
Adapted User Story Template
The adapted user story template is based on today’s de facto standard template by Connextra (Davies,
n.d.), where the "so that" clause is optional:

“{…Who}	 As	 a	 <user	 or	 stakeholder	 type>	

{What}	 I	 want	 <some	 software	 feature>	

{Why}	 So	 that	 <some	 business	 value>”	

By analyzing the results of our experiment on the identification of the difficulty of classifying user
requirements (Maier & Berry, 2017), we found that we might increase the goodness of the
classification when we put attention to the benefit-part of the user story, i.e., to the “so that” clause of
the Connextra user story template. The benefit-part of a user story is the rationale of a user story. If a
rationale is missing, classifying it becomes almost impossible. So, we have to ensure that each user
story provides exactly one rationale of a requirement. If there are several rationales, add additional
requirements.

The benefit at the beginning of the user story can denote a pragmatic quality or a hedonic quality the
user expects the interactive software product to provide as the overall purpose of the user story. The
stakeholder type denotes the perspective from which the user story is relevant. The new system feature
denotes the concrete need of the user who provided the information included in the user story. The
implementation of this need is necessary to fulfill the given purpose.

What the user story is still missing is information on the user’s intended interaction with the
interactive software product, given that the need has been already implemented. Another missing
information is the information on the source of the user requirement. As each user constructs his or her
reality based on his or her experiences (Rupp, 2009), user requirements always stem from experiences
that are related to the interactive software product for which the user formulates a requirement (Rupp,
2009; Ebert, 2012).

So, our adapted user story template focuses on the granularity levels of the goal of the user
requirement being described as a user story: The purpose provides the most general goal of the user
requirement, the need describes the functionality that the user needs to achieve the purpose, and the
intention describes the concrete action the user wants to perform by using the functionality.

{Purpose}	 In	 order	 to	 -‐<Action>-‐	 -‐<Goal/Desire>-‐	 [<concretization	 of	 Goal/Desire>]	

{Product	 Quality}	 by	 a	 better	 -‐<Product	 Quality>-‐,	 	

{Perspective}	 As	 <Role>,	

{Need}	 I	 want	 to	 be	 able	 to	 <Need>,	 	

{Intention}	 to	 <Intention>.	

For	 example,	 I	 have	 experienced	

{Product	 Quality}	 a	 better	 <<Product	 Quality>>	

When	 I	 interacted	

{Related	 Software	 Product}	 with	 <Software	 Product>	 	

{Functionality}	 that	 provided	 the	 possibility	 to	 <Functionality>	

{Implementation}	 implemented	 by	 <Implementation>.	

This user story template is separated into two parts: an essential user requirement part that comprises
the first five lines from ‘Purpose’ to ‘Intention’ and an underlying experience part, which provides
information on the source of the user requirement.

In the template, the curly brackets denote the labels of the respective lines, i.e., the information that is
provided in the respective line. This way, an analyst finds the required information without having to
read the whole user requirement.

Angle brackets with hyphens, “-‐<” and “>-‐”, denote information that is selected from a list.
Goal/Desire is selected from the elements of pragmatic quality or hedonic quality from the UX Quality
Model, Action is selected from a list of possible modifications of the selected element of pragmatic
quality or hedonic quality: A selected element can be increased, decreased, adapted, or enabled.
Eventually, Product Quality is selected from the elements of the system quality from the UX Quality
Model.

Single angle brackets, “<” and “>”, denote information that the writer of a user story has to provide as
free text.

Double angle brackets, “<<” and “>>”, denote information that is exactly copied from an information
provided in a previous line of the user story. In the user story template, the only information that is
copied is the Product Quality. The repeat of the product quality in the related experience part of the
user story creates a stronger link between the related experience part and the essential user requirement
part of the user story.

Square brackets denote optional information. The only optional information within the user story
template is the information on the specific context of the modification of a particular pragmatic quality
or hedonic quality, which might be necessary in some cases.

Related Software Product refers to an interactive software product that the originator of the requirement
used in the past. It should specify a concrete system that is named and linked to if possible, so that a
developer who has to work with the requirement is able to visit the system that caused the experiences
that the originator of the requirement describes.

