersecting circles such that both intersection
points, call them p and q, have degree at least 6 (in a
circle arrangement, all vertices have even degree). By
our stronger general position assumption, both p and q
are from the original point set P . We now have a pair
of points with two Delaunay circles passing through it:
hence pq must be a Delaunay edge! But there are only
a linear number of such edges, so we are done: all but
O(n) pairs of intersecting circles contribute a new vertex
to the arrangement.

Finally, let m be the number of circles, X be the
number of pairs of intersecting circles, u be the number
of vertices of degree 4, and e be the number of edges of
the Delaunay triangulation. We now bound the sum of xi
over all circles:

∑m
i=1 xi = 2X ≤ 2(u+ e) = 2u+ 2e <

2k+ 2e ≤ 2k+ 2(n+m− 2) ≤ 2k+ 2(m+ 2 +m− 2) =
2k + 4m < 2k + 4k = 6k, which is O(k).

Lastly, the total running time of the boundary search
stage is at most proportional to:

∑m
i=1 λ18(xi) log xi ≤

∑m
i=1 λ18(xi) logm

= logm ·∑m
i=1 λ18(xi)

≤ logm · λ18(
∑m

i=1 xi)

≤ λ18(6k) logm,

which is O(λ18(k) log n), and thus the running time of
our entire algorithm is O(kd + λ18(k) log n). There-
fore, our algorithm outperforms (in expectation) that
of [AAF10] for all values of k and d.

We can slightly refine the above analysis in another
direction: Recall that we defined d to be the maximum
depth of the arrangement A. If we let d̄ be the average
depth, over all the cells, the running time of the region
search can then be bounded by O(kd̄), while the running
time of the analogous part of algorithm of [AAF10] is
O(
∑

c∈A d
2+ε
c), where dc is the depth of cell c; the latter

quantity is, roughly, k times the average squared depth.
The running time of the boundary search is not easily
expressed in terms of d̄, but it is less likely to dominate
the running time of our algorithm.

It would be interesting to connect the parameters d
and k (and ultimately the behavior of the algorithms) to
the more commonly used measures of how well-behaved
a point set in the plane is, such as its spread, which is
the ratio between the largest and the smallest interpoint
distances.

4 Conclusions and open problems

We believe our algorithm can be easily modified to work
with constrained Delaunay triangulations, which was
the original setting of [AAF10]; we omit the extension
in this version. (The key differences are that the set
of invalidated triangles depends on the constraints, and
that the arrangement A is formed by circles and the
constraining segments.)

It would be interesting to see if our algorithm can
be derandomized using the results of Chazelle and Ma-
toušek [CM93]; the LP-type problem needs to meet some
technical requirements the discussion of which is omitted
here.

Can the algorithm be sped up by roughly another order
of magnitude by observing that there is generally very
little difference between LP-type problems corresponding
to adjacent cells of A?

Is there any hope of generalizing our approach to
multiple Steiner points as in [AAF10]?

25th Canadian Conference on Computational Geometry, 2013

262

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

References

[AS00] P.K. Agarwal and M. Sharir. Davenport-Schinzel
sequences and their geometric applications. In Hand-
book of Computational Geometry, J.-R. Sack and J. Ur-
rutia, Eds., 1–47. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 2000.

[ABE99] N. Amenta, M. Bern, and D. Eppstein. Op-
timal point placement for mesh smoothing. J. Algo-
rithms 30(2), 302–322, 1999.

[AAF10] B. Aronov, T. Asano, and S. Funke. Optimal
triangulations of points and segments with Steiner
points. Int. J. Comput. Geom. Appl., 20(1) 89–104,
2010.

[BKSV02] M. de Berg, M. J. Katz, A. F. van der Stap-
pen, and J. Vleugels. Realistic input models for geo-
metric algorithms. Algorithmica, 34:81–97, 2002.

[B04] M. Bern. Triangulations and mesh generation. In
Handbook of Discrete and Computational Geometry,
2nd Ed., J. E. Goodman and J. O’Rourke, Eds., 563–
582. CRC Press LLC, Boca Raton, FL, April 2004.

[B1779] Bézout theorem. Wikipedia. From http://en.

wikipedia.org/wiki/B%C3%A9zout%27s_theorem;
retrieved 11 May 2013.

[CM93] B. Chazelle and J. Matoušek. On linear-time
deterministic algorithms for optimization problems
in fixed dimension. Proc. Fourth Annu. ACM-SIAM
Symp. Discr. Algorithms, pp. 281–290, 1993.

[GS85] L. Guibas and J. Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation
of Voronoi diagrams. ACM Transactions on Graphics,
4(2) 74–123, 1985.

[H89] J. Hershberger. Finding the upper envelope of n
line segments in O(n log n) time. Inf. Proc. Letters,
33(4) 169–174, 1989.

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A
subexponential bound for linear programming. Al-
gorithmica, 16(4–5) 498–516, 1996.

[S78] R. Sibson. Locally equiangular triangulations. The
Computer Journal, 21(3) 243–245, 1978.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

263

25th Canadian Conference on Computational Geometry, 2013

264

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Spanning Colored Points with Intervals

Payam Khanteimouri ∗ Ali Mohades∗ Mohammad Ali Abam † Mohammad Reza Kazemi∗

Abstract

We study a variant of the problem of spanning colored
objects where the goal is to span colored objects with
two similar regions. We dedicate our attention in this
paper to the case where objects are points lying on the
real line and regions are intervals. Precisely, the goal is
to compute two intervals together spanning all colors.
As the main ingredient of our algorithm, we first intro-
duce a kinetic data structure to keep track of minimal
intervals spanning all colors. Then we present a novel
algorithm using the proposed KDS to compute a pair
of intervals which together span all the colors with the
property that the largest one is as small as possible. The
algorithm runs in O(n2 log n) using O(n) space where n
is the number of points.

1 Introduction

Background. In the view of location planning, sup-
pose there are n facilities with k types like banks, net-
work access points, etc. in the plane. Each type t can
be represented by a unique color c(t), i.e., each facility
of type t is colored with c(t). In some applications, ac-
cessing to one representative of each type suffices which
means location planning is defined based on types rather
than facilities in these applications. One basic problem
arises here is to find a location where there is at least one
representative of each type in its nearby. This suggests
the problems of computing the smallest area/perimeter
color-spanning objects. A region is said to be color-
spanning if it contains at least one point from each color.

The other motivation specially for 1D colored points
comes from planning a toolpath in layered manufactur-
ing [4, 11]. In this application, a 3D object is defined by
its layers in the plane and each layer consists of contours
or polygons. To construct an object, a toolpath like a
laser beam cuts the boundary of contours one by one.
In practice, the laser beam moves in an straight line
from one contour to other and each contour is traced
only once. A trace path contains all contours and the
line segments connecting them. Since the straight lines

∗Laboratory of Algorithms and Computational Geome-
try, Department of Mathematics and Computer Science,
Amirkabir University of Technology (Tehran Polytechnic),
{p.khanteimouri,mohades,mr.kazemi}@aut.ac.ir
†Department of Computer Engineering, Sharif University of

Technology, abam@sharif.edu

indicate the wasted time which is significant, toolpath
planning is computing the trace path which minimize
the total wasted time. In particular, when each con-
tour is almost a single point, the problem is computing
the TSP and clearly is NP-Hard. To obtain a heuristic
method, Tang and Pang [11] proposed an algorithm in
which they compute the smallest color-spanning inter-
val for a set of colored points on the real line. Beside
these two motivations, studying on spanning colored
points has other applications in imprecise data, statisti-
cal clustering, pattern recognition and generalized range
searching [6, 7, 9, 10].

Since the main ingredient of algorithms is a KDS for
maintaining the minimal color-spanning intervals, we
here sketch an overview of Kinetic Data Structures. A
kinetic data structure (KDS) is a structure for keeping
the trajectory of an attribute e.g. the sorting, for mov-
ing objects. We define a set of certificates for a KDS
which are some boolean functions. Indeed, the set of
certificates is a proof scheme for the attribute which
means the validity of all certificates leads to correctness
of the attribute. Therefore, when an event occurs, i.e.,
a certificate fails, we should update the KDS. Thus, we
use a priority queue like a min heap to store the failure
times of the events. A KDS is analysed with the follow-
ing concepts. We say a KDS is compact if it totally uses
O
(
n polylog(n)

)
space and is local if each object partic-

ipates in O
(
polylog(n)

)
certificates. In addition, a KDS

is responsive if it can be updated in O
(
polylog(n)

)
time

when an event occurs. The event which changes the
attribute is an external event and any KDS should be
updated in its failure time. Moreover, there may be an
internal event which means our KDS should be updated
while the attribute remains unchanged. A KDS is said
to be efficient if the ratio of the number of all events
and the number of external events is O

(
polylog(n)

)
.

Related works. In the view of imprecise data, for
a set of n points with k colors, the main problem
is computing exactly k points with different colors in
which a property like diameter, closest pair, and etc. is
minimized/maximized. C. Fan et al. [6] showed that
the problem of computing the largest closest pair is
NP-Hard under the Lp metric (1 ≤ p < ∞) even for
1D points. They [6] also proposed an algorithm with
O(n log n) expected time for computing the maximum
diameter.

In the view of location planning, for a given set of

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

265

25th Canadian Conference on Computational Geometry, 2013

n colored points with k colors in the plane, computing
the smallest color-spanning axes parallel rectangle is the
most studied problem. Abellanas et al. [1] proposed an
algorithm of O

(
(n − k)2 log2 k

)
time and O(n) space

while they showed there are Θ
(
(n−k)2

)
minimal color-

spanning rectangles in the worst case. Das et al. [5]
have recently improved the running time to O(n2 log n).
They [5] also present an algorithm in O(n3 log k) time
and O(n) space to solve the arbitrary oriented case. An-
other studied problem by these papers is computing the
smallest color-spanning strip. Das et al. [5] propose
an algorithm in O(n2 log n) time and O(n) space us-
ing the dual of the given points to solve the problem.
The results are near efficient with respect to testing all
minimal objects. Recall that, a minimal color-spanning
object contains at least one point from each color and
any sub-region of it does not contain all colors.

In addition, Abellanas et al. [2] defined the farthest
colored Voronoi diagram (FCVD). For a set of n colored
sites with k colors in the plane, the FCVD is the sub-
division of the plane in which for any region R there is
a unique site p such that any color-spanning circle cen-
tered at a point in R must contain p. Therefore, to com-
pute the smallest color-spanning circle a simple algo-
rithm is to compute the FCVD and test circles centered
at the vertices of FCVD. They [2] proposed an algorithm
with O

(
n2α(k) log k

)
time to compute the FCVD and

the smallest color-spanning circle. The other approach
mentioned by Abellanas et al. [1] is to obtain the small-
est color-spanning circle and the smallest color-spanning
axes-parallel square in O(kn log n) time and O(n) space
using the upper envelope of Voronoi surfaces [8].

Computing the smallest color-spanning interval has
been widely studied by Chen and Misiolek [4]. For a set
of n points with k colors on the real line they [4] showed
that minimal color-spanning intervals form a strictly
increasing sequence. Due to this property they pro-
posed two algorithms for computing the smallest color-
spanning interval. The first algorithm simply compute
the smallest color-spanning interval by a left to right
sweeping in O(n) time and space apart from sorting.
Next, they assumed that points are given one by one in
a sorted order and each point must be processed only
once which is suitable for an online processing. They [4]
proposed an algorithm of O(n) time and O(k) space.

Our results. In this paper, we study on spanning a set
of n points with k colors on the real line by two intervals.
We first assume points are moving on R1. We design a
kinetic data structure for keeping the track of all mini-
mal color-spanning intervals. We show our KDS is effi-
cient, responsive, local and compact. Next, we use this
result to propose an algorithm to compute two intervals
which together span all colors and the largest one is as
small as possible. The algorithm runs in O(n2 log n)
time and O(n) space.

This paper is organized as following. In Section 2 we
show how to keep track of all minimal color-spanning
intervals for a set of moving colored points on R1. Next,
in Section 3 we propose an almost efficient algorithm
to compute two intervals together spanning all colors
and the largest one is as small as possible. Finally we
conclude in Section 4.

2 Minimal Color-Spanning Intervals for Moving
Points

We first pay our attention to static points on the real
line and then switch to moving points where the tra-
jectory of each colored point is a polynomial function
with degree at most s. For moving points, we are inter-
ested in maintaining all minimal color-spanning inter-
vals. Since the problem is trivial for k = 2 we assume
k > 2.

Static Points. Let P = {p1, p2, · · · , pn} be a set of n
colored points with k colors on the real line. We assume
points are in general position which means no two points
coincide. A minimal color-spanning interval (MCSI) is
an interval containing all colors and any sub-interval
of it, does not contain all colors. From the definition,
we can immediately deduce that the colors of the start
point and the end point of an MCSI are different and
unique in the interval. We first present the following
lemma.

Lemma 1 For a set of n points with k colors on the real
line, there are at most n−k+1 minimal color-spanning
intervals.

Proof. Let pi be the start point of an MCSI [pi, pj].
Obviously, pi cannot be the start point of another MCSI
[pi, p

′
j] due to the minimality of both intervals. There-

fore, each MCSI can be uniquely charged to its start
point. On the other hand, the start point cannot be
among the k − 1 rightmost points as MCSI must con-
tain at least k points. These together show the num-
ber of MCSIs is at most n − k + 1. To give a tight
lower bound, consider the sequence 1, 2, · · · , k repeated
n
k times. The number of MCSIs in this example obvi-
ously is n− k + 1. �

To compute the MCSIs, it suffices to sweep the points
from left to right with two sweep lines. The sweep lines
stop at the start and the end points of an interval. To
recognize if the sweep lines indicate an MCSI, we use an
array for keeping the number of points from each color
and a variable for the number of different colors between
the two sweep lines. From the fact that both sweep lines
go forward in each step, the algorithm runs is O(n) time
and space apart from sorting. We avoid the details due
to the simplicity and conclude the following lemma.

25th Canadian Conference on Computational Geometry, 2013

266

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Lemma 2 For a set of n points with k colors on the
real line, all minimal color spanning intervals can be
computed in O(n) time and space apart from sorting.

Moving Points. We now concentrate on maintaining
MCSIs while points are moving continiously on the real
line. Let p(t) be the position of point p at time t. We
define the following ordered sets:

• P(t) = {pi1 , · · · , pin} ; pi1(t) < · · · < pin(t),

• M(t) =
{

[pi, pj] | [pi, pj] is an MCSI at time t
}

.

• S(t) =
{
pi | [pi, pj] ∈M(t)

}
,

• E(t) =
{
pj | [pi, pj] ∈M(t)

}
.

Indeed, P(t) is the increasingly ordered list of the
moving points according to their positions at time t.
Moreover, M(t) is the set of all MCSIs [pi, pj] at time
t. Since for any two MCSIs [pi, pj] and [ps, pt], we have
either pi < ps and pj < pt or ps < pi and pt < pj due to
the minimality, M(t) can be recognized as an ordered
list based on MCSI’s start points. We have also stored
the start and respectively the end points of MCSIs at
time t in distinct sets S(t) and E(t). In addition, let
c(p) denotes the color of point p, pred(p) and suc(p) be
the previous and respectively the next point of p with
color c(p).

Now, we show how M(t) changes while the points are
moving. It is obvious while the sorted list of points,
P(t), does not change which means there is no swap
between two consecutive points in P(t), M(t) remains
unchanged. Therefore, we maintain a kinetic sorting for
moving points in P and explain how to handle an event
in the kinetic sorting where two consecutive points p
and q swap.

To handle events, we start with a useful lemma. Sup-
pose there are two MCSIs Ii = [pi, p] and Ij = [pj , q] in
M(t) such that p and q are consecutive points in P(t)
(p < q) —see Figure 1. Therefore, Ii and Ij should also
be consecutive in M(t). Since the intersection of Ii and
Ij contains exactly k− 1 colors

(
all colors except c(q)

)
,

the color of point pi should be the same as the color
of q, i.e, c(pi) = c(q). In addition, pi = pred(q) which
means pi is the previous point of q with color c(q). Put
together we obtain the following result.

Lemma 3 Suppose there are two intervals Ii = [pi, p]
and Ij = [pj , q] in M(t) such that p and q are consecu-
tive in P, then c(pi) = c(q) and pi = pred(q).

Now, we concentrate on cases in which two consecu-
tive points p and q swap their positions in P(t). In all
cases, when M(t) changes we update the sets S(t) and
E(t). The arising cases are as following.

Figure 1: MCSIs Ii = [pi, p] and Ij = [pj , q] for two
consecutive points p and q.

1. p /∈ S(t) ∪ E(t) and q /∈ S(t) ∪ E(t).
In this case, M(t) does not change. If c(p) = c(q),
we update pred and suc of p, q and the adjacent
points.

2. p /∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).
Let I be the MCSI whose one of endpoints is q. We
can distinguish 4 sub-cases. In sub-cases (a) and
(b) p is inside I before the event and in sub-cases
(c) and (d) p is outside I before the event.

(a) p is inside I = [pi, q] and is the only point with
color c(p) in I. Since p is not the end point of
an MCSI, according to Lemma 3 there is no
point v in the left of pi such that c(v) = c(q).
In this case, if there is a point u with color
c(p) in the left of p, precisely u = pred(p), we
first update [pi, q] to [pi, p]. Then, we insert
MCSI [u, q] in M(t) —see Figure 2(a). If u
does not exist no new MCSI is inserted.

(b) p is inside I and there is a point u with color
c(u) = c(p) in I. In this case M(t) does not
change —see Figure 2(b).

(c) p is outside I = [pi, q] and c(p) 6= c(q). since I
is an MCSI, there should be point u inside I
with color c(u) = c(p) —see Figure 2(c). Re-
call that u 6= pi according to Lemma 3. There-
fore, M(t) remains unchanged.

(d) c(p) = c(q) —see Figure 2(d). In this case, we
first update pred and suc of p, q and adjacent
points. Then, we change the interval [pi, q] to
[pi, p] in M(t).

3. p ∈ S(t) ∪ E(t) and q /∈ S(t) ∪ E(t).
This case can be handled in the same manner in
case 2.

4. p ∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).
We can distinguish two cases based on whether
p, q ∈ E(t) or p ∈ S(t) and q ∈ E(t).

(a) p, q ∈ E(t). As Figure 3(a) illustrates, since
[pi, p] is not an MCSI after the swap, we first
remove the interval [pi, p] from M(t) and then
we update the interval [pj , q] to [pj , p].

(b) p ∈ S(t), q ∈ E(t). To handle this case, p af-
fects the interval [pi, q] as an ordinary point.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

267

25th Canadian Conference on Computational Geometry, 2013

case 2(b)

case 2(c)

case 2(a)

case 2(d)

Figure 2: p /∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).

Thus, we consider p as a point inside the inter-
val [pi, q] and handle the event based on case 2.
This happens similarly for q which is inside the
interval [p, pj] —see Figure 3(b). Therefore,
we handle two events in the type of case 2 in-
stead of this case. The case p ∈ E(t), q ∈ S(t)
can be handled similarly.

Note that since a point can simultaneously be start
and end point of MCSIs, more than one of the above
cases may be handled when one event happens. As each
point can appear once as the start or the end point of
MCSIs, there are constant arising cases in an event and
all of them can be independently handled as described
in the above cases without priority.

To test whether p ∈ S(t) in O(log n) time, we main-
tain a dynamic search tree (like a red-black tree) over

case 4(a)

case 4(b)

Figure 3: p ∈ S(t) ∪ E(t) and q ∈ S(t) ∪ E(t).

S(t) supporting deletion and insertion in O(log n) time.
In each event-handling we update this tree by perform-
ing a constant number of deletions and insertions. We
also need a similar search tree over E(t) to test whether
p ∈ E(t).

Since we just use a kinetic sorting over P, our KDS
is obviously compact and local. Moreover, as described
above, each event can be handled in O(log n) time. In
the worst cast, we handle O(n2) events under the as-
sumption that the trajectory of each point is a bounded
degree polynomial. Putting all together we conclude the
following theorem.

Theorem 4 For a set of n moving colored points with
k colors on the real line, there is an efficient, respon-
sive, local and compact KDS which keeps the track of
all minimal color-spanning intervals.

Proof. In order to show our KDS is efficient, we give
a configuration of moving points where MCSIs change
Ω(n2) times when trajectories are bounded degree poly-
nomials. Consider n

2 static points with color 1 and n
2

moving points with color 2 passing through all static
points. When two points of different colors swap, def-
initely an MCSI changes. Therefore, the total number
of external events in this example is Ω(n2) as any point
with color 1 swaps with any point with color 2. This
shows our KDS is efficient as it handles O(n2) events in
the worst case.

�

3 Computing the Smallest Color-Spanning Two In-
tervals

We now present our novel algorithm to compute the
smallest color-spanning two intervals (SCS2I) which
is two intervals together spanning all colors with the
largest one as small as possible.

25th Canadian Conference on Computational Geometry, 2013

268

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

We first give a naive algorithm to compute SCS2I. For
each interval [pi, qj] we can compute the smallest inter-
val [ps, pt] which spans the colors that are not appeared
in [pi, pj] in O(n) time using Lemma 2. As there are
O(n2) different intervals, this algorithm runs in O(n3)
time which is far from being efficient.

We next present our main algorithm that uses the
KDS described in the previous section. Suppose P is a
set of n points on the real line, each associated with one
of the given k colors. Let P ′ be obtained by translating
P by a vector ~d to the right such that all points of P are
left to all points of P ′ —see Figure 4. Now, consider the
kinetic maintenance of MCSIs of the set P ∪ P ′ where
points in P are static and points in P ′ move all with
the same speed to the left.

Figure 4: The copied points, P ′, move through the static
original points.

Let I(t) be the smallest color-spanning interval of
P(t) ∪ P ′(t) at time t and set I to be the smallest I(t)
for all t. We first show the length of I, the difference
of its two endpoints denoted by |I|, is the solution to
SCS2I and then we explain how to compute I during
the kinetic maintenance of MCSIs of P ∪ P ′.

Suppose intervals I1 = [pi, pj] and I2 = [ps, pt]
are the solution to the problem of SCS2I such that
|I1| > |I2| —see Figure 5(a). We first give the following
lemma.

Lemma 5 The length of the smallest color-spanning
interval over all time, I, is equal to the length of I1.

Proof. Let |I| be the length of the smallest color-
spanning interval I during the movement of points.
Since P ′(t) is the same as P(t), the intervals I ′1 = [p′i, p

′
j]

and I ′2 = [p′s, p
′
t] in P ′(t) are also the solution to SCS2I

—see Figure 5(b). Now, consider the time in which pj
and p′t are swapped. Since the color of the endpoints of
I1 and I ′2 are unique in both intervals and together span
all colors, the interval I1 = [pi, pj] becomes an MCSI
after the swap —see Figure 5(c) for more illustration.
Therefore, we conclude |I| ≤ |I1|.

To prove |I| ≥ |I1|, for the sake of contradiction
assume |I| < |I1|. Now, consider the time t when
the length of the smallest color-spanning interval is |I|.
Since I consists of points in P(t) ∪ P ′(t) we can define
two sub-intervals over the points in P(t) and respec-
tively P ′(t) which together span all colors and the length
of the largest one is I which is smaller than |I1|. This
leads us to a better solution which is a contradiction.
Therefore, we have |I| = |I1|. �

(a)

(c)

(b)

Figure 5: Intervals I1 and I ′2 becomes an MCSI after
swapping the points pj and p′t.

Note that the smallest color-spanning interval for all
time, I, is appeared at least two times; precisely at times
I ′2 ⊂ I1 and I2 ⊂ I ′1.

We now explain how to compute I, minimum over
all I(t). In general, we can maintain I using a kinetic
tournament over all MCSIs at current time. Note that
even there is no swap in the kinetic sorting, interval I
can combinatorially change. The kinetic maintenance
of I(t) can be simply done by putting a kinetic tour-
nament over intervals in M(t). It is straightforward to
show the kinetic sorting together with the kinetic tour-
nament handle O

(
λs+2(n2) log2 n

)
events where s is the

maximum degree of the polynomials describing the mo-
tions [3]. As we just need I, the minimum interval over
all times, we can do faster as follows. Fortunately, in
our setting where points of P are static and points of P ′
move with the same speed to the left, an MCSI reaches
its minimum length when it appears or disappears from
M(t). Appearance or disappearance of MCSIs happens
at event times where two points swap. Therefore, it
suffices to take the minimum over all MCSIs’ lengths
at their appearance or disappearance times. This obvi-
ously can be done in O(n2) time.

Theorem 6 For a given set of n colored points with k
colors on the real line, the smallest color-spanning two
intervals can be computed in O(n2 log n) time and O(n)
space.

