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Abstract

Sparse additive modeling is a class of effec-
tive methods for performing high-dimensional
nonparametric regression. In this work we
show how shape constraints such as convex-
ity/concavity and their extensions, can be in-
tegrated into additive models. The proposed
sparse difference of convex additive models
(SDCAM) can estimate most continuous func-
tions without any a priori smoothness assump-
tion. Motivated by a characterization of dif-
ference of convex functions, our method in-
corporates a natural regularization functional
to avoid overfitting and to reduce model com-
plexity. Computationally, we develop an ef-
ficient backfitting algorithm with linear per-
iteration complexity. Experiments on both
synthetic and real data confirm that our method
is competitive against state-of-the-art sparse
additive models, with improved performance
in most scenarios.

1 INTRODUCTION

Regression, which aims at predicting a real-valued re-
sponse from a set of covariates, is an important form of
supervised learning and has been widely studied in ma-
chine learning and statistics. More precisely, consider
the following model:

Y = m(X) + ξ,

where the covariate X ∈ Rp and the noise ξ ∈ R
are both random. It is common in practice to assume
E(ξ|X) = 0, hence m(x) = E(Y |X = x) is the re-
gression function that we aim to estimate based on a set
of data samples {(xi, yi) : i = 1, . . . , n}. Asymptotic
consistency for certain estimators (such as least-squares)

is well-known, although the rate of convergence can be
arbitrarily slow (Györfi et al., 2002). Meaningful and
precise rates of convergence have been obtained if the
regression function m(x) is smooth, or, as we see more
recently (Groeneboom & Jongbloed, 2014), if m(x) sat-
isfies certain shape restrictions (e.g., linear, monotonic,
convex, or log-concave). However, even under such ex-
tra regularity conditions, the rate of convergence, quite
disappointingly, still degrades quickly as the dimension
p increases—a phenomenon widely known as the “curse
of dimensionality.”

Additive modeling (Hastie & Tibshirani, 1990) is a class
of convenient tools to combat the curse of dimension-
ality, by making further assumption that the regression
function m(x) can be decomposed (approximately) into
a sum of univariate component functions, each acting on
a separate covariate. More precisely,

m(x) ≈ µ+

p∑
j=1

fj(xj), (1)

where µ ∈ R is the intercept and each component fj is a
univariate function of xj only. By restricting itself to the
additive form (1), the class of additive models can bring
in several advantages:

• dimensionality: a celebrated result of Stone (1985) re-
veals that when each component fj is smooth, the ad-
ditive models can achieve the same (optimal) rate of
convergence for general p as they can for p = 1.

• interpretability: each component function can be eas-
ily visualized and inspected.

• computability: by decomposing the multivariate esti-
mation problem into a set of univariate ones we can
greatly simplify the underlying computations.

Previous works have also studied additive models where
some interactions among covariates are allowed (Hastie
& Tibshirani, 1990; Tyagi et al., 2016; Kandasamy & Yu,
2016).



Our main interest in this work is to incorporate certain
shape constraints of component functions, such as con-
vexity and its extension, into the procedure of estimating
high dimensional additive models. In modern applica-
tions it is not uncommon that the number of covariates
p is comparable with or even greatly exceeds the num-
ber of samples n that one can possibly (afford to) collect.
However, the true regression function may only depend
on a small number of important covariates, at least ap-
proximately. In the case of additive modeling, it amounts
to identifying those few nonzero functional components
in (1) based on a set of data samples (Ravikumar et al.,
2008; Yin et al., 2012). It is also equally important that
the regression function is usually subject to certain a pri-
ori regularity conditions. For instance, many functions
that arise in econometrics (Varian, 1982, 1984), actuar-
ial science (Grenander, 1956), statistics (Groeneboom &
Jongbloed, 2014), and optimization (Hannah & Dunson,
2013; Hannah et al., 2014) tend to be convex/concave or
monotonic (Barlow et al., 1972). However, such a priori
knowledge can be imprecise and sometimes even wrong,
e.g., convex functions are mistakenly believed to be con-
cave. Therefore, we need our estimation procedure of
additive models to be robust against the prior knowledge
of component functions, such as their shape constraints.

More precisely, we make the following contributions in
this work:

• We propose a sparse convex additive model to estimate
convex (and monotonic) component functions in high
dimensional additive modeling.

• To address potential robustness issue, we next propose
the sparse difference of convex additive models (SD-
CAM) that can estimate most continuous functions,
being smooth or not, that we use in practice. We dis-
cover three surprising properties of SDCAM: (1) If
naively formulated, SDCAM is bound to overfit the
training data; (2) By relating to a less-known charac-
terization of difference of convex functions, we show
how to add a very natural regularization functional
to SDCAM to avoid overfitting and to reduce model
complexity; (3) Despite the well-known fact that min-
imizing a difference of convex function is generally
intractable, estimating a difference of convex function,
as in SDCAM, can be achieved very efficiently.

