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Jean-Paul Allouche and J. Shallit

Abstract Some of the algorithms for solving the Tower of Hanoi puzzle can be
applied “with eyes closed” or “without memory”. Here we survey the solution for
the classical tower of Hanoi that uses finite automata, as well as some variations on
the original puzzle. In passing, we obtain a new result on morphisms generating the
classical and the lazy tower of Hanoi, and a new result on auomatic sequences.

1 Introduction

A huge literature in mathematics or theoretical computer science deals with the
tower of Hanoi and generalizations. The reader can look at the references given in
the bibliography of the present paper, but also at the paperscited in these references
(in particular in [5, 13]). A very large bibliography was written by Stockmeyer [27].
Here we present a survey of the relations between the tower ofHanoi and monoid
morphisms or finite automata. We also give a new result on morphisms generating
the classical and the lazy tower of Hanoi (Theorem 4), and a new result on automatic
sequences (Theorem 5).

Recall that the tower of Hanoi puzzle has three pegs, labeledI, II, III, and N disks
of radii 1,2, . . . ,N. At the beginning the disks are placed on peg I, in decreasing
order of size (the smallest disk on top). A move consists of taking the topmost
disk from one peg and moving it to another peg, with the condition that no disk
should cover a smaller one. The purpose is to transfer all disks from the initial peg
to another one (where they are thus in decreasing order as well).
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The usual (recursive) approach for solving the Hanoi puzzle consists in noting
that, in order to move(N + 1) disks from a peg to another, it is necessary and suf-
ficient first to move the smallestN disks to the third peg, then to move the largest
disk to the now empty peg, and finally to transfer the smallestN disks on that third
peg. An easy induction shows that the number of moves forN disks is thus 2N −1
and that it is optimal.

Applying this recursive algorithm with a small number of disks (try it with 3
disks), shows that it transfers 1 disk (the smallest) from peg I to peg II; then con-
tinuing the process, the sub-tower consisting of the disks of radii 1 and 2 will be
reconstructed on peg III; and the sub-tower consisting of the disks of radii 1, 2 and
3 will be reconstructed on peg II. More generally, letSN be the sequence of moves
that transfers the tower with the smallestN disks from peg I to peg II ifN is odd, and
from peg I to peg III ifN is even. Then, for any positive integerk≤ N, the sequence
SN begins with the sequenceSk. In other words, there exists an infinite sequence
of movesS∞, such that, for any integerN, the first(2N−1) moves ofS∞ solve the
Hanoi puzzle by moving the tower ofN disks from peg I to peg II or III according
to whetherN is odd or even.

Let us denote bya, b, c the moves that take the topmost disk from peg I to peg
II, resp. from peg II to peg III, resp. from peg III to peg I. Leta, b, c be the inverse
moves (e.g.,c moves the topmost disk from peg I to peg III). Then, as the reader can
easily check

S∞ = a c b a cb ac ba c b ac b a · · ·

Before studying this infinite sequence, we note that applying this algorithm leads
to the discovery (and to the proof) of a “simpler” algorithm for the puzzle’s solution,
where

• the first, third, fifth, etc., moves only concern the smallestdisk, which moves
circularly from peg I to peg II, from peg II, to peg III, from peg III to peg I, and
so forth;

• the second, fourth, sixth, etc., moves leave the smallest disk fixed on its peg.
Hence, they consist in looking at the topmost disk of each of the two other pegs,
and in moving the smaller to cover the larger.

Remark 1.We note that this “simpler” algorithm cannot be performed “without
memory” nor “with eyes closed” (i.e., without looking at thepegs): namely at the
even steps, we need to know the sizes of the topmost disks and compare them. The
next section addresses the question of finding an algorithm that can be applied “with
bounded memory” and “with eyes closed”.