In addition, We can show if the color of given points
is a sequence of 1, 2, · · · , k repeated n

k times, there are
Ω(n2) minimal color-spanning two intervals. So, our al-
gorithm is near efficient with respect to testing all min-
imal color-spanning two intervals.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

269

25th Canadian Conference on Computational Geometry, 2013

4 Conclusion

For a set of n colored points with k colors on the real
line, first the problem of keeping the track of minimal
color-spanning intervals is studied in this paper. We
present a kinetic data structure which it is efficient, re-
sponsive, local and compact. Then, we use this result
to compute two intervals which they span all colors to-
gether and the length of the largest one is minimum.
This is a novel idea which solves a static problem from
the kinetic interpretation of it. We propose an algo-
rithm which compute the smallest color-spanning two
intervals in O(n2 log n) time and O(n) space.

References

[1] M. Abellanas and F. Hurtado and C. Icking and R.
Klein and E. Langetepe and L. Ma and B. Palop and
V. Sacristán. Smallest Color-Spanning Objects. ESA,
Springer-Verlag, 278–289, 2001.

[2] M. Abellanas and F. Hurtado and C. Icking and R.
Klein and E. Langetepe and L. Ma and B. Palop and
V. Sacristán. The Farthest Color Voronoi Diagram and
Related Problems. tech. report. University of Bonn.,
2006.

[3] J. Basch. Kinetic Data Structures. PhD thesis, 1999.

[4] D. Z. Chen and E. Misiolek. Algorithms for inter-
val structures with applications. Proceedings of the
5th joint international frontiers in algorithmics, FAW-
AAIM’11, Springer-Verlag, 196–207, 2011.

[5] S. Das and P. P. Goswami and S. C. Nandy. Small-
est Color-Spanning Object Revisited. Int. J. Comput.
Geometry Appl., 19:457–478, 2009.

[6] C. Fan and W. Ju and J. Luo and B. Zhu. On some
geometric problems of color-spanning sets. Proceedings
of the 5th joint international frontiers in algorithmics,
and 7th international conference on Algorithmic as-
pects in information and management. FAW-AAIM’11.
Springer-Verlag, 113–124, 2011.

[7] P. Gupta and R. Janardan and M. Smid. Further
Results on Generalized Intersection Searching Prob-
lems: Counting, Reporting, and Dynamization. J. Al-
gorithms., 19(2):282–317, 1995.

[8] D. P. Huttenlocher and K. Kedem and M. Sharir. The
Upper Envelope of voronoi Surfaces and Its Applica-
tions. Discrete Computational Geometry, 9:267–291,
1993.

[9] J. Matoušek. On enclosing k points by a circle. Infor-
mation Processing Letters, 53(4):217–221, 1995.

[10] M. Smid. Finding k points with a smallest enclosing
square. MPI-I-92-152, Max-Planck-Institut Inform.,
Saarbr cken, Germany, 1992.

[11] K. Tang and A. Pang. Optimal connection of loops
in laminated object manufacturing. Computer-Aided
Design, 35(11):1011-1022, 2003.

25th Canadian Conference on Computational Geometry, 2013

270

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

On Fence Patrolling by Mobile Agents

Ke Chen∗ Adrian Dumitrescu† Anirban Ghosh‡

Abstract

Suppose that a fence needs to be protected by k mobile
agents with maximum speeds v1, . . . , vk so that each
point on the fence is visited by some agent within every
duration of a predefined time. The problem is to deter-
mine if this requirement can be met, and if so, to design
a suitable schedule for the agents. Alternatively, one
would like to find a schedule that minimizes the idle
time, that is, the longest time interval during which
some point is not visited by any agent. The problem
was introduced by Czyzowicz et al. (2011). We revisit
this problem and discuss several strategies for the cases
of open and respectively closed fence.

1 Introduction

A set of mobile agents with predefined (possibly dis-
tinct) maximum speeds are in charge of guarding or in
other words patrolling a given region of interest. Two
interesting uni-dimensional variants where the agents
move along a curve (e.g., the boundary of the region),
have been introduced by Czyzowicz et al. [1]: (i) only
part of the boundary, that is, an open curve, or open
fence, needs to be guarded; (ii) the entire boundary,
that is, a closed curve (cycle), or closed fence, needs to
be guarded. For simplicity (and without loss of general-
ity) it can be assumed that the open curve is a segment
and the closed curve is a circle.

Given a schedule of the agents over some time interval
[0, t], the idle time I is the longest time interval during
which a point of the fence remains unvisited, taken over
all points. We are interested in guarding over an un-
limited time interval, i.e., over the interval [0,∞). If
the schedule of the agents is such that the positions
of the agents during the time intervals [it0, (i + 1)t0],
i = 0, 1, . . ., are the same functions of t, we say that the
schedule is periodic with period t0.

Given k agent speeds v1, . . . , vk > 0, the goal is to
find a schedule for which the idle time is minimum.
A straightforward volume argument from [1] yields the

∗Dept. of Comp. Sci., Univ. of Wisconsin–Milwaukee, USA.
Email: kechen@uwm.edu.
†Dept. of Comp. Sci., Univ. of Wisconsin–Milwaukee, USA.

Email: dumitres@uwm.edu. Supported in part by NSF grant DMS-
1001667.
‡Dept. of Comp. Sci., Univ. of Wisconsin–Milwaukee, USA.

Email: anirban@uwm.edu. Supported by NSF grant DMS-1001667.

lower bound I ≥ 1/
∑k

i=1 vi. This lower bound applies
for both the segment and the circle variant of the prob-
lem, and for any speed setting.

For the segment variant, Czyzowicz et al. [1] proposed
a simple partitioning strategy, algorithmA1, where each
agent moves back and forth in a segment whose length
is proportional with its speed. Algorithm A1 is univer-
sal in the sense that is applicable for any speed setting
v1, . . . , vk > 0 for the agents. A1 has been proved to
be optimal for uniform speeds [1], i.e., when all maxi-
mum speeds are equal. It has been conjectured [1] that
it is optimal for any speed setting, however this was re-
cently disproved by Kawamura and Kobayashi [2] with
two examples (periodic schedules) that only barely in-
validate the conjecture. It is worth mentioning that the
idle time achieved by A1 is 2/

∑k
i=1 vi and thereby A1

yields a 2-approximation algorithm for the shortest idle
time. The current best lower bound examples have an

idle time of about 0.98
(

2/
∑k

i=1 vi

)
.

For the circle variant, no universal algorithm has been
proposed to be optimal. However, if the maximum
speeds of the agents are the same, i.e., v1 = . . . =
vk = v, then placing the agents uniformly around the
circle and moving in the same direction yields the min-
imum idle time for this setting. Indeed, the idle time
is 1/(kv) = 1/

∑k
i=1 vi, matching the lower bound men-

tioned earlier.
Under the restriction that all agents must move in

the same, say clockwise direction, Czyzowicz et al. [1]
conjectured that the following algorithm A2 is opti-
mal: Let v1 ≥ v2 ≥ . . . ≥ vk. Let r be such that
max1≤i≤k ivi = rvr. Place the agents a1, a2, . . . , ar at
equal distances of 1/r around the unit circle, each mov-
ing clockwise at the same speed vr. Discard the re-
maining agents, if any. Since all agents move in the
same direction, we also refer to A2 as the “runners”
algorithm. Observe that A2 is also universal. Its idle
time is 1/max1≤i≤k ivi [1, Theorem 2]. The conjectured
optimality of A2 is still open.

Notation and terminology. Write Hn =
∑n

i=1 1/i. A
unit circle (resp., segment) is one of unit length. For
a given patrolling algorithm A, using maximum speeds
v1, . . . , vk > 0, let idle(A, v1, . . . , vk), or just idle(A)
if there is no danger of confusion, denote its idle time.

Given k agents with maximum speeds v1, . . . , vk >
0, and a patrolling algorithm A, let L(A, v1, . . . , vk)
denote the maximum length of a segment patrolled

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

271

25th Canadian Conference on Computational Geometry, 2013

by these agents using algorithm A. Since the
partition-based algorithm was conjectured to be op-
timal for a segment, it is natural to define the ra-
tio of performance for any other algorithm A′ over
the existing partition-based algorithm A1 as ρ =
ρ(A′,A1) = L(A′, v1, . . . , vk)/L(A1, v1, . . . , vk), where

L(A1, v1, . . . , vk) =
(∑k

i=1 vi

)
/2. This ratio can be

used to evaluate strategies for patrolling—higher ratio
implies better strategy. More generally one can com-
pare two arbitrary strategies A′,A′′ via their lengths
L(A′, v1, . . . , vk) and L(A′′, v1, . . . , vk). It is worth to
keep in mind the equivalence between comparing differ-
ent strategies via either their ratio or their idle time: if
two algorithms compare with each other with ratio ρ in
the length measure, the ratio of their idle times is 1/ρ.

We use distance-time diagrams to plot the agent tra-
jectories with respect to time. The x-coordinate rep-
resents distance along the fence and the y-coordinate
represents time. For a constant-speed trajectory con-
necting (x1, y1) and (x2, y2) in the diagram, construct a
shaded parallelogram with vertices, (x1, y1), (x1, y1+I),
(x2, y2), (x2, y2 + I), where I denotes the idle time (in
most of our cases, I = 1) and the shaded region repre-
sents the covered (guarded) region. A schedule for the
agents ensures idle time I if and only if all area of the
diagram in the time interval [I,∞) is covered.

General observations. 1. Strategy scalability. Sup-
pose we have a patrolling strategy with k agents for a
fence (open or closed) of length l with ratio ρ (rela-
tive to the partition strategy). Then, we can scale this
strategy for every l′ 6= l using k agents as follows. Let
l′/l = c, then v′i = cvi, 1 ≤ i ≤ k, where v′i is the scaled
speed of ai. The waiting times used in the strategy at
specific positions for agents need not to be scaled. One
can check that the ratio ρ remains unchanged.

2. Strategy extension. Suppose we have a patrolling
strategy with k agents for a fence (open or closed) of
length l with ratio ρ > 1 (relative to the partition strat-
egy). Then for any k′ > k, there exists a a patrolling
strategy with k′ agents for a fence of length l′ > l with
ratio ρ′ > 1: use m = k′ − k additional agents with∑k′

i=k+1 vi = 2(l′ − l) to patrol l′ − l using the parti-
tion strategy. Now if ρ = a

b > 1 , then one can check

that ρ′ = a+2(l′−l)
b+2(l′−l) > 1. It follows from the results of

Kawamura and Kobayashi [2] and the above observation
that the partition based algorithm is not optimal for a
segment for any k ≥ 6, and k suitable speeds.

Our results.

1. For every integer x ≥ 2 there exist k = 4x+1 agents
with

∑k
i=1 vi = 48x+3 and a guarding schedule for

a segment of length 25x/3. Alternatively, for every
integer x ≥ 2 there exist k = 4x + 1 agents with
suitable speeds v1, . . . , vk, and a guarding schedule

for a unit segment that achieves idle time at most
48x+3
50x

2∑k
i=1 vi

. In particular, for every ε > 0, there

exist k agents with suitable speeds v1, . . . , vk, and a
guarding schedule for a unit segment that achieves
idle time at most

(
24
25 + ε

)
2∑k

i=1 vi
. See Theorem 3,

Section 2.

2. For every k ≥ 4, there exist maximum speeds v1 ≥
v2 ≥ . . . ≥ vk and a new patrolling algorithm A3

that yields an idle time better than that achieved
by both A1 and A2. In particular, for large k, the
idle time of A3 with these speeds is about 2/3 of
that achieved by A1 and A2. See Proposition 1,
Section 3.

3. Consider the unit circle, where all agents are re-
quired to move in the same direction. For every
t > 0, there exists k = k(t) = O(et) and a sched-
ule for the system of agents with maximum speeds
vi = 1/i, i = 1, . . . , k, that ensures an idle time < 1
during the time interval [0, t]. See Proposition 2,
Section 4.

4. For every k ≥ 2, there exist maximum speeds
v1 ≥ v2 ≥ . . . ≥ vk so that there exists an optimal
schedule (patrolling algorithm) for the circle that
does not use up to k − 1 of the agents a2, . . . , ak.
In contrast, for a segment, any optimal schedule
must use all agents. See Proposition 3, Section 4.

5. There exist settings in which if all k agents are used
by a patrolling algorithm, then some agent(s) need
overtake (pass) other agent(s). This follows from
Proposition 3 and partially answers a question left
open by Czyzowicz et al. [1, Section 3].

6. When agents have some radius of visibility, there
exists instances in which a zero “speed budget” suf-
fices for guarding. E.g., k stationary agents with
radii of visibility r1, . . . , rk, can guard a segment
of length 2

∑k
i=1 ri. This partially answers another

question left open by Czyzowicz et al. [1, Section 3].

2 An improved idle time for open fence patrolling

In the paper by Kawamura and Kobayashi [2], the first
example with 6 agents has ρ = 42/41 and the second
example with 9 agents has ρ = 100/99. By repeating
the strategy from the second example (with 9 agents)
with a larger number of agents we improve the ratio to
25/24−ε for any ε > 0. We need two technical lemmas.

Lemma 1 Consider a segment of length L = 25
3 such

that three agents a1, a2, a3 are patrolling perpetually
each with speed of 5 and generating an alternating
sequence of uncovered triangles T2, T1, T2, T1, . . ., as
shown in the distance-time diagram in Fig. 1. Denote
the vertical distances between consecutive occurrences of
T1 and T2 by δ12 and between consecutive occurrences of

25th Canadian Conference on Computational Geometry, 2013

272

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

T2 and T1 by δ21. Denote the bases of T1 and T2 by b1
and b2 respectively, and the heights of T1 and T2 by h1
and h2 respectively . Then

(i) 10
3 is a period of the schedule.

(ii) T1 and T2 are congruent; further, b1 = b2 = 1
3 ,

δ12 = δ21 = 4
3 , and h1 = h2 = 5

6 .

A

B

C

1

1

1

F

D

G

25
3

F

H

J
T2

T1

h1h2

δ21

δ12

b1

b2

a1 a2

a3

I

E

K

O

0 5 20
3

L

M
N

P

T
im

e

Figure 1: Three agents each with a speed of 5 patrolling a
fence of length 25/3; their start positions are 0, 5, and 20/3,
respectively. Figure is not to scale.

Proof. (i) Observe that a1, a2 and a3 reach the left
endpoint of the segment at times 2(25/3)/5 = 10/3,
5/5 = 1, and (25/3 + 5/3)/5 = 2, respectively. During
the time interval [0, 10/3], each agent traverses the dis-
tance 2L and the positions and directions of the agents
at time t = 10/3 are the same as those at time t = 0.
Hence 10/3 is a period for their schedule.

(ii) Since AL ‖ BM and AB ‖ LM , we have b1 = b2.
Since L is the midpoint of IP , we have δ12+b2 = δ21+b1,
thus δ12 = δ21. Since all the agents have same speed,
5, all the trajectory line segments in the distance-time
diagram have the same slope, 1/5. Hence ∠BAC =
∠ABC = ∠MLN = ∠LMN . Thus, T1 is similar to T2.
Since b1 = b2, T1 is congruent to T2, hence h1 = h2.

Put b = b1, h = h1, and δ = δ12. Recall from (i)
that |AH| = 10/3. By construction, we have |BD| = 1,
thus |BH| = |BD|+ |DG|+ |GH| = 1 + 1 + 1 = 3. We
also have |AH| = b + |BH|, thus b = 10/3 − 3 = 1/3.
Since L is the midpoint of IP , we have δ+b = 5/3, thus
δ = 5/3− b = 4/3.

Let x(N) denote the x-coordinate of point N ; then
x(N) + h = 25/3. To compute x(N) we compute the
intersection of the two segments HL and BM . We have
H = (0, 0), L = (25/3, 5/3), B = (0, 3), and M =
(25/3, 4/3). The equations ofHL and BM areHL : x =

1− b
2

α

h

b

1

VW

s1

X

Y

Z

U b
2

Ti

s2

y

2h

α

1

1

2h
s2

b

h
s2

b
2

B

A C

D

T1

T2

h

Figure 2: Left: agent covering an uncovered triangle Ti.
Right: agent covering an alternate sequence of congruent
triangles T1, T2, with collinear bases.

5y and BM : x + 5y = 15, and solving for x yields
x = 15/2, and consequently h = 25/3−15/2 = 5/6. �

Lemma 2 (i) Let s1 be the speed of an agent needed
to cover an uncovered isosceles triangle Ti; refer to
Fig. 2(left). Then s1 = h

1−b/2 , where b < 1 and h are

the base and height of Ti, respectively.
(ii) Let s2 be the speed of an agent needed to cover an

alternate sequence of congruent isosceles triangles T1, T2
with bases on same vertical line; refer to Fig. 2(right).
Then s2 = h

3b/2+y−1 where y is the vertical distance

between the triangles, b < 1 is the base and h is the
height of the congruent triangles.

Proof. (i) In Fig. 2(left), tanα = 1/s1, |UZ| = b/2,

hence |V Z| = 1 − b/2. Also, |V Z|
|WV | = tanα = 1−b/2

h =
1
s1

, which yields s1 = h
1−b/2 .

(ii) In Fig. 2(right), |AB| = 1 + 2h
s2

. Also, |CD| =
b
2 + y + b + h

s2
. Equating 1 + 2h

s2
= 3b

2 + y + h
s2

and

solving for s2, we get s2 = h
3b/2+y−1 . �

Theorem 3 For every integer x ≥ 2, there exist k =
4x + 1 agents with

∑k
i=1 vi = 48x + 3 and a guarding

schedule for a segment of length 25x/3. Alternatively,
for every integer x ≥ 2 there exist k = 4x + 1 agents
with suitable speeds v1, . . . , vk, and a guarding sched-
ule for a unit segment that achieves idle time at most
48x+3
50x

2∑k
i=1 vi

. In particular, for every ε > 0, there exist

k agents with suitable speeds v1, . . . , vk, and a guarding
schedule for a unit segment that achieves idle time at
most

(
24
25 + ε

)
2∑k

i=1 vi
.

Proof. Refer to Fig. 3. We use a long fence divided
into x blocks; each block is of length 25/3. Each block
has 3 agents each of speed 5 running in zig-zag fashion.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

273

25th Canadian Conference on Computational Geometry, 2013

Block 1 Block 2 Block 3 Block 4 Block 5

15
6

25
6

45
6

65
6

75
6

95
6

115
6

125
6

145
6

165
6

175
6

195
6

215
6

225
6

245
6

Fence

1

1

1

5
6

5
6

5
6

5
6

1
3

T
im

e

Block 1 Block 2 Block 3 Block 4 Block 5

Fence

1
6

51
6

101
6

151
6

201
6

250
6

5
6

5
6

5
6

5
6

1

5
3

1
3

5
3

4
3

A

B

C

D

E

F

G

T
im

e

Block 1 Block 2 Block 3 Block 4 Block 5

Fence

10
3

10
3

T
im

e

Figure 3: Top: iterative construction with 5 blocks; each block has three agents with speed 5. Middle: six agents with speed
1. Bottom: patrolling strategy for 5 blocks using 21 agents for two time periods (starting at t = 1/3 relative to Fig. 1); the
block length is 25/3 and the time period is 10/3.

25th Canadian Conference on Computational Geometry, 2013

274

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Consecutive blocks share one agent of speed 1 which
covers the uncovered triangles from the trajectories of
the zig-zag agents in the distance-time diagram. The
first and the last block use two agents of speed 1 not
shared by any other block. The setting of these speeds
is explained below.

From Lemma 1(ii), we conclude that all the uncovered
triangles generated by the agents of speed 5 are congru-
ent and their base is b = 1/3 and their height is h = 5/6.
By Lemma 2(i), we can set the speeds of the agents not

shared by consecutive blocks to s1 = 5/6
1−1/6 = 1. Also,

in our strategy, Lemma 1(ii) yields y = δ = 4/3. Hence,
by Lemma 2(ii), we can set the speeds of the agents

shared by consecutive blocks to s2 = 5/6
1/2+4/3−1 = 1.

In our strategy, we have 3 types of agents: agents
running with speed 5 as in Fig. 3(top), unit speed agents
not shared by 2 consecutive blocks and unit speed agents
shared by two consecutive blocks as in Fig. 3(middle).
By Lemma 1(i), the agents of first type have period
10/3. In Fig. 3(middle), there are two agents of second
type and both have a similar trajectory. Thus, it is
enough to verify for the leftmost unit speed agent. It
takes 5/6 time from A to B and again 5/6 time from
B to C. Next, it waits for 5/3 time at C. Hence after
5/6+5/6+5/3 = 10/3 time, its position and direction at
D is same as that at A. Hence, its time period is 10/3.
For the agents of third type, refer to Fig. 3(middle): it
takes 10/6 time from E to F and 10/6 time from F
to G. Thus, arguing as above, its time period is 10/3.
Hence, overall the time period of the strategy is 10/3.

For x blocks, we use 3x + (x + 1) = 4x + 1 agents.
The sum of all speeds is 5(3x) + 1(x + 1) = 16x + 1
and the total fence length is 25x

3 . The resulting ratio
is ρ = 25x

3 / 16x+1
2 = 50x

48x+3 . For example, when x = 2
we reobtain the bound of Kawamura and Kobayashi [2],
when x = 39, ρ = 104

100 and further on, ρ −→
x→∞

25
24 . �

3 A new algorithm for closed fence patrolling

Czyzowicz et al. [1, Theorem 5] showed that for k = 3
there exist speed settings and an algorithm that achieves
an idle time better than both A1 and A2 in this case:
35/36 versus 12/11 and 1. We extend this result for any
k ≥ 4.

Proposition 1 For every k ≥ 4, there exist maximum
speeds v1 > v2 ≥ . . . ≥ vk so that a new patrolling algo-
rithm A3 (we refer to as the “train algorithm”) yields
an idle time better than that achieved by both A1 and
A2. In particular, for large k, the idle time of A3 with
these speeds is about 2/3 of that achieved by A1 and A2.

Proof. We will need v1 > v2 in this algorithm. Place
the k − 1 agents a2, . . . , ak at equal distances, x on the
unit circle, and let them move all clockwise at the same

speed vk; we say that a2, . . . , ak make a “train”. Let a1
move back and forth (i.e., clockwise and counterclock-
wise) on the moving segment of length 1 − (k − 2)x,
i.e., between the start and the end of the train. Re-
fer to Fig. 4. Consider the speed setting: v1 = a,

a2
a3

ak ak−1

a1
vk

v1

Figure 4: Train algorithm: the train a2, . . . , ak moving uni-
directionally with speed vk and the bidirectional agent a1

with speed v1.

v2 = . . . = vk = b, where a > b, and max1≤i≤k ivi = kb
(i.e., a ≤ kb). Put y = 1 − (k − 2)x. To determine the

idle time, x/b, write: [1 − (k − 2)x]
(

1
a−b + 1

a+b

)
= x

b ,

or equivalently, 2ay
a2−b2 = 1−y

(k−2)b . Solving for x/b yields

idle(A3) =
2a

a2 − b2 + 2(k − 2)ab
.

For our setting, we also have

idle(A1) =
2

a+ (k − 1)b
, and idle(A2) =

1

kb
.

Write t = a/b. It can be checked that for k ≥ 4,
idle(A3) ≤ idle(A1) and idle(A3) ≤ idle(A2) when
a2 − b2 − 4ab ≥ 0, i.e., t ≥ 2 +

√
5. In particular, for

a = 1, and b = 1/k (note that a ≤ kb), we have

idle(A3) =
2

1− 1/k2 + 2(k − 2)/k
−→
k→∞

2

3
,

while idle(A1) = 2
1+(k−1)/k −→

k→∞
1 and

idle(A2) = 1
k(1/k) = 1. �

4 Remarks

Finite time circle patrolling. While we cannot con-
firm the conjectured optimality of A2—in particular, for
the system of agents with maximum speeds vi = 1/i,
i = 1, . . . , k, acting on the unit circle, we would have
idle(A2) = 1—we can achieve an idle time below 1 in
this setting for an arbitrarily long time, provided we
choose k large enough. Obviously for this setting we
have idle(A2) ≤ 1, which is already achieved by the
agent a1 with the highest (here unit) speed, and the
conjecture says that idle(A2) < 1 does not hold.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

275

25th Canadian Conference on Computational Geometry, 2013

Proposition 2 Consider the unit circle, where all
agents are required to move in the same direction. For
every t > 0, there exists k = k(t) = O(et) and a schedule
for the system of agents with maximum speeds vi = 1/i,
i = 1, . . . , k, that ensures an idle time < 1 during the
time interval [0, t].

