The Tower of Hanoi and Finite Automata

Jean-Paul Allouche and J. Shallit

Abstract Some of the algorithms for solving the Tower of Hanoi puzza be
applied “with eyes closed” or “without memory”. Here we seywthe solution for
the classical tower of Hanoi that uses finite automata, alsasedome variations on
the original puzzle. In passing, we obtain a new result onpiniems generating the
classical and the lazy tower of Hanoi, and a new result on aticreequences.

1 Introduction

A huge literature in mathematics or theoretical computérse deals with the
tower of Hanoi and generalizations. The reader can lookeatéferences given in
the bibliography of the present paper, but also at the pageibin these references
(in particular in [5, 13]). A very large bibliography was wen by Stockmeyer [27].
Here we present a survey of the relations between the towdanbi and monoid
morphisms or finite automata. We also give a new result on hismps generating
the classical and the lazy tower of Hanoi (Theorem 4), andharasult on automatic
sequences (Theorem 5).

Recall that the tower of Hanoi puzzle has three pegs, labgliedll, and N disks
of radii 1,2,...,N. At the beginning the disks are placed on peg I, in decreasing
order of size (the smallest disk on top). A move consists kintathe topmost
disk from one peg and moving it to another peg, with the camdithat no disk
should cover a smaller one. The purpose is to transfer &sdism the initial peg
to another one (where they are thus in decreasing order §s wel
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The usual fecursivg approach for solving the Hanoi puzzle consists in noting
that, in order to movéN + 1) disks from a peg to another, it is necessary and suf-
ficient first to move the smalledt disks to the third peg, then to move the largest
disk to the now empty peg, and finally to transfer the smahedisks on that third
peg. An easy induction shows that the number of moveslfdisks is thus ¥ — 1
and that it is optimal.

Applying this recursive algorithm with a small number of ldig(try it with 3
disks), shows that it transfers 1 disk (the smallest) from p® peg II; then con-
tinuing the process, the sub-tower consisting of the digksdii 1 and 2 will be
reconstructed on peg lll; and the sub-tower consisting efdisks of radii 1, 2 and
3 will be reconstructed on peg Il. More generally, & be the sequence of moves
that transfers the tower with the smalldktlisks from peg | to peg 11 iN is odd, and
from peg | to peg Il ifN is even. Then, for any positive integex N, the sequence
N begins with the sequencg. In other words, there exists an infinite sequence
of moves ¥, such that, for any integé, the first(2V — 1) moves ot #, solve the
Hanoi puzzle by moving the tower of disks from peg | to peg Il or lll according
to whethem is odd or even.

Let us denote b, b, c the moves that take the topmost disk from peg | to peg
Il, resp. from peg |l to peg I, resp. from peg lll to peg |. L&tb, T be the inverse
moves (e.g¢ moves the topmost disk from peg | to peg Ill). Then, as theeeeadn
easily check

“w«=atbacbatbhacbachba---

Before studying this infinite sequence, we note that apglifirs algorithm leads
to the discovery (and to the proof) of a “simpler” algorithom the puzzle’s solution,
where

e the first, third, fifth, etc., moves only concern the smalldisk, which moves
circularly from peg | to peg I, from peg I, to peg Ill, from géll to peg I, and
so forth;

e the second, fourth, sixth, etc., moves leave the smallest fied on its peg.
Hence, they consist in looking at the topmost disk of eachefivo other pegs,
and in moving the smaller to cover the larger.

Remark 1We note that this “simpler” algorithm cannot be performedthout
memory” nor “with eyes closed” (i.e., without looking at tpegs): namely at the
even steps, we need to know the sizes of the topmost disksoanplace them. The
next section addresses the question of finding an algorttlatrcan be applied “with
bounded memory” and “with eyes closed”.

