Text Mining: Where do we come from? Where do we go?

Stan Matwin, CRC

AI’2014, Montréal
Plan

• A tiny bit of history, and...
• Where we are today
• A **burning** question....
• ...and discussion around it
• Some current work related to the question...
• A peek into the future
Text mining (~ text analytics)

- Classification, clustering, information extraction, topic identification, sentiment analysis,…
- ie: unstructured text → database record (frame); e.g.

 business news → **corporate_takeover**

 company_A, company_B, share_price, CEO, …
Very brief history

– Early NLP (60s-80s): syntax-driven, semantic approaches,
 • frame semantics based on case grammars [Fillmore 68]

– Statistical approaches (90s-today)
 • info extraction e.g. Conditional Random Fields [Lafferty, McCallum, Pereira 01]
 • topic identification, e.g. Latent Dirichlet Allocation [Blei, Ng Jordan 03]

– Deep learning models [Mnih,Hinton 09], [Morin, Bengio 05],[Bordes et al. 12], [Mikolov 13]
The **burning question:** relationship between Knowledge and Data

- Qualitative
- Quantitative

• [Clark, Matwin 93]
• Learning from data and from the model of the world
• The use of the model in learning is equivalent to having additional examples

<table>
<thead>
<tr>
<th>Model-Example Equivalence</th>
<th>Percentage Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore-grinder model</td>
<td>+50%</td>
</tr>
<tr>
<td>workflow model</td>
<td>+20%</td>
</tr>
</tbody>
</table>

• Other advantages
 – Comprehensibility
 – Noise resistance
• “You can’t learn something unless you already almost know it”

• But, PCA
• Where to get knowledge?
• In what form?
 – Symbolic?
 – Probabilistic?
 – How to embed it in domain-specific kernels?
So: thou should use knowledge in AI systems...
Knowledge will bring structure...and understanding

Who's closer to C, A or B?

Statistician: B
Knowledge-based AI-er: C
Data replaces knowledge (Big Data - 2011)

• Hegelian principle: transition
 quantity \rightarrow quality

• Why would that be?
 – [Mayer-Schonberger, Cukier 2013]: “end of theory”, “correlation instead of causality”, “demise of the expert”
Large enough data will bring structure...

by Oculus for Mariant N6, Royal Canadian Navy, Halifax, NS, Canada

AIS signal data only, no knowledge of geography etc.
AI example – Machine Translation

– Rule-based MT: Systran (Toma, 1988)/Babel Fish 2001
– Google Translate ("GT", Och 2006)
Google Translate – Statistical MT [Och 2006]

• Corpus-based: exploits corpora of existing **aligned** translations

• SMT = Language Model + Statistical Decision Theory:

\[\hat{e}(f) = \arg\min_e \sum_{e'} L(e, e', f) \times Pr(e|f) \]

• \(Pr(e|f) \) is modelled using \(p(e|f) \) **acquired from data** (corpora)

• Data is **BIG**:
 – 200M in [Och 2006]
 – 5M-4,800M words
Tools

- EM
- Advanced heuristic search (beam)
- Bayesian modeling
- Markovian modeling
- Optimization
Recent use of deep learning techniques for text mining and SMT

• Learning meaning representations $relation(subject, object)$ from WordNet, Wikipedia, etc. [Bordes et al. 11]

• [Mikolov 13]
 – Learning a large bilingual dictionary from
 • A small dictionary
 • A learned model for the tow languages
 • A liner mapping between mdels
Is Knowledge Really Helpful for a Given Text Mining Task [Matwin et al. JAMIA 2010]?

Systematic Reviews:

- Liberal Screening: \(\approx 10^4 \) abstracts
- Strict Screening: \(\approx 10^3 \) full papers
- Data Extraction: \(\approx 10^1 \) fragments

- classification
- Eventually, information extraction
Representation

• Bag of words: obvious shortcomings
• Co-occurrence [Pedersen, Razavi]
• Knowledge-based distance
• t-SNE approach to visualization [van der Maaten, Hinton 2008]
Co-occurrence

• Capturing non-local semantic relationships between words in a corpus
• Used on its own as a text representation [Liu et al. 12], [Matwin, De Koninck, Razavi 10].
Other knowledge-based distances

- MeSH distance (ontology-based, hence semantic) - MMTX tool extracts MeSH terms from text
- OMIOTIS distance – combines geometric distance (tf-idf median) with semantic distance (WordNet based)
We use MMTX and Omiotis in t-SNE

• Hypothesis: semantic (knowledge-based) approaches should give better (clearer) visualizations
Visualization of text data (documents) with Dr. Vera Sazonova

- Multi-dimensional scaling MDS
- Stochastic Neighbor Embedding t-SNE “t-SNE is capable of capturing much of the local structure of the high-dimensional data very well, while also revealing global structure such as the presence of clusters at several scales.”
1000 most common words from news reports, 100 features (from [van der Maaten, Hinton 2008])
classes

Cosine distance

Text and abstract only

LDA topics

Text, abstract and MeSH
Cosine distance

Omiotis distance

Wiki, Text, abstr., MeSH

MeSH, MMTX, path Dist.
Word2Vector results

• Baseline

• Omiotis

• Vectors added
Despite many trials, no evidence that knowledge-based distances result in better visualization
So what’s the future for TM? Some guesses...

• Non-local representations
 – Co-occurrence → LDA
 – Semi-relational – eg frequency of co-occurrence of neighbouring n-grams [Giannakopoulos 12]
 – Neural networks-“smoothened” bag of words [Mikolov 13]

• Good document visualization techniques [Stasko-JIGSAW]
• Massive corpora/big data approaches (eg to question answering)
 – Google N-grams
• Use of Wikipedia for ML/NLP
• From MT to interpretation