The “simpler” algorithm where the smallest disk moves circularly every second
move is attributed to Raoul Olive, the nephew ofÉdouard Lucas in [20]. Also, re-
constructing the tower of Hanoi on peg II or peg III accordingto the parity of the
number of disks can be seen as a “dual” of the strategy of R. Olive, where the small-
est disk moves circularly either clockwise or counter-clockwise, according to the
parity of the number of disks and the desired final peg where the tower of Hanoi is
reconstructed.
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Remark 2.Several variations on this game have been introduced: the cyclic tower of
Hanoi (wherein, using the notation above, only the movesa, b, andc are allowed),
the lazy tower of Hanoi (using only the movesa, a, b, b), the colored tower of Hanoi,
Antwerpen towers,d pegs instead of 3 pegs, etc. There are also variations studied
in cognitive psychology: the tower of Hanoi itself [25], thetowers of London [24],
and the towers of Toronto [21]. We do not resist to propose a modest contribution
to the world of variations on the tower of Hanoi, in honor of the organizers of the
Symposium “La<< Tour d’Hanoı̈>>, un casse-tête mathématique d’Édouard Lucas
(1842-1891)”. Start with three pegs, and disks indexed by a given word on the usual
Latin alphabet. Move as usual the topmost disk from a peg to another, the rule being
that no two consecutive vowels should appear. Start fromHANOI. Well,O andI are
already consecutive. Let us say that “O = oh = Zero =Z”, and let us thus replace
HANOI with HANZI. Here are a few permitted moves: starting withHANZI, we get
successively
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Exercise: concoct two variations giving respectively

H

A

N

O

I

−→ . . . −→

D

A

N

E

K

and

H

A

N

O

I

−→ . . . −→

G

A

U

Z

Y

2 The infinite sequence of movesS∞ and an easy way of
generating it

We will focus on the infinite sequenceS∞ defined above. It is a sequence on six
symbols, i.e., a sequence over the 6-letter alphabet{a,b,c,a,b,c}). This sequence
can also be seen as a sequence of moves that “tries” to reconstruct a tower of Hanoi
with infinitely many disks, by reconstructing the sub-towers with the smallestN
disks forN = 1,2,3, . . . on peg II or III acording to the parity ofN.

Group the letters ofS∞ pairwise, and write this sequence of pairs of letters just
under the sequenceS∞:

a c b a c b a c · · ·
(a c) (b a) (c b) (a c) (b a) (c b) (a c) (ba) · · ·

We observe that under any of the six letters we always find the same pair of letters,
e.g., there always is an(ac) under ana. More precisely, if we associate a 2-letter
word with each letter in{a,b,c,a,b,c} as follows

a −→ ac a −→ ac
b −→ cb b −→ cb
c −→ ba c −→ ba

we can obtain the infinite sequenceS∞ by starting witha and iterating the map
above, where the image of a word is obtained by “gluing” (concatenating) together
the images of letters of that word:

a−→ a c−→ a c b a−→ a c b a cb ac−→ ·· ·

This result was proven in [4]. We give more details below.

Definition 1. Let A be analphabet, i.e., a finite set. Aword on A is a finite se-
quence of symbols fromA (possibly empty). The set of all words onA is denoted
by A ∗. Thelengthof a word is the number of symbols that it contains (the lengthof
the empty wordε is 0). Theconcatenationof two wordsa1a2 · · ·ar andb1b2 · · ·bs of
lengthsr ands, respectively, is the worda1a2 · · ·arb1b2 · · ·bs of lengthr +sobtained
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by gluing them in order. The setA ∗ equipped with concatenation is called thefree
monoidgenerated byA .

A sequence of wordsuℓ of A ∗ is said toconvergeto the infinite sequence(an)n≥0

onA if the length of the largest prefix ofuℓ that coincides with the prefix of(an)n≥0

of the same length tends to infinity withℓ.

Remark 3.It is easy to see thatA ∗ equipped with concatenation is indeed a monoid:
concatenation is associative, and the empty wordε is the identity element. This
monoid isfree: this means intuitively that there are no relations betweenelements
other than the relations arising from the associative property and the fact that the
empty word is the identity element. In particular this monoid is notcommutativeif
A has at least two distinct elements.

Definition 2. Let A andB be two alphabets. Amorphismfrom A ∗ to B∗ is a map
ϕ from A ∗ to B∗, such that, for any two wordsu andv, one hasϕ(uv) = ϕ(u)ϕ(v).
A morphism ofA ∗ is a morphism fromA ∗ to itself.

If there exists a positive integerk such thatϕ(a) has lengthk, the morphismϕ is
said to bek-uniform.

