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Abstract—Machine learning models have achieved great success
in supervised learning tasks for end-to-end training, which
requires a large amount of labeled data that is not always feasible.
Recently, many practitioners have shifted to self-supervised
learning (SSL) methods (e.g., contrastive learning) that utilize
cheap unlabeled data to learn a general feature extractor via pre-
training, which can be further applied to personalized downstream
tasks by simply training an additional linear layer with limited
labeled data. However, such a process may also raise concerns
regarding data poisoning attacks. For instance, indiscriminate
data poisoning attacks, which aim to decrease model utility by
injecting a small number of poisoned data into the training set,
pose a security risk to machine learning models, but have only
been studied for end-to-end supervised learning. In this paper,
we extend the exploration of the threat of indiscriminate attacks
on downstream tasks that apply pre-trained feature extractors.
Specifically, we propose two types of attacks: (1) the input space
attacks, where we modify existing attacks (e.g., TGDA attack and
GC attack) to directly craft poisoned data in the input space.
However, due to the difficulty of optimization under constraints,
we further propose (2) the feature targeted attacks, where we
mitigate the challenge with three stages, firstly acquiring target
parameters for the linear head; secondly finding poisoned features
by treating the learned feature representations as a dataset; and
thirdly inverting the poisoned features back to the input space.
Our experiments examine such attacks in popular downstream
tasks of fine-tuning on the same dataset and transfer learning
that considers domain adaptation. Empirical results reveal that
transfer learning is more vulnerable to our attacks. Additionally,
input space attacks are a strong threat if no countermeasures are
posed, but are otherwise weaker than feature targeted attacks.

I. INTRODUCTION

Modern machine learning models, especially deep neural
networks, often train on a large amount of data to achieve
superb performances. To collect such large-scale datasets,
practitioners usually extract the desired data by crawling on
the internet (e.g., web pages using Common Crawl'). However,
using outsourced data raises an imminent security risk (Kumar
et al. 2020; Nelson et al. 2008; Szegedy et al. 2014), namely
that by carefully crafting a small amount of “poisoned” data,
an adversary can throttle the training and hence prediction of a
machine learning pipeline maliciously (Gao et al. 2020; Lyu
et al. 2020; Shejwalkar et al. 2022; Wakefield 2016). More

GK and YY are listed in alphabetical order.
Ihttps://commoncrawl.org/
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formally, such a threat is called data poisoning attacks (Biggio
et al. 2012).

Among various data poisoning attacks (w.r.t. different
adversary objectives), we focus on indiscriminate attacks, which
aim to reduce the overall model performance during testing
(e.g., accuracy for classifiers). Indiscriminate attacks have been
well-studied under end-to-end training schemes (Biggio et al.
2012; Koh et al. 2022; Lu et al. 2022, 2023a; Muiioz-Gonzalez
et al. 2017; Suya et al. 2021, and the references therein),
e.g., supervised learning for image classification tasks. In
particular, Lu et al. (2023a) discussed the underlying difficulties
of indiscriminate attacks and proposed one of the most effective
attack algorithms called Gradient Canceling (GC).

However, as end-to-end training urges the need for large
labeled datasets, practitioners with limited budgets are grad-
ually adopting pre-trained feature extractors returned by self-
supervised learning (SSL, e.g., contrastive learning methods
(Chen et al. 2020a; He et al. 2020)) for personalized down-
stream tasks. Specifically, SSL pre-trains a general feature
extractor f with potentially unlimited unlabeled data (e.g., in
the wild) such that one only needs to train an additional linear
head h on top of f. While several works have studied how to
poison the pre-training process on obtaining f (Balcan et al.
2022; Carlini and Terzis 2021; He et al. 2022), there lacks
an exploration of the vulnerability of performing downstream
tasks given a certified f under data poisoning attacks, which
could pose a serious threat to SSL beneficiaries.

Concretely, we aim to answer the following question:

Can we poison downstream tasks with a fixed
(and trustworthy) pre-trained feature extractor?