Examples:
An example of a pragmatic user requirement in the adapted user story template is:
{Purpose}	 In	 order	 to	 increase	 the	 completeness	 with	 which	 specific	 goals	 are	 achieved	
{Product	 Quality}	 by	 a	 better	 functional	 appropriateness,	
{Perspective}	 as	 a	 participant	 in	 a	 delivery	 (e.g.,	 recipient,	 supplier),	 	
{Need}	 I	 want	 to	 be	 able	 to	 communicate	 with	 the	 other	 participant,	 	 	
{Intention}	 to	 be	 able	 to	 coordinate	 the	 delivery.	
For	 example,	 I	 have	 experienced	 	
{Product	 Quality}	 a	 better	 functional	 appropriateness	 	
when	 I	 interacted	 	
{Related	 Software	 Product}	 with	 a	 logistics	 company's	 website	 	
{Functionality}	 that	 provided	 the	 possibility	 to	 communicate	 with	 the	 other	 participant,	 	
{Implementation}	 implemented	 by	 a	 messenger.	
	
An example of a hedonic user requirement in the adapted user story template is:

{Purpose}	 In	 order	 to	 increase	 the	 enablement	 of	 my	 personal	 development	 	
{Product	 Quality}	 by	 a	 better	 accountability,	
{Perspective}	 as	 a	 citizen,	
{Need}I	 want	 to	 be	 able	 to	 be	 informed	 about	 my	 partners	 in	 the	 project	
{Intention}	 to	 learn	 who	 the	 organizations	 involved	 are	 and	 what	 they	 do	 in	 the	 context	 of	 the	
project.	

For	 example,	 I	 have	 experienced	
{Product	 Quality}	 a	 better	 accountability	
when	 I	 interacted	
{Related	 Software	 Product}	 with	 an	 online	 learning	 platform	 	
{Functionality}	 that	 provided	 the	 possibility	 to	 be	 informed	 about	 the	 project	 partners,	 	
{Implementation}	 implemented	 by	 a	 detailed	 partner	 description	 page	 with	 corresponding	 legal	
information	 and	 all	 information	 about	 the	 partners	 providing	 the	 content,	 together	 with	 links	 to	
websites	 and	 other	 information	 regarding	 the	 partners.	

User	 Requirement	 Classification	 Trainer	
The analysis of the results of the experiment on the difficulty of the classification of user requirements
revealed some reasons for the difficulty and corresponding improvement suggestions for reducing
these difficulties.

Subjects of the first experiment indicated issues with the separation of HQ and product quality or
functionality. When a subject found indications of a product quality or functionality in a user
requirement, the subject classified this user requirement as pragmatic, even if included keywords made
this requirement hedonic. So, one of the improvement suggestions is a clarification that each hedonic
quality requires an appropriate functionality to show up, i.e., functionality and hedonic quality do not
contradict each other. A related improvement suggestion is the provision of a stronger distinction
between product quality, e.g., functionality, a task, a process, and the experiences a user makes when
using a product, i.e., PQ and HQ. Finally, some subjects mentioned that they were missing examples
of pragmatic user requirements and hedonic user requirements. So, the definitions should be improved
by the provision of examples that clarify the definitions.

Apart from the provision of general information on the definitions of PQ and HQ in detail as the
essence of the systematic literature research on UX emergence and on UX Quality Models, the User
Requirement Classification Trainer will take into account these improvements.

With the User Requirement Classification Trainer, a user will learn how to classify user requirements
into PQ-related user requirements and HQ-related ones. The trainer was developed as a browser tool in
Java 8 and JavaScript. The information provided by the trainer was taken from literature and from the
UX Quality Model. Apart from one exception, sources of the respective information given in the
trainer will not be provided in this section. Instead, the text will be given exactly as it is provided in a
browser. In a browser, however, for each example the trainer shows the path from the keyword in the
example to PQ or HQ superimposed on a tree diagram from the UX Quality Model. Figure 1 shows
the decision tree with the elements of PQ and HQ.

	
Figure	 1:	 Decision	 Tree	 with	 the	 Elements	 of	 PQ	 and	 HQ	

The trainer comprises two parts, a training part and an exercise part, where the user will be asked to
apply his newly gained skills.
Training	 Part	
The training part of the trainer consists of eight sections that describe:
• the emergence of user experience,
• the connection of user requirements and user experience,

• what are ambiguous user requirements,
• how to classify user requirements,
• the identification of PQ-related user requirements,
• examples of PQ-related user requirements,
• the identification of HQ-related user requirements, and
• examples of HQ-related user requirements.
In this experiment package, only those parts of the trainer are shown that are most important for
understanding what the subjects of the experiment learned to correctly classify user requirements.
Furthermore, for each of a PQ-related user requirement and an HQ-related user requirement, only one
example is shown in this experiment package. The paper that describes the experiment includes
additional examples. The most important parts for the purpose of understanding what the subjects
learned by using the trainer are:
• how to classify user requirements,
• the identification of PQ-related user requirements,
• example of a PQ-related user requirement,
• the identification of HQ-related user requirements, and
• example of an HQ-related user requirement.