• We propose an efficient backfitting algorithm for SD-
CAM with linear per-iteration complexity. It includes
many prior algorithms as special cases.

• We test SDCAM on both synthetic and real data.
Overall, SDCAM achieved competitive model selec-
tion and prediction accuracy against state-of-the-art
sparse additive models. SDCAM also leads to some
interesting new discovery on the Boston housing data.

This paper proceeds as follows. In the next section §2,
we first introduce some background and related work.
Then, we present the new sparse difference of convex
additive models (SDCAM) in §3. Experimental results
are reported in §4. Finally, we conclude in §5.

2 BACKGROUND AND RELATED
WORK

In this section, we briefly review shape-constrained func-
tions that are used in additive modeling before.

Recall that we are interested in estimating a multivari-
ate function1 m : [0, 1]p → R, based on i.i.d. samples
{(xi, yi) : i = 1, . . . , n} from the following model

Y = m(X) + ξ,

where ξ is a random noise that is independent of X . To
combat the curse of dimensionality, additive models try
to find an additive approximation of the regression func-
tion

m(x) = E(Y |X = x) ≈ µ+

p∑
j=1

fj(xj).

For the sake of model identifiability, we assume each uni-
variate component function fj is centered, i.e.,

E(fj(Xj)) = 0, j = 1, . . . , p.

As a consequence, an unbiased estimator of µ is sim-
ply the sample mean of the observed responses {yi}. In
what follows, we always first subtract this sample mean
from the responses yi hence the intercept µ can be omit-
ted from the model.

2.1 ISOTONIC FUNCTIONS

Bacchetti (1989) first studied the isotonic additive mod-
eling, in which each component function fj is restricted
to be isotonic, i.e., in the function class

Mj := {f : [0, 1]→ R |E(f(Xj))=0, f is increasing}.

Given n samples {(xi, yi) : i = 1, . . . , n} ⊆ [0, 1]p×R,
the isotonic additive regression solves the following least
squares estimation problem:

min
∀j,fj∈Mj

n∑
i=1

(
yi −

p∑
j=1

fj(xij)
)2
. (2)

Since the objective function depends on each fj only at
observed values, we can simplify (2) as follows: First,

1For simplicity, we assume the domain of the regression
function is [0, 1]p throughout the paper.



we sort each of the p covariates xj ∈ Rn separately in
increasing order. Throughout this work we use the tilde
notation x̃j to represent this operation (w.r.t. xj), that is,
x̃j = Pjxj for a permutation matrix Pj such that

x̃1j ≤ x̃2j ≤ · · · ≤ x̃nj .

Note that different covariates may require different per-
mutations of the indexes in order to be sorted increas-
ingly. Next, we introduce the component fits zj ∈ Rn
on the observed values: zij = fj(xij), i = 1, . . . , n, and
z̃ij = fj(x̃ij) as a permuted version of zj , according to
xj . Since all shape constraints in this work are with re-
spect to the covariates xj , the monotonicity of the func-
tion fj reduces to that of the vector z̃j . Lastly, we ap-
proximate the centering constraint E(fj(Xj)) = 0 by the
empirical average over the samples. Thus, we arrive at
the following finite-dimensional least squares problem:

min
∀j,z̃j∈I∩H

n∑
i=1

(
yi −

p∑
j=1

zij
)2
, (3)

where H := {z ∈ Rn :
∑n
i=1 zi = 0} is the centering

constraint and

I := {z ∈ Rn : z1 ≤ z2 ≤ · · · ≤ zn} (4)

is the isotonic (monotonic) cone. In what follows, one
should keep in mind that z̃j = Pjzj where the permuta-
tion matrix Pj satisfies x̃j = Pjxj .

Bacchetti (1989) developed a backfitting (i.e., block co-
ordinate descent) algorithm for solving (3) while ignor-
ing the centering constraint zj ∈ H: in each step, all
components except for one zj are fixed, and the well-
known pool-adjacent-violators (PAV) algorithm (Barlow
et al., 1972) is applied to optimize zj under the isotonic
constraint I. Oracle property of the backfitting estimator
was later investigated by Mammen & Yu (2007).

Similar to standard additive models, isotonic additive
modeling can fail in the high-dimensional setting (p >
n). Fang & Meinshausen (2012) proposed the LASSO-
Isotone (LISO) estimator, with the aim to incorporate the
idea of sparsity into isotonic additive regression. Specifi-
cally, the total variation of component fits zj were added
to the objective function of problem (3) as a LASSO-
style penalty:

min
∀j,z̃j∈I∩H

n∑
i=1

(
yi −

p∑
j=1

zij
)2

+

p∑
j=1

λt‖z̃j‖tv, (5)

where the total variation

‖z̃j‖tv :=
n∑
i=2

|z̃ij − z̃i−1,j |

simplifies to z̃nj − z̃1j under the isotonic constraint z̃j ∈
I. An iterative procedure called LISO-backfitting was
applied to solve the LISO optimization problem (5).