Proof. We construct a schedule with an idle time
smaller than 1. Let a1(t) = t mod 1 denote the po-
sition of agent a1 at time t; in particular a1(0) = 0 with
a1 moving clockwise at maximum (unit) speed. We en-
sure that for each t ≥ 1 there exists an agent that covers
the interval [t− δ1, t+ δ2], for suitable δ1, δ2 > 0 before
a1 reaches this interval at time t − δ1. (We ignore any
other contribution of this agent to the overall coverage.)
We use many different agents to cover all time instances
t′ ∈ [1, t]. To this end we use the well-known fact that
the harmonic series

∑∞
1 1/i is divergent, more precisely

that Hk ≥ ln(k + 1).
To start with, put u1 = 1 as the first uncovered time

instant t′, and i = 2 as the index of the next unused
agent. Having defined ui−1, initiate the movement of
the next agent ai at time ui−1 − 1/2 from the position
ui−1−1/(8i). Its speed is 1/i and during a time interval
of 1/2, the agent will traverse a distance equal to 1/(2i).
Hence the agent’s position at time ui−1 will be ui−1 −
1/(8i) + 1/(2i) = ui−1 + 3/(8i). Now set ui = ui−1 +
3/(8i). In particular, u2 = 1 + 3/(8 · 2) is the second
uncovered time (to be covered by another agent), and
u3 = 1 + 3/(8 · 2) + 3/(8 · 3) is the next such term. The
solution of the recurrence is uk = 5

8 + 3
8Hk, and we need

uk ≥ t. Since Hk ≥ ln(k + 1), it follows that k = O(et)
agents suffice to cover the time interval [0, t] and ensure
an idle time smaller than 1 in this way. �

Useless agents for circle patrolling. Czyzow-
icz et al. [1] showed that for k = 2 there exist speed
settings when an optimal schedule does not use one of
the agents. Here we extend this result for all k ≥ 2:

Proposition 3 (i) For every k ≥ 2, there exist max-
imum speeds v1 ≥ v2 ≥ . . . ≥ vk > 0 and an opti-
mal schedule (patrolling algorithm) for the circle with
these speeds that does not use up to k − 1 of the agents
a2, . . . , ak. (ii) In contrast, for a segment, any optimal
schedule must use all agents.

Proof. (i) Let v1 = 1 and v2 = . . . = vk = ε/k, for a
small positive ε ≤ 1/300, and C be a unit length circle.
Obviously by using agent a1 alone (moving perpetually
clockwise) we can achieve unit idle time. Assume for
contradiction that there exists a schedule achieving an
idle time less than 1. Let a1(t) = t mod 1 denote the
position of agent a1 at time t. Assume without loss of
generality that a1(0) = 0 and consider the time interval
[0, 2]. For 2 ≤ i ≤ k, let Ji be the interval of points

visited by agent ai during the time interval [0, 2], and
put J = ∪ki=2Ji. We have |Ji| ≤ 2ε/k, thus |J | ≤ 2ε.
We make the following observations:

1. a1(1) ∈ [−2ε, 2ε]. Indeed, if a1(1) /∈ [−2ε, 2ε], then
either some point in [−2ε, 2ε] is not visited by any
agent during the time interval [0, 1], or some point
in C \ [−2ε, 2ε] is not visited by any agent during
the time interval [0, 1].

2. a1 has done almost a complete (say, clockwise) ro-
tation along C during the time interval [0, 1], i.e., it
starts at 0 ∈ [−2ε, 2ε] and ends in [−2ε, 2ε], other-
wise some point in C\[−2ε, 2ε] is not visited during
the time interval [0, 1].

3. a1(2) ∈ [−4ε, 4ε], by a similar argument.

4. a1 has done almost a complete rotation along C
during the time interval [1, 2], i.e., it starts in
[−2ε, 2ε] and ends in [−4ε, 4ε]. Moreover this rota-
tion must be in the same clockwise sense as the pre-
vious one, since otherwise there would exist points
not visited for at least one unit of time.

Pick three points x1, x2, x3 ∈ C \ J close to 1/4, 2/4,
and 3/4, respectively, i.e., |xi − i/4| ≤ 1/100, for i =
1, 2, 3. By Observations 2 and 4, these three points must
be visited by a1 in the first two rotations during the time
interval [0, 2] in the order x1, x2, x3, x1, x2, x3. Since a1
has unit speed, successive visits to x1 are at least one
time unit apart, contradicting the assumption that the
idle time of the schedule is less than 1.

(ii) Given v1 ≥ v2 ≥ . . . ≥ vk > 0, assume for contra-
diction that there is an optimal guarding schedule with
unit idle time for a segment s of maximum length that
does not use agent aj (with maximum speed vj), for
some 1 ≤ j ≤ k. Extend s at one end by a subsegment
of length vj/2 and assign aj to this subsegment to move
back and forth from one end to the other, perpetually.
We now have a guarding schedule with unit idle time for
a segment longer than s, which is a contradiction. �

Acknowledgements. We sincerely thank Akitoshi
Kawamura for generously sharing some technical details
concerning their algorithms. We also express our satis-
faction with the JavaScript library JSXGraph.

References

[1] J. Czyzowicz, L. Gasieniec, A. Kosowski, and E.
Kranakis, Boundary patrolling by mobile agents with
distinct maximal speeds, Proc. 19th European Sympos.
on Algor. (ESA 2011), LNCS 6942, 2011, pp. 701–712.

[2] A. Kawamura and Y. Kobayashi, Fence patrolling by
mobile agents with distinct speeds, Proc. 23rd Inter-
national Sympos. on Algor. and Computation (ISAAC
2012), LNCS 7676, 2012, pp. 598–608.

25th Canadian Conference on Computational Geometry, 2013

276

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Face-Guarding Polyhedra

Giovanni Viglietta∗

Abstract

We study the Art Gallery Problem for face guards in
polyhedral environments. The problem can be infor-
mally stated as: how many (not necessarily convex)
windows should we place on the external walls of a dark
building, in order to completely illuminate it?

We consider both closed and open face guards (i.e.,
faces with or without their boundary), and we give some
upper and lower bounds on the minimum number of
faces required to guard a given polyhedron, in terms
of the total number of its faces, f . In some notable
cases, our bounds are tight: bf/6c open face guards for
orthogonal polyhedra, and bf/4c open face guards for
4-oriented polyhedra (i.e., polyhedra whose faces have
only four different orientations).

Then we show that it is NP-hard to approximate
the minimum number of (closed or open) face guards
within a factor of Ω(log f), even for polyhedra that are
orthogonal and simply connected.

Along the way we discuss some applications, arguing
that face guards are not a reasonable model for guards
patrolling on the surface of a polyhedron.

1 Introduction

Previous work. Art Gallery Problems have been stud-
ied in computational geometry for decades: given an
enclosure, place a (preferably small) set of guards such
that every location in the enclosure is seen by some
guard. Most of the early research on the Art Gallery
Problem focused on guarding 2-dimensional polygons
with either point guards or segment guards [9, 10, 12].

Gradually, some of the attention started shifting to
3-dimensional settings, as well. Several authors have
considered edge guards in 3-dimensional polyhedra, ei-
ther in relation to the classical Art Gallery Problem or
to its variations [2, 3, 4, 13, 14].

Recently, Souvaine et al. [11] introduced the model
with face guards in 3-dimensional polyhedra. Ideally,
each guard is free to roam over an entire face of a poly-
hedron, including the face’s boundary. They gave lower
and upper bounds on g, the number of face guards that
are required to guard a given polyhedron, in terms of
f , the total number of its faces. For general polyhe-
dra, they showed that bf/5c 6 g 6 bf/2c and, for

∗School of Computer Science, Carleton University, Ottawa
ON, Canada, viglietta@gmail.com.

the special case of orthogonal polyhedra (i.e., polyhe-
dra whose faces meet at right angles), they showed that
bf/7c 6 g 6 bf/6c. They also suggested several open
problems, such as studying open face guards (i.e., face
guards whose boundary is omitted), and the compu-
tational complexity of minimizing the number of face
guards.

Subsequently, face guards have been studied to some
extent also in the case of polyhedral terrains. In [8],
a lower bound is obtained, and in [7] it is proved that
minimizing face guards in terrains is NP-hard.

Our contribution. In this paper we solve some of the
problems left open in [11], and we also expand our re-
search in some new directions.

In Section 2 we discuss the face guard model, arguing
that a face guard fails to meaningfully represent a guard
“patrolling” on a face of a polyhedron. Essentially, there
are cases in which the path that such a patrolling guard
ought to follow is so complex (in terms of the number
of turns, if it is a polygonal chain) that a much sim-
pler path, striving from the face, would guard not only
the region visible from that face, but the entire polyhe-
dron. However, face guards are still a good model for
illumination-related problems, such as placing (possibly
non-convex) windows in a dark building.

In Section 3 we obtain some new bounds on g, for both
closed and open face guards. Namely, we generalize
the upper bounds given in [11] by showing that, for
c-oriented polyhedra (i.e., whose faces have c distinct
orientations), g 6 bf/2 − f/cc. We also provide some
new lower bound constructions, which meet our upper
bounds in two notable cases: orthogonal polyhedra with
open face guards (g = bf/6c), and 4-oriented polyhedra
with open face guards (g = bf/4c).

In Section 4 we provide an approximation-preserving
reduction from Set Cover to the problem of minimiz-
ing the number of (closed or open) face guards in sim-
ply connected orthogonal polyhedra. It follows that the
minimum number of face guards is NP-hard to approx-
imate within a factor of Ω(log f). We also discuss the
membership in NP of the minimization problem.

2 Model and motivations

Definitions. Given a polyhedron in R3, we say that a
point x is visible to a point y if no point in the straight

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

277

25th Canadian Conference on Computational Geometry, 2013

line segment xy lies in the exterior of the polyhedron.
For any point x, we denote by V(x) the visible region
of x, i.e., the set of points that are visible to x. In gen-
eral, for any set S ⊂ R3, we let V(S) =

⋃
x∈S V(x).

A set is said to guard a polyhedron if its visible re-
gion coincides with the entire polyhedron (including its
boundary). The Art Gallery Problem for face guards in
polyhedra consists in finding a (preferably small) set of
faces whose union guards a given polyhedron. If such
faces include their relative boundary, they are called
closed face guards; if their boundary is omitted, they
are called open face guards.

A polyhedron is c-oriented if there exist c unit vectors
such that each face is orthogonal to one of the vectors.
If these unit vectors form an orthonormal basis of R3,
the polyhedron is said to be orthogonal. Hence, a cube
is orthogonal, a tetrahedron and a regular octahedron
are both 4-oriented, etc.

Motivations. There is a straightforward analogy be-
tween guarding problems and illumination problems:
placing guards in a polyhedron corresponds to placing
light sources in a dark building, in order to illuminate
it completely. For instance, a point guard would model
a light bulb and a segment guard could be a fluorescent
tube. Because face guards are 2-dimensional and lie on
the boundary of the polyhedron, we may think of them
as windows. A window may have any shape, but should
be flat, and hence it should lie on a single face. It fol-
lows that, if our purpose is to illuminate as big a region
as possible, we may assume without loss of generality
that a window always coincides with some face.

Face guards were introduced in [11] to represent
guards roaming over a face. This is in accordance with
the traditional usage of segment guards as a model for
guards that patrol on a line [9]. While this is perfectly
sound in the case of segment guards, face guards pose
additional problems, as explained next.

(a) (b)

Figure 1: Constructing the polyhedron in Figure 2

We begin by observing that, even in 2-dimensional

polygons, there may be edge guards that cannot be lo-
cally “replaced” by finitely many point guards. Fig-
ure 1(a) shows an example: if a subset G of the top
edge ` is such that V(G) = V(`), then the right end-
point of ` must be a limit point of G.

We can exploit this fact to construct the class of poly-
hedra sketched in Figure 2. We cut long parallel dents
on opposite faces of a cuboid, in such a way that the re-
sulting polyhedron looks like an extruded “iteration” of
the polygon in Figure 1(a). Then we stab this construc-
tion with a row of girders running orthogonally with
respect to the dents.

Figure 2: A guard patrolling on the top face must follow
a path of quadratic complexity

Suppose that a guard has to patrol the top face of
this construction, eventually seeing every point that is
visible from that face. The situation is represented in
Figure 1(b), where the light-shaded region is the top
face, and the dashed lines mark the underlying girders.
By the above observation and by the presence of the
girders, each thick vertical segment must be approached
by the patrolling guard from the interior of the face.

Suppose that the polyhedron has n dents and n gird-
ers. Then, the number of its vertices, edges, or faces
is Θ(n). Now, if the guard moves along a polygonal
chain lying on the top face, such a chain must have at
least a vertex on each thick segment, which amounts
to Ω(n2) vertices. Similarly, if the face guard has to be
substituted with segment guards lying on it, quadrati-
cally many guards are needed.

On the other hand, it is easy to show that a path of
linear complexity is sufficient to guard any polyhedron:
triangulate every face (thus adding linearly many new
“edges”) and traverse the resulting 1-skeleton in depth-
first order starting from any vertex, thus covering all
edges. Because the set of edges is a guarding set for any
polyhedron [13], the claim follows.

This defeats the purpose of having faces model guards
patrolling on segments, as it makes little sense for a

25th Canadian Conference on Computational Geometry, 2013

278

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

face of “unit weight” to represent quadratically many
guards. Analogously, a roaming guard represented by a
face may have to follow a path that is overly complex
compared to the guarding problem’s optimal solution.

Even if we are allowed to replace a face guard with
guards patrolling any segment in the polyhedron (i.e,
not necessarily constrained to live on that face), a lin-
ear number of them may be required. Indeed, consider
a cuboid with very small height, and arrange n thin and
long chimneys on its top, in such a way that no straight
line intersects more than two chimneys. The complexity
of the polyhedron is Θ(n), and a face guard lying on the
bottom face must be replaced by Ω(n) segment guards.
On the other hand, we know that a linear amount of seg-
ment guards is enough not only to “dominate” a single
face, but to entirely guard any polyhedron.

Summarizing, a face guard appropriately models an
entity that is naturally constrained to live on a single
face, like a flat window, and unlike a team of patrolling
guards. In the case of a single roaming guard, the model
is insensitive to the complexity of the guard’s path.

3 Bounds on face guard numbers

Upper bounds. By generalizing the approach used
in [11, Lemmas 2.1, 3.1], we provide an upper bound on
face guard numbers, which becomes tight for open face
guards in orthogonal polyhedra and open face guards
in 4-oriented polyhedra. We emphasize that our upper
bound holds for both closed and open face guards, and
for polyhedra of any genus.

Theorem 1 Any c-oriented polyhedron with f faces is
guardable by ⌊

f

2
− f

c

⌋

closed or open face guards.

Proof. Let P be a polyhedron whose faces are orthog-
onal to c > 3 distinct vectors. Let fi be the number of
faces orthogonal to the i-th vector vi. We may assume
that i < j implies fi > fj . Then,

f1 + f2 >
⌊

2f

c

⌋
.

Let us stipulate that the direction of the cross product
v1 × v2 is vertical. Thus, there are at most

f −
⌊

2f

c

⌋

non-vertical faces. Some of these are facing up, the oth-
ers are facing down. Without loss of generality, at most
half of them are facing down, and we assign a face guard
to each of them. Therefore, at most

⌊
f

2
− f

c

⌋

face guards have been assigned.
Let x be any point in P. If x belongs to a face with

a guard, x is guarded. Otherwise, consider an infinite
circular cone C with apex x and axis directed upward.
Let G be the intersection of V(x), C, and the boundary
of P. If the aperture of C is small enough, the relative
interior of G belongs entirely to faces containing guards
and to at most two vertical faces containing x. Because
these vertical faces obstruct at most one dihedral an-
gle from x’s view, the portion of G not belonging to
them has non-empty interior. If we remove from this
portion the (finitely many) edges of P, we still have a
non-empty region. By construction, this region belongs
to the interiors of faces containing a guard; hence x is
guarded. �

Our guarding strategy becomes less efficient as c
grows. In general, if no two faces are parallel (i.e.,
c = f), we get an upper bound of bf/2c−1 face guards,
which improves on the one in [11] by just one unit.

Lower bounds. In [11], Souvaine et al. construct a
class of orthogonal polyhedra with f faces that need
bf/7c closed face guards. In Figure 3 we give an al-
ternative construction, with the additional property of
having a 3-regular 1-skeleton. Indeed, each small L-
shaped polyhedron that is attached to the big cuboid
adds seven faces to the construction, of which at least
one must be selected.

Figure 3: Orthogonal polyhedron that needs bf/7c
closed face guards

For open face guards, we modify our previous con-
struction by moving all the L-shaped pieces to the
boundary of the top face, as in Figure 4. Thus, each
piece adds just six faces to the construction (one face is
shared by all of them), of which at least one must be
selected. Moreover, no matter how these faces are se-
lected, some portion of the big cuboid below remains un-
guarded, and needs one more face guard. This amounts
to bf/6c open face guards in total.

Plugging c = 3 in Theorem 1 reveals that our lower
bound is also tight.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

279

25th Canadian Conference on Computational Geometry, 2013

Figure 4: Orthogonal polyhedron that needs bf/6c open
face guards

Theorem 2 To guard an orthogonal polyhedron having
f faces, bf/6c open face guards are always sufficient and
occasionally necessary. �

Moving on to closed face guards in 4-oriented poly-
hedra, we propose the construction in Figure 5. Each
closed face sees the tip of at most one of the k tetrahe-
dral spikes, hence k guards are needed. Because there
are 5k + 2 faces in total, a lower bound of bf/5c closed
face guards follows.

Figure 5: 4-oriented polyhedron that needs bf/5c closed
face guards

For open face guards in 4-oriented polyhedra, we
modify the previous example by carefully placing ad-
ditional spikes on the other side of the construction, as
Figure 6 illustrates. Once again, since each open face
sees the tip of at most one of the k spikes and there are
4k + 2 faces in total, a lower bound of bf/4c open face
guards follows.

Figure 6: 4-oriented polyhedron that needs bf/4c open
face guards

This bound is also tight, as easily seen by plugging
c = 4 in Theorem 1.

Theorem 3 To guard a 4-oriented polyhedron having f
faces, bf/4c open face guards are always sufficient and
occasionally necessary. �

4 Minimizing face guards

Hardness of approximation. In [11], Souvaine et al.
ask for the complexity of minimizing face guards in a
given polyhedron. We show that this problem is at least
as hard as Set Cover, and we infer that approximating
the minimum number of face guards within a factor of
Ω(log f) is NP-hard.

Theorem 4 Set Cover is L-reducible to the problem
of minimizing (closed or open) face guards in a simply
connected orthogonal polyhedron.

Proof. Let an instance of Set Cover be given, i.e.,
a universe U = {1, · · · , n}, and a collection S ⊆ P(U)
of m > 1 subsets of U . We will construct a simply
connected orthogonal polyhedron with f = O(mn) faces
that can be guarded by k (closed or open) faces if and
only if U is the union of k − 1 elements of S.

Figure 7 shows our construction for U = {1, 2, 3, 4}
and S = {{2, 4}, {1, 3}, {2}}. Figure 8 illustrates the
side view of a generic case in which m = 4.

4

1

2

3

Figure 7: Set Cover reduction, 3D view

Each of the thin cuboids on the far left is called a
fissure, and represents an element of U . In front of
the fissures there is a row of m mountains of increasing
height, separated by valleys of increasing depth. The

25th Canadian Conference on Computational Geometry, 2013

280

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

+ 1m2m

2

+ 1m2

2

m

Figure 8: Set Cover reduction, side view

m vertical walls that are facing the fissures (drawn as
thick lines in Figure 8) are called set faces, and each of
them represents an element of S.

For each Si ∈ S, we dig a narrow rectangular dent in
the i-th set face in front of the j-th fissure, if and only if
j /∈ Si. Each dent reaches the bottom of its set face, and
almost reaches the top, so that it does not separate the
set face into two distinct faces. Moreover, every dent
(except those in the rightmost set face) is so deep that
it connects two neighboring valleys. In Figure 8, dents
are depicted as darker regions; in Figure 7, the dashed
lines mark the areas where dents are not placed.

We want to fix the width of the fissures in such a
way that only a restricted number of faces can see their
bottom. Specifically, consider n distinguished points,
located in the middle of the lower-left edges of the fis-
sures (indicated by the thick dot in Figure 8). The j-th
distinguished point definitely sees some portions of the
i-th set face, provided that j ∈ Si. If this is the case,
and i < m, it also sees portions of two other faces (one
horizontal, one vertical) surrounding the same valley.
Moreover, if j /∈ Sm, the j-th distinguished point also
sees the bottom of a dent in the rightmost set face. We
want no face to be able to see any distinguished point,
except the faces listed above (plus of course the faces be-
longing to fissures or surrounding their openings). To
this end, assuming that the dents have unit width, we
set the width of the fissures to be slightly less than 1/4.
Indeed, referring to Figure 8, the width of the visible re-
gion of a distinguished point, as it reaches the far right
of the construction, is strictly less than

(m) + (2m+ 1)

m
· 1

4
=

(
3 +

1

m

)
· 1

4
6 4 · 1

4
= 1,

because m > 1.
Finally, a small niche is added in the lower part of

the construction. Its purpose is to enforce the selection
of a “dedicated” face guard, as no face can see both a
distinguished point and the bottom of the niche.

Let a guarding set for our polyhedron be given, con-
sisting of k face guards. We will show how to compute
in polynomial time a solution of size at most k−1 for the
given Set Cover instance, provided that it is solvable
at all.

We first discard every face guard that is not guarding
any distinguished point. Because at least one face must
guard the niche, we are left with at most k − 1 guards.
Then, if any of the remaining face guards borders the
i-th valley, with i < m, we replace it with the i-th set
face. Indeed, it is easy to observe that such set face can
see the same distinguished points, plus possibly some
more. By construction, all the remaining guards can see
exactly one distinguished point (they are either faces
belonging to some fissure, or surrounding its opening,
or bottom faces of the rightmost dents). We replace
each of these face guards with any set face that guards
the same distinguished point (which exists, otherwise
the Set Cover instance would be unsolvable). As a
result, we have at most k − 1 set faces guarding all the
distinguished points. These immediately determine a
solution of equal size to the given Set Cover instance.

Conversely, if the Set Cover instance has a solu-
tion of size k, it is easy to see that our polyhedron has
a guarding set of k + 1 guards: all the set faces corre-
sponding to the Set Cover’s solution, plus the bottom
face. �

Corollary 5 Given a simply connected orthogonal
polyhedron with f faces, it is NP-hard to approximate
the minimum number of (closed or open) face guards
within a factor of Ω(log f).

Proof. The polyhedra constructed in the L-reduction
of Theorem 4 have f = O(mn) faces. It was proved in [1]
that Set Cover is NP-hard to approximate within a
ratio of Ω(log n) and, by inspecting the reduction em-
ployed, it is apparent that all the hard Set Cover in-
stances generated are such that m = O(nc), for some
constant c > 1. As a consequence, we may assume that
Ω(log n) = Ω(log nc+1) = Ω(log(mn)) = Ω(log f), and
our claim follows. �

Computing visible regions. The next natural question
is whether the minimum number of face guards can be
computed in NP, and possibly approximated within a
factor of Θ(log f). Usually, when finitely many possible
guard locations are allowed (such as with vertex guards
and edge guards), this is established by showing that
the visible region of any guard can be computed effi-
ciently, as well as the intersection of two visible regions,
etc. As a result, the environment is partitioned into
polynomially many regions such that, for every region
R and every guard g, either R ⊆ V(g) or R∩V(g) = ∅.
This immediately leads to a reduction to Set Cover,

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

281

25th Canadian Conference on Computational Geometry, 2013

which implies an approximation algorithm with loga-
rithmic ratio, via a well-known greedy heuristic [6].

With face guards (and also with edge guards in poly-
hedra) the situation is complicated by the fact that the
visible region of a guard may not be a polyhedron, but
in general its boundary is a piecewise quadric surface.

For example, consider the orthogonal polyhedron in
Figure 9. It is easy to see that the visible region of the
bottom face (and also the visible region of edge a) is the
whole polyhedron, except for a small region bordered by
the thick dashed lines.

x

z y

a

c

b

Figure 9: The visible region of the bottom face is
bounded by a hyperboloid of one sheet.

The surface separating the visible and invisible re-
gions consists of a right trapezoid plus a bundle of mu-
tually skew segments whose extensions pass through the
edges a, b, and c. These edges lie on three lines having
equations

y2 + z2 = 0,

x2 + (z − 1)2 = 0,

(x− 1)2 + (y − 1)2 = 0,

respectively. A straightforward computation reveals
that the bundle of lines passing through these three lines
has equation

xy − xz + yz − y = 0,

which defines a hyperboloid of one sheet.
In general, the boundary of the visible area of a face

(or an edge) is determined by lines passing through pairs
or triplets of edges of the polyhedron. If three edges
are all parallel to a common plane, the surface they
determine is a hyperbolic paraboloid (degenerating into
a plane if two of the edges are parallel to each other),
otherwise they determine a hyperboloid of one sheet, as
in the above example.