Specifically, we consider two popular downstream tasks in
this paper: (1) use the same (but labeled) dataset as pre-training
for fine-tuning® the linear head h (where the parameters of the
feature extractor f is frozen); (2) adapt to a new dataset for
transfer learning.

To address the above question, we first adopt existing data
poisoning attacks in a straightforward manner (which we refer
to as input space attack) to directly craft poisoned points using

>The term “fine-tuning” can be used in different contexts for training with
a pre-trained network as initialization. In this paper, we restrict “fine-tuning”
to performing contrastive learning and downstream tasks on the same dataset.
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Figure 1. An illustration of our threat model:(top row) we acquire the weights of a feature extractor f with contrastive learning methods and optimizing w.r.t.
the InfoNCE loss; (bottom row) we inject poisoned samples to the training dataset on downstream applications (image classification in this example) to perturb
the linear head only. We examine two scenarios in this paper: (1) fine-tuning where pre-training and downstream tasks share the same training set; and (2)
transfer learning where the downstream task is performed on a different dataset.

the GC or TGDA attack by optimizing towards a fixed encoder.
For example, considering the classification problem and the
GC attack (a model-targeted approach), we perform parameter
corruption only on the linear head instead of the entire model
to acquire target parameters.

In practice, without imposing any constraints on the poisoned
samples, we observe that GC input space attack is indeed
effective (e.g., induce 29.54% accuracy drop for fine-tuning
and 39.35% for transfer learning with only e¢; = 3% poisoning
budget). However, such an attack can also be easily defended by
data sanitization methods as the poisoned points have a much
bigger magnitude and are visually malicious (see Figure 2). To
generate “‘benign” poisoned images, we further pose a fidelity
constraint during optimization and observe the effectiveness
of the attacks is largely restricted (e.g., only 2.50% accuracy
drop and 4.40% accuracy drop under the same experimental
settings).

To improve the GC input space attack, we break down
the problem into three stages to mitigate the optimization
difficulties: (1) acquiring target parameters of the linear head;
(2) obtaining poisoned features with GC feature-space attack
by treating the learned feature embeddings f(u) as the clean
dataset, and directly constructing the poisoned feature set (,
such that the linear evaluation is poor after retraining on f(u)+
(; (3) inverting the poisoned feature ¢ back to the input space
to construct v that look visually similar to clean data, where we
propose two viable approaches: decoder inversion that learns
an inversion f —1 of the feature extractor, and feature matching
that optimizes v directly.

Finally, we examine another indiscriminate data poisoning
attack of a different flavor, the Unlearnable Example (UE)

attack. UE operates under the strong premise that an adversary
is capable of perturbing the entire training set (i.e., the
poisoning fraction €5 = 00), albeit the perturbation of each
point is relatively small.

In our empirical evaluation, we observe that downstream
tasks with a fixed feature extractor are surprisingly robust to
the popular UE approach of Huang et al. (2021).

In summary, we make the following contributions:

e We expose the threat of indiscriminate data poisoning
attacks on pre-trained feature extractors and set baselines
on fine-tuning and transfer learning downstream tasks,
where transfer learning is generally more vulnerable to
the considered attacks;

o We tailor existing attacks (e.g., TGDA, Gradient Canceling
attack, and Unlearnable Examples) to poisoning fixed
future extractors and empirically identify the scenarios
where they succeed (e.g., without constraints) and fail
(with constraints);

« We propose new attacks called the feature targeted (FT)
attack that involves three stages to alleviate the challenge
of optimizing input space attacks with constraints and
observe empirical improvement.

« Finally, we examine unlearnable examples in the context
of poisoning fixed feature extractors and identify that a
popular UE attack becomes much less effective on the
downstream tasks.

II. BACKGROUND

In this section, we introduce the background on (1) data
poisoning attacks, especially indiscriminate attacks; (2) self-



supervised learning (e.g., contrastive learning) methods, and
relevant notations we use throughout the paper.