2.2 FUNCTIONS OF BOUNDED VARIATION

The set of all isotonic functionsMj forms a convex cone
in the vector space of all functions

F := {f | f : [0, 1]→ R}.

It is thus natural to consider the subspace generated by
isotonic functions, i.e., all functions that can be written
as the difference of two increasing functions:

BVj := {f ∈ F | f = f1 − f2, f1 ∈Mj , f2 ∈Mj}.

As is well-known in real analysis (Apostol, 1974, Theo-
rem 6.13), the above class of functions coincides with the
class of functions of bounded variation, i.e., functions f
whose total variation is finite:

‖f‖tv := sup
P

n∑
i=2

|f(xi)− f(xi−1)| <∞,

where the supremum is taken over n and all partitions
P = {0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1} of [0, 1].

The class of bounded variation functions motivates the
development of the fused lasso additive model (FLAM),
in which each component function fj is estimated to be
piecewise constant with a small number of adaptively
chosen knots (Petersen et al., 2016). FLAM solves the
following regularized least squares problem using block
coordinate descent:

min
∀j,zj∈H

n∑
i=1

(
yi−

p∑
j=1

zij
)2

+

p∑
j=1

(λt‖z̃j‖tv+λs‖zj‖2) ,

where the total variation seminorm ‖z̃j‖tv encourages
each component function to be piecewise constant and
the `2 norm ‖zj‖2 imposes sparsity on the component
functions to conduct variable selection. The centering
constraint zj ∈ H, however, is dropped in the imple-
mentation of FLAM, and the intercept µ has to be re-
estimated in each iteration.

3 CONVEX-CONSTRAINED SPARSE
ADDITIVE MODELS

Motivated by the previous work, in this section we study
a related but different shape constraint, namely convex-
ity, in sparse additive modeling. That is, each non-zero
component function fj is restricted to the following func-
tion class

Cj := {f : [0, 1]→ R | E(f(Xj)) = 0, f is convex}.



Although there is a certain overlap between the two func-
tion classes Mj and Cj , their “sizes” are quite differ-
ent: the metric entropy of Mj (under the `∞ distance)
is known to be of the order ε−1(van der Vaart & Well-
ner, 2000, Theorem 2.7.5), while the metric entropy of
the class of convex and uniformly bounded functions is
of the significantly smaller order ε−1/2 (Guntuboyina &
Sen, 2013).

Chen & Samworth (2016) studied a related problem
where each component function in a generalized additive
(index) model is required to obey a certain shape restric-
tion, such as monotonicity, convexity, or the combination
of the two (see their Table 1). In the case that it is a stan-
dard additive model and all the component functions are
constrained to be convex, the resulting convex additive
regression solves the following constrained least squares
problem:

min
∀j,fj∈Cj

n∑
i=1

(
yi −

p∑
j=1

fj(xij)
)2
. (6)

Chen & Samworth (2016) applied an active set algorithm
to solve (6) using basis expansion, which results in np
parameters hence unfortunately can fail to work well in
the high-dimensional setting. In fact, in their simulation
study and real data examples, the dimensionality of co-
variates being considered is no larger than 10.

3.1 SPARSE CONVEX ADDITIVE MODEL
(SCAM)

To deal with high dimensionality under the reasonable
assumption that most covariates are irrelevant, we pro-
pose the following penalized optimization problem:

min
∀j,fj∈Cj

n∑
i=1

(
yi −

p∑
j=1

fj(xij)
)2

+ λs

p∑
j=1

‖fj‖2, (7)

where ‖fj‖2 :=
√

E(f2j (Xj)) is the L2 norm of com-
ponent function fj w.r.t. the marginal distribution of Xj .
When p is large and λs is chosen appropriately, the L2

norm in (7) will set many irrelevant component functions
fj to zero hence achieving model selection. Our model
(7) here is inspired by SpAM (Ravikumar et al., 2008),
which first considered the L2 group norm in nonpara-
metric additive modeling. The difference is that SpAM
relies on linear smoothers to estimate smooth component
functions while we are interested in getting convex com-
ponent functions Cj—a shape constraint that SpAM can-
not explicitly take into account. We note in passing that
a similar model to (7) (with group `∞ norm instead) ap-
peared as the first stage of the screening procedure in the
recent work of Xu et al. (2016),