There exists an extensive literature of purely alge-
braic methods to compute intersections of quadric sur-
faces (see for instance [5]), but the parameterizations
involved may yield coefficients containing radicals. At
this stage in our understanding, it is not clear whether
any of these methods can be effectively applied to re-
duce the minimization problem of face-guarding polyhe-
dra (or even edge-guarding polyhedra) to Set Cover.

References

[1] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic con-
struction of sets for k-restrictions. ACM Transactions
on Algorithms, vol. 2, pp. 153–177, 2006.

[2] N. Benbernou, E. D. Demaine, M. L. Demaine, A. Kur-
dia, J. O’Rourke, G. T. Toussaint, J. Urrutia, and
G. Viglietta. Edge-guarding orthogonal polyhedra. In
Proceedings of the 23rd Canadian Conference on Com-
putational Geometry, pp. 461–466, 2011.

[3] J. Cano, C. D. Tóth, and J. Urrutia. Edge guards for
polyhedra in 3-space. In Proceedings of the 24th Cana-
dian Conference on Computational Geometry, pp. 155–
160, 2012.

[4] T. Christ and M. Hoffmann. Wireless localization
within orthogonal polyhedra. In Proceedings of the
23rd Canadian Conference on Computational Geome-
try, pp. 467–472, 2011.

[5] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. A
new algorithm for the robust intersection of two gen-
eral quadrics. In Proceedings of the 19th Annual ACM
Symposium on Computational Geometry, pp. 246–255,
2003.

[6] S. K. Ghosh. Approximation algorithms for art gallery
problems. In Proceedings of the Canadian Information
Processing Society Congress, pp. 429–434, 1987.

[7] C. Iwamoto, Y. Kitagaki, and K. Morita. Finding the
minimum number of face guards is NP-hard. IEICE
Transactions on Information and Systems, vol. E95-D,
pp. 2716–2719, 2012.

[8] C. Iwamoto, J. Kishi, and K. Morita. Lower bound of
face guards of polyhedral terrains. Journal of Informa-
tion Processing, vol. 20, pp. 435-437, 2012.

[9] J. O’Rourke. Art gallery theorems and algorithms. Ox-
ford University Press, New York, 1987.

[10] T. Shermer. Recent results in art galleries. In Proceed-
ings of the IEEE, vol. 80, pp. 1384–1399, 1992.

[11] D. L. Souvaine, R. Veroy, and A. Winslow. Face guards
for art galleries. In Proceedings of the XIV Spanish
Meeting on Computational Geometry, pp. 39–42, 2011.

[12] J. Urrutia. Art gallery and illumination problems. In
J.-R. Sack and J. Urrutia, editors, Handbook of Compu-
tational Geometry, pp. 973–1027, North-Holland, 2000.

[13] G. Viglietta. Guarding and searching polyhedra.
Ph.D. Thesis, University of Pisa, 2012.

[14] G. Viglietta. Searching polyhedra by rotating half-
planes. International Journal of Computational Geom-
etry and Applications, vol. 22, pp. 243–275, 2012.

25th Canadian Conference on Computational Geometry, 2013

282

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

On k-Guarding Polygons

Daniel Busto∗ William Evans∗ David Kirkpatrick∗

Abstract

We describe a polynomial time O(k log log OPTk(P))-
approximation algorithm for the k-guarding problem of
finding a minimum number, OPTk(P), of vertex guards
of an n-vertex simple polygon P so that for every point
p ∈ P , the number of guards that see p is at least
the minimum of k and the number of vertices that see
p. Our approach finds O

(
k
ε log log 1

ε

)
size (k, ε)-nets

for instances of the k-hitting set problem arising from
the k-guarding problem. These nets contain k distinct
elements (or the entire set if it has fewer than k ele-
ments) from any set that has at least an ε fraction of
the total weight of all elements. To find a nearly op-
timal k-guarding, we slightly modify the technique of
Brönnimann and Goodrich [4] so that the weights of all
elements remain small, which is necessary for our (k, ε)-
net finder. Our approach, generalizes, simplifies, and
corrects a subtle flaw in the technique introduced by
King and Kirkpatrick [11] to find small ε-nets for set
systems arising from 1-guarding instances.

1 Introduction

In the classic art gallery problem one is given a sim-
ple polygon P in the plane and asked to find a smallest
subset G of P , called guards, so that every point p ∈ P
is seen by at least one guard g ∈ G (i.e., gp ⊆ P). In
this paper, we allow only vertex guards, meaning G is
a subset of V , the vertices of polygon P . The original
results on this problem addressed the extremal ques-
tion of how many guards are needed to guard a simple
polygon with n vertices. Chvátal [6], answering a ques-
tion of Klee, showed that bn/3c guards are occasionally
necessary and always sufficient to guard such polygons.
O’Rourke’s book [16] and Urrutia’s chapter [18] describe
the history and subsequent flurry of results in this area.

In some applications, we would like every point in
P to be seen by more than one guard. For example,
to use triangulation to locate an intruder, his position
must be seen by at least two guards (whose locations
are different). Surprisingly, the generalization of Klee’s
question to this form of 2-guarding1 seems to have taken

∗Department of Computer Science, University of British
Columbia, {busto,will,kirk}@cs.ubc.ca

1 Belleville [1] uses the term “two-guarding” to mean guarding
the entire polygon using only two guards, which is different from
our usage.

over 30 years to appear, though, earlier, Belleville et
al. [2] addressed a different form of k-guarding where
each guard must be an interior point of a distinct edge
of P . Salleh [17] showed that b2n/3c guards are oc-
casionally necessary and always sufficient to 2-guard a
simple n-gon; and that for 3-guarding convexly quadri-
lateralizable n-gons, the bound is b3n/4c guards. A
simple proof [3, 15] follows from Fisk’s triangulation
colouring proof [8] of Chvátal’s result. If we insist that
guards must be at different vertices then there are sim-
ple polygons that cannot be k-guarded in this way for
k ≥ 4 because some points in P are seen by fewer than
k vertices. While our original motivation concerned 2-
guarding, which is always possible, our results apply
to k-guarding in general, if we only require that the
guarding do as well as it can for un-k-guardable points.
Thus we say that a subset G of the vertices of P is a
k-guarding of P if for every point p ∈ P the number of
guards that see p is at least the minimum of k and the
number of vertices that see p.

Another option is to allow multiple guards at the
same vertex. A multiset G of vertices of P is a multi-
k-guarding of P if every point p ∈ P is seen by at least
k guards in G. Since k copies of any 1-guarding is a
multi-k-guarding, kbn/3c guards are always sufficient to

multi-k-guard any n-gon, and Chvátal’s “comb”
shows they are occasionally necessary. While the small-
est multi-2-guarding is at most twice the smallest 1-
guarding, a smallest 2-guarding may be much larger.

An s-spiked fan admits a 1-guarding (black
dot) of size one and requires at least ds/2e+1 guards (all
dots) to 2-guard. On the other hand, a 2-guarding may

be smaller than twice the smallest 1-guarding .
We address the problem of finding the smallest num-
ber of vertex guards, OPTk(P), needed to k-guard a
given simple polygon P . In Section 3, we show that
the problem is NP-hard for k > 1. Note, however, that
for certain classes of polygons such as spiral polygons,
a smallest 2-guarding can be found efficiently [3]. The
hardness of the problem motivates consideration of ap-
proximation algorithms.

For multi-k-guarding, one option is to use k copies of
a ρ-approximation of a smallest 1-guarding to produce a
kρ-approximation of a smallest multi-k-guarding. For k-
guarding, this is not an option since a k-guarding cannot
place multiple guards at a single vertex. Even a k-step

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

283

25th Canadian Conference on Computational Geometry, 2013

approach that approximates an optimal 1-guarding us-
ing only vertices that don’t appear as guards in previous
steps is difficult to make work; the relationship between
the size of the resulting k-guarding and a smallest k-
guarding is not clear.

Fusco and Gupta [9] introduced the notion of (k, ε)-
nets to find k-covers of sets in the context of sensor
networks. Their result implies an O(log OPTk(P))-
approximation algorithm for minimally k-guarding
P . Chekuri, Clarkson, and Har-Peled [5] described
a technique for set multicover with potentially dif-
ferent coverage requirements for each set that also
implies an O(log OPTk(P))-approximation algorithm.
We describe a polynomial time O(k log log OPTk(P))-
approximation algorithm that generalizes the tech-
nique King and Kirkpatrick [11] used to show an
O(log log OPT1(P))-approximation algorithm for 1-
guarding P .

2 k-guarding as k-hitting

A k-hitting set of a set R of sets is a set H such that
|H∩R| ≥ min{k, |R|} for all R ∈ R. Let Vp be the set of
potential guards that can see p. Let R = {Vp | p ∈ P}.
A k-hitting set of R is a k-guarding of P .

Let V be the set of n potential guard locations. Let
w(v) be the weight of potential guard location v and
w(R) =

∑
v∈R w(v). Rather than k-hitting every set

in R, we will be happy with k-hitting the heavy sets,
those with weight at least εw(V). Such a k-hitting set is
called a (k, ε)-net for the weighted set system (V,R, w).
The algorithm for finding a k-hitting set initially sets
these weights to 1 and updates them so that a (k, ε)-net
for the weighted set system will be a k-hitting set for
R.

Suppose we can find a (k, ε)-net for (V,R, w) of size
s(1/ε) for some function s. We slightly modify the tech-
nique of Brönnimann and Goodrich [4] to obtain a k-
hitting set of size s(4c) where c is the smallest k-hitting
set. Assume we know that c is the size of the smallest
k-hitting set. We find a (k, 1/2c)-net N of size s(2c). If
there is a set R ∈ R (called a witness) that is not k-hit,
we double the weight of the guards in R that are not
in the net N . (The italics indicate our modification.)
Since w(R) ≤ w(V)/2c, the weight of V is multiplied
by at most a factor 1 + 1/2c. If H is a k-hitting set of
size c, (H ∩R) \N is not empty and the weight of some
element in H is doubled. It follows from the proof of
Lemma 3.4 [4] that:

Lemma 1 If there is a k-hitting set of size c, the
weight-doubling process iterates at most 4c lg(n/c) times
before finding a k-hitting set.

The rest of their algorithm is a doubling search for the
correct value of c. Since the search will succeed when

the guess is at most 2c, the size of the k-hitting set is
at most s(4c). The running time is dominated by the
time for the last weight-doubling process which involves
O(c log(n/c)) invocations of the (k, ε)-net finder (and
witness finder).

King and Kirkpatrick [11] show how to find a (1, ε)-
net of size O

(
1
ε log log 1

ε

)
for the weighted set systems

arising from 1-guarding. To approximately k-guard, we
require small (k, ε)-nets for the weighted set systems
arising from k-guarding. In Section 6, we show how
to find such (k, ε)-nets of size O

(
k
ε log log 1

ε

)
. It will

be important that the weight of each element remains
small. Our modified weight-doubling process insures
this. A possible alternative is to solve a linear program
to obtain the weights before invoking an ε-net finder
once [14, 7]. However, it seems difficult to modify the
program to insure that the weights remain small enough
that our (k, ε)-net finder will produce a near-optimal k-
hitting set.

3 Hardness of k-guarding

Lee and Lin [13] show that minimally 1-guarding a sim-
ple polygon is NP-hard. We extend this result to k-
guarding for k > 1.

Theorem 2 Finding a minimum k-guarding of a sim-
ple polygon is NP-hard for all k > 1.

Proof. We reduce from the problem of minimally 1-
guarding a terrain (an x-monotone polygonal curve),
which is known to be NP-hard [12]. Given a terrain T ,
place a concave, x-monotone path v1, v2, . . . , vk−1 suffi-
ciently far above the terrain so that each vi can see all
of T . This can be done in polynomial time by inter-
secting the positive halfplanes coincident with edges of
T . Create a polygon P by connecting v1 to the leftmost
and vk−1 to the rightmost vertex of T , as shown in Fig.
1. Now P contains a k-guarding of size h if and only
if T contains a 1-guarding of size h − k + 1. Clearly,
adding v1, v2, . . . , vk−1 to any 1-guarding of T creates a
k-guarding of P . Let G be a k-guarding of P . Let ` be
the number of vi in G. Removing all vi and any k−1−`
terrain vertices from G creates a 1-guarding of T . �

Figure 1: The construction used to show k-guarding is
NP-hard (for k = 6).

A simple extension of Lin and Lee’s original proof
shows that minimally multi-k-guarding a simple poly-
gon is NP-hard, but only for odd k. Their proof is based

25th Canadian Conference on Computational Geometry, 2013

284

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

on “critical locations” for guards; a guard at one loca-
tion is equivalent to assigning a variable true and at the
other to false. With odd k whichever location is given
more guards can be interpreted as the choice for the cor-
responding variable. With even k an optimal guard set
may have the same number of guards at each location.

4 Distinguished vertices

We describe in this section a method for choosing ver-
tex guards in a vertex-weighted polygon P so that any
vertex that sees a large fraction of the total weight will
be seen by k guards. The basic idea is to partition
the boundary of P into fragments of consecutive edges
so that all fragments have approximately equal weight,
and to place guards at extreme points of visibility be-
tween fragments. Lemma 3 implies that this is a good
choice of guards. In the following section, we adopt a hi-
erarchical fragmentation scheme to insure that the size
of the guard set is small.

Let ∂P denote the boundary of polygon P . We refer
to any sequence of consecutive edges on ∂P as a (bound-
ary) fragment of P . Two fragments are adjacent if they
share an endpoint. We say that a fragment f is visible
from a point p of P if there is a point q on f such that
the open line segment pq lies in the interior of P . The
extreme points of visibility of fragment f from a set of
points S are the first point in f visible from some point
in S and the last point in f visible from some point in
S. It follows from the simplicity of P that if f is visible
from p then the points on f that are visible from p span
a contiguous sector of angles centered at p determined
by the extreme points of visibility of f from p. If the
sectors of one or more visible fragments together have a
span greater than π then the corresponding fragments
are said to surround p; clearly at most one fragment
has this property in isolation. Two fragments a and
b, visible from p, are clockwise consecutive from p if the
clockwise extreme visibility angle of a coincides with the
counterclockwise extreme visibility angle of b. Suppose
that a and b are clockwise consecutive from p. Then,
if the clockwise extreme visibility point of a is no fur-
ther from p than the counterclockwise extreme visibility
point of b, then a is said to support a right tangent from
p; otherwise b is said to support a left tangent from p,
Fig. 2(a).

Following King and Kirkpatrick [11], we consider var-
ious partitions of ∂P into fragments, based in part on
the weights associated with the vertices of P . 2 For
any such fragmentation F of ∂P , we distinguish those
vertices of P that coincide with extreme points of vis-
ibility between some pair of fragments in F , Fig. 2(b).

2 As indicated earlier, there is a subtle, though significant, flaw
in the construction described in [11]. This is discussed in more
detail in Appendix A.

a c

b

a c

p

b

p (a) (b)

Figure 2: Fragments a, b, and c are clockwise consec-
utive from p. (a) Fragment a supports a right tangent
and c supports a left tangent from p. (b) Squares are
extreme points of visibility between fragments a and c.
Filled squares are distinguished vertices.

The intuition that these distinguished vertices serve as a
good choice for guard locations is based on the following
geometric lemma:

Lemma 3 (Lemma 2 [11]) Let a and b be clockwise con-
secutive fragments of a fragmentation F , visible from a
point p, that do not surround p. If a supports a left tan-
gent from p (resp. if b supports a right tangent from p)
then p sees at least one of the distinguished vertices on
a (resp. on b).

The preceding lemma is enough to show that if p sees
many visible fragments then it must see many different
distinguished vertices, which is a generalization of King
and Kirkpatrick’s Lemma 1 for k ≥ 1:

Lemma 4 Any point p of P that sees at least 2k + 3
fragments of F in total must see a distinguished vertex
on at least k fragments.

Proof. If p sees at least 2k+ 3 fragments then it sees a
set T of at least 2k consecutive fragments each of which
cannot pair with a consecutive fragment to surround p,
otherwise there would be two disjoint pairs that both
span more than π. If a fragment in T doesn’t have a
distinguished vertex then it has no tangent from p and
its consecutive fragment(s) in T have tangents and thus
distinguished vertices, by Lemma 3. Hence, at least
|T |/2 ≥ k fragments have distinguished vertices. �

Remark. If we divide ∂P into 2k+2
ε equal weight frag-

ments where each vertex has weight 1 then it follows
that every point p that sees more than a fraction ε of
the total weight w(V) = n, sees more than 2k + 2 frag-
ments, and by Lemma 4, must see at least k among the

set of O
(
k2

ε2

)
distinguished vertices associated with this

fragmentation. Thus the distinguished vertices form a
(k, ε)-net for the weighted set system (V,R, w(v) = 1).
It remains to find other fragmentations that will work
for more weight functions and whose associated distin-
guished vertices will provide a smaller net.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

285

25th Canadian Conference on Computational Geometry, 2013

5 A net-finder based on hierarchical fragmentation

In the last section we showed that by placing guards at

a set of O
(
k2

ε2

)
distinguished vertices associated with a

flat fragmentation of ∂P , we can ensure that any point
that sees fewer than k of these guards sees less than
an ε fraction of the total weight. In this section we
discuss how hierarchical fragmentation can be used to
reduce the number of guards required to O

(
k
ε log log 1

ε

)
.

It will suffice to prove the result for k ≤ lg(1/ε)
r lg lg(1/ε) , for a

sufficiently large constant r, since otherwise the (k, ε)-
net-finder of Fusco and Gupta [9] or Chekuri, Clarkson,
and Har-Peled [5] can be used. It will be clear that
the construction of our (k, ε)-net takes polynomial time.
(In fact, with some care, it can be constructed in O(n3)
time [10].)

We can represent the hierarchical fragmentation as a
tree. At the root there is a single fragment representing
the entire boundary ∂P . This root fragment is broken
up into a certain number of child fragments. Fragmen-
tation continues recursively until a specified depth t is
reached. The integer t is chosen so that

(t− 1) + 2t−1 < lg
1

ε
≤ t+ 2t. (1)

Note that lg lg 1
ε − 1 < t < lg lg 1

ε + 1, which implies

2t/t > lg(1/ε)
2(lg lg(1/ε)+1) >

lg(1/ε)
3 lg lg(1/ε) , (provided ε < 1/16),

which by our assumption is at least rk/3.
The number of children of a fragment f depends on

both t and the level of f in the tree. Specifically, if
e = t + 2t −

⌈
lg 1

ε

⌉
(note 0 ≤ e ≤ 2t−1), then bi, the

number of children of fragments at level i− 1, is:

bi =

{
βkt · 22

t−1+1 · 21−e , i = 1

22
t−i+1 , 1 < i ≤ t ,

where βk is a linear function of k that will be specified
later. Let φi be the number of fragments at level i.

φi =

{
1 , i = 0

βkt · 22
t−2t−i−e+i+1 , 0 < i ≤ t

since φi =
∏i

j=1 bj = βkt · 21−e ·
∏i

j=1 22
t−j+1 = βkt ·

21−e+i+
∑i

j=1 2t−j

= βkt · 22
t−2t−i−e+i+1. Note that

φt = βkt · 22
t+t−e = βkt2

dlg 1
εe ≥ βkt

1

ε
. (2)

Each collection of child fragments with the same par-
ent fragment f , together with the complement f of f ,
defines a fragmentation Ff of ∂P . The guard set, DHF ,
is the union, over all parent fragments f in the tree, of
the set of vertices that are distinguished by fragmenta-
tion Ff . The total number of guards chosen is

|DHF | ≤ 4
t∑

i=1

(
bi + 1

2

)
φi−1 ≤ b21 + 4

t∑

i=2

b2iφi−1 .

Since

b21 = (βkt · 22
t−1+1 · 21−e)2 = βkt · 22

t+t−e(βkt · 24−t−e)

< βkt · 2dlg
1
εe · (βkt · 24−t−e) ≤ 2βkt ·

1

ε
,

for 2t/t ≥ 16βk (which holds when rk/3 ≥ 16βk), and

t∑

i=2

b2iφi−1 =
t∑

i=2

biφi =
t∑

i=2

(22
t−i+1)(βkt2

2t−2t−i−e+i+1)

= βkt · 22
t−e+2

t∑

i=2

2i < βkt · 22
t+t−e+3

≤ 8βkt · 2dlg
1
εe ≤ 16βkt ·

1

ε
,

we know,

|DHF | = O

(
βk

1

ε
log log

1

ε

)
. (3)

We must now provide a generalization of Lemma 4
that works with our hierarchical fragmentation.

Lemma 5 Any point p in P that sees fewer that k ver-
tices in DHF sees no more than (8k+ 4)i+ 1 fragments
at level i of the hierarchical fragmentation.

The proof of Lemma 5 uses a potential function de-
fined on fragments. A narrow fragment is a visible frag-
ment with sector at most π. A wide fragment is a visible
fragment that isn’t narrow. The potential of a visible
fragment f (wide or narrow) is given by 2g + 1 − t,
where g is the number of guards in DHF from fragment
f that see p, and t is the number of tangents from p
to f . Note that g counts all the guards on f in DHF ,
which includes distinguished vertices in fragmentations
Fa for all descendants a of f in the tree. We call a visi-
ble fragment potent if it is wide or it is narrow and has
positive potential; otherwise we call it impotent. In ad-
dition to potent and impotent fragments, both of which
are visible to p, there are also non-visible fragments in
the tree, which we regard as having potential zero.

Lemma 6 The potential of f is at least the total poten-
tial of its children.

Proof. Let f1, f2, . . . , fc be the visible children of f .
Let gi be the number of guards in DHF from fi that see
p, and ti be the number of tangents from p to fi. We
want to show that 2g+ 1− t ≥∑c

i=1(2gi + 1− ti). The
number of tangents to f is 2 − t and the total number
of tangents to visible fragments in Ff is c + 1. Thus
2−t+∑c

i=1 ti = c+1, which implies
∑c

i=1(1−ti) = 1−t.
The lemma follows since 2g ≥∑c

i=1 2gi. �

Lemma 7 An impotent fragment f has at most one vis-
ible child and that child is impotent.

25th Canadian Conference on Computational Geometry, 2013

286

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Proof. Let f be an impotent fragment with potential
2g + 1− t ≤ 0, which implies g = 0 and t ≥ 1. If f has
two visible children then the (at least one) child with
f ’s tangent contains a visible distinguished vertex by
Lemma 3, which contradicts g = 0. Thus f has at most
one visible child and, since it shares all tangents with
f , its potential is at most 1− t ≤ 0. �

Lemma 8 The number of potent fragments at any level
is at most the total potential at that level plus two.

Proof. Potent fragments have positive potential, ex-
cept for the (at most one) wide fragment that has po-
tential at least −1. �

Proof of Lemma 5. If p sees fewer than k vertices in
DHF then the potential of the root is at most 2(k−1)+1.
By Lemmas 6 and 8, the number of potent fragments at
any level is at most 2(k−1)+3. By Lemma 7, every im-
potent fragment has at most one visible child, which is
impotent. Since an impotent child cannot contain a dis-
tinguished vertex, any fragment can have at most four
impotent children (by Lemma 4 with k = 1). Thus ev-
ery potent fragment has at most four impotent children
and its other visible children all have positive potential.
Since the total number of potent fragments remains at
most 2(k − 1) + 3, the number of visible fragments in-
creases by at most 4 × # potent fragments ≤ 8k + 4
at each level. Thus the number of visible fragments at
level i is no more than (8k + 4)i+ 1. �

6 Near optimal k-guarding

The discussion of the hierarchical fragmentation scheme
in the previous section did not take into account the
weight of the vertices V of P in the weighted set system
(V,R, w). The weights play a role in the selection of the
children of a parent fragment. We choose the children
to have approximately equal weight and to contain an
integral number of vertices. Both these requirements
may be impossible to satisfy if the weights of vertices
are very different. The potential problem is that a frag-
ment at level i may have fewer than bi vertices and thus
cannot produce bi child fragments in the hierarchy. To
address this problem, we keep the weights of all vertices
small and build the tree bottom up.