A. Data Poisoning attacks

Data poisoning attack is an emerging security concern
regarding machine learning models. As the primary fuel of the
thriving deep learning architectures, the data collection process
depends highly on uncertified online data and is exposed to
adversaries, who can actively inject corrupted data into dataset
aggregators (e.g., online surveys, chatbots) or simply place
poisoned samples online and passively waiting for scraping
(Gao et al. 2020; Lyu et al. 2020; Shejwalkar et al. 2022;
Wakefield 2016).

Formally, data poisoning attacks refer to the threat of
crafting malicious training data such that machine learning
models trained on it (possibly with clean training data) would
return false predictions during inference. According to different
objectives, there are roughly three types of data poisoning
attacks: (1) targeted attacks (Aghakhani et al. 2021; Guo
and Liu 2020; Shafahi et al. 2018; Zhu et al. 2019) aim at
misclassifying a specific test sample; (2) backdoor attacks
(Chen et al. 2017; Gu et al. 2017; Saha et al. 2020; Tran
et al. 2018) that aim to misclassifying any test sample with a
specific pattern; (3) indiscriminate attacks (Biggio et al. 2012;
Koh and Liang 2017; Koh et al. 2022; Lu et al. 2022, 2023a;
Muiioz-Gonzalez et al. 2017) that decrease the overall test
accuracy. In this paper, we focus on indiscriminate attacks.

Specifically, we will apply a SOTA indiscriminate attack

method, namely the Gradient Canceling (GC) attack (Lu et al.

2023a) frequently in the later sections, and we introduce it
briefly here in the traditional end-to-end training setting (along
with the notations for indiscriminate attacks). Let £((x,y), w)
be our loss that measures the cost of our model parameters w
on a data sample (x, y) for supervised learning. Here we denote
the (empirical) training distribution as p, which contains a set
of training samples. Indiscriminate attacks aim at constructing
a poisoned (empirical) distribution v, where |v| = €4|p|, and
€4 1s the poisoning fraction, such that w minimizes the loss ¢

by training over the mixed distribution xy o @ + v. Lu et al.

(2023a) relax the optimality of the minimizer w to having
vanishing (sub)gradients over the mixed distribution:

Vwl(x;w) < Vo l(p;w) + Ve l(v;w) =0, (1)

Thus, given a good target parameter w (usually found by
parameter corruption methods (Sun et al. 2020)), the GC attack
simply solves the following problem:

arg min %vaf(u; w) + Vo l(v;w)|3, )
vel

where T is the feasible set that can be specified according to

the attack constraints (e.g., visual similarity to real samples to

throttle defenses).

Indiscriminate attacks usually consider a scenario where the
budget is small, i.e., the poisoning fraction €4 is small, such as
3% of the training set size. Nevertheless, there exists a subclass
of indiscriminate attacks called Unlearnable Examples (UE)

(Fowl et al. 2021a,b; Fu et al. 2021; Huang et al. 2021; Liu
and Chawla 2010; Sandoval-Segura et al. 2022; Yu et al. 2022)
that operate under a much stronger assumption, where ¢; = oo,
namely that the adversary can modify the entire training set
directly. In this paper, we also consider this attack as the
strongest threat possible to poisoning fixed feature extractors.

B. Contrastive Learning

Recently, self-supervised learning methods, in particular,
contrastive learning methods have been widely applied to
learn general representations without any label information
for various downstream tasks. Existing approaches aim to learn
a good feature extractor f (parameterized by a neural network)
by minimizing the distance between representations of positive
samples f(x!) and f(x?) (where x! and x? are different data
augmentations of a training sample x), while maximizing that of
negative samples f(x') and f(x.) (where x,, is another sample
from the training set) at the same time. Existing approaches
including Contrastive Predictive Coding (CPC) (Oord et al.
2018), SimCLR (Chen et al. 2020a,b), MoCo (He et al. 2020;
Huynh et al. 2020) and f-MICL (Lu et al. 2023b) apply
InfoNCE-based losses to enforce the contrast between positive
and negative pairs. We call this process contrastive learning
pre-training. Upon deployment, given a fixed feature extractor
f, we consider two popular schemes of performing downstream
tasks in this paper: (1) fine-tuning, where we apply the same (or
slightly augmented) dataset used for pre-training and fine-tune
an additional linear head on top of f (also known as linear
evaluation). Such a linear head can be chosen to suit specific
downstream tasks, e.g., classification, object detection, and
semantic segmentation. In this paper, we consider classification
as an example; (2) transfer learning, where we aim at training
on a personalized dataset, which is usually smaller than the
dataset used in pre-training (e.g., transfer from ImageNet to
CIFAR-10). Again we consider linear evaluation where a linear
head is learned.