Following the discussion from §2.1, we can simplify the
infinite-dimensional problem (7) by first sorting each of
the p covariates2. Again, we use the tilde notation to sig-
nal this sorting operation w.r.t. the corresponding covari-
ate. Then, we introduce the fits zj ∈ Rn on the observed
values, i.e., zij = fj(xij), i = 1 . . . , n, and make the
substitution in the objective of (7). Lastly, we approx-
imate the centering constraint E(fj(Xj)) = 0 and L2

norm ‖fj‖2 :=
√
E(f2j (Xj)) by the empirical average

over the samples, leading to the finite-dimensional prob-
lem of the sparse convex additive model (SCAM):

min
∀j,z̃j∈Kj∩H

n∑
i=1

(
yi −

p∑
j=1

zij
)2

+ λs

p∑
j=1

‖zj‖2, (8)

where again H := {z ∈ Rn :
∑n
i=1 zi = 0} is the em-

pirical centering constraint and

Kj :=
{
z ∈Rn : z2 − z1

x̃2j − x̃1j
≤ · · · ≤ zn − zn−1

x̃nj − x̃n−1,j

}
. (9)

Here, we use an important observation from the cele-
brated work of Hildreth (1954), namely, the convex cone
constraint Kj is both sufficient and necessary to guar-
antee the underlying component function fj to be con-
vex. Note that had we not assumed the additive form
m(x) ≈

∑
j fj(xj), we would have to deal with n2 lin-

ear constraints (see for instance Boyd & Vandenberghe
(2004, §6.5.5)) instead of only n simple ones. Therefore,
the additive modeling assumption is not only useful in
combating the curse of dimensionality; it also leads to
computationally more convenient formulations.

Moreover, we can further combine monotonicity with
convexity, as studied in Chen & Samworth (2016, Table
1). For instance, if some component function fj is be-
lieved to be both convex and monotonically increasing,
then we need only replace the cone Kj defined in (9) by

K′j :=
{
z ∈Rn :0≤ z2 − z1

x̃2j − x̃1j
≤· · ·≤ zn − zn−1

x̃nj − x̃n−1,j

}
. (10)

As we shall see, this change will have very minimal ef-
fect on our backfitting algorithm hence below we do not
discuss such straightforward extensions in details.

3.2 SPARSE DIFFERENCE OF CONVEX
ADDITIVE MODEL (SDCAM)

The qualitative convex assumption in (7) is natural in
many applications, but perhaps we can only expect it to
hold approximately? Besides, what if we were wrong

2For simplicity, we assume that the observed values of each
covariate are distinct. It is straightforward to extend to the case
where ties can possibly arise.



and the component function fj is in fact concave? In
this section we propose a convenient extension to address
such robustness issue.

The idea is to work with a larger class of functions. In
particular, in parallel with §2.2, we consider class of dif-
ference of convex (DC) functions:

DCj := {f ∈ F | f = f1 − f2, f1 ∈ Cj , f2 ∈ Cj}.

Clearly, DCj is the vector space generated by Cj . From
the definition it is also clear that all convex functions,
as well as all concave functions, are DC. In fact, most
continuous functions (convex or not, smooth or not) we
use in practice are DC. For comparison purpose we state
the following fact:

Theorem 1. Mj ⊂ BVj ⊃ DCj ⊃ Cj .

As an example, we note that simple step functions are of
bounded variation but they are not DC, since all DC func-
tions are continuous (except perhaps at the boundaries of
the domain). The difference is large in terms of metric
entropy: O(ε−1) for BVj versus O(ε−1/2) forDCj . As a
result, searching in the space of DC functions is “easier”
than in the space of bounded variation functions.

However, if we naively replace Cj with DCj in the con-
straint of (7), the solution will severely overfit to the data,
due to the following result:

Theorem 2. For any sample {(xi, yi) : i = 1, . . . , n} ⊆
[0, 1]p×R such that xi 6= xj for all 1 ≤ i 6= j ≤ n, there
always exists a multivariate3 DC function f : [0, 1]p →
R such that for all i = 1, . . . , n, f(xi) = yi.

Proof. We only need to consider the special case of
p = 1, which can be proved much more easily. However,
we provide a proof for any p because this will provide
another justification for the use of additive models.

Since xi 6= xj for any i 6= j, we can put a bump function
fi around a small neighborhood Ni of each xi, such that
Ni∩Nj = ∅ for any i 6= j and fi(z) = 0 iff z 6∈ Ni. For
instance, we can choose

fi(z) =

yie
p

δ2
∏p
j=1 e

− 1
δ2−(zj−xij)2 , if ‖z− xi‖∞ < δ

0, otherwise

for some sufficiently small positive δ. Note that fi(xi) =
yi and fi is twice (in fact infinitely many times) continu-
ously differentiable. Now consider f(z) =

∑n
i=1 fi(z).

Since the functions fi have non-overlapping support,
f(xi) = fi(xi) = yi for all i = 1, . . . , n. Moreover,
the Hessian ∇2f is bounded from below. Therefore, for

3The definition of multivariate DC functions is a straight-
forward extension of the univariate case.