Let wmax be the maximum weight of a vertex v ∈ V .
Let γ = w(V)/φt be the target weight of a leaf, i.e.
a fragment at level t in the tree. We create the tree
from the bottom up by fragmenting the perimeter of
the polygon P into φt leaf fragments where each leaf
fragment f has weight w(f) that satisfies γ − wmax ≤
w(f) ≤ γ + wmax. One way to do this is to imagine
fragmenting the perimeter into φt equal weight pieces,
which may split some vertices in two, and then putting
any vertex that is split into the last (clockwise-most)

fragment in which it occurs. As long as wmax < γ,
the resulting fragmentation has at least one vertex in
every fragment. We then combine each collection of bi
adjacent fragments (i = t) to form their parent fragment
at level i − 1 and repeat for all i down to i = 1. This
creates the tree from which we extract the set of guards
DHF . Applying Lemma 5 with i = t, choosing βk =
8k + 5, and using equations (2) and (3), we get

Lemma 9 Given a weighted set system (V,R, w) such
that w(v) < εw(V)/(βkt) for all v ∈ V where t satisfies
equation (1), the set DHF is a (k, ε)-net for (V,R, w)
of size O

(
k
ε log log 1

ε

)
.

To keep our slightly modified version of the technique
of Brönnimann and Goodrich [4] from increasing the
weight of any vertex to γ or more, we add all vertices
v of weight w(v) ≥ γ/2 to DHF . Since no such vertex
has its weight doubled, because of our modification, the
maximum weight that any vertex can attain is less than
γ. The number of such vertices is at most 2w(V)/γ ≤
2βkt

1
ε , which increases the size of DHF by only a (small)

constant factor. Our main theorem follows:

Theorem 10 For a simple polygon P with n vertices,
we can find a k-guarding set of vertices for P of size
O(kOPTk(P) log log OPTk(P)), where OPTk(P) is the
size of the minimum k-guarding set of vertices for P , in
time polynomial in n.

7 Extensions and open questions

We have shown how to get an O(k log log OPTk(P))-
approximation to the minimum k-guarding of a sim-
ple polygon P . This improves the O(log OPTk(P)-
approximation algorithms of Fusco and Gupta [9] and
Chekuri, Clarkson, and Har-Peled [5], when k =

o
(

log OPTk(P)
log logOPTk(P)

)
. It would be interesting to know if

the dependence on k in our algorithm can be eliminated
or reduced.

Our version of k-guarding models situations in which
the guarding requirement of every point of P is the
same. We addressed the non-uniformity that arises sim-
ply because points of P may not see as many as k ver-
tices of P , by reducing the guarding requirement of a
point p to the minimum of k and the number of vertices
that see p. In general, a uniform guarding requirement
might be undesirable for other reasons as well; some
(perhaps most) points may not need to be guarded at
all, whereas others may need extraordinary attention.
To capture this variety, we suppose that all points p ∈ P
have an associated non-negative guarding demand d(p),
and we seek a demand-guarding of P , a guard set G that
satisfies the individual guarding demand of every point
in P . The associated optimization problem takes as in-
put a pair (P, d) and asks for a minimum size demand-
guarding of P .

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

287

25th Canadian Conference on Computational Geometry, 2013

In fact, the O(log OPT)-approximation algorithm of
Chekuri, Clarkson, and Har-Peled [5] addresses this
more general demand-guarding problem, where OPT
denotes the size of the optimal demand-guarding set.
Obviously, our algorithm could be used to provide an
O(dmax log log OPTdmax

)-approximation (by increasing
all demands to dmax). However, since our algorithm
never exploits the uniformity of guarding demands, it
is straightforward to confirm that, essentially with-
out modification, it provides an O(dmax log log OPT)-
approximation. Once again, it would be interesting to
know if the dependence on dmax can be eliminated or
reduced.

Our k-guarding problem assumes that (i) all of the
vertices of the polygon are potential guard locations,
and (ii) the polygon has no holes. It would be interest-
ing to determine if our techniques can be used to get
good approximation algorithms when these constraints
are relaxed.

Existing NP-hardness proofs for minimally 1-
guarding polygons extend easily to show that minimally
multi-k-guarding simple polygons is NP-hard when k is
odd. It seems likely that minimally multi-k-guarding is
NP-hard when k is even as well.

There is no known non-trivial lower bound on the
ratio between the sizes of a minimum k-guarding and a
minimum 1-guarding of a polygon. What is the precise
relationship between these two values? Are there classes
of polygons where the size of a minimum 2-guarding is
not much larger than a minimum 1-guarding?

References

[1] P. Belleville. Two-guarding simple polygons. In Proc.
4th Canadian Conference on Computational Geometry,
pages 103–108, 1992.

[2] P. Belleville, P. Bose, J. Czyzowicz, J. Urrutia, and
J. Zaks. K-guarding polygons on the plane. In Proc.
6th Canadian Conference on Computational Geometry,
pages 381–386, 1994.

[3] S. Bereg. On k-vertex guarding simple polygons. In
Computational Geometry and Discrete Mathematics,
volume 1641 of Kôkyûroku, pages 106–113. Research
Institute for Mathematical Sciences, Kyoto University,
October 2008.

[4] H. Brönnimann and M. T. Goodrich. Almost optimal
set covers in finite VC-dimension. Discrete & Compu-
tational Geometry, 14(4):463–479, 1995.

[5] C. Chekuri, K. L. Clarkson, and S. Har-Peled. On
the set multicover problem in geometric settings. ACM
Trans. Algorithms, 9(1):9:1–9:17, Dec. 2012.

[6] V. Chvátal. A combinatorial theorem in plane ge-
ometry. Journal of Combinatorial Theory, Series B,
18(1):39–41, 1975.

[7] G. Even, D. Rawitz, and S. Shahar. Hitting sets
when the VC-dimension is small. Inf. Process. Lett.,
95(2):358–362, 2005.

[8] S. Fisk. A short proof of Chvátal’s Watchman Theorem.
Journal of Combinatorial Theory, Series B, 24(3):374,
1978.

[9] G. Fusco and H. Gupta. ε-net approach to sensor
k-coverage. In B. Liu, A. Bestavros, D.-Z. Du, and
J. Wang, editors, Wireless Algorithms, Systems, and
Applications, volume 5682 of Lecture Notes in Com-
puter Science, pages 104–114. Springer Berlin Heidel-
berg, 2009.

[10] J. King. Fast vertex guarding for polygons with and
without holes. Computational Geometry, 46(3):219–
231, 2013.

[11] J. King and D. G. Kirkpatrick. Improved approxi-
mation for guarding simple galleries from the perime-
ter. Discrete & Computational Geometry, 46(2):252–
269, 2011.

[12] J. King and E. Krohn. Terrain guarding is NP-hard.
SIAM Journal on Computing, 40(5):1316–1339, 2011.

[13] D. Lee and A. Lin. Computational complexity of art
gallery problems. IEEE Transactions on Information
Theory, 32(2):276–282, 1986.

[14] P. M. Long. Using the pseudo-dimension to analyze
approximation algorithms for integer programming. In
F. K. H. A. Dehne, J.-R. Sack, and R. Tamassia, edi-
tors, WADS, volume 2125 of Lecture Notes in Computer
Science, pages 26–37. Springer, 2001.

[15] K. Mehlhorn, J. Sack, and J. Zaks. Note on the paper
“K-vertex guarding simple polygons” [Computational
Geometry 42 (4) (May 2009) 352–361]. Computational
Geometry, 42(6–7):722, 2009.

[16] J. O’Rourke. Art Gallery Theorems and Algorithms.
The International Series of Monographs on Computer
Science. Oxford University Press, New York, NY, 1987.

[17] I. Salleh. K-vertex guarding simple polygons. Compu-
tational Geometry, 42(4):352–361, 2009.

[18] J. Urrutia. Art gallery and illumination problems. In
J.-R. Sack and J. Urrutia, editors, Handbook of compu-
tational geometry, pages 973–1027. North-Holland Pub-
lishing Co., 2000.

A Remark on the hierarchical fragmentation con-
struction of King and Kirkpatrick [11]

A very similar hierarchical fragmentation (differing from
ours only in the definition of t, and in the level-1 frag-
mentation factor b1) was described by King and Kirk-
patrick [11] in developing their approximation bound
for optimal 1-guarding. Unfortunately, the choice of α
(which, together with t determines b1) given in their
equation (3) does not always guarantee that their equa-
tion (1) holds. In particular, consider the case when

1/ε = 22
t−1+1 (so t = dlog log(1/ε)e, as specified). In

this case, α = 1/(4t22
t−1+1−t) and so tα22

t

(the bound
on |SHF |, the size of their guard set) is essentially 2t·1/ε,
which is Θ((1/ε) log(1/ε)), not O((1/ε) log log(1/ε)), as
claimed in their equation (1).

25th Canadian Conference on Computational Geometry, 2013

288

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Geometric Red-Blue Set Cover for Unit Squares and Related Problems

Timothy M. Chan∗ Nan Hu∗

Abstract

We study a geometric version of the Red-Blue Set
Cover problem originally proposed by Carr, Doddi,
Konjevod, and Marathe (SODA 2000): given a red point
set, a blue point set, and a set of objects, we want to
use objects to cover all the blue points, while minimiz-
ing the number of red points covered. We prove that
the problem is NP-hard even when the objects are unit
squares in 2D, and we give the first PTAS for this case.
The technique we use simplifies and unifies previous
PTASes for the weighted geometric set cover problem
and the unique maximum coverage problem for 2D unit
squares.

1 Introduction

Given a red set R and a blue set B of total size m, and
a family S of n subsets of R ∪ B, the Red-Blue Set
Cover problem is to find a subfamily of S which covers
all the elements in B, but covers the minimum number
of elements in R.

The problem was first introduced by Carr, Doddi,
Konjevod and Marathe [1], who proved that even in the
restricted case where every set in S contains only one
blue and two red elements, the problem cannot be ap-

proximated to within 2log
1−δ n factor for δ = 1/ logc log n

and for any constant c < 1/2, unless P = NP. Carr et al.
also gave a 2

√
n-approximation algorithm for the case

where every set in S contains only one blue element.
We study a geometric version of Red-Blue Set

Cover where the elements of R and B are points, and
the sets of S are geometric objects. Specifically, we
focus on the case where the objects are unit squares1

in 2D; we call the resulting problem Red-Blue Unit-
Square Cover. We prove that Red-Blue Unit-
Square Cover remains NP-hard, and we present a
PTAS (i.e., a polynomial-time (1+ε)-approximation al-
gorithm for any constant ε > 0) for this problem.

Previous work on PTASes. There have already been
a number of PTASes for problems related to geometric
set cover and hitting set in the literature. To put our
new PTAS into context, we note that most of the known
techniques can be classified into a few categories:

∗Cheriton School of Computer Science, University of Waterloo,
{tmchan,n3hu}@uwaterloo.ca

1All squares in this paper are assumed to be axis-aligned.

1. Hochbaum and Maass’ original shifted grid tech-
nique [8]. This is among the earliest PTAS tech-
niques developed, and is usually applicable only to
“continuous” versions of geometric set cover and
hitting set problems. For example, in the con-
tinuous version of the standard (monochromatic)
Unit-Square Cover problem, we want the small-
est number of unit squares to cover a given point
set, where the allowed unit squares can be located
anywhere rather than from a given (“discrete”) set.
When applicable, the technique is general enough
to handle other types of similar-sized fat objects,
such as unit disks in 2D, or unit balls in higher fixed
dimensions. Extensions of the technique based on
shifted quadtrees have also been explored for some
related problems [2].

2. Mustafa and Ray’s local search technique [10]. This
yields the first PTAS for the general discrete ver-
sion of the Unit-Square Cover and the analo-
gous Unit-Disk Cover problem in 2D. However,
the technique inherently does not work for weighted
problems. For example, in the Weighted Unit-
Square Cover problem, given a point set and a
set of unit squares each with a positive weight, we
want a subset of unit squares of the smallest total
weight to cover the given point set.

3. Sophisticated dynamic programming combined
with Hochbaum and Maass’ shifting technique. Er-
lebach and van Leeuwen [5] used this approach
to obtain the first PTAS for Weighted Unit-
Square Cover. Recently, Ito et al. [9] have also
applied a similar approach to obtain a PTAS for
the following variant of unit-square cover called
Unique Unit-Square Coverage: given a point
set and a set of unit squares, we want a subset
of unit squares to maximize the number of points
that are covered exactly once. (Erlebach and van
Leeuwen introduced the general unique coverage
problem for sets in 2008 [4].) At the moment, these
PTASes are limited to the special case of 2D unit
squares and do not seem generalizable to unit disks
or to higher dimensions.

Our PTAS belongs to the third category and is similar
to Erlebach and van Leeuwen’s and Ito et al.’s PTASes.
For example, our approach can easily handle a weighted
version of Red-Blue Unit-Square Cover, where the

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

289

25th Canadian Conference on Computational Geometry, 2013

red points have weights and we want to minimize the
total weight of the red points covered. However, our
approach works only for unit squares and not for other
types of objects.

Arguably the most interesting aspect of this paper
lies not so much in the specific result about red-blue
set cover, but in our technique, which we feel is con-
ceptually simpler than Erlebach and van Leeuwen’s and
Ito et al.’s PTASes [5, 9] for Weighted Unit-Square
Cover and Unique Unit-Square Coverage. In
fact, our technique leads to alternative PTASes for these
two problems as well, and can potentially be more easily
applied to other variants of set cover problems for unit
squares.

The descriptions of the dynamic programming algo-
rithm in both papers [5, 9] are lengthy. For example, the
algorithm by Erlebach and van Leeuwen is obtained by
simulating a plane sweep that involves multiple sweep
lines moving at different speeds. We get around most of
the complications by one very simple idea: a “mod-one
trick”.

In section 2, we give the NP-hardness proof of Red-
Blue Unit-Square Cover. We introduce the mod-
one trick and give a PTAS in section 3, followed by a
brief discussion on how to apply our technique to other
problems in section 4.

2 NP-Hardness

Theorem 1 Red-Blue Unit-Square Cover is NP-
hard.

Proof. We reduce from the vertex cover problem on
degree-3 planar graphs, which is well known to be NP-
hard [7].

Lemma 2 [3] Every planar graph G = (V,E) of maxi-
mum degree at most 4 has an orthogonal planar drawing
on an O(|V |) × O(|V |) grid (i.e., vertices are placed at
grid points and edges are drawn as a rectilinear polygo-
nal chain with corners at grid points, with no crossings).

Lemma 3 (Folklore) Given a graph G and an edge e
in G, define a new graph G′ obtained from G by sub-
dividing e through the addition of two new “dummy”
vertices. Then the size of a minimum vertex cover of
G′ is precisely the size of a minimum vertex cover of G
plus 1.

Given a degree-3 planar graph G with n vertices, we
create an orthogonal drawing by Lemma 2. We define
a new graph G′ by subdividing each edge e through
the addition of new dummy vertices at each grid point
along e. Each edge in G′ is now a horizontal or vertical
line segment of length 1 in the drawing. If e contains
an odd number of dummy vertices, we insert an extra

new dummy vertex at the midpoint of a line segment.
Then all edge lengths in G′ are 1/2 or 1. By rescaling
by a factor slightly less than 2, we can ensure that all
edge lengths in G′ are strictly between 2/3 and 2. Now,
each edge in the original graph G has an even num-
ber of dummy vertices, and by repeated applications of
Lemma 3, finding the size of the minimum vertex cover
of G is equivalent to finding the size of the minimum
vertex cover of G′.

To construct an instance of Red-Blue Unit-
Square Cover from G′, we replace each vertex in G′

by a red point ri. For each edge rirj in G′, we create a
blue point bij in the middle of the edge and add a unit
square containing precisely bij and ri and a unit square
containing precisely bij and rj . See Figure 1. Such
squares exist since the distance between two adjacent
blue and red points is strictly between 1/3 and 1.

Figure 1: The reduction from vertex cover. (Red points
are drawn as dots, and blue points are drawn as dia-
monds.)

Correctness of the reduction is easy to see: Given a
vertex cover of G′ of size k, we can select all the squares
that cover the corresponding k red points; these squares
would cover all blue points. Conversely, given a subset
of squares covering all blue points, the red points cov-
ered by these squares form a vertex cover of G′. �

3 PTAS

We now present a PTAS for Red-Blue Unit-Square
Cover. We begin with a definition:

Definition 4 Let S = {s1, . . . , st} be a set of unit
squares, where s1, . . . , st are arranged in increasing x-
order of their centers. We say that S forms a monotone
set, if the centers of s1, . . . , st are in increasing or de-
creasing y-order.

Note that the boundary of the union of the squares
in a monotone set S consists of two monotone chains
(“staircases”), as as shown in figure 2. We say that
these two chains are complementary.

25th Canadian Conference on Computational Geometry, 2013

290

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Figure 2: A monotone set may be “increasing” (left) or
“decreasing” (right).

Lemma 5 Let OPT be an optimal solution for an in-
stance where the blue point set B is inside a k×k square.
Then OPT can be decomposed into O(k2) monotone
sets.

Proof. We may assume that all squares in OPT inter-
sect the k×k square. Draw a grid with unit side length
over the k×k square. Consider a grid point p. Let S(p)
be the set of squares in OPT containing p; every square
in OPT belongs to one of the S(p)’s. Let U(p) denote
the boundary of the union of the squares of S(p). We
may assume that each square in S(p) appears on U(p),
for otherwise we could remove the square from OPT and
the resulting solution is no worse than OPT.

Divide the plane into 4 quadrants at p. For each
i ∈ {1, 2, 3, 4}, let Si(p) be the subset of squares in
OPT containing p that contributes to the portion of
U(p) inside the i-th quadrant. Then each Si(p) is a
monotone set. Thus, we have decomposed OPT into
4(k+1)2 monotone sets. (These sets may not be disjoint,
but can be made disjoint by deleting elements from sets,
since a subset of a monotone set is still monotone.) �

The heart of our PTAS is an exact dynamic program-
ming solution for the special case of the problem where
all points are inside a k × k grid for a constant k. The
idea is to use a sweep-line algorithm to guess the O(k2)
monotone sets at the same time. We can “remember” a
constant number (O(k2)) of intersections of the mono-
tone chains with a vertical sweep line as we sweep from
left to right. However, each monotone set defines two
complementary monotone chains, and the guess of one
chain should be consistent with the guess of its comple-
mentary chain; but by the time the sweep line gets to
the second chain, we would have forgotten information
about the first chain. This is why Erlebach and van
Leeuwen [5] needed a more complicated approach in-
volving multiple sweep lines moving at different speeds.

To avoid this difficulty, we overlay all the monotone
sets into one grid cell by introducing a “mod-one” trans-
formation:

Definition 6 We define the mod-one mapping
(x, y) 7→ (x mod 1, y mod 1), where z mod 1 denotes
the fractional part of a real number z.

With this transformation, a unit square is rearranged
into four pieces covering the unit grid cell, as shown in
figure 3.

Figure 3: Applying the mod-one transformation to a
unit square.

Furthermore, the union of the squares in a mono-
tone set is rearranged as shown in figure 4. Notice that
the two complementary monotone chains are mapped to
two monotone chains that are connected at the corner
points. This is the key property we need about the mod-
one transformation. By redesigning the sweep-line algo-
rithm to sweep over the unit grid cell in the transformed
space, we can guess the two complementary monotone
chains of each monotone set at the same time. The re-
maining pieces of the union consists of two rectangles
defined by the start and end square of the monotone
set; we can guess these two squares in advance.

Figure 4: Applying the mod-one transformation to a
monotone set.

Theorem 7 For any instance of Red-Blue Unit-
Square Cover where B is inside a k × k square
for a constant k, we can find the optimal solution in
O(mnO(k2)) time.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

291

25th Canadian Conference on Computational Geometry, 2013

Proof. We find it best to describe our dynamic pro-
gramming algorithm in terms of a state-transition dia-
gram. We define a state to consist of

• a vertical sweep line ` that passes through a corner
of an input square, after taking mod 1;

• O(k2) 4-tuples of the form (sstart, sprev, scurr, send),
subject to the conditions that sstart, sprev, scurr, send
are in increasing x-order and form a monotone set,
and that ` lies between the corners of sprev and
scurr, mod 1.

Intuitively, a state represents current information about
a decomposition of a solution into monotone sets at the
sweep line (the monotone sets are not required to be dis-
joint). Specifically, each 4-tuple corresponds to a mono-
tone set S; sstart and send represent the start and end
square of S; and sprev and scurr represent the squares
that define intersections of the sweep line with the two
complementary monotone chains of S, after taking mod
1. These two squares sprev and scurr are adjacent in the
monotone set S.

Given this state, we create a transition into
a new state as follows: We pick the 4-tuple
(sstart, sprev, scurr, send) such that the corner point of
scurr has the smallest x-coordinate, mod 1. The new
sweep line `′ will be at the corner of scurr. This 4-tuple
is replaced by a new 4-tuple (sstart, scurr, s

′, send) satis-
fying the stated conditions for some square s′. All other
4-tuples are unchanged. Let jr (resp. jb) be the number
of red (resp. blue) points that lie between ` and `′, after
taking mod 1, and are covered (resp. not covered) by the
squares in the O(k2) 4-tuples (before taking mod 1). If
jb > 0, we remove this transition. Otherwise, we set the
cost of this transition to jr.

The problem is thus reduced to finding the shortest
path in this state-transition diagram (a directed acyclic
graph), after adding suitable transitions involving start

and end states. There are at most O(mnO(k2)) states,
and each state has at most O(n) outgoing transitions
(since there are O(n) choices for s′). Thus, we can con-
struct the graph and find the shortest path by dynamic
programming in O(mnO(k2)) time. �

We can now apply Hochbaum and Maass’ grid shifting
technique [8] to obtain our final result:

Theorem 8 There is a PTAS for Red-Blue Unit-
Square Cover.

Proof. For each shift a, b ∈ {0, . . . , k − 1}, let Sa,b be
the union of the solutions found by Theorem 7 for the
blue points inside every k × k square [ik + a, (i+ 1)k +
a] × [jk + b, (j + 1)k + b], with i, j ∈ Z. We return the
S(a,b) with the smallest c(S(a,b)), where c(S) denotes
the number of red points covered by S.

To analyze the approximation factor, let OPT be the
optimal solution. Let OPTa,∗ (resp. OPT∗,b) be the
subset of squares in OPT intersecting the lines x = ik+a
with i ∈ Z (resp. the lines y = jk + b with j ∈ Z).
Since the algorithm in Theorem 2 covers the minimum
number of red points for the subproblem for each k× k
square, we have

c(Sa,b) ≤ c(OPT) + 2 c(OPTa,∗) + 2 c(OPT∗,b).

Since
∑

0≤a<k c(OPTa,∗) and
∑

0≤b<k c(OPT∗,b) are
both at most 2 c(OPT),

∑

0≤a,b<k

c(Sa,b) ≤ (k2 + 8k) c(OPT),

implying that

min
0≤a,b<k

c(Sa,b) ≤ (1 + 8/k) c(OPT).

Setting k = d8/εe gives a (1 + ε)-approximation algo-
rithm. �

4 Related Problems

Weighted Unit-Square Cover. Erlebach and van
Leeuwen [5] studied the following related problem:
Given a set P of points and a set S of unit squares
in 2D where each square has a positive weight, we want
to find a smallest-weight subset of S to cover all the
points in P .

Our algorithm can easily be modified to solve this
problem. Specifically, in the proof of Theorem 7, if there
are any points that lie between ` and `′, after taking
mod 1, and are not covered by any of the squares in the
O(k2) 4-tuples, then we remove the transition. Other-
wise, we set the cost of the transition to the weight of
the square s′.

Budgeted Maximum Coverage for Unit Squares. Er-
lebach and van Leeuwen [5] also considered the following
problem: Given a set P of points where each point has
a positive profit value, and given a set S of unit squares
where each square has a positive cost, and given a bud-
get B, we want to find a subset of S with total cost at
most B, maximizing the total profit of all points in P
that are covered by the subset.

Erlebach and van Leeuwen [5] described how a modi-
fication of their dynamic programming algorithm com-
bined with additional ideas can yield a PTAS for this
problem. Our approach can be used to simplify the dy-
namic programming part of their PTAS.

Partial Unit-Square Cover. Gandhi et al. [6] studied
the partial set cover problem. A geometric version can
be stated as follows: Given a set P of points and a set S

25th Canadian Conference on Computational Geometry, 2013

292

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

of unit squares in 2D, and given an integer K, we want
to find a smallest subset of squares in S to cover at least
K points in P .

Gandhi et al. gave a PTAS for a continuous version
of the problem based on Hochbaum and Maass’ shifted
grid technique [8]. For the discrete version, we can ob-
tain a PTAS by using an appropriate modification of our
dynamic programming algorithm, in conjunction with
shifted grids as in Gandhi et al.’s paper.

Unique Unit-Square Coverage. Ito et al. [9] studied
the following problem: Given a set P of points and a set
S of unit squares in 2D, find a subset of S to maximize
the number of points in P that are covered exactly once
by the subset.