Remark 4.A morphismϕ from A ∗ to B∗ is determined by the values ofϕ(a) for
a ∈ A . Namely, if the wordu is equal toa1a2 · · ·an with a j ∈ A , thenϕ(u) =
ϕ(a1)ϕ(a2) · · ·ϕ(an).

Definition 3. An infinite sequence(an)n≥0 taking values in the alphabetA is said
to bepure morphicif there exist a morphismϕ of A ∗ and a wordx∈ A ∗ such that

• the wordϕ(a0) begins witha0, (there exists a wordx such thatϕ(a0) = a0x);
• iteratingϕ starting fromxnever gives the empty word (for each integerℓ, ϕℓ(x) 6=

ε);
• the sequence of wordsϕℓ(a0) converges to the sequence(an)n≥0 whenℓ → ∞.

Remark 5.It is immediate that

ϕ(a0) = a0x
ϕ2(a0) = ϕ(ϕ(a0)) = ϕ(a0x) = ϕ(a0)ϕ(x) = a0xϕ(x)
ϕ3(a0) = ϕ(ϕ2(a0)) = ϕ(a0xϕ(x)) = ϕ(a0)ϕ(x)ϕ2(x) = a0xϕ(x)ϕ2(x)

...
ϕℓ(a0) = a0xϕ(x)ϕ2(x) · · ·ϕℓ−1(x)

...

Definition 4. An infinite sequence(an)n≥0 with values in the alphabetA is said to
bemorphicif there exist an alphabetB and an infinite sequence(bn)n≥0 onB such
that

• the sequence(bn)n≥0 is pure morphic;
• there exists a 1-uniform morphism fromB∗ to A ∗ sending the sequence(bn)n≥0

to the sequence(an)n≥0 (i.e., the sequence(an)n≥0 is the pointwise image of
(bn)n≥0).
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If the morphism making(bn)n≥0 morphic isk-uniform, then the sequence(an)n≥0 is
said to bek-automatic. The word “automatic” comes from the fact that the sequence
(an)n≥0 can be generated by a finite automaton (see [8] for more details on this
topic).

Remark 6.A morphismϕ of A ∗ can be extended to infinite sequences with values
in A by definingϕ((an)n≥0) = ϕ(a0a1a2 · · ·) := ϕ(a0)ϕ(a1)ϕ(a2) · · ·
It is easy to see that a pure morphic sequence is afixed pointof (the extension
to infinite sequences of) some morphism: actually, with the notation above, it is
the fixed point of ϕ beginning witha0. A pure morphic sequence is also called
an iterative fixed pointof some morphism (because of the construction of that fixed
point), while a morphic sequence is the pointwise image of aniterative fixed point of
some morphism, and ak-automatic sequence is the pointwise image of the iterative
fixed point of ak-uniform morphism.

We can now state the following theorem [4, 5]:

Theorem 1.The Hanoi sequenceS∞ is pure morphic. It is the iterative fixed point
of the2-morphismϕ on{a,b,c,a,b,c}∗ defined by

ϕ(a) := ac, ϕ(b) := cb, ϕ(c) := ba, ϕ(a) := ac, ϕ(b) := cb, ϕ(c) := ba.

In particular the sequenceS∞ is 2-automatic.

Remark 7.Using the automaton-based formulation of Theorem 1 above (see, e.g.,
[5]), it is possible to prove that thejth move in the algorithm for the optimal solution
of the tower of Hanoi can be determined from the binary expansion of j, hence “with
eyes closed” (i.e., without looking at the towers), and withbounded memory (the
total needed memory is essentially remembering the morphism above, which does
not depend on the number of disks).

It may also be worth noting that the tower of Hanoi sequence issquarefree; it
contains no block of movesw immediately followed by another occurrence of the
same block [2]. Also note that this is not the case for all variations on this puzzle:
for example the lazy tower of Hanoi sequence (see Remark 2 andTheorem 3) is not
squarefree, since it begins witha b ab a b a b a· · ·.

3 Another “mechanical” way of generating the sequence of
moves inS∞

We begin with an informal definition (for more details the reader can look at [3]
and the references therein).Toeplitz sequencesor Toeplitz transformsof sequences
are obtained by starting from a periodic sequence on an alphabet{a1,a2, . . . ,ar ,⋄},
where⋄ is a marked symbol called “hole”. Then all the holes in the sequence are
replaced in order by the terms of a periodic sequence with holes on the same al-
phabet (possibly the same sequence). The process is iterated. If none of the periodic
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sequences used in the construction begins with a⋄, the process converges and yields
a Toeplitz sequence.