γ sufficiently large, the function f(z)+γ‖z‖22 is convex,
which implies that f is DC.

The centering constraint E(f(Xj)) = 0 can also be sat-
isfied, by choosing a centered bump function, or we can
add an extra point x0 6∈ {x1, . . . ,xn} and an additional
component f0 with suitable y0 to cancel the integrals of
f1, . . . , fn.

Therefore, naively estimating DC functions as in (7)
would always lead to zero training error, effectively
memorizing the training samples. The fundamental rea-
son is that the class of DC functions is too rich. Thus, we
need a complexity measure to penalize those estimators
that use very “complex” DC functions. Fortunately, this
can be achieved through the following characterization
of DC functions of one variable:
Theorem 3 ((Roberts & Varberg, 1973, §14)). Let f :
[0, 1]→ R be a function with finite one-sided derivatives
at 0 and 1. Then f is DC iff

‖f‖DC := sup
P

n−1∑
i=2

∣∣∣∣f(xi+1)− f(xi)
xi+1 − xi

− f(xi)− f(xi−1)

xi − xi−1

∣∣∣∣
<∞,

where the supremum is taken over n and the partitions
P = {0 ≤ x1 < x2 < · · · < xn ≤ 1} of [0, 1].

In particular, if f is convex, then ‖f‖DC = f ′−(1) −
f ′+(0), which explains the assumption of finite one-sided
derivatives. Moreover, ‖f‖DC = 0 iff f is affine, i.e.,
f(x) = ax + b for some constant a and b. Essentially,
the seminorm ‖f‖DC measures how fast the slope of f
changes. If f is twice continuously differentiable, then

‖f‖DC =
∫ 1

0

|f ′′(x)|dx.

Note that it is crucial here that f is a univariate func-
tion. For multivariate DC functions, we still do not have
a convenient characterization as in Theorem 3.

Leveraging on the above result, we propose to estimate
DC functions by solving the following penalized least
squares formulation:

min
∀j,fj∈DCj

n∑
i=1

(
yi−

p∑
j=1

fj(xij)
)2

+

p∑
j=1

(λd‖fj‖DC+λs‖fj‖2),

(11)

where the constant λd controls the “degree of DC” of
each fj while the constant λs controls the number of ef-
fective components fj (i.e., sparsity). We see again here
that the additive assumption is not only useful in inter-
pretability but also in computability: it allows us to use
the convenient complexity measure ‖ · ‖DC .



As before, we can simplify (11), which we call sparse
difference of convex additive model (SDCAM), as:

min
∀j,z̃j∈H

n∑
i=1

(
yi −

p∑
j=1

zij
)2

+

p∑
j=1

(
λd‖z̃j‖DCj+λs‖zj‖2

)
, (12)

where for z ∈ Rn we define

‖z‖DCj :=
n−1∑
i=2

∣∣∣∣ zi+1 − zi
x̃i+1,j − x̃ij

− zi − zi−1
x̃ij − x̃i−1,j

∣∣∣∣ . (13)

Note that we have suppressed the dependence of ‖ · ‖DCj
on x̃j (the sorted version of xj). It is clear that we
can easily incorporate further monotonic or convex con-
straints (or both) in (12), by adding z̃j ∈ I (c.f. (4)) or
z̃j ∈ Kj (c.f. (9)) or z̃j ∈ K′j (c.f. (10)). On the other
hand, the following variation may be useful in estimating
approximately convex functions:

‖z‖ACj :=
n−1∑
i=2

max

{
zi − zi−1
x̃ij − x̃i−1,j

− zi+1 − zi
x̃i+1,j − x̃ij

, 0

}
.

Indeed, ‖z‖ACj = 0 iff the underlying function is con-
vex. We note in passing that Tibshirani (2014) used a
simplified form of (13) for trend filtering. However, the
connection to DC functions and the implication for addi-
tive models are not investigated.

It is well-known in optimization that minimizing a DC
function in general is intractable. However, our pro-
posed procedure SDCAM for estimating a DC function
is a tractable convex problem hence amenable to global
and efficient algorithms, as we show next.

3.3 BACKFITTING ALGORITHM

We propose to solve SDCAM in (12) using a modified
backfitting algorithm (i.e., block coordinate gradient). In
each iteration, we fix all component fits except for one
zj , and we solve the resulting subproblem:

min
z̃j∈H

1
2‖r̃j − z̃j‖22 + λd‖z̃j‖DCj + λs‖z̃j‖2, (14)

where r̃j ∈ Rn is the partial residual that removes the
contribution of z̃j . To show how we can solve (14), it is
helpful to recall the following concept:

Definition 1 (Proximal Map (Moreau, 1965)). For any
closed convex function f : Rn → R ∪ {∞}, we define
its proximal map as:

∀r ∈ Rn, Pηf (r) = argmin
z∈Rn

1
2η‖z− r‖22 + f(z),

and we write Pf = P1
f .