Again our algorithm can be modified to solve this
problem. In the proof of Theorem 7, we use 6-tuples
(sstart, sprev2, sprev, scurr, scurr2, send) instead of 4-tuples,
where intuitively sprev2 represents the predecessor of
sprev and scurr2 represents the successor of scurr in a
monotone set. We set the cost of the transition to be
the number of points that lie between ` and `′, after tak-
ing mod 1, and are uniquely covered by the squares in
the O(k2) 6-tuples. This works because squares that are
not part of these 6-tuples are irrelevant as to whether a
point is uniquely covered.

5 Conclusion

We have shown that Red-Blue Unit-Square Cover
is NP-hard, and have given a PTAS using a “mod-one”
transformation. The main advantage of our PTAS is
that it is simpler to describe than previous PTASes by
Erlebach and van Leeuwen and Ito et al. for related
problems [5, 9]. To be fair, we should mention that our

nO(1/ε2) running time is slower than the nO(1/ε) running
time of the previous PTASes.

References

[1] R. D. Carr, S. Doddi, G. Konjevod, and M.
Marathe. On the red-blue set cover problem. In
Proc. SODA, pages 345–353, 2000.

[2] T. M. Chan. Polynomial-time approximation
schemes for packing and piercing fat objects. J. Al-
gorithms, 46:178–189, 2003.

[3] B. N. Clark, C. J. Colbourn and D. S. Johnson.
Unit disk graphs. Discrete Math., 86:165–177, 1990.

[4] T. Erlebach and E. J. van Leeuwen. Approximat-
ing geometric coverage problems. In Proc. SODA,
pages 1267–1276, 2008.

[5] T. Erlebach and E. J. van Leeuwen. PTAS for
weighted set cover on unit squares. In Proc. AP-
PROX and RANDOM, pages 166–177, 2010.

[6] R. Gandhi, S. Khuller, and A. Srinivasan. Approx-
imation algorithms for partial covering problems.
J. Algorithms, 53:55-84, 2004.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San
Francisco, 1979.

[8] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in im-
age processing and VLSI. J. ACM, 32:130–136,
1985.

[9] T. Ito, S.-I. Nakano, Y. Okamoto, Y. Otachi, R. Ue-
hara, T. Uno, and Y. Uno. A polynomial-time ap-
proximation scheme for the geometric unique cover-
age problem on unit squares. In Proc. SWAT, pages
24–35, 2012.

[10] N. Mustafa and S. Ray. Improved results on ge-
ometric hitting set problems. Discrete Comput.
Geom., 44:883–895, 2010.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

293

25th Canadian Conference on Computational Geometry, 2013

294

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Convex hull alignment through translation

Michael Hoffmann∗ Vincent Kusters∗ Günter Rote† Maria Saumell‡ Rodrigo I. Silveira§

Abstract

Given k finite point sets A1, . . . , Ak in R2, we are inter-
ested in finding one translation for each point set such
that the union of the translated point sets is in convex
position. We show that if k is part of the input, then it
is NP-hard to determine if such translations exist, even
when each point set has at most three points.

The original motivation of this problem comes from
the question of whether a given triangulation T of a
point set is the empty shape triangulation with respect
to some (strictly convex) shape S. In other words, we
want to find a shape S such that the triangles of T are
precisely those triangles about which we can circum-
scribe a homothetic copy of S that does not contain
any other vertices of T . This is the Delaunay criterion
with respect to S; for the usual Delaunay triangulation,
S is the circle.

1 Introduction

We study the following problem: given k finite point
sets A1, . . . , Ak in R2, are there translations t1, . . . , tk
such that the union of all ti(Ai) is in convex position?
For k = 1 the problem is simply convexity testing. For
k = 2, the problem can be solved using linear program-
ming, under the additional assumption that the order of
points along the convex hull is fixed. Even without this
assumption, the case k = 2 is solvable in polynomial
time: if there is a solution for a given instance, then

∗Institute of Theoretical Computer Science, ETH Zürich,
Switzerland. [hoffmann|vincent.kusters]@inf.ethz.ch. Par-
tially supported by the ESF EUROCORES programme Eu-
roGIGA, CRP GraDR and the Swiss National Science Founda-
tion, SNF Project 20GG21-134306.
†Institut für Informatik, Freie Universität Berlin, Germany.

rote@inf.fu-berlin.de. Supported by the ESF EUROCORES
programme EuroGIGA-VORONOI, Deutsche Forschungsgemein-
schaft (DFG): grant RO 2338/5-1.
‡Département d’Informatique, Université Libre de Bruxelles,

Belgium. maria.saumell.m@gmail.com. Supported by ESF
EuroGIGA project ComPoSe as F.R.S.-FNRS - EUROGIGA
NR 13604 and ESF EuroGIGA project GraDR as GAČR
GIG/11/E023.
§Dept. Matemàtica Aplicada II, Universitat Politècnica de

Catalunya, Spain. rodrigo.silveira@upc.edu. Partially sup-
ported by projects MINECO MTM2012-30951, Gen. Cat.
DGR2009SGR1040, ESF EUROCORES programme EuroGIGA,
CRP ComPoSe: MICINN Project EUI-EURC-2011-4306, and by
FP7 Marie Curie Actions Individual Fellowship PIEF-GA-2009-
251235.

there is also a solution where a point p from the first
set is collinear with two points q and r from the second
set. For each such triple, it remains only to determine
where p should be placed along the line qr, which can
easily be done in polynomial time.

For general k (being part of the input), the straight-
forward formulation does not yield a linear program, be-
cause triples of points may come from different polygons
and, thus, involve several translations, which makes the
constraints quadratic. Similarly, the problem is easy if
the size of the point sets is at most two: sort the line
segments s1, . . . , sn by increasing slope and translate
such that the right endpoint of each si is identified with
the left endpoint of si+1. In contrast we prove that the
general problem is NP-hard by reduction from 3-SAT:

Theorem 1 Given k finite point sets A1, . . . , Ak in R2,
it is NP-hard to decide if there are translations t1, . . . , tk
such that the union of all ti(Ai) is in convex position.

The reduction uses point sets of size three, as well as a
regular polygon with size linear in the size of the 3-SAT
formula. We also show that this regular polygon can be
replaced by a set of triangles:

Theorem 2 Given k finite point sets A1, . . . , Ak in R2,
it is NP-hard to decide if there are translations t1, . . . , tk
such that the union of all ti(Ai) is in convex position,
even if each Ai has size at most three.

Motivation. The original motivation of this problem
comes from the question of whether a given triangu-
lation T of a point set is the empty shape triangula-
tion [10, 11] with respect to some (strictly convex) shape
S (Problem A). In other words, we want to find a shape
S such that the triangles of T are precisely those tri-
angles about which we can circumscribe a homothetic
copy of S that does not contain any other vertices of T .
This is the Delaunay criterion with respect to S. For
the usual Delaunay triangulation, S is the circle.

An abstraction of this question is the following more
general problem (Problem B). We are given families
(P+

i , P
=
i , P

−
i)i=1,2,... of point sets. We look for a

(strictly) convex shape S with the following property:
for each i, we can scale and translate S so that the three
sets P+

i , P
=
i , P

−
i lie inside S, on the boundary, and out-

side S, respectively.
In Problem A, each P=

i is a triplet corresponding to a
triangle, and P−i is the complementary set of points. P+

i

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

295

25th Canadian Conference on Computational Geometry, 2013

is always empty. Equivalently, we may form quadruples
with three triangle points P=

i and each remaining point
as a singleton set P−i .

We obtain a variation of this problem (Problem B′)
by allowing only translation of S, but no scaling. Let
Problem C be the special case of Problem B where P+

i =
P−i = ∅ and let Problem C′ be the same special case of
Problem B′. The problem that we consider in this paper
is problem C′. Thus, our answer to problem C′ does
not imply an answer to our original question, since it
is more specialized in one respect (allowing translations
only) and more general in another respect (considering
arbitrary point sets P=

i).

Related work. We are not aware of previous work on
the related problems mentioned above. Regarding our
main motivation, Problem A, quite some work has been
devoted to studying properties of Voronoi diagrams and
their duals—often triangulations—based on a particular
convex distance function (see e.g. [6, 12]), but not, to the
best of our knowledge, to tackling the inverse question
in which we are interested here.

The problem of finding a set of translations to place
a set of points in convex position is related to certain
matching and polygon placement problems. In some
matching problems the goal is to find a rigid motion of
one shape to make it as similar as possible to another
shape. Here, similarity can be measured in a variety of
ways, such as using Hausdorff distance [2], Fréchet dis-
tance [3] or maximizing their area of overlap [7], among
others. Polygon placement problems are usually con-
cerned with finding a transformation of a polygon to
place it inside another polygon or to contain/avoid cer-
tain objects (such as points or other polygons). Multi-
ple variants have been studied in the past, depending on
the type of polygon (e.g. convex [14] or simple [4]), the
type of transformation (e.g. translation versus transla-
tion and rotation [4]), and the final goal (e.g. to fit the
largest possible copy of a polygon inside another one [1],
or to cover as many points as possible [8]). We remark
that, besides having clearly different goals, these prob-
lems are usually concerned with two single shapes or
objects, whereas we are interested in translating k > 2
points sets altogether.

2 Reduction from 3-SAT

This section is devoted to the proof of Theorem 1. We
prove the theorem by reduction from 3-SAT. Given a 3-
SAT formula F with variables x0, . . . , xn−1 and clauses
C0, . . . , Cm−1, construct point sets as follows.

Let R = r0, r
′
0, . . . , rt−1, r

′
t−1 be a regular1 convex

1A sufficiently fine rational approximation [5] of R suffices.
The main property of R that is important for our reduction is
that opposite sides are parallel.

polygon on 2t = 8n+16m points centered at the origin.
Given an edge rir

′
i of R, we define the pocket Pi of rir

′
i

to be the compact set bounded by the line segment rir
′
i

and the lines `− through r′i−1ri and `+ through r′iri+1.
The intersection of `− and `+ is the apex of pocket Pi.
Our reduction relies on the following fact: if a point
p is placed on an open line segment rir

′
i, then placing

a point q in Pi \ rir′i destroys convexity of R ∪ {p, q}.
We say that p blocks the pocket Pi. Unblocked pockets
are called free. Note that placing a point in Pi does not
prevent us from placing a point in any other pocket. We
say that two convex sets are compatible if their union is
convex.

Variable gadget. In order to encode the variables
of our formula, we will first define triangles Qd

i =
(qi, qi+d, qi+t/2) for 0 ≤ i < t and 0 ≤ d < t as follows
(note that in this section all indices are taken modulo t,
and that t is even). Consider the diametrically opposed
segments rir

′
i and ri+t/2r

′
i+t/2. Place qi+t/2 on ri+t/2

and place qi+d on the apex of Pi+d (Figure 1). Trans-
late qi+t/2 and qi+d rigidly, parallel along ri+t/2r

′
i+t/2

until qi+d hits the line segment ri+dr
′
i+d. Now place qi

on ri. Note that Qd
i can slide freely along rir

′
i until:

(1) qi hits ri and qi+d hits the line segment ri+dr
′
i+d:

moving further would move qi+d inside the convex
hull of R; or

(2) qi+t/2 hits ri+t/2 and qi+d hits the apex of Pi+d:
moving further would push qi+d outside the pocket,
removing ri+d and r′i+d from the joint convex hull.

Pi

Pi+t/2

ri

ri+d

r′i

qi+d

qi

ri+t/2

qi+t/2

Figure 1: The construction of variable gadget Qd
i . The

figure shows the two extreme positions of the gadget.

Since rir
′
i and ri+t/2r

′
i+t/2 are diametrically opposed

segments, moving Qd
i in any other direction would place

either qi or qi+t/2 inside the convex hull of R. For
most of the compatible translations, the pockets Pi and

25th Canadian Conference on Computational Geometry, 2013

296

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Pi+t/2 are both blocked. However, for the two extreme
positions (shown in Figure 1), where qi+d touches the
apex or the line segment, exactly one of the pockets is
free.

We say that the state of Qd
i is true if Qd

i does not
block Pi, false if it does not block Pi+t/2 and undefined
if Pi and Pi+t/2 are both blocked. After defining the

other two gadgets, we will associate some Qd
j with each

variable xi, with the interpretation that xi is true if and
only if the state of Qd

j is true and x̄i is true if and only if

the state of Qd
j is false. If the state of Qd

j is undefined,
then both xi and x̄i are false. Note that if R and a
translation of Qd

i are compatible, then xi and x̄i are
not both true.

Copy gadget. Given a variable gadget Qd
i , we can

copy the state of Qd
i with the gadget Qd−k

i+k , provided
k 6∈ {0, t/2, d}. This can be seen as follows. Assume
for the moment that Qd

i is in one of its two extreme po-
sitions. The gadget Qd−k

i+k shares the pocket Pi+d with

Qd
i (see Figure 2). If Qd

i touches the apex of Pi+d (as
in Figure 2), then so must Qd−k

i+k in order to be com-

patible with R and the translation of Qd
i . Similarly,

if Qd
i touches the open line segment ri+dr

′
i+d, then so

must Qd−k
i+k . Hence, the state of Qd−k

i+k is completely de-

termined by the state of Qd
i . Specifically, the state of

Pi is copied to Pi+k and the state of Pi+t/2 is copied

to Pi+k+t/2. If Qd
i is not in an extreme position, then

neither is Qd−k
i+k and hence both states are undefined.

Pi

Pi+t/2

ri

qi+d

ri+k

Pi+k

Pi+k+t/2

ri+dqi

ri+t/2 =
qi+t/2

qi+k

ri+k+t/2 =
qi+k+t/2

Figure 2: The construction of copy gadget Qd−k
i+k with

k = −1.

Clause gadget. Given i, j and k, let Tijk be the trian-
gle whose vertices ti, tj , tk are the midpoints of the seg-

ments rir
′
i, rjr

′
j and rkr

′
k, respectively. For each clause

C on variables x, y, z, we will use three copy gadgets to
copy the states of the literals x (or x̄), y (or ȳ) and z
(or z̄) of C to pockets Pi, Pj , Pk such that Tijk contains
the origin. Some care must be taken to ensure that this
clause does not interfere with existing gadgets, but we
will cover this issue in the subsection below. Figure 3
shows an example for a clause C = x ∨ ȳ ∨ z. Only the
relevant corner of each copy gadget is shown.

x

ȳ

z

Figure 3: The construction of a clause gadget for a
clause C = x ∨ ȳ ∨ z.

Note that x and ȳ are both in the false (or undefined)
state, whereas z is in the true state. We now scale
Tijk by a factor of 1 + ε for ε sufficiently small. Since
triangle Tijk contains the origin, it no longer fits inside
R. If it did not contain the origin, a small translation
towards the origin would potentially bring it back in
convex position with R. If one of the pockets Pi, Pj

or Pk is free, e.g. Pi, then we can translate Tijk such
that tj is again on rjr

′
j and tk is again on rkr

′
k and ti

is inside Pi. This translation of Tijk is compatible with
R: hence, the clause C is satisfied. If all three pockets
are blocked, then there is no translation for which Tijk
is compatible with R and hence C is not satisfied.

Selecting the gadgets. We are now ready to explic-
itly define the gadgets to be used for the given 3-
SAT formula F with variables x0, . . . , xn−1 and clauses
C0, . . . , Cm−1. We partition the polygon into paths
A,B′1, B2, Q,B

′
3, X,A

′, B1, B
′
2, Q

′, B3, X
′ as shown in

Figure 4. The paths A, Q, A′ and Q′ all have length
2n. The other paths have length 2m. Hence R has size
2t = 8n + 16m. We will not use the paths X, Q′ and
X ′. Associate with each variable xi the variable gadget
Q2m+n

i . This places the variable gadgets in paths A, Q
and A′. For each clause Ci = {`a, `b, `c} add copy gad-
gets as follows. If `a = x̄a (i.e. the literal is negative),
then add Qa+2m−i

i+n to copy the value of xa to the ith
pocket in B′1. This copies the value of x̄a into the ith
pocket in B1. Alternatively, if `a = xa (i.e. the literal is
positive), then add Qa−2n−2m−i

i+3n+4m to copy the value of xa
to the ith pocket in B1. Copy `b and `c analogously to

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

297

25th Canadian Conference on Computational Geometry, 2013

B2 and B3 and add the clause gadget corresponding to
the selected pocket. Note that any triangle of vertices
selected from B1, B2, B3 contains the origin.

A′

Q

B1

B′
1

B2

B′
2

B3

B′
3

X

Q′

X ′
A

Figure 4: Placing the gadgets on the polygon.

Correctness. If our 3-SAT formula F is satisfiable,
then set the state of the initial variable gadgets accord-
ing to a satisfying assignment of F . The copy gadgets
preserve the state of these initial variable gadgets, so
each clause gadget has at least one free pocket. Hence,
the union of R with all gadgets is in convex position.
Conversely, if F is unsatisfiable, then suppose for the
sake of obtaining a contradiction that the union of R
with all gadgets is in convex position. Consider the as-
signment α of F corresponding to the state of the vari-
able gadgets (this may set some xi and x̄i both to false).
Since F is unsatisfiable, there must be a clause C that
is not satisfied by assignment α. Since the copy gad-
gets preserve the state of the original variable gadgets,
all pockets of C are blocked. Hence, C is not compat-
ible with the other gadgets and the union of R with
all gadgets cannot be in convex position, which yields a
contradiction. Theorem 1 follows.

3 Replacing a regular polygon by triangles

In this section we show that we can replace the regular
polygon from our reduction above by a set of triangles.
This will prove Theorem 2.

Proposition 3 Let p1, p2, . . . , pn be the vertices of a
regular n-gon in counterclockwise order. Let us consider
the family of triangles

T = {4p1p2p3,4p2p3p4, . . . ,4pnp1p2,
4p1p2pn−2,4p2p3pn−1, . . . ,4pnp1pn−3}.

Let S be a point set obtained by translating each triangle
in T independently. If S is in convex position, then S
consists of the vertices of a regular n-gon.

The rest of this section is devoted to the proof of Propo-
sition 3. For a given set S of points in the plane, let
CH(S) denote the vertices of the convex hull of S.

Let T ⊆ T . Suppose that every triangle Ti ∈ T is
translated according to some vector λi, and let STλ be
the resulting set of points. We call STλ a geometric
placement of T . A placement of T is called combinato-
rial if the order of the vertices of T around the convex
hull is known, but not the exact position of the trian-
gles. We say that STλ satisfies the convex condition if
all points of STλ belong to CH(STλ). In this case we
might also say that the placement of the triangles is
valid. We say that p ∈ STλ violates the convex condi-
tion if p /∈ CH(STλ).

Every vertex of the regular n-gon belongs to sev-
eral triangles of T . To distinguish the distinct copies
of the vertex, we use superscripts, so for example pi1
will denote vertex p1 in some particular triangle of
T . We set T1 = 4p11p12p13, T2 = 4p22p23p24, . . ., and
Tn = 4pnnpn1pn2 . We also set Tn+1 = 4pn+1

1 pn+1
2 pn+1

n−2,

Tn+2 = 4pn+2
2 pn+2

3 pn+2
n−1, . . . , and T2n = 4p2nn p2n1 p2nn−3.

We assume that n is a multiple of 4, that the regular
n-gon is oriented so that two of its sides are horizontal,
and that p2p3 is the bottom horizontal side.

Observation 1 Let p ∈ S ⊆ S′. If p /∈ CH(S), then
p /∈ CH(S′).

Lemma 4 Let T = {T1, T2}. Suppose that STλ sat-
isfies the convex condition, and p12p

1
3 is not collinear

with p22p
2
3. Then the counterclockwise order of STλ in

CH(STλ) is either p11p
1
2p

2
2p

2
3p

2
4p

1
3 or p11p

1
2p

1
3p

2
3p

2
4p

2
2.

Proof. Suppose that we fix the position of T1. Then if
we extend the line segments of T1 to lines, the plane
is decomposed into four open regions F1, . . . , F4 and
three closed regions R1, . . . , R3, as shown in Figure 5.
It is easy to verify that in order to satisfy the convex
condition, no point of T2 can lie in any of the regions
F1, F2, F3, and no vertex of T2 can lie in F4. In par-
ticular, p22, p

2
3, and p24 can lie only in R1 ∪ R2 ∪ R3. In

principle, there are 27 cases to consider, based on all
possible combinations. Fortunately, we only need to
distinguish a few situations.

p1
1

p1
2 p1

3

R1

R2

R3

F1

F2

F3

F4

p2
2 p2

3

p2
4

Figure 5: A valid combinatorial placement of T1 and T2.

We first suppose that p22 ∈ R1. Notice that in this
case it is not possible that p23 ∈ R2 or p23 ∈ R3. So
we can assume that p23 ∈ R1. Now we can easily rule

25th Canadian Conference on Computational Geometry, 2013

298

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

out the case p24 ∈ R3. Point p24 cannot lie in R2 ei-
ther, because in this case the side p23p

2
4 would intersect

F3. Therefore p24 can lie only in R1. This gives a valid
combinatorial placement of T1 and T2 where the coun-
terclockwise order of STλ in CH(STλ) is p11p

1
2p

2
2p

2
3p

2
4p

1
3

(see Figure 5).
Next suppose that p22 ∈ R2. Then, p23 ∈ R2 and p24 ∈

R2. This gives another valid combinatorial placement
of T1 and T2 where the counterclockwise order of STλ

in CH(STλ) is p11p
1
2p

1
3p

2
3p

2
4p

2
2 (see Figure 6). Note that

there are no other possible combinatorial placements
since we assume that p12p

1
3 and p22p

2
3 are not collinear.

p1
1

p1
2 p1

3

R1

R2

R3

F1

F2

F3

F4

p2
2 p2

3

p2
4

Figure 6: A valid combinatorial placement of T1 and T2.

Finally suppose that p22 ∈ R3. Then, p23 /∈ R1 and
p24 /∈ R1. Recall that p22 is on the same horizontal line
as p23 and to its left, and p24 is above and to the right
of p23. If p23 ∈ R2 and p24 ∈ R2, then we have that
p13 is below and to the right of p23. Consequently, p23
lies inside the triangle 4p22p24p13 and violates the convex
condition. The combination p23 ∈ R2 and p24 ∈ R3 is not
possible. If p23 ∈ R3, then we have that p12 is below and
to the right of p23 (since we are assuming that p12p

1
3 is

not collinear with p22p
2
3). Consequently, p23 lies inside the

triangle 4p22p24p12 and violates the convex condition. �

Lemma 5 Let T = {T1, T2, Tn2 +1, Tn2 +2}. If STλ sat-

isfies the convex condition, then p12p
1
3 is collinear with

p22p
2
3.

Proof. [Sketch] Due to space limitations, we only
sketch the proof here. It suffices to prove that the
combinatorial placements for 4p11p12p13 and 4p22p23p24 of
Lemma 4 are no longer valid. To show that the com-
binatorial placement in which the counterclockwise or-
der around the convex hull is p11p

1
2p

2
2p

2
3p

2
4p

1
3 is no longer

valid, we try to add Tn
2 +1 to the placement, and prove

that this is not possible. The other combinatorial place-
ment from Lemma 4 can be ruled out analogously. �

By symmetry, we have the following corollary:

Corollary 6 If STλ satisfies the convex condition, then
p12p

1
3 is collinear with p22p

2
3, p23p

2
4 is collinear with

p33p
3
4, . . ., and pn1p

n
2 is collinear with p11p

1
2.

Lemma 7 If STλ satisfies the convex condition, then
p12p

1
3 is collinear with p22p

2
3, and p12 is not right of p22.

We omit the proof due to space considerations.
Suppose that, in some placement of Ti−1 and Ti,

pi−1i pi−1i+1 is collinear with piip
i
i+1. Suppose that we ro-

tate the triangles so that Ti−1 has the same orientation
as T1 and Ti has the same orientation as T2. We say
that Ti−1 and Ti cross if, after this rotation, pi−1i is to
the right of pii. By symmetry, we have the following
corollary, which subsumes Corollary 6 and Lemma 7:

Corollary 8 Suppose that STλ satisfies the convex con-
dition. Then p12p

1
3 is collinear with p22p

2
3, p23p

2
4 is

collinear with p33p
3
4, . . ., and pn1p

n
2 is collinear with p11p

1
2.

Furthermore, none of the pairs {Ti, Ti+1} cross.

Lemma 9 Suppose that STλ satisfies the convex condi-
tion. Then p12p

1
3 is collinear with p22p

2
3, and p12 is not to

the left of p22.