III. INPUT SPACE ATTACKS

Existing indiscriminate attacks on neural networks, i.e.,
Total Gradient Descent Ascent (TGDA) attack (Lu et al.
2022), Gradient Canceling (GC) attack (Lu et al. 2023a)
and Unlearnable Examples (Huang et al. 2021) generate (or
optimize) poisoned points directly in the input space, which
is suitable for end-to-end training. In this section, we discuss
how to apply them to our problem setting, where part of the
model parameters are fixed. Notably, we call this generic class
input space attacks.

A. Problem Setting
We first specify our threat model:

« Knowledge of the attacker: the attacker has access to the
training data, the target model (including its pre-trained
weights), and the training procedure;

o Capability: the attacker can (actively or passively) inject
a poisoned set to the training data;



Figure 2. We visualize some clean training samples of CIFAR-10 (which serve as initialization to the attacks) in the first row, and poisoned samples generated
by GC input space attacks (which induce an accuracy drop of 29.54%) for €4 = 0.03 in the second row. The poisoned images show that GC input space attack
generates images with no semantic meaning if no explicit constraints are posed. Clean images and their corresponding poisoned ones are chosen randomly.

o Objective: given a pre-trained feature extractor, the objec-
tive of a downstream task and the corresponding training
dataset, an adversary aims to construct a poisoned set to
augment the clean training set, such that by training on
the mixed dataset, the performance of the downstream
task on the test set is reduced.

Note that in this paper we only consider indiscriminate
attacks. Another strong threat is the targeted attacks, where
the knowledge of the attacker is expanded to some target test
data, and the objective is to alter the prediction of them. The
power of such attacks on pre-trained feature extractors has
been studied and we refer interested readers to Shafahi et al.
2018.

We then formally introduce the problem of interest. Given
a clean training distribution p and target model architecture
that consists of a (fixed) feature extractor f and a linear head
h with learnable parameters w, a standard ML pipeline aims
to learn a set of clean parameters w to minimize its cost on p
while keeping f untouched:

argmin I(f(u);w). 3)

w
An adversary thus considers designing a poisoning distribution
v to maximize the cost on a clean validation set ji (which
comes from the same distribution as the training set w):

argmax [(f(f);w). “4)

vel

As w is dynamically changing during optimization, solving
Equation (4) is essentially a nested optimization problem (i.e.,
a non-zero-sum Stackelberg game):

s 1)),
s.t. w, € argmin I(f(p) + f(v);w),

w

(&)

where the poisoning effectiveness is measured by retraining the
linear head w on the mixed feature distribution f(u) + f(v).
Note that the attack budget is measured by the poisoning
fraction e = |v|/|u|. Firstly, we introduce two viable
approaches for solving the problem when ¢, is small (e.g.,
< 100%), namely the TGDA attack (Lu et al. 2022) and GC

attack (Lu et al. 2023a). Next, we discuss UE (Huang et al.
2021), where €5 = oo, which amounts to substituting the entire
training distribution p as v. Notably, we call these adaptations
TGDA input space attack, GC input space attack and UE input
space attack, respectively.