Note that the proximal map is a nonlinear map from Rn
to Rn. With this definition we can write the solution
to (14) succinctly as Pλd‖·‖DCj+λs‖·‖2+H(r̃j), where we
abuse the notationH as its indicator function

ιH(z) =

{
0, if z ∈ H
∞, if z 6∈ H

.

Then, we can solve the subproblem (14) based on the
following decomposition result:

Theorem 4. The solution to subproblem (14) can be
computed as

Pλd‖·‖DCj+λs‖·‖2+H
(r̃j) = Pλs‖·‖2

[
PH
(
Pλd‖·‖DCj

(r̃j)
)]
.

Proof. We first note that both λd‖ · ‖DCj andH are pos-
itive homogeneous, hence we have

Pλd‖·‖DCj+λs‖·‖2+H
(r̃j) = Pλs‖·‖2

[
Pλd‖·‖DCj+H

(r̃j)
]
,

according to Yu (2013, Theorem 4). Next, by verify-
ing the sufficient condition in Yu (2013, Theorem 1), we
have

Pλd‖·‖DCj+H
(r̃j) = PH

(
Pλd‖·‖DCj

(r̃j)
)
.

Combining the previous two claims we complete the
proof.

It is well-known that PH amounts to subtracting the av-

erage and Pλs‖·‖2(r) =
(
1− λs

‖r‖2

)
+
r, where (t)+ :=

max{t, 0}, is the block soft thresholding operator. Thus,
we need only find a way to compute Pλd‖·‖DCj

(r̃j), i.e.,

Pλd‖·‖DCj
(r̃j) = argmin

z̃∈Rn
1
2‖z̃− r̃j‖22 + λd‖z̃‖DCj .

With a suitable change of variables4, the problem is
equivalent to solving

min
s∈R,w∈Rn−1

1

2

∥∥∥∥Aj( sw
)
− r̃j

∥∥∥∥2
2

+ λd‖w‖tv, (15)

where

Aj=


1 0 0 · · · 0
1 x̃2j−x̃1j 0 · · · 0
1 x̃2j−x̃1j x̃3j−x̃2j · · · 0
...

...
...

. . .
...

1 x̃2j−x̃1j x̃3j−x̃2j · · · x̃nj−x̃n−1,j

 .
4Define s = z̃1 and wi =

z̃i+1−z̃i
x̃i+1,j−x̃ij

, i = 1, . . . n − 1.

Hence, z̃ = Aj
(
s
w

)
and ‖z̃‖DCj = ‖w‖tv.



Algorithm 1 Modified backfitting algorithm for Sparse
Difference of Convex Additive Model (SDCAM)
input: X ∈ Rn×p, y ∈ Rn, λd, λs ≥ 0, step size η > 0

1 Z ← 0n×p // initialization

2 r← y −mean(y) // remove mean µ

3 while not converged do
4 select some component j ∈ {1, 2, . . . , p}
5 r← r+ Z.j // remove current component

6 r̃← π(r) // permute according to xj
7 z̃← π(Z.j) // permute according to xj
8 for k = 1, . . . ,max do
9

(
s
w

)
←
(
s
w

)
− η ·A>j (z̃− r̃) // grad step

10 w← Pηλd‖·‖tv(w) // PI for SCAM (8)

11 z̃← Aj
(
s
w

)
// substitution

12 z̃← z̃−mean(z̃) // computing PH

13 z̃←
(
1− λs

‖z̃‖2

)
+
z̃ // computing Pλs‖·‖2

14 Z.j ← π−1(z̃) // inverse permute

15 r← r− Z.j // add component back

Since the proximal map Pηλd‖·‖tv can be computed in lin-
ear time using the algorithm in Davies & Kovac (2001),
we can solve (15) hence Pλd‖·‖DCj

(rj) iteratively using
the accelerated proximal gradient algorithm (Beck &
Teboulle, 2009; Nesterov, 2013).

We summarize the entire computational procedure for
SDCAM in Algorithm 1. The necessary modifications
for the SCAM problem (8) should be clear: we only need
to replace the proximal map Pηλd‖·‖tv by PI in line 10,
i.e., projecting onto the isotonic cone I in (4). Im-
portantly, note that the matrix Aj appears only in two
matrix-vector products A>j (z̃ − r̃) and Aj

(
s
w

)
. By ex-

ploiting the special structure in Aj , we observe that we
do not need to maintain Aj explicitly (since there are
only n unique entries), and both matrix-vector products
can be computed in O(n) time using cumulative sums.
Thus, the per-iteration complexity of Algorithm 1 is lin-
ear in the sample size n. Moreover, we can prove that
Algorithm 1 converges to the global minimum at a sub-
linear rate by casting it under the block coordinate de-
scent framework of Tseng (2001).