Proof. We proceed by contradiction. Consider the reg-
ular n-gon having one side at p22p

2
3. Since none of the

pairs {Ti, Ti+1} cross, this polygon lies inside the poly-
gon formed by the placement of T1, . . . , Tn (see Figure 7
for an example). Since we are assuming that p12 is to
the left of p22, we also have that pn of the polygon lies
strictly inside (that is, not on the boundary) the polygon
formed by the placement of T1, . . . , Tn. We now try to
place Tn+3. In order to maintain the convex condition,
the vertices of Tn+3 must be placed on the boundary
of the polygon formed by the placement of T1, . . . , Tn,
or on the triangles bounded by an edge of the polygon
and two dotted segments shown in Figure 7. Such a
placement of Tn+3 is not possible. �

By symmetry, we obtain the following corollary, which
subsumes Lemma 9 and Corollary 8:

Corollary 10 Suppose that STλ satisfies the convex
condition. Then p12 is on the same position as p22,
p23 is on the same position as p33, . . ., and pn1 is on
the same position as p11. Equivalently, the vertices of
4p11p12p13,4p22p23p24, . . . ,4pnnpn1pn2 form a regular n-gon.

To complete the proof of Proposition 3, it only re-
mains to see that the triangles Tn+1, Tn+2, . . . , T2n are
also placed in the “natural” way. We prove it in the
next lemma for Tn+2 and, by symmetry, the result also
holds for the other triangles.

Lemma 11 Suppose that STλ satisfies the convex con-
dition. Then, 4pn+2

2 pn+2
3 pn+2

n−1 is placed so that pn+2
2 is

on the same position as p22.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

299

25th Canadian Conference on Computational Geometry, 2013

pn1

pn2

pnn

p11

p12 p13p22 p23

p24
pn+3
4

pn+3
3

pn+3
n

Figure 7: The vertex pn+3
n cannot be placed in Lemma 9

if p12 is to the left of p22 (case 1).

Proof. We know that the vertices of T1, T2, . . . , Tn form
a regular n-gon. In order to maintain the convex condi-
tion, the vertices of Tn+2 must be placed on the bound-
ary of the regular n-gon or on the triangles bounded by
an edge of the polygon and two dotted segments shown
in Figure 8. It is clear that the only way to do it consists
in placing pn+2

2 on the same position as p22. �

p22 p33pn+2
2

pn+2
3

pn+2
n−1

Figure 8: Points with the same superscript must again
coincide after the translations.

4 Concluding remarks

If we allow scaling in addition to translation (Problem C
from the introduction), then it is not known if the prob-

lem is still NP-hard. In addition, it is not clear if our
problem is in NP. The obvious certificate would be the
sequence of translations, but one must argue that the
representation of these translations is not too large in
terms of the input representation. In fact, our problem
has some similarities to the order type realizability prob-
lem, which is known to be complete for the existential
theory of the reals [13], and the coordinate representa-
tion of some order types requires exponential storage [9].

Acknowledgments. This research was initiated during
a EuroGIGA workshop in Assisi (Italy) in March 2012.
We thank Jan Kratochv́ıl, Tillmann Miltzow, Alexander
Pilz, and Vera Sacristán for helpful discussions.

References

[1] P. K. Agarwal, N. Amenta, and M. Sharir. Largest
placement of one convex polygon inside another. Dis-
crete Comput. Geom., 19(1):95–104, 1998.

[2] H. Alt, B. Behrends, and J. Blömer. Approximate
matching of polygonal shapes. Ann. Math. Artif. In-
tell., 13(3-4):251–265, 1995.

[3] H. Alt and M. Godau. Measuring the resemblance of
polygonal curves. Proc. SCG ’92, pp. 102–109, 1992.

[4] F. Avnaim and J.-D. Boissonnat. Polygon placement
under translation and rotation. ITA, 23(1):5–28, 1989.

[5] J. Canny, B. R. Donald, and E. K. Ressler. A rational
rotation method for robust geometric algorithms. Proc.
SCG ’92, pp. 251–260, 1992.

[6] L. P. Chew and R. L. S. Drysdale, III. Voronoi diagrams
based on convex distance functions. Proc. SCG ’85, pp.
235–244, 1985.

[7] M. de Berg, O. Cheong, O. Devillers, M. van Kreveld,
and M. Teillaud. Computing the maximum overlap of
two convex polygons under translations. Theory Com-
put. Syst., 31(5):613–628, 1998.

[8] M. Dickerson and D. Scharstein. Optimal placement of
convex polygons to maximize point containment. Com-
put. Geom., 11(1):1–16, 1998.

[9] J. E. Goodman, R. Pollack, and B. Sturmfels. Coordi-
nate representation of order types requires exponential
storage. Proc. STOC ’89, pp. 405–410, 1989.

[10] T. Lambert. Systematic local flip rules are generalized
delaunay rules. Proc. CCCG ’93, pp. 352–357, 1993.

[11] T. Lambert. Empty-Shape Triangulation Algorithms.
PhD thesis, University of Manitoba, 1994.

[12] L. Ma. Bisectors and Voronoi diagrams for convex dis-
tance functions. Master’s thesis, FernUniversität Ha-
gen, 2000.

[13] M. Schaefer. Complexity of some geometric and topo-
logical problems. In Graph Drawing, volume 5849 of
LNCS, pp. 334–344. Springer, 2010.

[14] M. Sharir and S. Toledo. External polygon containment
problems. Comput. Geom., 4:99–118, 1994.

25th Canadian Conference on Computational Geometry, 2013

300

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Faster approximation for Symmetric Min-Power Broadcast

G. Calinescu ∗

Abstract

Given a directed simple graph G = (V, E) and a cost
function c : E → R+, the power of a vertex u in
a directed spanning subgraph H is given by pH(u) =
maxuv∈E(H) c(uv), and corresponds to the energy con-
sumption required for the wireless node u to transmit
to all nodes v with uv ∈ E(H). The power of H is given
by p(H) =

∑
u∈V pH(u).

Power Assignment seeks to minimize p(H) while H
satisfies some connectivity constraint. In this paper,
we assume E is bidirected (for every directed edge e ∈
E, the opposite edge exists and has the same cost), a
“source” y ∈ V is also given as part of the input, and
H is required to contain a directed path from y to every
vertex of V . This is the NP-Hard Symmetric Min-Power
Broadcast problem.

In terms of approximation, it is known that one can-
not obtain a ratio better than ln |V |, and at least five al-
gorithms with approximation ratio O(ln |V |) have been
published from 2002 to 2007. Here we take one of
them, the 2(1+ln |V |)-approximation of Fredrick Mtenzi
and Yingyu Wan, and improve its running time from
O(|V ||E|) to O(|E| log2 |V |), by careful bookkeeping
and by using a previously-known geometry-based data
structure.

1 Introduction

We study the problem of assigning transmission power
to the nodes of ad hoc wireless networks to minimize
power consumption while ensuring that the given source
reaches all the nodes in the network (unidirectional links
allowed for broadcast), in the symmetric cost model.
This problem takes as input a directed simple graph
G = (V, E) and a cost function c : E → R+. The
power of a vertex u in a directed spanning simple sub-
graph H of G is given by pH(u) = maxuv∈E(H) c(uv),
and corresponds to the energy consumption required
for the wireless node u to transmit to all nodes v with
uv ∈ E(H). The power (or total power) of H is given by
p(H) =

∑
u∈V pH(u). A “source” (called “root” some-

times in the literature) y ∈ V is also given as part of
the input, and H is required to contain a directed path

∗Department of Computer Science, Illinois Institute of Tech-
nology, Chicago, IL 60616, USA. calinescu@iit.edu. Research
supported in part by NSF grant NeTS-0916743.

from y to every vertex of V ; we call the problem of min-
imizing the total power while ensuring this connectivity
Symmetric Min-Power Broadcast. Among early work
on this problem we mention [22, 24, 11, 23].

This problem is motivated by minimizing energy con-
sumption in a static multi-hop wireless network, where
c(u, v) represents the transmission power wireless node
u must spend to ensure a packet is received by node v.
Our model is that wireless nodes have several levels of
transmission power. A packet sent by u with power p is
received by all nodes v with c(u, v) ≤ p. This feature is
useful for energy-efficient multicast and broadcast com-
munications.

In some wireless settings, it is reasonable to assume
that u and v are embedded in the two-dimensional Eu-
clidean plane, and c(u, v) is proportional to the distance
from the position of u to the position of v, raised to a
power κ, where κ is fixed constant between 2 and 5.
This is the Euclidean input model.

We do not work in the Euclidean input model, but
make a (less-restrictive) “symmetric” assumption that
E is bidirected, (that is, uv ∈ E if and only if vu ∈ E,
and the two edges have the same cost).

A survey of Power Assignment problems is given by
Santi [20]; like there we only consider centralized al-
gorithms (there is a vast literature on distributed algo-
rithms). Even in the Euclidean input model, Min-Power
Broadcast was proven NP-Hard [11], and it was a folk-
lore result in 2000 that Symmetric Min-Power Broad-
cast is as hard to approximate as Set Cover (this appears
in several papers [11, 17, 23, 7, 2, 16]). Based on Feige’s
hardness result for Set Cover [12], no approximation ra-
tio better than O(ln n) is possible unless P = NP . Here
n = |V |, and from now on m = |E|.

The first O(log n) approximation algorithm was given
by Caragiannis et al. [7] (journal version: [8]). A simi-
lar algorithm was presented in [3], and the simplest and
best variant (ratio of 2(1 + ln n)) of this algorithm was
presented by [18] and achieves a O(mn) running time
(their analysis claims O(mnα(mn)) running time, but
one observation can get rid of the inverse Ackermann
function α in the analysis). Later, [9] obtains another
O(log n) approximation algorithm, with a complicated
algorithms based on [14], that needs multiple calls to
Minimum Weight Perfect Matching. Two other algo-
rithms also achieve a 2(1 + ln n)-approximation ratio:
the Spider algorithm of [4] (which has the same ratio
if the input graph is not bidirected) and the Relative

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

301

25th Canadian Conference on Computational Geometry, 2013

Greedy algorithm of [6] (which also achieves the best
known approximation ratio, of 4.2, in the Euclidean in-
put model).

All these algorithms use greedy methods, mostly
adopted from the Steiner Tree problems and its vari-
ants (precisely, [15, 26, 14]). Most of these papers do
not explicitly analyze the running time of the presented
algorithms (and none, as given, is faster than O(mn)).
We set to achieve the same 2(1 + ln n)-approximation
ratio with an improved running time.

For this, we give a faster variant of the “Hypergraph-
Greedy” algorithm of Mtenzi and Wan [18]. It turns out
this algorithm is a special case of the greedy method for
Polymatroid Cover of [25] (a simpler analysis in [13]),
and we use this observation to give an alternative proof
of its approximation ratio. For some readers, the direct
proof of [18] may be more enlightening; we just point
out in this paper that the proof is a special case of the
[13] proof. We achieve a running time of O(m log2 n)
by careful book-keeping and by using a data structure
of [5].

The next section presents the Hypergraph-Greedy al-
gorithm of [18] with our notation, and gives an alter-
native, shorter proof of its approximation ratio, based
on [25] and [7]. Then, in Section 3, we describe how to
use a known data structure. Section 4 combines several
data structures with careful book-keeping and analysis
to obtain the improved running time.

2 Algorithm Description and Approximation Ratio

Given a directed edge uv, its undirected version is the
undirected edge with endpoints u and v; for a set of
directed edges F , we denote by F̂ the multiset of edges
that are the undirected version of the edges of F .

For u ∈ V and r ∈ {c(uv) | uv ∈ E}, let S(u, r) be
the directed star (or, simply, star) consisting of all the
arcs uv with c(uv) ≤ r. We call u the center of S and
note that r is the power of S(u, r). For a directed star
S, let p(S) denote its power, let E(S) be its set of arcs,
and define V (S), its set of vertices, to be its center plus
the heads of its arcs. See Figure 1 for an example. The
algorithm treats V (S) as a hyperedge in a hypergraph
with vertex set V .

The algorithms described use all the possible stars,
and there are O(m) of them (for each vertex, the num-
ber of stars is its degree in the input graph). In the
first phase, the algorithm keeps a set of stars (initially
empty), giving a set of arcs H . It then selects the next
star such that to maximize the decrease in the number of
weakly connected components in (V, H) divided by the
power of the star (see Figure 2). The first phase stops
when (V, H) is weakly connected. At this moment, the
second phase of the algorithm constructs a spanning
tree in the undirected version of (V, H) (for example,

x

2

3

45

Figure 1: A star with center x and four arcs, of power
max{2, 3, 4, 5} = 5.

v

2

3

4

5

8

Figure 2: The current H is drawn as solid segments,
with arrows indicating the direction of the edges. The
directed edges with tail v are drawn as dashed segments.
The star with center v and power 2 has one edge, and
it does not decreases the number of weakly connected
components of H . The star with center v and power
3, with two edges, decreases the number of weakly con-
nected components of H by 1. The star S(v, 4) has
three edges and also achieves a reduction of 1. S(v, 5)
achieves a reduction of 2, and S(v, 8) achieves a reduc-
tion of 3. Among the stars with center v, the algorithm
would choose S(v, 5) as the next star.

by breadth-first search or depth-first search), and it re-
orients if needed the edges of this tree to lead away from
y (the vertex given in the input as the source), and thus
obtains a feasible output. This re-orientation, first ap-
plied in [7], only works if the input graph is bidirected.

25th Canadian Conference on Computational Geometry, 2013

302

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

2.1 Approximation Ratio

We first cast the problem in a different setting. A poly-
matroid f : 2N → Z+ on a ground set N is a non-
decreasing (monotone) integer-valued submodular func-
tion. A function f is monotone iff f(A) ≤ f(B) for all
A ⊆ B. A function f is submodular iff f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) for all A, B ⊆ N . Polymatroids
generalize matroids which have the additional condition
that f({i}) ≤ 1 for all i ∈ N . We call a subset A ⊆ N
spanning iff f(A) = f(N).

Assume each element j ∈ N has a weight wj . De-
fine fA(B) = f(A ∪ B) − f(A) and t = maxi∈N f({i}).
The greedy algorithm of Wolsey [25] find a Ht-
approximation to the minimum weight polymatroid
spanning set, where Ht is the tth harmonic number,∑t

i=1(1/i), which is known to be at most 1 + ln t.
This algorithm, a generalization of Chvatal’s algorithm
[10] for Set Cover, starts with B = ∅, and as long as
f(B) < f(N), adds to B the element j ∈ N that maxi-
mizes fB({j})/wj .

In our setting, define N to be the set of all stars,
and for a set B of stars, define f(B) to be the size of a

maximal forest in
⋃

S∈B Ê(S). We do have a polyma-
troid: as explained in [21], Example 44.1(a), the rank
function of a matroid (in our case, the graphic matroid,
where a set of edges of an undirected graph is indepen-
dent iff it is a forest) produces a polymatroid. Note
that f(N) = n − 1 and a spanning set in the polyma-
troid corresponds to a set of stars whose arcs form a
spanning weakly connected subgraph of G. Note also
that, if for a set of stars B, we let co(B) be the number

of connected components of (V,
⋃

S∈B Ê(S)), we have
f(B) = |V |−co(B). Then fB(S) = f({S}∪B)−f(B) =
|V |−co(B∪{S})−(|V | − co(B)) = co(B)−co(B∪{S}),
which is the decrease in the number of weakly connected
components in (V, H) when H , given by

⋃
S′∈B E(S′),

is replaced by
⋃

S′∈B E(S′) ∪ E(S). With the weight of
a star defined to be its power, the algorithm of [18] is
the greedy algorithm for polymatroids.

Let OPT be an optimum solution of the instance
at hand. Without increasing total power or decreas-
ing connectivity, add, if needed, to OPT every arc vu
with c(vu) ≤ pOPT (v). For each v ∈ V , call the star
S = S(v, pOPT (v)) a star of OPT . Since OPT contains
a path from the source y to every other vertex of G,
we have that the stars of OPT form a spanning set in
the polymatroid above. Thus, using [25], the collection
of stars A selected by the first phase of the algorithm
satisfies:

∑

S∈A
p(S) ≤ (1 + ln n)

∑

S star of OPT

p(S)

≤ (1 + ln n)opt , (1)

where opt = p(OPT).
Let H be obtained by keeping an arbitrary subtree

of
⋃

S′∈A Ê(S′) and orienting the edges away from the
source y. For vertex u ∈ V , we denote by u′ its parent
in this outgoing arborescence. Also, we denote by c̃(S)
the center of star S. Now, using the argument of [8], we
have:

p(H) =
∑

u∈V

pH(u)

≤
∑

u∈V

 ∑

S∈A|u=c̃(S)

p(S) +
∑

S∈A|u=c̃(S)′

p(S)

≤ 2
∑

S∈A
p(S),

where we use that a star S ∈ A appears at most twice
in the middle summation: once for the center of S, and
once for the parent in H of the center of S. Combined
with Inequality 1, we obtain the desired approximation
ratio.

3 The data structure used

A Rel-Max data structure stores a list of items i, sorted
by their cost ci (non-decreasing). A query is finding
the j maximizing j/cj . The update consists of, given
i, remove the ith item from the list (this changes the
position of the items k, for k > i). Calinescu and Qiao
[5] present an implementation for a generalization of
Rel-Max queries/updates In their data structure, each
item also has a “coverage” fi, non-decreasing in i, and
one must find the j maximizing fj/cj, while the update
consist of re-setting, for given i and delta > 0, for all
k ≥ i, fk = fk − δ. Their approach is based on keeping
upper convex hulls. See Figure 3 for some intuition.

It seems they re-invented some ideas from [19], also
concerned with keeping convex hulls, under different up-
date operations; [1] being a more recent work on this
topic. [5] obtains an initialization/preprocessing time
of O(l log2 l), a query time of O(log l), and an update
time of O(log2 l), where l is the number of items in the
initial list.

4 Book-keeping

One needs to find the next star at most n times, and
the main challenge is to compute the star that maxi-
mizes the decrease in the number of weakly connected
components in (V, H) divided by the power of the star.
The method of [18] is to try all O(m) stars, and with
careful bookkeeping one gets a O(mn)-time algorithm.
Our goal is O(m log2 n).

For every u, let vu
1 , . . . , vu

d(u) be the neighbors of u in

G, sorted in non-decreasing order by c(uvu
i). Let Sj(u)

be the star with center u and power c(uvu
j).

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

303

25th Canadian Conference on Computational Geometry, 2013

Figure 3: Points Pi have coordinates (ci, fi). On the
left, an example of points Pi, with the upper convex
hull drawn. Add for convenience P0 with coordinates
(0, 0). The answer to the query is the neighbor of P0 on
the upper hull. On the right, top, the points Pi after
f7 is updated (decreased), with the upper convex hull
drawn. On the right, bottom, the points Pi after an
update with i = 2, causing the second coordinate to
drop for points P2 . . . P7. The upper convex hull is also
drawn.

We keep the following three data structures. Let
Q1, . . . , Ql be the vertex sets of the current weakly con-
nected components of (V, H). We keep the components
by having an explicit representative vertex in each, that
is, an array comp[v] stores the representative of the com-
ponent containing vertex v. We keep l binary search
trees Bi (for i ∈ {1, 2, . . . , l}), one for each component.
The tree Bi keeps, sorted by ID, the nodes of Qi to-
gether with the nodes u such that an edge uv ∈ E ex-
ists with v ∈ Qi; in this case we also store the smallest
j such that vu

j ∈ Qi. For each component with vertex
set Qi, we explicitly keep |Qi| and a linked list of its
vertices.

For each u, we keep a list Lu of items j, each cor-
responding to the edge uvu

j and of value cj = c(uvu
j),

sorted in non-decreasing order by cj . We only keep the
item j if there exists a Qi with u 6∈ Qi and j is smallest
among those k with vu

k ∈ Qi. As an example, in Fig-
ure 1, we only keep items 2, 4, and 5 corresponding to
the edges of cost 3,, 5, and 8. Then it is easy to check
that the star Sj(u) has endpoints in exactly l + 1 sets
Qi, where j is the lth item in Lu. Moreover, among
the stars with center u and endpoints in exactly l + 1
sets Qi, one with minimum power is Sj(u), where j is
the lth item in Lu. Notice also that in this situation,
l is the decrease in the number of weakly components
if E(Sj(u)) is added to H . We also keep, for each u,
the value zu = minj∈Lu lj/cj, where lj is the position of

item j in Lu, and the item ju that achieves this mini-
mum.

We also keep a binary max-heap with all u ∈ V having
as key the value zu. With these data structures, we can
find the star that maximizes the decrease in the number
of weakly components of H , divided by the power of the
star, if we pick an u with maximum zu and then use
Sju(u). Finding Sju(u) is then done in constant time.

Now we describe how the data structures are main-
tained when some Sju(u) is added to the set of selected
stars. Let lu be such that ju is the lthu item in Lu, and
let j1, . . . , jlu , be such that item ji is the ith item in Lu.
Let Qk0 be the vertex set of the component of u, and
Qki be the vertex set of the component of vji . The way
we keep Lu implies that these components are distinct.

The effect of adding Sj(u) to H is the merging into
one of the components Qk0 , Qk1 , . . . , Qkl

. The algo-
rithm will make these merges one by one, first Qk0 with
Qk1 , then the result with Qk2 (if l ≥ 2), and so on.

Consider such a merge between Qr and Qs, and as-
sume by symmetry that |Qr| ≤ |Qs|. We merge Qr into
Qs; that is Qs will be the resulting component. First,
for each vertex in Qr, we add it to the list of vertices of
Qs and change its representative to the representative of
Qs. The running time is O(n log n) over all the merges,
since if we spend time on vertex v, v will become part
of a component that has at least twice as many vertices
as the component of v before the merge.

Second, we traverse (inorder) the binary tree Br, and
for each v in the tree we proceed as described in the
four cases below. In Case 1, v 6∈ Bs; then we insert v in
Bs together with the j-index (if any) it has in Br. In
Case 2, v ∈ Bs and v ∈ Qr; then the v from Bs also
has an index j such that wv

j ∈ Qs and such that j is
the only item in Lv among those k with wv

k ∈ Qs. We
update Bs to mark that v ∈ Qs. We also remove item
j from Lv, updating if necessary, zv, lv, and the binary
max-heap which keeps vertices u with keys zu. Case 3
is when v ∈ Qs (and thus v ∈ Bs), and v 6∈ Qr (recall
that v ∈ Br); in this case, the v in Br also has an index
j such that wv

j ∈ Qr and such that j is the only item
in Lv among those k with wv

k ∈ Qr. We also remove
item j from Lv, updating if necessary, zv, lv, and the
binary max-heap which keeps vertices u with keys zu.
We update Bs to mark that v ∈ Qs. Case 4 is when
v ∈ Bs, but v 6∈ (Qr ∪ Qs); then we have two indices j
(from the v in Br) and j′ (from the v in Bs), such that
wv

j ∈ Qs, and wv
j′ ∈ Qr, and such j is the only item in

Lv among those k with wv
k ∈ Qs, and such that j′ is the

only item in Lv among those k with wv
k ∈ Qr. We will

keep the smaller of j, j′ for the v in Bs, and remove the
larger of j, j′ from Lv, updating if necessary, zv, lv, and
the binary max-heap which keeps vertices u with keys
zu.

To analyze the overall time of this updates, consider

25th Canadian Conference on Computational Geometry, 2013

304

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

this: each directed edge uvu
j appears in Lu initially, but

will only be removed once, with a time of O(ln2 n). This
time is also enough for updating zu after this removal,
and updating the position of u in the max-heap after zu

changes.

When we merge Br in Bs above, other than removals
from Lv’s, we spend O(log n) per element of Br, to find
and if necessary insert it in Bs. Say we process a v ∈ Br.
If v appears in Br without a j, or in other words, v ∈ Qr,
then we charge this O(log n) to v. Vertex v can be
charged at most lg n times this way, as each time it
belongs to a component with at least twice as many
vertices. If v appears in Br with a j, then we are in the
following case: there a vertex wv

j ∈ Qr, the head of a
directed edge vwv

j . We charge the time spent to directed
edge vwv

j . Notice that wv
j will belong to a component

twice the size, and thus edge vwv
j can be charged at

most lg n times. Each charge is O(lg n), thus we spend
O(lg2 n) per vertex and per directed edge of v.

In conclusion, the running time of the Hypergraph-
Greedy algorithm, implemented with these data struc-
tures is O(m log2 n).

References

[1] G.-S. Brodal and R. Jacob. Dynamic planar convex
hull. In Proc. IEEE FOCS, pages 617–626, 2002.

[2] M. Cagalj, J.-P. Hubaux, and C. Enz. Minimum-
energy broadcast in all-wireless networks: NP-
completeness and distribution issues. In Proc.
ACM Mobicom, pages 172–182, 2002.

[3] M. Cagalj, J.-P. Hubaux, and C. Enz. Energy-
efficient broadcasting in all-wireless networks.
Wirel. Netw., 11(1-2):177–188, 2005.

[4] G. Calinescu, S. Kapoor, A. Olshevsky, and A. Ze-
likovsky. Network lifetime and power assignment
in ad-hoc wireless networks. In Proc. ESA, pages
114–126, 2003.