The “simpler” algorithm where the smallest disk moves dacy every second
move is attributed to Raoul Olive, the nephewfafouard Lucas in [20]. Also, re-
constructing the tower of Hanoi on peg Il or peg Il accordinghe parity of the
number of disks can be seen as a “dual” of the strategy of ReQlhere the small-
est disk moves circularly either clockwise or counter-klwise, according to the
parity of the number of disks and the desired final peg whezedtver of Hanoi is
reconstructed.
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Remark 2 Several variations on this game have been introduced: e tgwer of
Hanoi (wherein, using the notation above, only the mayéds andc are allowed),
the lazy tower of Hanoi (using only the mowes, b, b), the colored tower of Hanoi,
Antwerpen towersd pegs instead of 3 pegs, etc. There are also variations dtudie
in cognitive psychology: the tower of Hanoi itself [25], tt@vers of London [24],
and the towers of Toronto [21]. We do not resist to propose deasbcontribution
to the world of variations on the tower of Hanoi, in honor oé tbrganizers of the
Symposium “La<< Tour d’Hanoi>>, un casse-téte mathématiqu&douard Lucas
(1842-1891)". Start with three pegs, and disks indexed byengvord on the usual
Latin alphabet. Move as usual the topmost disk from a pegathen, the rule being
that no two consecutive vowels should appear. Start #O . Well, Oandl are
already consecutive. Let us say th& < oh = Zero =Z”, and let us thus replace
HANO with HANZI . Here are a few permitted moves: starting vHANZI , we get
successively

H
A
N
©
I
A
N
© A N (5
1 H 1 H z
N I
@ A A N (6)
1 H H z
N I
® A N (7)
1 H A H z
H
N I
(4) A . (8)
1 H z A z
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Exercise: concoct two variations giving respectively

and

HO=®>m
|
|
=M= 0
H O =2 =
|
|
<= NG ®>=Q

2 The infinite sequence of moves”, and an easy way of
generating it

We will focus on the infinite sequenc#., defined above. It is a sequence on six
symbols, i.e., a sequence over the 6-letter alph&édt, ¢, a b,T}). This sequence
can also be seen as a sequence of moves that “tries” to reactrestower of Hanoi
with infinitely many disks, by reconstructing the sub-togverith the smallesN
disks forN =1,2,3,... on peg Il or lll acording to the parity ofl.

Group the letters of#, pairwise, and write this sequence of pairs of letters just
under the sequencg.:

a [ b a c b a T -
(at) (ba) (cb) (at) (ba) (ch) (aT) (ba) ---

We observe that under any of the six letters we always finddheegair of letters,
e.g., there always is afac) under ana. More precisely, if we associate a 2-letter
word with each letter ifa, b, c,a,b,T} as follows

a— ac a— ac
b—cb b—cb
c— ba t — ba

we can obtain the infinite sequencé, by starting witha and iterating the map
above, where the image of a word is obtained by “gluirg@dr(catenatinyjtogether
the images of letters of that word:

a—at—atba—atbacbhat—---
This result was proven in [4]. We give more details below.

Definition 1. Let <7 be analphabeti.e., a finite set. Avord on <7 is a finite se-
quence of symbols fromy (possibly empty). The set of all words e# is denoted
by «7*. Thelengthof a word is the number of symbols that it contains (the lemdth
the empty word is 0). Theconcatenatiomf two wordsaja, - - - & andbq b, - - - bs of
lengths ands, respectively, is the wordha; - - - a,b1b, - - - bs of lengthr 4+ sobtained
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by gluing them in order. The sef* equipped with concatenation is called finee
monoidgenerated by .

A sequence of wordsy of 7" is said toconvergeo the infinite sequend@n)n>o
on« if the length of the largest prefix ef; that coincides with the prefix ¢&n)n>0
of the same length tends to infinity with

Remark 3ltis easy to see that* equipped with concatenation is indeed a monoid:
concatenation is associative, and the empty woid the identity element. This
monoid isfree this means intuitively that there are no relations betwelements
other than the relations arising from the associative ptgmend the fact that the
empty word is the identity element. In particular this mahisi notcommutativef

<7 has at least two distinct elements.

Definition 2. Let.«# and% be two alphabets. morphismfrom «7* to %* is a map
¢ from o7* to #*, such that, for any two wordsandv, one hag (uv) = ¢ (u)¢(v).
A morphism ofe7* is a morphism frome7* to itself.

If there exists a positive integ&rsuch thatp (a) has lengttk, the morphismp is
said to bek-uniform

Remark 4A morphism¢ from «7* to %* is determined by the values ¢fa) for
ac /. Namely, if the wordu is equal toa;a;---a, with a; € <7, then¢(u) =

¢(a1)p(az)---¢(an).

