

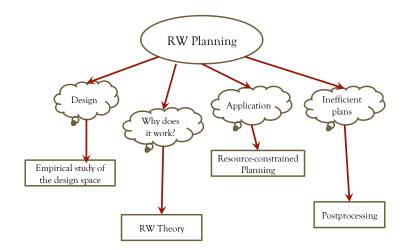
Random Walk Planning: Theory, Practice, and Application

Hootan Nakhost

University of Alberta, Canada Google Canada since May 2013

May 9, 2012

Automated Planning	RW Theory	RW Search	Application	Plan Improvement	Systems	Conclusions
Outline						



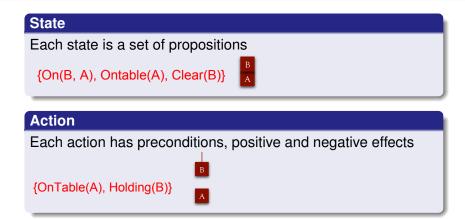
- 2 RW Theory
- 3 RW Search
- Application
- 5 Plan Improvement
- 6 Systems

Given a model of the world, generate a plan to achieve predefined goals

Applications

- Autonomous agents
- General solvers

Classical Representations (STRIPS)



Plan

A sequence of actions that starts from the initial state and ends in $s \supseteq G$

Planning Methods

Heuristic Search

Common standard systematic search algorithms such as Greedy Best First Search (GBFS) and WA* $\,$

Contribution

A new search paradigm for satisficing planning: random walk (RW) search

- Automated Planning
- 2 RW Theory
- 3 RW Search
- Application
- 5 Plan Improvement
- 6 Systems
- Conclusions

Random Walk

A sequence of randomly selected actions

High level and Intuitive Explanations

- Escaping faster from plateaus
- More exploration
- Not wasting time in dead-ends

A theoretical model can explain ...

- What are the key features affecting the performance
- How we can improve the algorithms

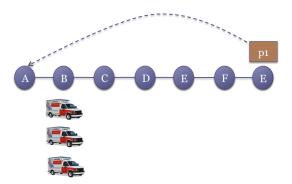
RW Search

Application

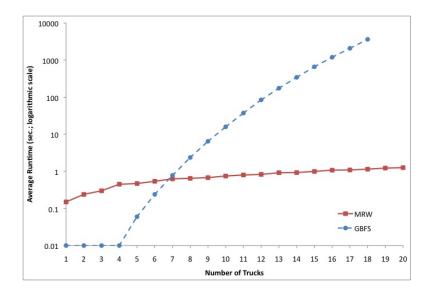
Plan Improvement Systems

Conclusions

A Motivating Example: Transportation Domain



Random Walks vs. Systematic Search



Application

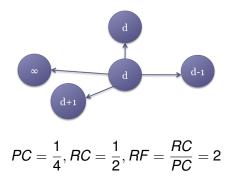
Plan Improvement Systems

Conclusions

Theoretical Analysis of RW Planning

Graph properties affecting RW performance

- Progress Chance(PC)
- Regress Chance(RC)
- Regress Factor(RF)



RW Search

Application

Plan Improvement

Systems Conclusions

Definitions: Fairness and Hitting Time

Fairness

A single state transition in the graph cannot change the goal distance by more than one unit. Every undirected graph is a fair graph.

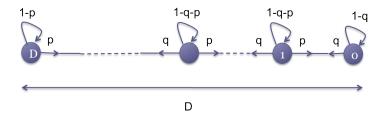
Hitting Time

The expected number of steps in a random walk starting from the initial state and ending in the goal for the first time. Application

Plan Improvement

Systems Conclusion

Fair Strongly Homogenous Graph (FSHG)



- p = progress chance
- q = regress chance
- D = largest goal distance

Theorem: Hitting time in FSHG

$$h_{x} = \begin{cases} \Theta \left(\beta_{0} \lambda^{D} + \beta_{1} d_{x}\right) & \text{if } q \neq p \\ \Theta \left(\alpha_{1} D d_{x}\right) & \text{if } q = p \end{cases}$$

where

$$\lambda = \frac{q}{p}, \beta_0 = \frac{q}{(p-q)^2}, \beta_1 = \frac{1}{p-q}, \alpha_0 = \frac{1}{2p}, \alpha_1 = \frac{1}{p}$$