3.4 INTERPOLATION

SDCAM, as well as any other nonparametric additive
models, only yield the function value estimates zij =
f(xij) on the observed training data X . As more and
more data are observed, it is possible to estimate the
entire function f asymptotically. However, for a given
finite sample size, there are infinitely many candidate
function estimates that all yield the same fits zij on the
training data. To fix a particular choice, we can construct

a function estimate by some form of smoothing or inter-
polation. For instance, the recent work of Canini et al.
(2016) performed interpolation through a fixed lattice in
the domain. In our experiments, we simply use linear in-
terpolation to get a piece-wise linear function estimate,
although in principle higher order interpolations can also
be used. Note that we do not extrapolate the function val-
ues outside the range of the training data, because Balázs
et al. (2015) showed that a naive extrapolation can lead
to large or even infinite generalization errors.

4 EXPERIMENTS

In this section, we compare the performance of SDCAM
to SpAM (Ravikumar et al., 2008) and FLAM (Petersen
et al., 2016) on both simulated and real data. SpAM is
implemented using Gaussian kernel smoothers with the
plug-in bandwidth. We do not compare to LISO (Fang
& Meinshausen, 2012) or SCAM because they achieve
similar performance as SDCAM when the shape param-
eters are set correctly and perform much worse when the
shape constraints do not apply hence are misspecified.

4.1 SIMULATION STUDY

We generate samples X ∈ Rn×p and y ∈ Rn with
n = 100, p = 1000 according to yi =

∑4
j=1 fj(xij)+εi,

where xij ∼ Uniform(−2.5, 2.5) and εi ∼ N (0, σ2).
Two different values of σ are chosen so that the signal-
to-noise ratio SNR = 3 or 5, respectively. In other words,
only the first 4 component functions are nonzero and the
other 996 variables are irrelevant. We consider the fol-
lowing three scenarios for the choice of f1, . . . , f4:

• Scenario 1: all of them are piecewise constant (Fig-
ure 1 (a)).

• Scenario 2: all of them are smooth (Figure 1 (b)).

• Scenario 3: f2 is smooth and the rest of them are
piecewise linear (Figure 1 (c)).

For each combination of scenario and SNR level, we sim-
ulate training, validation, and test sets of the same size
(n = 100, p = 1000). Validation sets are used to choose
the optimal tuning parameter (or parameter pair) for all
algorithms, and test sets are used to calculate the mean
squared error (MSE) to evaluate the prediction accuracy
of the estimated models. Table 1 summarizes the per-
formance of each method in terms of precision/recall for
sparsity pattern recovery, estimated model size, and test
set MSE over 100 random data replicates.

As expected, FLAM achieves the lowest test set MSE in
Scenario 1 because it employs a total variation regular-
izer to encourage the estimated functions to be piecewise
constant (see also Figure 1 (a)). SDCAM performs com-
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(c) Scenario 3
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Figure 1: Typical examples of component fits f̂1, f̂2, f̂3, f̂4 in three simulation scenarios, with n = 100, p = 1000, and
SNR = 5. The true component functions are plotted in solid blue lines. All models are estimated using the optimal
tuning parameter (or parameter pair) that achieves the minimum validation set MSE.

parably to SpAM in this scenario, in which neither is able
to capture the sharp transition of values in the discontin-
uous functions.

In Scenario 2 where all relevant component functions are
smooth, SDCAM outperforms SpAM, with FLAM being
the worst option. Although SDCAM estimates seem to
be quite similar to SpAM fits for the 4 true components
(see Figure 1 (b)), SDCAM has the best precision score.
That means, it is more effective in eliminating irrelevant
variables and their spurious fits in the estimated models,
which in turn can greatly improve the test set MSE.

Scenario 3 is particularly interesting: all the true compo-
nent functions are DC but only f2 is smooth. SDCAM
achieves the best performance in such a mixed scenario,
because SpAM cannot well handle the estimation of non-
smooth functions (in this case, piecewise linear func-
tions) and smooth functions are unfavorable to FLAM.
It is also worth noting that the SDCAM estimates tend
to be less biased on the boundaries of the domain com-

pared to SpAM fits, which are based on the smoothing
technique (Figure 1 (c)).