Definition 3. An infinite sequencéan)n>o taking values in the alphabet is said
to bepure morphidf there exist a morphisnp of <7* and a wordk € .«7* such that

e the word¢ (ap) begins withay, (there exists a word such thatp (ap) = agx);

e iteratingg starting fronx never gives the empty word (for each integep’ (x) #
£);

e the sequence of words'(ag) converges to the sequen@)n>o when/ — .

Remark 51t is immediate that

¢(a0) = apx
$2(a0) = (P (a0)) = P (aoX) = P (a0)P (X) = apX@ (X)
$3(a0) = ¢(9%(a0)) = ¢ (aox$ (X)) = P (a0)d (X)$%(x) = aox$ (X)$2(X)

0" (20) = a0x9 (VH2(X) - 9 1(x)

Definition 4. An infinite sequencéa,)n>o with values in the alphabey is said to
bemorphicif there exist an alphabe# and an infinite sequendbn)n>0 on % such
that

e the sequencébn)n>o is pure morphic;

e there exists a 1-uniform morphism frog* to «#* sending the sequen¢ien)n>o
to the sequencéan)n>o (i.e., the sequencén)n>o is the pointwise image of
(bn)n>0).
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If the morphism makingbn)n>o morphic isk-uniform, then the sequencan)n>o is

said to bek-automatic The word “automatic” comes from the fact that the sequence
(an)n>0 can be generated by a finite automaton (see [8] for more degailthis
topic).

Remark 6 A morphism¢ of «7* can be extended to infinite sequences with values
in o/ by definingd ((an)n=0) = ¢ (a0asaz ) = ¢ (80)9(a1)$ (az) -

It is easy to see that a pure morphic sequencefigeal pointof (the extension

to infinite sequences of) some morphism: actually, with tb&ation above, it is

the fixed point of ¢ beginning withag. A pure morphic sequence is also called
aniterative fixed poinbf some morphism (because of the construction of that fixed
point), while a morphic sequence is the pointwise image dtfemative fixed point of
some morphism, andkaautomatic sequence is the pointwise image of the iterative
fixed point of ak-uniform morphism.

We can now state the following theorem [4, 5]:

Theorem 1.The Hanoi sequencgs is pure morphic. It is the iterative fixed point
of the2-morphism¢ on{a,b,c,a b,c}* defined by

¢(a):=ac, ¢(b):=cb, ¢(c):=ba, ¢(@) :=ac, ¢(b):=ch ¢(T) :=ba
In particular the sequence, is 2-automatic.

Remark 7Using the automaton-based formulation of Theorem 1 abe®, 9.,
[5]), itis possible to prove that thigh move in the algorithm for the optimal solution
of the tower of Hanoi can be determined from the binary exjgars j, hence “with
eyes closed” (i.e., without looking at the towers), and viddunded memory (the
total needed memory is essentially remembering the marpatsove, which does
not depend on the number of disks).

It may also be worth noting that the tower of Hanoi sequencgisarefreeit
contains no block of moves immediately followed by another occurrence of the
same block [2]. Also note that this is not the case for allatéwns on this puzzle:
for example the lazy tower of Hanoi sequence (see Remark Zla@orem 3) is not
squarefree, since it beginswithb abababa--.

3 Another “mechanical” way of generating the sequence of
moves in.%

We begin with an informal definition (for more details the deacan look at [3]
and the references thereifipeplitz sequences Toeplitz transformef sequences
are obtained by starting from a periodic sequence on an béthay, ay, ..., ar, ¢},
whereo is a marked symbol called “hole”. Then all the holes in theussge are
replaced in order by the terms of a periodic sequence witeshoh the same al-
phabet (possibly the same sequence). The process is dtelfatene of the periodic
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sequences used in the construction begins witftlae process converges and yields
aToeplitz sequence

A classical example is the paperfolding sequence thatteeisam folding a strip
of paper on itself infinitely many times, and from looking ké tpattern of up and
down creases after unfolding (see, e.g., [8]). This seqgiean also be constructed
by a Toeplitz transform as follows. Start with the 3-lettésrembet{0,1,¢}. Take
the sequencéd ¢ 1¢)*:=0¢ 1o 0 ¢ 1 o O ---. Replace the sub-sequence of
diamonds by the sequen¢@ < 1 ¢)” itself, and iterate the process. This yields
successively

0061600610001 0001--= (0010
0016011060016011--= (001060110
0010011060011011---=(00100116001101%L)*

After having applied this process an infinite number of tintesre are ne left.
The limit sequence is equal to the paperfolding sequence

001001100011011.-.