A classical example is the paperfolding sequence that results from folding a strip
of paper on itself infinitely many times, and from looking at the pattern of up and
down creases after unfolding (see, e.g., [8]). This sequence can also be constructed
by a Toeplitz transform as follows. Start with the 3-letter alphabet{0,1,⋄}. Take
the sequence(0 ⋄ 1 ⋄)∞ := 0 ⋄ 1⋄ 0 ⋄ 1 ⋄ 0 · · ·. Replace the sub-sequence of
diamonds by the sequence(0 ⋄ 1 ⋄)∞ itself, and iterate the process. This yields
successively

0 ⋄ 1 ⋄ 0 ⋄ 1 ⋄ 0 ⋄ 1 ⋄ 0 ⋄ 1 · · · = (0 ⋄ 1 ⋄)∞

0 0 1 ⋄ 0 1 1 ⋄ 0 0 1 ⋄ 0 1 1 · · · = (0 0 1 ⋄ 0 1 1⋄)∞

0 0 1 0 0 1 1 ⋄ 0 0 1 1 0 1 1 · · · = (0 0 1 0 0 1 1⋄ 0 0 1 1 0 1 1⋄)∞

...

After having applied this process an infinite number of times, there are no⋄ left.
The limit sequence is equal to the paperfolding sequence

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1· · · .

The Hanoi sequenceS∞ can be constructed in a similar way. Take the 7-letter
alphabet{a,b,c,a,b,c,⋄}. Start with the sequence(a c b ⋄ c b a ⋄ b a c ⋄)∞.
Replace the sequence of holes by the sequence itself. Then iterate the process. This
gives sequences with “fewer and fewer holes” and “more and more coinciding with”
the Hanoi sequenceS∞, namely

a c b ⋄ c b a ⋄ b a c ⋄ a c b ⋄ c b a ⋄ b a c ⋄ a c b ⋄ c b a ⋄ b a c ⋄ · · ·

a c b a cb a c b a c b ac b ⋄ c b a c ba c b a c b a cb a ⋄ b a c b · · ·
a c b a cb a c b a c b ac b a cb a c ba c b a c b a cb a c b a c b · · ·
...

The following theorem was proved in [5].

Theorem 2.The infinite Hanoi sequenceS∞ is equal to the Toeplitz transform ob-
tained by starting from the sequence(a c b ⋄ c b a ⋄ b a c⋄)∞, replacing the⋄ by
the elements of the sequence itself, then iterating the process an infinite number of
times.

4 Classical sequences hidden behind the Hanoi sequence

Several classical sequences are linked to the Hanoi sequence. We will describe some
of them in this section.
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4.1 Period-doubling sequence

A binary sequenceT can be deduced fromS∞ by replacing each ofa, b, c by 1
and each ofa, b, c by 0 (i.e., the non-barred letters by 1 and the barred lettersby 0),
thus obtaining

S∞ = a c b a c b a c b a c b a c b · · ·
T = 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1· · ·

It is not difficult to prove [5] thatT is the iterative fixed point of the morphismω on
{0,1}∗ defined byω(1) := 10,ω(0) := 11. This iterative fixed point is known as the
period-doubling sequence. It was introduced in the study of iterations of unimodal
continuous functions in relation with Feigenbaum cascades(see, e.g., [8, pp. 176,
209]).

4.2 Double-free subsets

Define a sequence of integersU by counting for each term ofS∞ the cumulative
number of the non-barred letters up to this term

S∞ = a c b a c b a c b a c b a c b · · ·
U = 1 1 2 3 4 4 5 5 6 6 7 8 9 9 10· · ·

The sequenceU is equal to the sequence of maximal sizes of a subsetS of
{1,2, . . . ,n} with the property that ifx is in S then 2x is not. (The sequencesT
in Subsection 4.1 above andU are respectively calledA035263 andA050292 in
Sloane’sEncyclopedia[26], where it is mentioned thatA050292 is the summatory
function ofA035263).