RW Theory

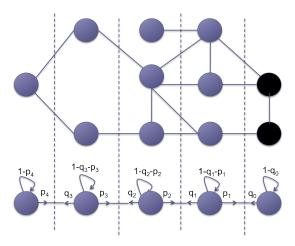
RW Search

Application

Plan Improvement

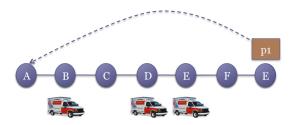
Systems Conclusions

Bounds for more general graphs



 q_i = maximum regress chance at the goal distance *i* p_i = minimum progress chance at the goal distance *i*

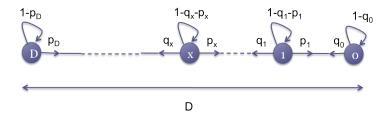
Analysis of the Transport Example



$$RC_{max} = PC_{min} = rac{1}{2 imes | ext{trucks}|}$$

 $h_x = rac{Dd_x}{p}$

Fair Homogenous Graph (FHG)



- p_i = progress chance at goal distance *i*
- q_i = regress chance at goal distance *i*
- D = largest goal distance

$$h_{x} = \sum_{d=1}^{d_{x}} \left(\beta_{D} \prod_{i=d}^{D-1} \lambda_{i} + \sum_{j=d}^{D-1} \left(\beta_{j} \prod_{i=d}^{j-1} \lambda_{i} \right) \right)$$

where for all $1 \leq d \leq D$,

$$\lambda_d = \frac{q_d}{p_d}, \beta_d = \frac{1}{p_d}$$

RW Theory

RW Search

Application

Plan Improvement

Systems Conclusions

Theory for Random Walks with Restart

Restarting Random Walks

At each step with probability r restart from the initial state

Hitting Time

$$h_{x} \in O\left(\beta\lambda^{d_{x}-1}\right)$$

where

$$\lambda = \left(\frac{q}{p} + \frac{r}{p(1-r)} + 1\right), \beta = \frac{q+r}{pr}$$

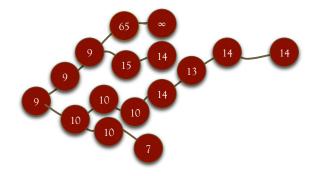
- Determined the key features of the search space affecting RW
 - Regress factor RF
 - Largest goal distance D
 - Initial goal distance d
- Provides valuable insights to design RW planners
 - Biasing action selection
 - Restarting frequency r

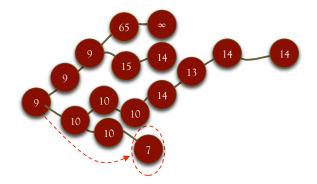
- 2 RW Theory
- **3 RW Search**
 - Application
- 5 Plan Improvement
- 6 Systems

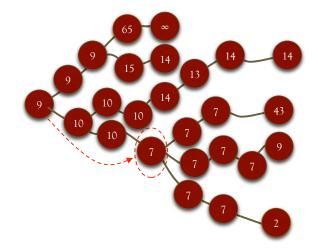
Automated Planning	RW Theory	RW Search	Application	Plan Improvement	Systems	Conclusions
RW Search						

The General Framework

- Use forward chaining Local Search
- In each step, run random walks to find the next state
- Use restarts to recover from unpromising search regions









A Basic RW planner

Walk Length

Use a local restarting rate r_l : at each step terminate the walk with probability r_l

Restarting

Use a restarting threshold t_g : restart the search when the last t_g walks have not reached lower heuristic

Experimental Study of the Design Space

Local Exploration

- Length of Walks
- Evaluation Rate
- Action Selection Bias

Global Exploration

- Jumping Strategies
- Restarting Strategies

Heuristic function

- Type of the heuristic function
- The accuracy of the heuristic function

- Learning systems that adapt parameters to the input problem
- Effective Biasing techniques