The Hanoi sequencé., can be constructed in a similar way. Take the 7-letter
alphabet{a,b,c,a,b,c,¢}. Start with the sequend@ T b ¢ cba ¢ baco)®.
Replace the sequence of holes by the sequence itself. Erateithe process. This
gives sequences with “fewer and fewer holes” and “more anetroainciding with”
the Hanoi sequencé&.,, namely

athocbacbaccoatcbecbacbacoatbhecbacbaco -
atbhacbactbhacbhatbeocbachacbatcbacbacbach:--
atbhacbacthacbhatbacbachacbacbacbatchbach:--

The following theorem was proved in [5].

Theorem 2.The infinite Hanoi sequence, is equal to the Toeplitz transform ob-
tained by starting from the sequen@c b ¢ cb a ¢ ba c¢)®, replacing theo by
the elements of the sequence itself, then iterating theegsan infinite number of
times.

4 Classical sequences hidden behind the Hanoi sequence

Several classical sequences are linked to the Hanoi segu@eanill describe some
of them in this section.
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4.1 Period-doubling sequence

A binary sequenceZ can be deduced frony:, by replacing each o#, b, c by 1
and each 0§, b, c by O (i.e., the non-barred letters by 1 and the barred lelte (3,
thus obtaining

yoo: a

tTbha thbhacbathb-:.--
g =101

cb a
11010101110 %--

Itis not difficult to prove [5] that7 is the iterative fixed point of the morphisamon
{0,1}* defined byw(1) := 10,w(0) := 11. This iterative fixed point is known as the
period-doubling sequencé was introduced in the study of iterations of unimodal
continuous functions in relation with Feigenbaum cascésles, e.g., [8, pp. 176,
209]).

4.2 Double-free subsets

Define a sequence of intege#s by counting for each term o/, the cumulative
number of the non-barred letters up to this term

acbactbacbachb -
34455667899 10--

The sequence” is equal to the sequence of maximal sizes of a suBset
{1,2,...,n} with the property that i is in Sthen Z is not. (The sequence¥
in Subsection 4.1 above arid are respectively called035263 andA050292 in
Sloane’sEncyclopedid26], where it is mentioned th&050292 is the summatory
function ofA035263).

4.3 Prouhet-Thue-Morse sequence

Reducing the sequené® in Subsection 4.2 modulo 2 (or, equivalently, taking the
summatory function modulo 2 of the sequenZen Subsection 4.1 above) yields a
sequence”

%:

1123445566789 910-
¥»=110100110010110--

which is the celebrated (Prouhet-)Thue-Morse sequeneeésg., [7]), deprived of

its first 0. Recall that the Prouhet-Thue-Morse sequenceeaefined as the unique
iterative fixed point, beginning with 0, of the morphism defirby 0— 01, 1— 10.
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4.4 Other classical sequences related to Hanoi

Other classical sequences are related to the tower of Haroiits variations. We
mention here the Sierpinski gasket [17], the Pascal tteafigl] (see also [16] and
the references therein), the Stern diatomic sequenceljdibglso the Stirling num-
bers of the second kind [18], the second order Eulerian nusnbee Lah numbers,
and the Catalan numbers [19].

5 Variations on the tower of Hanoi and morphisms

As indicated in Remark 2, several variations on the tower aféi can be found

in the literature. We will first indicate a generalizationTdfeorem 1. Then we will

give a new result on the classical tower of Hanoi and one ahiggars, and a new
result on automatic sequences.

5.1 Tower of Hanoi with restricted moves

There are exactly five variations deduced “up to isomorphisom the classical
Hanoi puzzle by restricting the permitted moves, i.e., byidding some fixed sub-
set of the set of moveia, b, ¢, a,b,c}; see [23]. The following result was proven in
[6] (also see [4, 5] for the classical case and [5] for theicycdse).