4.3 Prouhet-Thue-Morse sequence

Reducing the sequenceU in Subsection 4.2 modulo 2 (or, equivalently, taking the
summatory function modulo 2 of the sequenceT in Subsection 4.1 above) yields a
sequenceV

U = 1 1 2 3 4 4 5 5 6 6 7 8 9 9 10· · ·
V = 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 · · ·

which is the celebrated (Prouhet-)Thue-Morse sequence (see, e.g., [7]), deprived of
its first 0. Recall that the Prouhet-Thue-Morse sequence canbe defined as the unique
iterative fixed point, beginning with 0, of the morphism defined by 0→ 01, 1→ 10.
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4.4 Other classical sequences related to Hanoi

Other classical sequences are related to the tower of Hanoi or to its variations. We
mention here the Sierpiński gasket [17], the Pascal triangle [14] (see also [16] and
the references therein), the Stern diatomic sequence [16],but also the Stirling num-
bers of the second kind [18], the second order Eulerian numbers, the Lah numbers,
and the Catalan numbers [19].

5 Variations on the tower of Hanoi and morphisms

As indicated in Remark 2, several variations on the tower of Hanoi can be found
in the literature. We will first indicate a generalization ofTheorem 1. Then we will
give a new result on the classical tower of Hanoi and one of itsavatars, and a new
result on automatic sequences.

5.1 Tower of Hanoi with restricted moves

There are exactly five variations deduced “up to isomorphism” from the classical
Hanoi puzzle by restricting the permitted moves, i.e., by forbidding some fixed sub-
set of the set of moves{a,b,c,a,b,c}; see [23]. The following result was proven in
[6] (also see [4, 5] for the classical case and [5] for the cyclic case).

Theorem 3.The five restricted tower of Hanoi problems give rise to infinite mor-
phic sequences of moves, whose appropriate truncations describe the transfer of
any given number of disks. Furthermore two of these infinite sequences are actu-
ally automatic sequences, namely the classical Hanoi sequence and the lazy Hanoi
sequence, which are, respectively,2-automatic and3-automatic.

We give below the examples of the cyclic tower of Hanoi and thelazy tower of
Hanoi (defined above in Remark 2).

• There exists an infinite sequence over the alphabet{a,b,c} that is the common
limit of finite minimal sequences of moves for thecyclic tower of Hanoi that
allow us to transferN disks from pegI to pegII or from pegI to pegIII . Further-
more this sequence is morphic: it is the image under the map (1-uniform mor-
phism)F : { f ,g,h,u,v,w}→ {a,b,c} whereF( f ) = F(w) := a, F(g) = F(u) :=
c, F(h) = F(v) := b of the iterative fixed point of the morphismψ defined on
{ f ,g,h,u,v,w} by

ψ( f ) := f v f, ψ(g) := gwg, ψ(h) := huh,
ψ(u) := f g, ψ(v) := gh, ψ(w) := h f



10 Jean-Paul Allouche and J. Shallit

• the lazy Hanoi sequence is the iterative fixed point beginning witha of the mor-
phismλ defined on{a,b,a,b}∗ by

λ (a) := a b a, λ (a) := a ba, λ (b) := b a b, λ (b) := b a b.

In particular it is 3-automatic.

5.2 New results

We say a sequence isnon-uniformly pure morphicif it the iterative fixed point of a
non-uniform morphism. We say that a sequence isnon-uniformly morphicif it is the
image (under a 1-uniform morphism) of a non-uniformly pure morphic sequence.
For example, the famous Fibonacci sequenceabaababa· · · is non-uniformly mor-
phic, being generated by the morphisma→ ab, b→ a.

A sequence can be simultaneously automatic and non-uniformly morphic. An
example is the sequenceZ formed by the lengths of the strings of 1’s between two
consecutive zeros in the Thue-Morse sequence 0V (whose definition is recalled in
Subsection 4.3).

0V = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0· · ·
= 0 (11) 0 (1) 0 ( ) 0 (11) 0 ( )0 (1) 0 (11) 0 · · ·

Z = 2 1 0 2 0 1 2· · ·

The sequenceZ is both [9] the iterative fixed point of the morphism

2→ 210, 1→ 20, 0→ 1

and the image under the mapx → x mod 3 of the iterative fixed point of the 2-
morphism

2→ 21, 1→ 02, 0→ 04, 4→ 20.