[5] G. Calinescu and K. Qiao. Asymmetric topology
control: Exact solutions and fast approximations.
In Proc. IEEE INFOCOM, pages 783–791, 2012.

[6] I. Caragiannis, M. Flammini, and L. Moscardelli.
An Exponential Improvement on the MST Heuris-
tic for Minimum Energy Broadcasting in Ad Hoc
Wireless Networks. In Proc. ICALP, pages 447–
458, 2007.

[7] I. Caragiannis, C. Kaklamanis, and P. Kanellopou-
los. New results for energy-efficient broadcasting in
wireless networks. In Proc. ISAAC, pages 332–343,
2002.

[8] I. Caragiannis, C. Kaklamanis, and P. Kanellopou-
los. A logarithmic approximation algorithm for the
minimum energy consumption broadcast subgraph
problem. Inf. Process. Lett., 86(3):149–154, 2003.

[9] I. Caragiannis, C. Kaklamanis, and P. Kanel-
lopoulos. Energy-efficient wireless network design.
Theor. Comp. Sys., 39(5):593–617, 2006.

[10] V. Chvatal. A greedy heuristic for the set cover-
ing problem. Mathematics of Operation Research,
4:233–235, 1979.

[11] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and
P. Vocca. On the Complexity of Computing Min-
imum Energy Consumption Broadcast Subgraphs.
In Proc. STACS, pages 121–131, 2001.

[12] U. Feige. A treshold of ln n for approximating set
cover. Journal of the ACM, 45:634–652, 1998.

[13] G. Baudis and C. Gropl and S. Hougardy and
T Nierhoff and H. J. Prömel. Approximating min-
imum spanning sets in hypergraphs and polyma-
troids. In Proc. ICALP, 2000.

[14] S. Guha and S. Khuller. Improved Methods for
Approximating Node Weighted Steiner Trees and
Connected Dominating Sets. Information and
Computation, 150:57–74, 1999.

[15] P. Klein and R.Ravi. A nearly best-possible ap-
proximation algorithm for node-weighted Steiner
trees. Journal of Algorithms, 19:104–115, 1995.

[16] S. Krumke, R. Liu, E. Lloyd, M. Marathe, R. Ra-
manathan, and S.S. Ravi. Topology control
problems under symmetric and asymmetric power
thresholds. In Proc. Ad-Hoc Now, pages 187–198,
2003.

[17] W. Liang. Constructing minimum-energy broad-
cast trees in wireless ad hoc networks. In Proc.
ACM MOBIHOC, pages 112–122. ACM Press,
2002.

[18] F. Mtenzi and Y. Wan. The minimum-energy
broadcast problem in symmetric wireless ad hoc
networks. In Proc. WSEAS ACOS, pages 68–76,
2006.

[19] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane. J. Comput. Syst.
Sci., 23(2):166–204, 1981.

[20] P. Santi. Topology control in wireless ad hoc and
sensor networks. ACM Comput. Surv., 37(2):164–
194, 2005.

[21] A. Schrijver. Combinatorial Optimization.
Springer, 2003.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

305

25th Canadian Conference on Computational Geometry, 2013

[22] S. Singh, C. S. Raghavendra, and J. Stepanek.
Power-aware broadcasting in mobile ad hoc net-
works. In Proc. IEEE PIMRC, 1999.

[23] P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder.
Minimum Energy Broadcast Routing in Static
Ad Hoc Wireless Networks. Wireless Networks,
8(6):607–617, 2002.

[24] J. E. Wieselthier, G. D. Nguyen, and
A. Ephremides. On the construction of energy-
efficient broadcast and multicast trees in wireless
networks. In Proc. IEEE INFOCOM, pages
585–594, 2000.

[25] L.A. Wolsey. Analysis of the greedy algorithm for
the submodular set covering problem. Combinator-
ica, 2:385–392, 1982.

[26] A. Zelikovsky. Better approximation bounds for
the network and Euclidean Steiner tree problems.
Technical Report CS-96-06, Department of Com-
puter Science, University of Virginia, 1996.

25th Canadian Conference on Computational Geometry, 2013

306

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

Planar Convex Hull Range Query and Related Problems

Nadeem Moidu ∗ Jatin Agarwal † Kishore Kothapalli ‡

Abstract

We consider the planar convex hull range query prob-
lem. Let P be a set of points in the plane. We prepro-
cess these points into a data structure such that given an
orthogonal range query, we can report the convex hull
of the points in the range in O(log2 n+ h) time, where
h is the size of the output. The data structure uses
O(n log n) space. This improves the previous bound of
O(log5 n+h) time and O(n log2 n) space. Given a range
query, it also supports extreme points in a given direc-
tion, tangent queries through a given point, and line-hull
intersection queries on the points in the range in time
O(log2 n) for each orthogonal query and O(log n) time
for each additional query on that range. These problems
have not been studied before.

1 Introduction

Planar convex hull is a well studied topic in computa-
tional geometry. Let P be a set of n points on the plane.
Overmars and van Leeuwen gave a data structure which
allows insertions and deletions in P in O(log2 n) time
and reporting of points on the hull in O(log n+h) time,
where h is the number of points on the hull [7]. Instead
of supporting reporting of the entire hull, recent works
provide data structures to support common queries on
the convex hull, CH(P), without actually computing it.
The following queries are typically studied:

1. Extreme point query : Find the most extreme vertex
in CH(P) along a query direction

2. Tangent query : Find the two vertices of CH(P)
that form tangents with a query point outside the
hull

3. Line stabbing query : Find the intersection of
CH(P) with an arbitrary query line

These queries can be supported in O(log n) time by
the structure of Overmars and van Leeuwen [7]. Brodal
and Jacob gave a solution which supports insertions and
deletions in O(log n) amortized time and the first two
queries in O(log n) time without actually computing the
hull [3]. Chan gave a data structure which supports the

∗nadeem.moiduug08@students.iiit.ac.in
†jatin.agarwal@research.iiit.ac.in
‡kkishore@iiit.ac.in

third query in O(log3/2 n) time [4] and later improved
it to O(log1+ε n) time [6].

In this paper, we study the orthogonal range query
versions of the above problems. Given an orthogonal
range query of the form q = [xlow, xhigh]× [ylow, yhigh],
we support the above queries for the points in P ∩ q.
Brass et al. first gave a solution to report the convex
hull of an orthogonal range in O(log5 n + h) time in
[2]. The other problems are being studied for the first
time but the data structure in [2] can be enhanced to
support these queries in O(log5 n) time per orthogonal
range query and an additional O(log2 n) time for any of
the above queries. Our data structure takes O(log2 n)
time to process one orthogonal range query. Once this
is done, we can report the points on the hull of P ∩ q
in O(h) time and any of the above queries in O(log n)
time.

2 Overview

In a standard two dimensional range tree, a query is di-
vided vertically into O(log n) rectangular regions where
each region corresponds to a canonical node in the pri-
mary tree. Each of these primary regions are further
divided horizontally into O(log n) regions correspond-
ing to canonical nodes in the secondary tree. However,
these horizontally divided regions are independent of
each other, i.e. they correspond to different intervals
in different primary regions. In our data structure we
modify the secondary trees such that, for a given query,
the horizontal divisions are same across all canonical
primary node regions. So an orthogonal query is di-
vided into a grid of O(log n) × O(log n) regions which
are perfectly aligned as shown in figure 1. By having
the divisions aligned like this, we are able to discard a
large number of regions which do not contribute to the
final hull without processing them. This idea is similar
to the method used by Abam et al. to enhance kinetic
kd-trees in [1].

3 Data Structure

Let P be a static set of points on a plane. We construct
a one dimensional range tree, Ty of all the points based
on their y coordinates. We call this the template tree.
Given a subset S of the point set P , the contracted tree
of Ty with respect to S is defined as the tree obtained

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

307

25th Canadian Conference on Computational Geometry, 2013

Standard 2D Range Tree Proposed Tree

Figure 1: Example of how a query is split into canonical
node regions for (a) normal 2D range tree and (b) our
tree

by removing all subtrees which do not have a leaf in
S and contracting all nodes which have only one child.
See Figure 2. Since a contracted tree is a full binary
tree (i.e. a tree in which each node has exactly either
zero or two children), it takes O(|S|) space.

a b c d e f g h

a

c d

f

Figure 2: Original tree and the contracted tree for the
set {a,c,d,f}

Next, we construct a primary tree, T , which is a
one dimensional range tree based on the x coordinates.
Each node in this primary tree contains a secondary tree
which is a contracted version of Ty with respect to the
points in the corresponding x range.

A convex hull can be divided into four parts based
on the extreme points along each axis. The upper right
part goes from the point with maximum y coordinate to
the point with maximum x coordinate. The other parts
are similar. Our data structure is designed to compute
the upper right part of the convex hull. The other parts
can be computed similarly and the four parts can be
joined together to obtain the final convex hull. From
here on, we will refer to the upper right convex hull as
urc-hull.

We now describe the information stored at each sec-
ondary tree node. Each internal secondary tree node
corresponds to a set of points which is a union of two
disjoint sets of points, separated by a horizontal line.
So the urc-hull of the points in a node will comprise a
part of each of the child node urc-hulls and the outer
common tangent (bridge) connecting them. We store
the following variables in each internal node, u:

1. A boolean variable which indicates whether the left
child (horizontally lower part) contributes any part
to the urc-hull. If this variable is false, then the
next three parameters are set to NULL.

2. The outer common tangent (bridge) connecting the
urc-hulls of the children, represented by the points
where it intersects the urc-hulls, Bl(u) and Br(u).

3. Both neighbors of Bl(u) and Br(u) in the urc-hulls
of the respective child. (These parameters are re-
quired for computing the common tangent between
two hulls).

4. Indices ofBl(u) andBr(u) in the urc-hulls of the re-
spective child, Indexl(u) and Indexr(u). We need
these two parameters to know the portion of each
child urc-hull that contributes to the urc-hull of the
current node.

5. The y range spanned by the node.

6. Number of points in the urc-hull, N(u).

For leaf nodes, we simply store the point. Since each
secondary tree node stores a constant amount of infor-
mation, the space taken by each primary tree node is
proportional to the number of points in the interval. So
the overall space taken is O(n log n).

Br(u)

Bl(u)

left child(u)

right child(u)

node u

Bridge

Figure 3: Different parameters stored at each node. The
neighbors of Bl(u) and Br(u) are marked green.

Note that we are not storing the urc-hull, as it is,
in each node. However, given indices, i and j, we can
report the points in the urc-hull from i to j in O(log n+
j − i+ 1) time as shown in section 5.

4 Preprocessing

The primary tree is constructed as a standard one di-
mensional range tree based on x coordinates. We pro-

25th Canadian Conference on Computational Geometry, 2013

308

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

cess the primary tree from top to bottom to obtain the
secondary trees (contracted trees) at each primary tree
node. The interval at the root node includes all the
points in P , so the template tree, Ty, is stored as it is.
Note that the interval corresponding to a non-root pri-
mary node is a subset of the interval corresponding to
its parent. For each child, we replicate the tree present
in its parent and then contract it with respect to the
points in the interval of the node. A tree can be con-
tracted with respect to a set of points by removing all
leaves not present in the child and then updating the
parents of the removed leaves as required. Each node
in the tree is processed a constant number of times, so
the time taken for this stage is O(n log n).

Once the tree structure is completed, we start stor-
ing the required information from bottom to top start-
ing from the leaves. Except the common bridge, all the
other parameters of the node can be easily found in con-
stant time. The bridges can be computed as follows: At
each node, discard the points of the child hulls which do
not form part of the parent hull. Since each each point
is discarded atmost once, it takes amortized constant
time per point. So the time taken for preprocessing is
O(n log n) and the space usage is O(n log n).

5 Query Algorithm

Given an orthogonal query [xlow, xhigh] × [ylow, yhigh],
we can identify O(log n) canonical nodes correspond-
ing to the y range, [ylow, yhigh] in the template tree Ty.
We will also identify the O(log n) canonical nodes cor-
responding to the x range in the primary tree. We then
find out the nodes corresponding to the Ty nodes in each
of the primary tree nodes. There are three cases here:

1. The node present in Ty exists in the contracted tree
as it is. In this case, we simply use that node.

2. The node was removed because both its children
were removed. This means that the node was
empty, so this node does not contribute any point
to the urc-hull.

3. The node was removed because it was the only
child of its parent. In this case, we check the node
present in its place to get the required information,
if any.

So an orthogonal range query gets split into O(log n)×
O(log n) secondary tree nodes, which are well aligned as
shown in figure 1. These cases can be identified while
doing a normal one dimensional range tree query on the
secondary nodes.

Lemma 1 The upper right convex hull of the orthogo-
nal range can be computed in O(log2 n) time.

Proof. We define the region covered by each of the
O(log n) × O(log n) secondary tree nodes as a block.
Start by identifying the non empty blocks. If a block
is non empty, then no block which is to its left and
bottom can contribute points to the urc-hull. A block
is called a candidate block if it is non-empty and all
blocks to the right and top of its top right corner are
empty. See figure 4. Based on this observation, the
candidate blocks can be identified as follows: start from
the bottommost non-empty block in the rightmost col-
umn. This is a candidate block. If there exists at least
one non empty block above it in the same column, move
to the next (non-empty) block in the upwards direction.
Otherwise, move one block to the left. Continue this till
we reach the top left block. Every block visited in this
process is a candidate block. Since we are moving only
up or left, we will move in the left direction at most
O(log n) times and in the up direction at most O(log n)
times. So the total number of candidate blocks is at
most O(log n).

Figure 4: Example of a query. The candidate blocks
have been darkened.

Now process the candidate blocks in the order they
were visited. The individual urc-hulls of each node can
be merged together to form the complete urc-hull in
a manner similar to Graham’s scan. This method has
been used before, e.g. see [5]. Maintain the urc-hull up
to the current block in a stack, H. Each block, con-
tributes atmost one continuous range to the urc-hull.
Each element of the stack contains a pointer to a can-
didate block, H(u) and the indices of the start and end
points of this range, Hs(u) and He(u). First, push the
right bottom block. Process each subsequent block, v as
follows: Compute the common tangent between the cur-
rent block, v and the urc-hull on the top of the stack,
top(H). If this tangent does not intersect top(H) be-
tween the range top(Hs) and top(He), then the current
top does not contribute to the urc-hull anymore. So
pop out top from the stack and compute the tangent
with the new top of the stack. Continue this till the
top of the stack is not popped out. Now push the cur-
rent block to the top of the stack and update the ranges
appropriately based on the tangent information.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

309

25th Canadian Conference on Computational Geometry, 2013

The time taken is mostly for computing the tangents.
This has to be done exactly once for each time a urc-
hull is pushed or popped. Each tangent computation us-
ing the method of Overmars and van Leeuwen [7] takes
O(log n) time. This method compares a point on each
of the hulls and discards either the portion before it
or the portion after it in the corresponding hull. This
is where we use the neighbors of the bridges stored in
each secondary tree node. This tangent computation is
done O(log n) times. So the overall time complexity is
O(log2 n). �

The above merging algorithm returns a stack of the
secondary tree nodes and the indices of the range that
each of these nodes contribute to the urc-hull. The
line segment connecting the end points of two adjacent
nodes in this stack gives the bridge connecting them.
Using this structure, we can report all the points on the
urc-hull in O(log n+ h) time as shown in algorithm 1.

Input: Tree node u, Indices i and j
Output: Points on the urc-hull corresponding to u

from indices i to j, inclusive
if u is a leaf node then

Report the point if i = j = 1
else

if Indexl(u) > i then
Report points in the range of the left
subtree which forms part of the range [i, j]
in the parent hull

end
if i ≤ Indexl(u) ≤ j then

Report Bl(u)
end
if i ≤ Indexl(u) + 1 ≤ j then

Report Br(u)
end
if Indexl(u) + 1 < j then

Report points in the range of the right
subtree which forms part of the range [i, j]
in the parent hull

end

end
Algorithm 1: Algorithm to report the points on the
urc-hull of a node from given indices i to j, inclusive

5.1 Other Problems

We now explain how to solve the extreme point query,
line stabbing query and tangent query problems using
the stack obtained above without constructing the en-
tire convex hull. Recall that the convex hull was divided
into four parts based on the extreme points. For the
problems discussed in this section, the answer could be
in any of these four parts. It is easy to identify the exact

part(s) by comparing the extreme points with the query
parameter.

The basic idea is the following: By comparing an edge
of the hull with a query parameter, we can discard, in
constant time, either the part before the edge or the
part after the edge. We proceed as follows: Compare
each bridge connecting adjacent elements in the stack
with the query parameter. If the required output lies
on one of the bridges, then we report the answer and
stop. Otherwise, this will help in identifying the exact
node which contains the required output. This takes
time proportional to the number of bridges, which is
O(log n). Once the node is identified, by comparing the
bridge at the root of the node with the query parameter,
we can decide whether we should take the root, or go to
the left or right subtree. This takes time proportional
to the height of the tree which is also O(log n). So the
overall time taken is O(log n).

For line stabbing query, there are at most two points
to be reported. We have to query for each of them
separately. Otherwise, it will not be possible to discard
a half at each stage in the above algorithm.

6 Future Work

It might be possible to improve the bounds given in this
paper. A more interesting problem is to make the set of
points dynamic by allowing insertions and/or deletions.
The problem is also open in higher dimensions.

The modified range tree approach can be used to im-
prove various range query problems like reporting the
smallest enclosing disk or the width of the points in a
query rectangle.

References

[1] M. A. Abam, M. de. Berg and B. Speckmann, Ki-
netic kd-Trees and Longest-Side kd-Trees. In SICOMP
39:1219-1232, 2009.

[2] P. Brass, C. Knauer, C. S. Shin, M. Schmid and I.
Vigan. Range-Aggregate Queries for Geometric Extent
Problems. In Proc. 19th Computing: Australasian The-
ory Sympos. CATS 141:3-10, 2013.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In Proc. 43rd IEEE Sympos. Found. Comput.
Sci., pages 617-626, 2002.

[4] T. M. Chan. Dynamic planar convex hull operations in
near-logarithmic amortized time. In J. ACM, 48:1-12,
2001.

[5] T. M. Chan. and E. Y. Chen, Multi-Pass Geometric
Algorithms. In Discrete and Comput. Geom.,37(1): 79-
102, 2007.

[6] T. M. Chan. Three Problems about Dynamic Convex
Hulls. In Proc. 27th ACM Sympos. Comput. Geom.
27-36, 2011.

[7] M. H. Overmars and J. van Leeuwen. Maintenance of
Configurations in the Plane. In J. Comput. Syst. Sci.
23:166-204, 1981.

25th Canadian Conference on Computational Geometry, 2013

310

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

What’s in a gaze?
How to reconstruct a simple polygon from local snapshots

Peter Widmayer

Department of Computer Science, ETH Zurich, Switzerland

Given a bunch of observations of geometric features of an unknown geometric object, we want to reconstruct the
object that gave rise to our observations. Under which conditions is this possible, when is the solution unique, and
how can we find it? Classical computational geometry questions like these have recently been studied with a twist
coming from the current interest in mobile agents that explore unknown environments.

We discuss a particular family of problems of this flavour: For very simple mobile agents that can move only from
vertex to vertex, what types of observations are needed to reconstruct a simple polygon? We allow the mobile agents
to take snapshots of a variety of features at the vertices. Our interest is not in the efficiency of the reconstruction,
but merely in the question of which local observations lead to a unique solution. Ideas from distributed computing
appear to help to reconstruct the polygon topology, even in a situation in which the observations are essentially
non-geometric.

The work discussed in this talk has been carried out with Davide Bilo, Jeremie Chalopin, Shantanu Das, Yann
Disser, Beat Gfeller, Matus Mihalak, Subhash Suri, and Elias Vicari.

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

311

Index

Abam, Mohammad Ali, 265
Abrahamsen, Mikkel, 157
Agarwal, Jatin, 307
Aichholzer, Oswin, 73, 169, 205
Allen, River, 241
Aloupis, Greg, 73
Alvarez, Victor, 85, 135
Angelini, Patrizio, 117
Aronov, Boris, 211, 259
Assadi, Sepehr, 235

Bae, Sang Won, 205
Banik, Aritra, 37
Barba, Luis, 205, 217, 229
Barbay, Jérémy, 151
Beingessner, Alexis, 217
Bhattacharya, Bhaswar, 37
Biedl, Therese, 13
Biro, Michael, 129
Bose, Prosenjit, 175, 205, 217
Bringmann, Karl, 85
Busto, Daniel, 283

Calinescu, Gruia, 301
Cardinal, Jean, 169
Chambers, Erin, 19, 135
Chan, Timothy M., 151, 289
Chaplick, Steven, 141
Chen, Ke, 271
Clement, Christopher, 199
Cohen, Elad, 141
Crepaldi, Bruno, 223

Das, Sandip, 37
De Carufel, Jean-Lou, 175
Demaine, Erik D., 31, 43, 73
Demaine, Martin L., 43, 73
Dumitrescu, Adrian, 271
Durocher, Stephane, 229

Emamjomeh-Zadeh, Ehsan, 235
Eppstein, David, 61, 117
Evans, William, 283

Fekete, Sándor P., 73
Fraser, Robert, 229
Frati, Fabrizio, 117

Gagie, Travis, 145
Gao, Jie, 129
Gawrychowski, Paweł, 145
Genov, Blagoy, 97
Gheibi, Amin, 123
Ghosh, Anirban, 271
Goodrich, Michael, 61, 181
Grimm, Carsten, 175

Hackl, Thomas, 169
Held, Martin, 13
Heyer, Laurie, 241
Hoffmann, Michael, 73, 295
Hu, Nan, 289
Huber, Stefan, 13
Hurtado, Ferran, 169, 229

Iacono, John, 211
Imai, Keiko, 187
Iwerks, Justin, 129

Ju, Tao, 19

Kaaser, Dominik, 13
Kaufmann, Michael, 117
Kawamura, Akitoshi, 25
Kazemi, Mohammad Reza, 265
Khanteimouri, Payam, 265
Kirkpatrick, David, 283
Korman, Matias, 169, 205
Kostitsyna, Irina, 129
Kothapalli, Kishore, 307
Kozma, László, 135
Kumar, Nirman, 103
Kusters, Vincent, 295

Löffler, Maarten, 163
Lazard, Sylvain, 117
Lee-St.John, Audrey, 199
Letscher, David, 19
Lubiw, Anna, 73

Maheshwari, Anil, 123, 175
Mchedlidze, Tamara, 117
Mehrabi, Saeed, 229
Mitchell, Joseph S. B., 109, 129
Mohades, Ali, 265
Moidu, Nadeem, 307

CCCG 2013, Waterloo, Ontario August 8–10, 2013

Mondal, Debajyoti, 229
Morgenstern, Gila, 141
Morrison, Jason, 229
Mukherjee, Satyaki, 37

Navarro, Gonzalo, 151
Nekrich, Yakov, 145
Nishat, Rahnuma Islam, 49, 241

O’Rourke, Joseph, 79
Okamoto, Takuma, 25
Okamoto, Yoshio, 31
Özkan, Özgür, 211

Pérez-Lantero, Pablo, 151
Palfrader, Peter, 13
Panahi, Fatemeh, 247
Pilz, Alexander, 169
Pszona, Paweł, 181

Raichel, Benjamin, 103
Ray, Saurabh, 85
Renssen, André van, 205
Rezende, Pedro de, 223
Rote, Günter, 295

Sack, Jörg-Rüdiger, 123
Saumell, Maria, 295
Schulz, André, 163
Seidel, Raimund, 85
Shaffer, Alla, 115
Sheehy, Donald R., 253
Sidman, Jessica, 199
Silveira, Rodrigo, 169, 295
Simons, Joseph A., 61
Skala, Matthew, 229
Smid, Michiel, 175, 217
Snoeyink, Jack, 73
Souza, Cid de, 223
Stappen, A. Frank van der, 247
Sun, Timothy, 193

Taslakian, Perouz, 205
Tatsu, Yuichi, 25
Teillaud, Monique, 117
Tóth, Csaba, 163

Uehara, Ryuhei, 31, 43, 169
Uno, Yushi, 25, 31

Verdonschot, Sander, 205
Viglietta, Giovanni, 55, 277
Vogtenhuber, Birgit, 169

Wagner, David P., 67
Wahid, Mohammad Abdul, 229
Wang, Haitao, 91

Welzl, Emo, 169
Whitesides, Sue, 11, 49, 241
Widmeyer, Peter, 311
Winslow, Andrew, 73
Wolff, Alexander, 117

Yagnatinsky, Mark, 211, 259
Yamato, Masahide, 25
Yazdanbod, Sadra, 235
Yokosuka, Yusuke, 187

Zarrabi-Zadeh, Hamid, 235

313