Theorem 3. The five restricted tower of Hanoi problems give rise to itdimnor-
phic sequences of moves, whose appropriate truncatiorgideghe transfer of
any given number of disks. Furthermore two of these infirdtpiences are actu-
ally automatic sequences, namely the classical Hanoi sempiand the lazy Hanoi
sequence, which are, respectivélyautomatic and-automatic.

We give below the examples of the cyclic tower of Hanoi andldizg tower of
Hanoi (defined above in Remark 2).

e There exists an infinite sequence over the alph@hgdi, c} that is the common
limit of finite minimal sequences of moves for tlogclic tower of Hanoi that
allow us to transfeN disks from ped to pegll or from pegl to peglll . Further-
more this sequence is morphic: it is the image under the mamifbrm mor-
phism)F : {f,g,h,u,vyw} — {a,b,c} whereF(f) =F(w):=a, F(g) =F(u) :=
¢, F(h) = F(v) := b of the iterative fixed point of the morphisg defined on
{f,g,h,u,v,w} by

W(f) = fvf, Y(g):=gwg y(h):=huh
Y(u):=fg, @(v):=gh Y(w):=hf
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e thelazy Hanoi sequence is the iterative fixed point beginning it the mor-
phismA defined or{a,b,a,b}* by

A@):=aba A(@):=aba, A(b):=bab, A(b):=bab.

In particular it is 3-automatic.

5.2 New results

We say a sequenceli®n-uniformly pure morphid it the iterative fixed point of a
non-uniform morphism. We say that a sequencw®is-uniformly morphidf it is the
image (under a 1-uniform morphism) of a non-uniformly purerphic sequence.
For example, the famous Fibonacci sequealcaababa- - is non-uniformly mor-
phic, being generated by the morphiam- ab, b — a.

A sequence can be simultaneously automatic and non-urifarmarphic. An
example is the sequencE formed by the lengths of the strings of 1's between two
consecutive zeros in the Thue-Morse sequentgWhose definition is recalled in
Subsection 4.3).

0#=0110100110010110-
=0(11)0(1)0()0(11)0()0(1)0(11)0 ---
¥ =2102012--

The sequencg” is both [9] the iterative fixed point of the morphism
2—210, 1—-20 0—1

and the image under the map— x mod 3 of the iterative fixed point of the 2-
morphism
2—21 1-02 0—04, 4— 20

We have just seen that the five variations of the tower of Hanith restricted
moves) are morphic; two of them are actually automatic (nathe classical and
the lazy tower of Hanoi), and one is not (the cyclic tower ohbia see [1]). It is
asked in [6] whether it is true that the other two variatiors @otk-automatic for
any k > 2. Reversing that question in some sense, we could instéadfzther
the classical Hanoi sequence and the lazy Hanoi sequendeh(ette, respectively,
2-automatic and 3-automatic) aksonon-uniformly morphic. The following result
seems to be new.

Theorem 4.The classical Hanoi sequence is non-uniformly pure morphis the
iterative fixed point of the (non-uniform) morphigndefined on{a, b, c,a b,c}* by

¢(a):=ach, &(b)

b) =
(@) :=ach &(b):=

)
)
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The lazy Hanoi sequence is non-uniformly pure morphic: ithis iterative fixed
point of the (non-uniform) morphismdefined on{a,b,a b}* by

n(@) :=abab, n(b):=a
n@:=abab, n(b):=a

il

b.
b.

Proof. We begin with the classical Hanoi sequenég. An easy computation shows
the following five equalities (wher¢ is the morphism defined in Theorem 1).

¢ (ach) = ¢(ach),
£ (ach) = ¢(adh),
¢ (ach) = ¢(ach),
¢ (ach) = ¢(acb),
¢(ach) = ¢ (ach).

Now, grouping the elements by triples, i.e., writing thelsence ¥, as
Yo =(atb) (ach) (ath)(@ach (ach) -,

we know that only the five tripleach, adb, ach, ach, ach, andach occur (see [15,
Theorem 2], where this result is used to construct a squasesequence on a 5-
letter alphabet, starting with the classical Hanoi seqgagnikhus

{(He) =

Now we look at the lazy Hanoi sequence. Using the morphiistefined in the
second example following Theorem 3, we note that

n(abab) = A (abab),
(abab) = A (abeb),
n(abab) = A (abab),
n (abab) = A (abab).
n(abab) = A (abab),
n(abab) = A (abab),
n (abab) = A (abab),
n (abab) = A (abab).