We have just seen that the five variations of the tower of Hanoi(with restricted
moves) are morphic; two of them are actually automatic (namely the classical and
the lazy tower of Hanoi), and one is not (the cyclic tower of Hanoi, see [1]). It is
asked in [6] whether it is true that the other two variations are notk-automatic for
any k ≥ 2. Reversing that question in some sense, we could instead ask whether
the classical Hanoi sequence and the lazy Hanoi sequence (which are, respectively,
2-automatic and 3-automatic) arealsonon-uniformly morphic. The following result
seems to be new.

Theorem 4.The classical Hanoi sequence is non-uniformly pure morphic: it is the
iterative fixed point of the (non-uniform) morphismξ defined on{a,b,c,a,b,c}∗ by

ξ (a) := acb, ξ (b) := b, ξ (c) := ac,
ξ (a) := acb, ξ (b) := b, ξ (c) := ac.
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The lazy Hanoi sequence is non-uniformly pure morphic: it isthe iterative fixed
point of the (non-uniform) morphismη defined on{a,b,a,b}∗ by

η(a) := a b ab, η(b) := a b,
η(a) := a ba b, η(b) := a b.

Proof. We begin with the classical Hanoi sequenceS∞. An easy computation shows
the following five equalities (whereϕ is the morphism defined in Theorem 1).

ξ (acb) = ϕ(acb),
ξ (acb) = ϕ(acb),
ξ (acb) = ϕ(acb),
ξ (acb) = ϕ(acb),
ξ (acb) = ϕ(acb).

Now, grouping the elements by triples, i.e., writing the sequenceS∞ as

S∞ = (a c b) (a cb) (a c b) (a c b) (a c b) · · · ,

we know that only the five triplesacb, acb, acb, acb, acb, andacb occur (see [15,
Theorem 2], where this result is used to construct a square-free sequence on a 5-
letter alphabet, starting with the classical Hanoi sequence). Thus

ξ (S∞) = ξ ((a c b) (a cb) (a c b) (a c b) (a c b) · · ·)

= ξ (a c b) ξ (a cb) ξ (a c b) ξ (a c b) ξ (a c b) · · ·
= ϕ(a c b) ϕ(a cb) ϕ(a c b) ϕ(a c b) ϕ(a c b) · · ·

= ϕ((a c b) (a c b) (a c b) (a c b) (a c b) · · ·)
= ϕ(S∞) = S∞.

Now we look at the lazy Hanoi sequence. Using the morphismλ defined in the
second example following Theorem 3, we note that

η(abab) = λ (abab),
η(abab) = λ (abab),

η(abab) = λ (abab),
η(abab) = λ (abab),
η(abab) = λ (abab),
η(abab) = λ (abab),
η(abab) = λ (abab),
η(abab) = λ (abab).

Grouping as above the elements of the lazy Hanoi sequence by quadruples, we can
write that sequence, sayH∞ as

H∞ = a b ab a b a b ab a b a b · · ·

= (a b ab) (a b a b) (a b a b) (a b· · ·
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It is not hard to see that the 4-letter blocks (also called 4-letter factors) that can occur
in this parenthesed version ofH∞ are among all 4-letter blocks ofH∞ beginning
with a or a. These blocks are necessarily subblocks of images byλ of 2-letter blocks
of H∞, i.e., of blocks{ab,ab,ab,ab,ba,ba,ba,ba}. Hence these 4-letter blocks are
amongabab, abab, abab, abab, abab, abab, abab, abab. We then have

η(H∞) = η(a b ab a b a b ab a b a ba b · · ·)
= η((a b ab) (a b a b) (a b a b) (a ba b) · · ·)

= η(a b ab) η(a b a b) η(a b a b) η(a ba b) · · ·

= λ (a b ab) λ (a b a b) λ (a b a b) λ (a ba b) · · ·
= λ ((a b ab) (a b a b) (a b a b) (a b a b) · · ·)
= λ (H∞) = H∞.