B. TGDA input space attack

Solving Equation (5) is non-trivial, especially for the outer
maximization problem as the dependence of I(f(f); w.) on v
is indirectly through retraining the head model on the mixed
distribution. As a result, one can not directly apply simple
algorithms such as gradient ascent as it would lead to zero
gradients. Lu et al. (2022) propose to measure the influence of v
through the total derivative D, I(f(fi);w) = —Vula - Vlla-
Vwli (where we simplify I = I(f(),w),lo = I(f(p) +
f(v);w)), which implicitly appraises the change of w with
respect to v. Specifically, TGDA considers the following total
gradient ascent step for the attacker and gradient descent step
for the defender:

(©)
w=w—1n-Vol(f(u) + f(v);w). O

For implementation, we still perform the attack end-to-
end, namely that we directly feed the data into the
model architecture, while keeping f untouched (e.g.,
requires_grad=False in PyTorch).

C. GC input space attack

Next, we generalize the GC attack (discussed in Section II)
to our problem setting. Recall that to avoid solving the difficult
Equation (5), GC aims to reach a specific target parameter @
that the model will converge to by retraining on the mixed
feature distribution. Here reachability is defined by having a
vanishing (sub)gradient over the mixed feature distribution:

Vol(f(x);@) o< Vol (f(p); @) + Vul(f(v);w) = 0. (8)

Thus, GC input space attack amounts to solving the following
problem:

argmin [ Vol(f(1);
vel

@)+ Vol(fw) @3 )
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Figure 3. An illustration of the three stages of feature-targeted attacks: (1) obtaining the target linear head parameter w with GradPC; (2) acquiring poisoned
features ¢ with GC feature-space attack; (3) invert ¢ back to the input space using feature matching or decoder inversion (decoder inversion requires training

an autoencoder with a fixed encoder f).

Note that GC requires a target parameter w that performs poorly
on the test set, which Lu et al. (2023a) acquired by another
attack that perturbs the clean model parameters w directly,
namely the Gradient Parameter Corruption (GradPC) attack of
Sun et al. (2020). In a nutshell, GradPC overwrites w with
w directly in our problem setting using a gradient approach.
Note that the perturbation introduced by GradPC is measured
by €, = ||w — @]||% and can be specified as a constraint by the
algorithm.

In practice, we observe that GC input space attack is very
effective without considering any constraints on v, e.g., it
approximately reaches the target parameter w for ¢4 = 0.1 in
Table I and Table II, Section V. However, the poisoned samples
generated by GC has a significantly larger magnitude than the
clean distribution p and does not retain semantic information
(see Figure 2 for a visualization). To further generate “benign”
poisoned points to throttle defenses, we add a penalty term
1]l —v||3 in Equation (9) on constraining v to be similar with
1/, which is part of p that initializes v (|p'| = |v|).

However, we find the optimization procedure to be much
harder with such a constraint, and the attack effectiveness is
largely restricted. For example, we observe an accuracy drop of
only 2.5% compared to 29.54% (without constraints) in Table I.
To mitigate the difficulty of optimizations, we further propose
feature targeted attacks in Section IV by breaking down the
problem into several stages.

D. UE (EMN) input space attack

Before diving into Section IV, we introduce the last input
space attack we consider, the Unlearnable Examples (UE),
where we pose a strong assumption on ¢; = oo. We apply
the error-minimizing noise (EMN) approach in Huang et al.
(2021). Here the task is to perturb the entire training set with

a noise factor ¢ such that the model learns a strong correlation
between ¢ and the label information. Note that we consider §
to be a sample-wise noise, namely that u 4+ 6 = {x; + 51}@1
EMN input space attack optimizes the following objective:

i in [ 0);w). 10
min min I(f(x +0);w) (10)
Note that optimizing Equation (10) is substantially easier than
Equation (5), as it is a min-min problem and can be easily
solved by (alternating projected) gradient descent algorithms.

