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We present two different corrected proofs of Theorem 2.7, from Allouche and Shallit
(1992) on the merge of k-regular sequences.

1 Proof number 1

This proof uses the interpretation of k-regular sequences in terms of the k-kernel, and is an
“arithmetic” proof.

Theorem 1. Suppose k ≥ 2, a ≥ 1 are integers, and suppose (f(n))n≥0 is a sequence such
that each subsequence (f(an + i))n≥0 is k-regular for 0 ≤ i < a. Then (f(n))n≥0 itself is
k-regular.

Proof. The idea behind the proof is as follows: we define fi(n) = f(an + i) for 0 ≤ i < a.
By hypothesis each (fi(n))n≥0 is k-regular. We also define the sequences (gi(n))n≥0 by

gi(am+ j) =

{
fi(m), if i ≡ j (mod a);

0, otherwise;

for 0 ≤ i, j < a. Thus each (gi(n))n≥0 is just (fi(n))n≥0 that has been modified by shifting
and insertion of a − 1 0’s between terms. Then f(n) =

∑
0≤i<a gi(n), so it suffices to show

that each (gi(n))n≥0 is k-regular.
To do this, we show that the k-kernel of (gi(n))n≥0 is a subset of a finitely-generated

module. Let (gi(k
en + c))n≥0 be an arbitrary element of the k-kernel of (gi(n))n≥0. To

evaluate it, we need to know when ken + c = am + i. By a standard theorem about two-
variable Diophantine equations, we know this equation has solutions iff gcd(ke, a) | i− c. If
this condition holds, then all solutions are parameterized by

n = Ne`+ n0

m = Me`+m0
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for ` ≥ 0, where

Ne :=
a

gcd(ke, a)
, Me :=

ke

gcd(ke, a)

and 0 ≤ n0 < Ne, 0 ≤ m0 < Me.
It follows that (gi(k

en+ c))n≥0 is either the 0 sequence (if gcd(ke, a)|/i− c) or a shift (by
at most Ne − 1 < a) of the sequence (fi(Me`+m0))`≥0 interspersed with Ne − 1 0’s.

We now claim that the k-kernel of (gi(n))n≥0 is finitely generated. It suffices to show
that the k-kernel of (fi(Me` + m0))`≥0 is finitely generated. The key remark is that there
are only finitely many different values of gcd(ke, a), so Me can always be written in the form
ke−ts, where t and s are bounded. Write sq+d = m0 for 0 ≤ q < m0/s and 0 ≤ d < s. Thus
(fi(Me` + m0))`≥0 is an element of the k-kernel of (fi(sn + d))n≥0, namely, the one given
by taking the subsequence corresponding to n = ke−t` + q. Since, by Theorem 2.6, each
subsequence (fi(sn + d))n≥0 is k-regular, their k-kernels are finitely generated. The result
now follows.

2 Proof number 2

This proof is based on the linear representation of k-regular sequences.

Lemma 2. Let (f(n))n≥0 be a k-regular sequence, and let Σk = {0, 1, . . . , k − 1}. Let
T = (Q,Σk,Σk, δ, q0, ρ) be a deterministic finite-state transducer with transitions on single
letters only, but allowing arbitrary words as outputs on each transition. More precisely,

• Q = {q0, . . . , qr−1};

• δ : Q× Σk → Q is the transition function; and

• ρ : Q× Σk → Σ∗k is the output function.

Let the domain of δ and ρ be extended to Σ∗k in the obvious way. Define g(n) = f(T ((n)k))).
Then (g(n))n≥0 is also a k-regular sequence.

Proof. Let (v, µ, w) be a rank-s linear representation for f . We create a linear representation
(v′, µ′, w′) for g.

The idea is that µ′(a), 0 ≤ a < k, is an n×n matrix, where n = rs. It is easiest to think
of µ′(a) as an r× r matrix, where each entry is itself an s× s matrix. In this interpretation,
(µ′(a))i,j = µ(ρ(qi, a)) if δ(qi, a) = qj.

An easy induction now shows that if δ(qi, x) = qj and ρ(qi, x) = y, then (µ′(x))i,j = µ(y).
If we now let v′ be the vector [v v · · · v] and w′ be the vector [w w · · · w], then it
follows that v′µ′(x)w′ = vµ(T (x))w. This gives a linear representation for (g(n))n≥0.

Now we can prove the desired result.
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Proof. First, we build build a finite-state transducer T that outputs the base-k representation
of bn/ac on input (n)k. The idea is just to use long division, keeping track of the carries
(which can be at most a) in the state. A slight complication is to avoid outputting leading
zeroes, but this is easily handled (see example for a = 3, k = 2).

Figure 1: Transducer dividing by 3

Next, we use the lemma above to see that (f(T ((n)k)))n≥0 is k-regular. Thus we have
shown that (f(bn/ac))n≥0 is k-regular.

Now consider the periodic sequences (pi(n))n≥0 defined by pi(n) = 1 if n ≡ i (mod a) and
0 otherwise. Each such sequence is k-automatic and hence k-regular. Let fi(n) be k-regular
sequences for 0 ≤ i < a. By above each sequence (fi(bn/ac))n≥0 is k-regular. Hence f(n),
the a-way merge of the sequence fi(n), is given by

f(n) :=
∑
0≤i<a

pi(n)fi(bn/ac),

and is k-regular by the closure properties of these sequences.
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