⊓⊔

5.3 A general result on automatic sequences

In view of the previous subsection, it is natural to ask whichnon-uniformly morphic
sequences are alsok-automatic for some integerk ≥ 2. Or, which automatic se-
quences are also non-uniformly morphic. We have just seen that the classical Hanoi
sequence (hence the period-doubling sequence) and the lazyHanoi sequence have
this property. We prove here thatall automatic sequences are also non-uniformly
morphic.

Theorem 5.Let(an)n≥0 be an automatic sequence taking values in the alphabetA .
Then(an)n≥0 is alsonon-uniformly morphic. Furthermore, if(an)n≥0 is the iterative
fixed point of a uniform morphism, then there exist an alphabet B of cardinality2+
♯A and a sequence(a′n)n≥0 with values inB, such that(a′n)n≥0 is the iterative fixed
point of some non-uniform morphism onB∗ and (an)n≥0 is the image of(a′n)n≥0

under a1-uniform morphism.

Proof. We prove the first assertion. Since the sequence(an)n≥0 is the pointwise im-
age of the iterative fixed point(xn)n≥0 of some uniform morphism, we may suppose,
up to replacing(an)n≥0 by (xn)n≥0 that(an)n≥0 itself is the iterative fixed point be-
ginning with a0 of a uniform morphismγ on A ∗. We may also suppose that the
sequence(an)n≥0 is not constant (otherwise the result is trivial). We claim that there
exists a 2-letter wordbc such thatγ(bc) containsbc as a factor. Namely, sinceγ
is uniform, it has exponential growth (i.e., iteratingγ on any letter gives words of
length growing exponentially). Hence there exists a letterb which isexpanding, i.e.,
such that some power ofγ mapsb to a word that contains at least two occurrences of
b (see, e.g., [22]). Up to replacingγ by this power ofγ, we can writeγ(b) = ubvbw
for some wordsu,v,w. Up to replacing this newγ by γ2, we can also suppose thatu
andw are not empty. Letc be the letter following the prefixub of ubvbw. If c 6= b,
thenv = cy for some wordy, γ(b) = ubcywandγ(bc) = γ(b)γ(c) containsbc as a
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factor; if c = b, thenγ(b) = ubbzfor some wordz, andγ(bb) = ubbzubbzcontains
bbas a factor. In any case, there exist two not necessarily distinct lettersb andc such
thatγ(b) = w1bcw2, γ(bc) = w1bcw3, wherew1,w2 are non-empty words. Note in
particular thatb can be chosen distinct froma0 (w1 is non-empty).

Now, define a new alphabetA ′ := A ∪{b′,c′}, whereb′,c′ are two new letters
not inA . Define the morphismγ ′ onA ′ by: if the lettery belongs toA \{b}, then
γ ′(y) := γ(y). If y = b, defineγ ′(b) := w1b′c′w2. Finally defineγ ′(b′) andγ ′(c′) as
follows: first recall thatγ(bc) = w1bcw3; cut the wordw1bcw3 into (any) two non-
empty words of unequal length, sayw1bcw3 := zt, and defineγ ′(b′) := z, γ ′(c′) := t.
By construction,γ ′ is not uniform. Its iterative fixed point beginning witha0 clearly
exists: we denote it by(a′n)n≥0. That sequence has the property that eachb′ in it is
followed by ac′. Let ℓ be twice the common length of theγ(ai). Write the initial
sequence asu1u2 · · ·un · · · where theu j are words of lengthℓ. Write the iterative fixed
point of γ ′ that begins witha0 asu′1u′2 · · ·u

′
n · · ·, where theu′j have lengthℓ. Denote

by D the 1-uniform morphism that sends each letter ofA on itself, and sendsb′ onb
andc′ onc. For any letterx belonging toA ′ \{b, b′,c′} we haveγ(x) = γ ′(x), hence
D◦γ ′(x) = D◦γ(x)= γ(x) = γ ◦D(x). Forx= b, we haveD◦γ ′(b) = D(w1b′c′w2)=
w1bcw2 = γ(b) = γ ◦D(b). Sinceb′ andc′ can occur in the sequence(a′n)n≥0 only
asb′c′ “inside” the u′j , and sinceD ◦ γ ′(b′c′) = D(w1bcw3) = w1bcw3 = γ(bc) =
γ ◦D(b′c′), we finally have thatD ◦ γ ′(u′j) = γ ◦D(u′j), for each wordu′j (note that
this is not true forany word onA ′, sinceγ is uniform, whileγ ′ is not). Thus