RW Theory

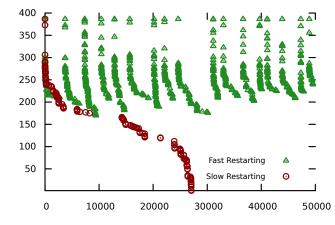
RW Search

Application

Plan Improvement

ystems Conclusior

The Effect of Restarting Threshold: Elevators 03



Min. Heuristic Value

No. of Walks

Min. Heuristic Value

RW Theory

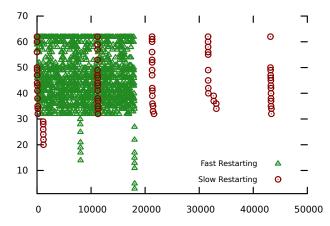
RW Search

Application

Plan Improvement

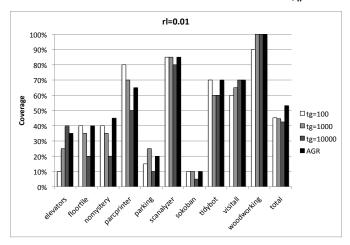
s Conclusions

The Effect of Restarting Threshold: Floortile 01

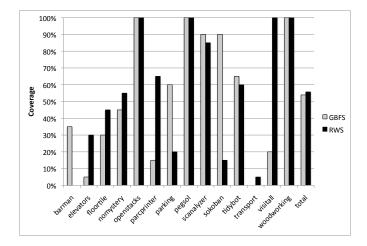


No. of Walks

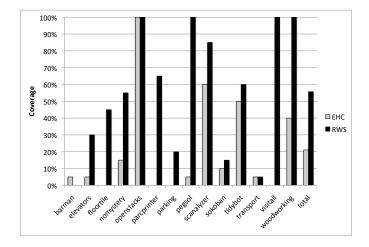
- Let V_w be the average heuristic improvement per walk
- AGR continually estimates V_w and sets $t_g = \frac{h_0}{V_w}$



Comparison with GBFS



Comparison with EHC



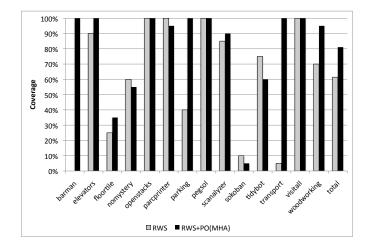
Biasing Action Selections

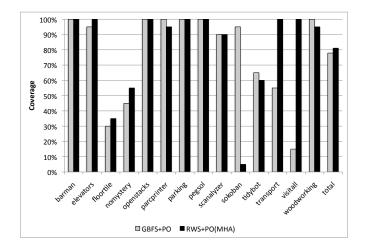
Monte Carlo Helpful Actions (MHA)

MHA gives a higher priority to preferred operators.

$$P(a,s) = \frac{e^{Q(a)/T}}{\sum_{b \in A(s)}^{n} e^{Q(b)/T}}$$

MHA vs. Uniform Action Selection



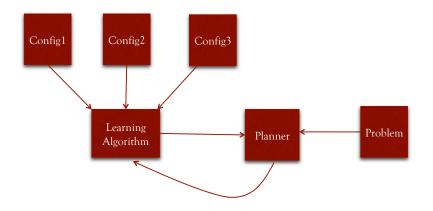


• Combine several techniques that complement each other

Examples

- Multiple heuristics in LAMA and Fast Downward
- Multiple search strategies in Fast Forward and FD Stone Soup

Learning the Best Configuration



Application

Plan Improvement

Systems Conclusions

Comparing Arvand-2013 with Top Satisficing Planners

Table: IPC problems without Derived Predicates

No. of Problems Arvand-2013 LAMA-2011 FDFSS2 Probe Roamer

1661 **1552** 1540 1533 1422 1507

Table: All IPC problems

No. of Problems Arvand-2013 LAMA-2011 FDFSS2 Probe Roamer

1857	1666	1659	1668	_	1635

Plan Improvement

The Gap Between RW and Systematic Planning

Domains	Arvand-2013	LAMA-2011
Airport (50)	44	31
Notankage (50)	50	44
Sokoban (20)	1	19
Storage (30)	30	19
Tankage (50)	44	41
Woodworking (30)	14	20
Philosophers (48)	44	34
PSR Large (50)	19	31
PSR Middle (50)	43	50

- Automated Planning
- 2 RW Theory
- 3 RW Search
- Application
- 5 Plan Improvement
- 6 Systems
- Conclusions