IV. FEATURE TARGETED ATTACK

Motivated by the optimization challenge of GC input space
attack, we propose a staged strategy to mitigate the difficulty
of the constrained problem. Assuming we (I) acquired the
target parameter @ with parameter corruption, let us rewrite
Equation (9) by introducing a feature distribution (:

min min || V,lI () +VL (G W)3.
min min 3 Vullf (2)9) +Vul(Gi) I3

(I
=g

Next, we relax both constraints by introducing penalty terms®:
min 3 lg+ Vol (G @) 5+ 31/ () =ClE + S v (12)
Q@ ©)

The variables v and ( are now separated, which immediately
suggests an alternating algorithm that we elaborate on below.

We follow the above three steps and break down the
optimization into corresponding three stages: (D: acquiring the
target parameter & with GradPC; solving ) with GC feature
space attack, where we treat the learned representation as the
clean dataset and inject poisoned features directly; solving
(@ where we invert the poisoned features back to the input

3Other penalty terms other than the (squared) L2 norm could also be used.
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Figure 4. Here we visualize original test images (first row), and images reconstructed by an autoencoder with fixed ResNet-18 feature extractor learned by
MoCo (second row), the same autoencoder trained end-to-end (third row), and the autoencoder with skip connections, i.e., a U-Net (fourth row).

space considering constraints in the input space, where we
introduce two possible approaches: decoder inversion (without
optimization) and feature matching (with optimization). Overall,
we call this approach Feature Targeted (FT) attack and we
visualize the attack procedures in Figure 3.

A. GC feature space attack

Firstly, we generate poisoned features ¢ using the GC
attack. We chose GC as it is the best-performing algorithm
in the feature space. We consider f(u) as the clean feature
training set and enable an attacker to inject poisoned features
( directly. Following the notations in Section III, GC considers
reachability in the feature space:

Vol(f(p);w) + Vul((w) =0,
and optimizes the following problem:

argcmin SIVLI(f(1); @) + Vul(G @3,

13)

(14)

which corresponds to the term ) in (12). We denote ¢ as the
output of the GC feature space attack and apply it as input to
the next stage.

Here the target parameter w is generated by ) GradPC
from the feature space, where we treat f(u) as the training set
and perturb the linear head h. Unlike poisoning attacks, such
a change does not make a significant difference for GradPC
as it perturbs the linear head parameters directly.

B. Inverting features

Next, we show two viable approaches to solve 3) on inverting
the poisoned feature back to the input space.

1) Decoder Inversion: First, we show how to solve Q)
without optimizing v directly by training a decoder network.
Specifically, given a pre-trained feature encoder f that maps
u to f(p), we aim to learn its inversion f~! such that
f~1(f(u)) ~ p. For image reconstruction and related tasks
(e.g., image inpainting, image-to-image translation, semantic
segmentation), it is common to utilize an autoencoder archi-
tecture, where the encoder is f and the decoder is naturally
f —1 However, such an autoencoder is usually trained end-to-
end, while we require training only the decoder f~! with a
fixed encoder f. In Figure 4 (rows 1-3), we apply a ResNet-
18 encoder learned by MoCo on CIFAR-10 and train the
corresponding decoder on reconstructing CIFAR-10. We show
such a constraint indeed brings a challenge: the autoencoder
with a fixed f does not learn the detailed structure of images
compared to that trained end-to-end, which may imply that an
encoder trained by contrastive learning is not necessarily a good
encoder for image reconstruction. Additionally, we observe
that a plain autoencoder does not reconstruct the images well,
even when training end-to-end.

Previous works on image reconstruction tasks show that
a key success of the architectural design is to add skip
connections between encoders and decoders, also known as
U-Net (Ronneberger et al. 2015). In Figure 4 (row 4), we show
that adding skip connections leads to superb reconstruction
quality, even with a fixed encoder architecture.

Upon acquiring a good decoder f~!, we can then invert the
poisoned feature  back to the input space. Note that with a
U-Net architecture, f ! does not only take ¢ as input but also



the intermediate features of y/ *, which we denote as f7*(y/),
where n is the number of skip connections. In summary, the
output of the decoder inversion is v = f~1(¢, fi*(¢')), where
the first term in ) is minimized if the decoder is well-trained,
and the second term is automatically handled by the skip
connections.