D((a′n)n≥0)) = D(γ ′((a′n)n≥0)) = D(γ ′(u′1u′2 · · ·)) = D(γ ′((u′1)(u
′
2) · · ·))

= D(γ ′(u′1))D(γ ′(u′2)) · · · = γ(D(u′1))γ(D(u′2)) · · · = γ(u1)γ(u2) · · ·
= γ((u1)(u2) · · ·) = γ(u1u2 · · ·) = γ((an)n≥0) = (an)n≥0

and we are done.
The second assertion is a consequence of the fact that we introduced only two new
lettersb′,c′ in the proof above. ⊓⊔

Remark 8.Our Theorem 4 is more precise than Theorem 5 for the classicaland for
the lazy tower of Hanoi, since the non-uniform morphisms involved are defined on
thesame alphabetas the corresponding uniform morphisms.

6 A little more on automatic sequences

Automatic sequences, such as the classical and the lazy Hanoi sequences, have nu-
merous properties, in particular number-theoretical properties. We refer, e.g., to [8].
We give here a characteristic property of formal power series on a finite field in
terms of automatic sequences Before doing this let us consider again the period-
doubling sequenceT , i.e., the iterative fixed point of the morphismω on {0,1}∗

defined (see Section 4.1) byω(1) := 10, ω(0) := 11. Let us identify{0,1}∗ with
the field of 2 elements,F2. The definitions ofT = (tn)n≥0 and ofω show that, for
everyn≥ 0, t2n = 1, t2n+1 = 1+ tn. Hence, denoting byF the formal power series
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∑tnXn in F2[[X]], we have (remember we are in characteristic 2)

F := ∑
n≥0

tnXn = ∑
n≥0

t2nX2n + ∑
n≥0

t2n+1X2n+1 = ∑
n≥0

X2n + ∑
n≥0

(1+ tn)X
2n+1

=
1+X
1−X2 +X ∑

n≥0

tnX2n =
1

1−X
+X

(

∑
n≥0

tnXn

)2

=
1

1−X
+XF2.

Remembering once more that we are in characteristic two, this can be written

X(1+X)F2 +(1+X)F +1 = 0

which means thatF is algebraic (at most quadratic – actually exactly quadratic since
the sequenceT is not ultimately periodic) on the field of rational functionsF2(X).
This result is a particular case of a more general result thatwe give hereafter (see
[10, 11]).

Theorem 6.Let Fq be the finite field of cardinality q. Let(an)n≥0 be a sequence
on Fq. Then, the formal power series∑anXn is algebraic over the field of rational
functionsFq(X) if and only if the sequence(an)n≥0 is q-automatic.

7 Conclusion

The tower of Hanoi and its variations have many mathematicalproperties. They
also are used in cognitive psychology. It is interesting to note that psychologists, as
well as mathematicians, are looking at the shortest path to reconstruct the tower on
another peg. But, is really the shortest path the most interesting? If the answer is
yes in terms of strategy for a puzzle, it is not clear that the answer is also yes for
detecting all kinds of skills for a human being. During the Symposium “La<< Tour
d’Hanoı̈>>, un casse-tête mathématique d’Édouard Lucas (1842-1891)”, one of the
speakers said that finding the shortest path might not be the most interesting ques-
tion. It reminded the first author (JPA) of a discussion he once had with the French
composer M. Frémiot. After JPA presented the tower of Hanoiand an algorithmic
solution to him, Frémiot composed aMesse pour orguèa l’usage des paroisses[12].
Interestingly enough, what he emphasized is the rule “no disk on a smaller one”. His
“Messe” used only that rule, without any attempt to reconstruct the tower with the
smallest number of moves. In contrast to algorithms (robots?) that (try to) optimize
a quantitative criterion, or to mathematicians who (try to)prove the optimality of a
solution or study the set of all solutions, is it not the case that composers, and more
generally, artists are interested in qualitatively (rather than quantitatively) excep-
tional elements of a given set, in “jewels” rather than in “generic” elements, in non-
necessarily rational choices rather than in exhaustive studies or rigorous proofs...?
René Char wrote “Le poète doit laisser des traces de son passage non des preuves.
Seules les traces font rêver”.
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