Examples of limited resources

Fuel, energy, money, time

Model: not replenishable resources

- Initial supply
- Some actions consume resources

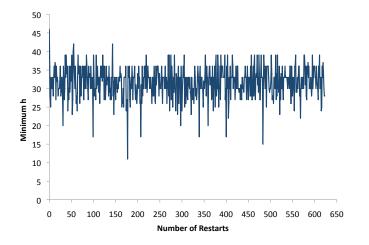
- Relaxation heuristics do not model resource consumption at all
- Greedy search algorithms add more problems

 Automated Planning
 RW Theory
 RW Search
 Application
 Plan Improvement
 Systems
 Conclusions

 Improvements to Arvand for RCP

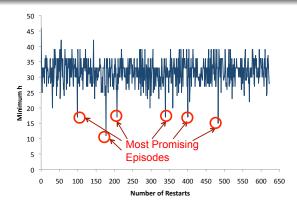
- Smart Restarting (SR)
- On-path Search Continuation (OPSC)

Basic Restarting in an Example

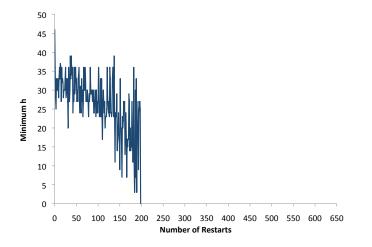


Algorithm

- Maintain a pool of most promising episodes performed
- When an episode gets stuck restart from a state visited in an episode in the pool



Smart Restarting in an Example



Performance as a function of constrainedness

Resource constrainedness C (Hoffmann et. al. IJCAI-2007)

 $C = \frac{\text{initial supply}}{\text{minimum need}}$

The closer C is to 1, the more constrained is the problem.

My Contributions

- Extended the definition of C to multiple resources
- Developed two new benchmarks for RCP

Automated Planning	RW Theory	RW Search	Application	Plan Improvement	Systems	Conclusions
Experiments	;					

3 RCP Domains

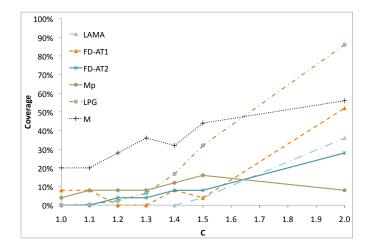
NoMystery, Rovers, TPP

8 Satisficing Planners

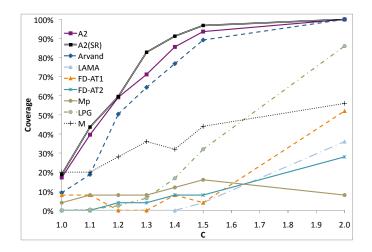
Arvand, FD-AT1, FD-AT2, LAMA, FF, LPG, M, Mp, LPRPGP

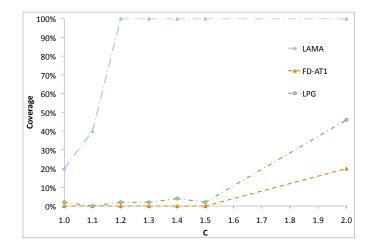
5 Optimal Planners

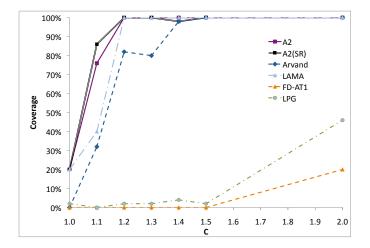
Num-2-sat, LM-cut, Merge and Shrink, Selmax, FD-AT-OPT



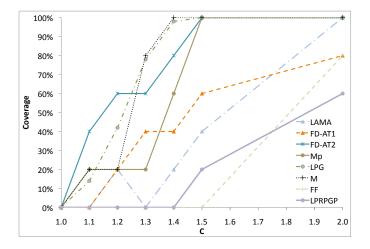
Results: Rovers, small



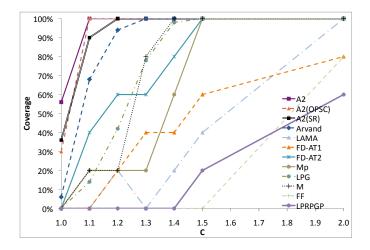




Results: NoMystery, large



Results: NoMystery, large



- 2 RW Theory
- 3 RW Search
- Application
- **5** Plan Improvement
- 6 Systems

RW planning can generate bad-quality solutions

Idea

Develop fast post-processing techniques to improve the solutions

Outcome: Aras

A postprocessor that works well for a wide range of planners

• Even for those like LAMA that are well-designed to generate good-quality solutions