Grouping as above the elements of the lazy Hanoi sequenceddraples, we can
write that sequence, sa¥%, as

M, =ababababababab---

= (abab) (@bab (abab) (ab---
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Itis not hard to see that the 4-letter blocks (also calkdekier factorg that can occur
in this parenthesed version g, are among all 4-letter blocks of%, beginning
with aora. These blocks are necessarily subblocks of imagesdiy2-letter blocks
of #, i.e., of blocks{ab, ab,ab,ab, ba, ba, ba, ba}. Hence these 4-letter blocks are
amongabab, abab, abab, abab, abah abab, abab, abab. We then have

5.3 A general result on automatic sequences

In view of the previous subsection, it is natural to ask whioh-uniformly morphic
sequences are al¢eautomatic for some integée > 2. Or, which automatic se-
quences are also non-uniformly morphic. We have just seadritie classical Hanoi
sequence (hence the period-doubling sequence) and théltami sequence have
this property. We prove here thall automatic sequences are also non-uniformly
morphic.

Theorem 5.Let (an)n>0 be an automatic sequence taking values in the alphahet
Then(an)n>o is alsonon-uniformly morphic. Furthermore, (&n)n>0 is the iterative
fixed point of a uniform morphism, then there exist an alphabef cardinality2+
f«/ and a sequenc@;,)n>o with values in%, such thata,)n>o is the iterative fixed
point of some non-uniform morphism & and (an)n>0 is the image ofa),)n>o0
under al-uniform morphism.

Proof. We prove the first assertion. Since the sequéagk>o is the pointwise im-
age of the iterative fixed poirikn)n>o 0f some uniform morphism, we may suppose,
up to replacingan)n>o0 by (Xn)n>0 that(an)n>o itself is the iterative fixed point be-
ginning with ag of a uniform morphisnmy on «7*. We may also suppose that the
sequencéan)n>o IS Not constant (otherwise the result is trivial). We claivattthere
exists a 2-letter wordbc such thaty(bc) containsbc as a factor. Namely, since

is uniform, it has exponential growth (i.e., iteratipgpn any letter gives words of
length growing exponentially). Hence there exists a ldttghich isexpandingi.e.,
such that some power gfmapsb to a word that contains at least two occurrences of
b (see, e.g., [22]). Up to replacingby this power ofy, we can writey(b) = ubvbw
for some wordsl, v,w. Up to replacing this new by y2, we can also suppose that
andw are not empty. Let be the letter following the prefiub of ubvbw If ¢ #£ b,
thenv = cy for some wordy, y(b) = ubcywandy(bc) = y(b)y(c) containsbc as a
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factor; if c = b, theny(b) = ubbzfor some wordz, andy(bb) = ubbzubbzontains
bbas a factor. In any case, there exist two not necessariipdistttersb andc such
thaty(b) = wibcwe, y(bc) = wibcws, wherews,w, are non-empty words. Note in
particular thab can be chosen distinct froay (w; is non-empty).

Now, define a new alphabet’ := .7 U{b',c’}, wherel/,c’ are two new letters
not in.«7. Define the morphisny’ on &/’ by: if the lettery belongs toeZ \ {b}, then
Y (y) := y(y). If y= Db, definey (b) := wib’c’'w,. Finally definey (b’) andy/(c’) as
follows: first recall thaty(bc) = wibcws; cut the wordwibcws into (any) two non-
empty words of unequal length, saybcws := zt, and defing/(b') :=z y/(¢) :=
By constructiony’ is not uniform. Its iterative fixed point beginning wigg clearly
exists: we denote it byay,)n>0. That sequence has the property that dach it is
followed by ac’. Let ¢ be twice the common length of thg(a). Write the initial
sequence as Uy - - - Un - - - where theu;j are words of length. Write the iterative fixed
point of y that begins withag asuju, - -~ uy - - -, where theuj have lengtiY. Denote
by D the 1-uniform morphism that sends each lettes0bn itself, and sends onb
andc’ onc. For any lettex belonging toe7’ \ {b, b/, ¢’} we havey(x) = ¥ (x), hence
Doy (x) =Doy(x) = y(x) = yoD(x). Forx=b, we haveD o y/(b) = D(wsb'c’'wy) =
wibews = y(b) = yo D(b). Sinceb’ andc’ can occur in the sequen¢a,)n>o only
asb'c’ “inside” the uj, and sinceD o y'(b'c’) = D(wibcws) = wibews = y(bc) =
yoD(b'c), we finally have thaD o y(u}) = yo D(uj), for each wordy; (note that
this is not true foany word on.«?’, sincey is uniform, whiley’ is not). Thus