4.2 REAL DATA

We consider the Boston housing data that contains n =
506 observations of housing values (medv) in suburbs
of Boston. Following Härdle et al. (2004) and Raviku-
mar et al. (2008), 10 original covariates are chosen to
be included in the study: crim, indus, nox, rm,
age, dis, tax, ptratio, b, lstat. We
first rescale each variable to the interval [0, 1], and
then add spurious variables randomly drawn from
Uniform(0, 1) to produce three datasets of p = 30, 40,
and 50, respectively. For each such dataset, 10-fold
cross-validation is used to select the optimal tuning pa-
rameter, and the final models are estimated on all the
samples with the chosen value. Table 2 shows the propor-
tion of 100 random cross-validation partitions that can
correctly eliminate spurious variables in the final models.
The performance of SDCAM is very consistent across
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Figure 2: SDCAM estimates on the Boston housing data, with p = 50. Plotted are the fitted functions on the 7 selected
variables. The remaining 43 components are all constant zero.

method precision recall model size MSE

Scenario 1, SNR = 3

SpAM 0.87 (0.19) 0.99 (0.04) 4.93 (1.86) 1.15 (0.39)
FLAM 0.82 (0.21) 1.00 (0.00) 5.48 (2.60) 0.85 (0.24)

SDCAM 0.86 (0.17) 0.99 (0.05) 4.78 (1.14) 1.32 (0.41)

Scenario 1, SNR = 5

SpAM 0.92 (0.14) 1.00 (0.00) 4.54 (1.14) 0.72 (0.20)
FLAM 0.78 (0.22) 1.00 (0.00) 5.73 (2.27) 0.43 (0.13)

SDCAM 0.93 (0.13) 1.00 (0.00) 4.41 (0.96) 0.75 (0.18)

Scenario 2, SNR = 3

SpAM 0.87 (0.19) 0.99 (0.03) 4.91 (1.52) 0.89 (0.36)
FLAM 0.80 (0.20) 1.00 (0.00) 5.48 (2.14) 0.95 (0.29)

SDCAM 0.93 (0.12) 1.00 (0.00) 4.38 (0.78) 0.64 (0.14)

Scenario 2, SNR = 5

SpAM 0.92 (0.14) 1.00 (0.00) 4.51 (1.17) 0.47 (0.17)
FLAM 0.76 (0.19) 1.00 (0.00) 5.70 (1.74) 0.49 (0.16)

SDCAM 0.98 (0.06) 1.00 (0.00) 4.10 (0.30) 0.25 (0.04)

Scenario 3, SNR = 3

SpAM 0.92 (0.16) 1.00 (0.00) 4.57 (1.39) 0.47 (0.10)
FLAM 0.86 (0.16) 1.00 (0.00) 4.84 (1.17) 0.55 (0.11)

SDCAM 0.97 (0.08) 1.00 (0.00) 4.15 (0.41) 0.41 (0.06)

Scenario 3, SNR = 5

SpAM 0.98 (0.07) 1.00 (0.00) 4.11 (0.34) 0.21 (0.04)
FLAM 0.77 (0.19) 1.00 (0.00) 5.62 (1.85) 0.26 (0.06)

SDCAM 0.99 (0.05) 1.00 (0.00) 4.06 (0.24) 0.15 (0.02)

Table 1: Performance of different methods in the simu-
lation study, with n = 100 and p = 1000. Shown are
the mean (standard error) of precision/recall for sparsity
pattern recovery, estimated model size, and test set MSE
over 100 random data replicates.

different cross-validation partitions (and across different
values of p) and is significantly better than the other two
methods, demonstrating its superior ability in identifying
irrelevant factors.

Because the SpAM and FLAM estimates are very sen-
sitive to the choice of cross-validation partition, we
only report the SDCAM fits for p = 50 in Figure 2.
The results are largely compatible with two previous

SpAM FLAM SDCAM

p = 30 0.76 0.83 0.99
p = 40 0.87 0.85 0.99
p = 50 0.87 0.87 0.99

Table 2: The proportion of 100 random cross-validation
partitions for the Boston housing data that can correctly
eliminate irrelevant variables in the final models.

studies (Ravikumar et al., 2008; Fang & Meinshausen,
2012): (1) the fitted patterns on selected crim, rm,
ptratio, and lstat are quite similar; (2) indus,
age, and dis are regarded to be irrelevant or have small
effects; (3) there is a certain effect from nox, which was
claimed to be large in Fang & Meinshausen (2012) and
borderline in Ravikumar et al. (2008). Perhaps the most
striking finding is a fairly large effect of tax, which were
estimated to be insignificant in these two studies. Never-
theless, our function estimate of f7(tax) is largely com-
patible with the fitted pattern reported in Härdle et al.
(2004, Figure 8.3).

5 CONCLUSIONS

We have shown how to integrate shape constraints such
as convexity into sparse additive models. The proposed
sparse difference of convex additive model (SDCAM)
can successfully estimate most additive continuous func-
tions even in the presence of many irrelevant features.
We propose a natural regularization functional in SD-
CAM to avoid overfitting and to reduce model complex-
ity, and we develop an efficient backfitting algorithm
with linear per-iteration complexity. Experiments on
both synthetic and real data confirm that our method is
competitive against state-of-the-art alternatives. Encour-
aged by our experiments, in the future we plan to study
the model selection consistency of SDCAM and to inves-
tigate the bias-variance tradeoff when estimating a non-
additive regression function.
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