RW Theory

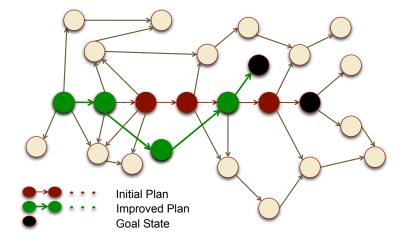
RW Search

Application

Plan Improvement System

Conclusions

Plan Neighborhood Graph Search (PNGS)

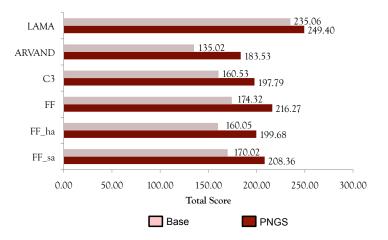


- Iteratively increase the expansion limit
- Each iteration starts with last plan generated in previous iterations

- Compare state-of-the-art planners with and without plan improvement on IPC domains
- Scoring function: the cost of the best plan produced by any planner divided by the cost of the generated plan
- Issue: how to divide time between planner and postprocessor

- Run the planner until a cutoff time is reached
 - If no solution is found, keep running until the first solution is found
- Use the postprocessor to improve the best generated plan

Automated Planning	RW Theory	RW Search	Application	Plan Improvement	Systems	Conclusions
IPC-2008 PN	IGS					



Integration of Arvand-2013 and Aras

- Repeat until the time limit (30 min.) is reached:
 - Run Arvand-2013 until a solution s is found
 - Run Aras to improve s until a memory/time limit (2 GB) is reached
- The cost of the best previous plan is used for prunning
- Report the best plan found as the result

Application

Plan Improvement

stems Conclusion

Arvand-2013 vs. Top Planner (Solution Quality)

Domain	Arvand-2013	LAMA-2011	FDFSS2	FDFSS1	Roamer
Scanalyzer	16.17	15.63	16.91	17.70	15.46
Pegsol	19.88	19.88	16.02	14.70	18.11
Floortile	5.00	4.46	6.35	5.44	1.63
Tidybot	11.22	14.53	11.23	14.82	13.03
Nomystery	13.39	11.33	10.80	13.33	9.51
Transport	12.10	12.39	9.14	9.46	14.39
Parcprinter	19.00	18.87	18.95	16.65	5.83
Elevators	8.64	10.62	8.70	12.41	11.74
Visitall	11.89	15.84	3.08	2.77	16.89
Parking	10.11	16.96	12.40	8.72	8.34
Woodworking	12.75	14.23	18.42	18.56	11.78
Barman	19.93	17.15	10.86	14.31	15.30
Sokoban	1.00	16.28	13.90	15.88	13.22
Openstacks	11.83	18.36	11.11	12.68	17.57
Total	172.88	206.52	167.88	177.43	172.80

- Arvand-2009: Establishing the foundation
- Arvand-RC: Using RW Search for RCP
- Arvand-2011: Learning the Best Configuration and Using Aras
- Arvand-LS: RandomWalks with Memory
- ArvandHerd: Parallel portfolio

- 2 RW Theory
- 3 RW Search
- Application
- 5 Plan Improvement

6 Systems

RW search as an effective framework for satisficing planning

- A theoretical framework for studying RW search
 - Determined key features affecting RW
 - Explained where and why RW exploration is effective
- A detailed experimental study of design space
 - Built effective learning systems that adapt parameters
 - Built efficient biasing techniques
 - Gained valuable insights regarding the effects of different parameters

• Application of RW search to RCP

- Extended the definition of C to multiple resources
- Developed of new benchmarks
- Significantly improved the state of the art
- Aras: a very effective postprocessing system
- Several strong planning systems
 - Arvand-2009: Establishing the foundation
 - Arvand-2011: Configuration learner and Aras
 - Arvand-2013: Empirical study of the design space
 - Arvand-RC: Using RW search for RCP
 - Arvand-LS: RW with memory
 - ArvandHerd: Parallel portfolio

Automated Planning RW Theory RW Search Application Plan Improvement Systems Conclusions

Thank you for your attention!