D((an)n=0)) = D(Y((an)n=0)) = D(V(Uluz )) (V(( up)(uy)---))
= D(Y (u))D(Y (Up)) -~ = y(D(up)) Y(D(Uy)) - - = y(u1) y(tp) - --
= y((ur)(uz) - )=V(U1U2 -) = ¥((an)n=0) = (an)n>0

and we are done.
The second assertion is a consequence of the fact that weircted only two new
lettersb/, ¢’ in the proof above. O

Remark 8 Our Theorem 4 is more precise than Theorem 5 for the classichfor
the lazy tower of Hanoi, since the non-uniform morphism®ined are defined on
thesame alphabeas the corresponding uniform morphisms.

6 A little more on automatic sequences

Automatic sequences, such as the classical and the lazyi Bleaqueences, have nu-
merous properties, in particular number-theoretical progs. We refer, e.g., to [8].
We give here a characteristic property of formal power seoe a finite field in
terms of automatic sequences Before doing this let us censigiain the period-
doubling sequencg’, i.e., the iterative fixed point of the morphismon {0, 1}*
defined (see Section 4.1) lay(1) := 10, w(0) := 11. Let us identify{0,1}* with
the field of 2 elementd,. The definitions of7 = (tn)n>0 and ofw show that, for
everyn > 0,tpn = 1, ton1 = 1+t,. Hence, denoting b the formal power series
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> taX"™ in F2[[X]], we have (remember we are in characteristic 2)

F = ZotnX” Z}tanZ”Jr Z)tz X2 = Z)XZ”JF Z}(lnttn)xz"+1
> n>

2
14X on 1 2
=1 x2+XZtnX _—+X<Ztn ) —ﬁ+XF

n>0 n>0

Remembering once more that we are in characteristic twectm be written
X(1+X)F24+(1+X)F+1=0

which means thdt is algebraic (at most quadratic — actually exactly quadsitice
the sequence is not ultimately periodic) on the field of rational funct®,(X).
This result is a particular case of a more general resultvileagive hereafter (see
[10, 11)).

Theorem 6.Let Fq be the finite field of cardinality g. Lein)n>0 be a sequence
onFq. Then, the formal power seri€sa,X" is algebraic over the field of rational
functionsFq(X) if and only if the sequend@n)n>o is g-automatic.

7 Conclusion

The tower of Hanoi and its variations have many mathemagiogperties. They
also are used in cognitive psychology. It is interestingdterthat psychologists, as
well as mathematicians, are looking at the shortest patedornstruct the tower on
another peg. But, is really the shortest path the most istieige? If the answer is
yes in terms of strategy for a puzzle, it is not clear that thenger is also yes for
detecting all kinds of skills for a human being. During ther§psium “La<< Tour
d’Hanoi>>, un casse-téte mathématiqu&douard Lucas (1842-1891)", one of the
speakers said that finding the shortest path might not be ts imeresting ques-
tion. It reminded the first author (JPA) of a discussion heedmad with the French
composer M. Frémiot. After JPA presented the tower of Hamaoi an algorithmic
solution to him, Frémiot composedéesse pour orgua I'usage des paroiss¢$2].
Interestingly enough, what he emphasized is the rule “rioatisa smaller one”. His
“Messe” used only that rule, without any attempt to recarddtthe tower with the
smallest number of moves. In contrast to algorithms (rdBdtsat (try to) optimize
a quantitative criterion, or to mathematicians who (trypgove the optimality of a
solution or study the set of all solutions, is it not the cdmse tomposers, and more
generally, artists are interested in qualitatively (ratthen quantitatively) excep-
tional elements of a given set, in “jewels” rather than inrfggc” elements, in non-
necessarily rational choices rather than in exhaustiv@iesior rigorous proofs...?
René Char wrote “Le poéte doit laisser des traces de s@agasion des preuves.
Seules les traces font réver”.
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