How	 to	 Classify	 User	 Requirements	
The classification of a user requirement into a PQ-related one or a HQ-related one comprises three steps:
1. Identify the focus of the requirement, based on corresponding key words in the user requirement. The most

important part of a user requirement is (a) the one that begins with ‘in order to’ or something similar and
describes the rationale of the requirement from a user’s point of view, or (b) a PQ assessment that describes
the overall usefulness of the interactive software product or, as HQ assessment, the description of the
product’s overall appeal. Regarding PQ, an overall useful product is described by assessments like, amongst
similar ones, clear, supporting, useful, structured, practical, predictable, simple, and controllable.
Regarding HQ, a product’s overall appeal is described by assessments like, amongst similar ones,
captivating, stylish, beautiful, novel, premium, creative, original, innovative, presentable,
integrating, exciting, amusing, thrilling, fun, enjoyable, interesting, pleasant, impressive,
motivating, inventive, playful, competitive, exploratory, and reliable. If a user requirement contains
such an assessment, the user requirement does not have to include a rationale in addition, since the
assessment provides sufficient information to classify the user requirement correctly. Hence, proceed with
Step 3.

2. If a user requirement lacks a rationale and an assessment of its overall usefulness and its overall appeal,
respectively, stick to the explicit information provided by the requirement and do not try to over-interpret
the requirement by assigning implicit meaning to it. A user requirement that lacks a rationale and an
assessment of its overall usefulness and its overall appeal, respectively, is either an ambiguous user
requirement for which you have to elicit additional information in order to decide if the user requirement is
pragmatic or hedonic, or the user requirement addresses an objective product quality. In both cases, skip the
remaining user requirement classification process and restart it at Step 1 when you have elicited additional
information.

3. Identify which criterion of PQ or HQ the identified focus of the user requirement refers to. For the
identification, use the decision trees for PQ and HQ that you see below. Remember that an HQ is built on a
PQ, and that, in turn, each PQ is built on an objective product quality. That is, when a user requirement
includes any key word that refers to HQ, the requirement is HQ-related, even if the same requirement
includes key words that refer to PQ or to an objective product quality. When a user requirement includes a
keyword that indicates PQ, the requirement is classified as pragmatic, even if the requirement also includes
a product quality or if the requirement can be interpreted as hedonic, although a corresponding keyword is
not explicitly given.

4. Classify the user requirement as PQ-related or as HQ-related, depending on the source of the criterion you

identified in Step 2 or on the assessment of the product’s overall usefulness and its overall appeal,
respectively.

	
Figure	 2:	 Decision	 Trees	 for	 Identifying	 PQ	 and	 HQ

The	 Identification	 of	 PQ-‐Related	 User	 Requirements	
Pragmatic quality refers to a product’s relevant functionality to effectively achieve a particular task,
i.e., utility, and ways to access this functionality in a quick and easy way, i.e., ease of use.

Example	 of	 a	 PQ-‐Related	 User	 Requirement	 	
Example:	 The	 product	 should	 provide	 a	 clear	 screen	 layout.'	

Rationale: "clear" is an attribute that concerns the 'expenditure of human resources' that indicates 'ease
of use', which is a criterion of pragmatic quality.

Although the provision of a clear screen layout might also be categorized as an aspect of utility or of
‘aesthetics’, the attribute ‘clear’ is in the focus of this requirement. The requirement does not refer to
the product’s fulfillment of a particular task, which would indicate its utility, nor does the requirement
refer to the stimulation of the user’s senses, which would indicate ‘aesthetics’. A clear screen layout
decreases the user’s cognitive load and thus the expenditure of his resources.

The	 Identification	 of	 HQ-‐Related	 User	 Requirements	 	
Hedonic quality covers all product attributes apart from utility and ease of use that emphasize an
individuals' psychological well-being.

In particular, HQ comprises nine criteria:

• Enablement of personal development: The proliferation of knowledge and the development of
skills by the achievement of some challenge; the provision of new impressions, opportunities,
and insights.

• Identification: The provision of a self-expressive function; being socially recognized and
exerting power over others.

• Symbolism: The provocation of memories of individually important past events, relationships,
or thoughts.

• Attachment: Ability for the user to attach subjective value to a product/service; affection,
fondness, or sympathy for someone or something.

• Aesthetics: A user interface enables pleasing and satisfying sensory interaction for the user.
• Luxuriousness: The degree to which a product/service is luxurious or looks expensive and

superior in quality.
• Trust: The user’s confidence that a system will behave as intended; a group of beliefs held by

a person derived from his or her perceptions about certain attributes, especially with respect to
honesty and benevolence perceived in the behavior of the other party (Flavian et al., 2006).
Honesty is the belief that the system, service, person, or other entity will keep its, his, or her
word, fulfill promises, is free of deceit, truthful and sincere (Oxford Dictionaries:
https://en.oxforddictionaries.com/definition/honesty;
https://en.oxforddictionaries.com/definition/honest). Benevolence is the belief that the system,
service, person, or other entity is well meaning and kind, is interested in the wellbeing of
another without intention of opportunistic behavior, motivated by a search for a mutually
beneficial relationship (Oxford Dictionaries:
https://en.oxforddictionaries.com/definition/benevolence).

• Physical comfort: The user is satisfied with physical comfort.

• Freedom from risk: A system mitigates the potential risk to economic status, human life,
health, or the environment.

Example	 of	 an	 HQ-‐Related	 User	 Requirement	 	
Example:	 My	 smart	 phone	 must	 not	 create	 a	 profile	 of	 my	 movements,	 which	 could	 allow	 a	 third	
party	 to	 know	 where	 I	 am	 and	 where	 I	 have	 been.	
Rationale: This concern reflects a lack of honesty of the system relating to someone's possibility to
misuse the user’s movement profile against this user, and thus it indicates 'trust', which is a criterion of
hedonic quality.

The Exercise Part of the User Requirements Classification Trainer
After the training part of the User Requirements Classification Trainer, a user of the trainer is asked to
classify 41 user requirements as pragmatic or as hedonic. But before the exercise begins, the user can
repeat the training part until he feels trained enough to start the exercise. The 41 user requirements are
composed of 10 pragmatic user requirements (four for each of the two criteria of PQ one additional
user requirement in the adapted user requirement, and one additional original user requirement from a
research project) and 31 hedonic user requirements (3 for each of the nine criteria of HQ, additionally
(1) two additional user requirements represented in the adapted user story template, and (2) two of the
original user requirements from the research project). Five of the pragmatic user requirements and ten
of the hedonic user requirements that are provided in the exercise part of the trainer were also used in
the training part. So, the users of the trainer are assumed to correctly classify these repeated examples
at the first time they are asked to classify those user requirements.
While the examples in the training part of the trainer were provided in a strict order, the examples in
the exercise part of the trainer are provided in a random order that is changed with each run of the
trainer.
Each example is repeated once when it was not classified
Correctly at the first time. So, an example is provided twice, at last, even if it is wrongly classified for
the second time. When an example is shown, the user can select if the decision tree shall be shown or
not. The selection is preserved for the next examples, until the user decides on hiding the decision tree

again. The correct path from a keyword within the example to the correct root (PQ or HQ) is not
shown in the decision tree. The decision tree is just meant to prevent the user from keeping the UX
Quality Model in mind. So, the classification of the user requirements is not influenced by the user’s
cognitive load and by wrong memories of the criteria and sub-criteria of PQ and HQ. As in the
training part of the trainer, the correct classification of an example is shown with the arguments for the
classification and the corresponding tree diagram before the next example is shown, even if the user
requirement was classified correctly.

References
Evans, David, and Adzic, Gojko (2014). “’As a, I want, So that’ Considered Harmful”.
http://blog.crisp.se/2014/09/25/david-evans/as-a-i-want-so-that-considered-harmful. Retrieved 2017-
08-09.

Cohn, Mike. "User Story Template Advantages".
https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template.
Retrieved 2017-08-09.

Davies, Rachel: “Connextra User Story 2001: ConnextraStoryCard".
http://agilecoach.typepad.com/photos/connextra_user_story_2001/connextrastorycard.html. Retrieved
2017-08-09.

Ebert, C. (2012). Systematisches Requirements Engineering. Vasa. Retrieved from
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
Marcano, Antony (2011). “OLD FAVOURITE: FEATURE INJECTION USER STORIES ON A
BUSINESS VALUE THEME”. http://antonymarcano.com/blog/2011/03/fi_stories/. Retrieved 2017-
08-09.

Rupp, C. (2009). Requirements-Engineering und -Management: Professionelle, iterative
Anforderungsanalyse für die Praxis (5th ed.). Carl Hanser Verlag GmbH & Co. KG.