2) Feature Matching: In decoder inversion, we train the
decoder £~ and hoping the acquired v is a successful inversion,
i.e., f(v) = (. However, in practice, we find the distance
between the two is still large, e.g., || f(v) — ¢||3 ~ 150, which
indicates the gap between the decoder inversion and the implicit
ground truth is still large (another indication is the performance
gap between GC feature space attack and decoder inversion
attack in Section V).

To further close the gap between f(v) and (, we introduce an
alternative method that directly optimizes the poisoned dataset
v by matching its feature f(v) to the target poisoned feature
¢ while enforcing the distance between p and v to be small.
We call this algorithm Feature Matching.

Our feature matching algorithm is inspired by the feature
collision (FC) algorithm (Shafahi et al. 2018) in targeted attack.
In targeted attacks, FC considers a target test sample ¢ in the
test set and a different base instance b. FC aims to construct a
single poisoned data sample x,, such that the distance between
f(t) and f(x,) in the feature space is small while x,, is close
to b in the input space.

When adapting to our setting, instead of matching the feature
of a target sample, we match the target feature ¢ that we already
acquired. Thus, we need only optimize the term @) in (12):

: o 2 B / 2

argmin 5[ f(v) = Cllz + 2w = vz, (15)

where recall that the second term is a relaxation of the constraint

v € I'. We present our algorithm in Algorithm 1, where we

follow Shafahi et al. (2018) and apply a forward gradient step

to minimize the first term on feature matching and a backward

proximal step to enforce the constraint on the input space. Note

that 3 is a hyperparameter for controlling the strength of the
constraint.

Again, y' is part of the training distribution where |u/| =
€q|p| = |¢|. Instead of choosing p’ from the initialization of ¢,

as in decoder inversion, we follow the following better strategy.

The key observation is that in practice, ( is not necessarily
close to the initial corresponding 1 = vg, thus making the
initial optimization hard. In other words, we find it necessary to
explore whether the choice of i/ can be optimized in order to
find a better matching in the input space. A simple solution is to
perform a grid search for individual poisoned features: for every
z € (, we calculate the point-wise distance ||f(x) — z|3 for
every X € u. By ranking the distances, we simply choose the
one with the smallest distance to form a pair {x, z}. Such a grid
search provides a much better initialization and significantly
reduces the running time upon convergence. Moreover, we find

“Here p' refers to the clean samples corresponding to f(u’), which are the
initialization of the GC feature space attack.

Algorithm 1: Feature Matching

Input: base instances as part of the training distribution
1 = eqp, step size 1, a pre-trained encoder f
QOutput: poisoned dataset v
1v< // initialize poisoned data
2 (<« f(v) // initialize poisoned feature
3for k=1,...do
4 for s=1,2,... do

s ¢+ C=nVelzlg+ Val(Gw)3]
6 C—[C+mfWw)]/Q+ny) // optional
7 fort=1,2,... do

8 vev—n-V,[3f(v)-(l3] // forward
9 v (v+nsu)/(1+np) // backward

that such a process reduces the difficulty of optimization and
helps the algorithm converge at a lower value.

V. EXPERIMENTS

In this section, we present our experimental results on the
proposed indiscriminate attacks. For a fixed feature extractor,
we consider two approaches to performing supervised down-
stream tasks: (1) fine-tuning, where the contrastive learning pre-
training and fine-tuning share the same training distribution (the
difference lies on without/with label information); (2) transfer
learning, where pre-training is performed on a (relatively) large-
scale dataset (without label information), and the linear head
is trained on a smaller or customized dataset with labels.

Our experiments will thus be structured as these two major
parts, where we consider input space attacks and feature space
attacks for each class.

A. Experimental setting

Hardware and Package: Fine-tuning experiments are run on
a cluster with NIVIDIA T4 and P100 GPUs, while transfer
learning experiments are run on another machine with 2
NIVIDIA 4090 GPUs. The platform we use is PyTorch.
Datasets: We consider image classification as the downstream
task on the CIFAR-10 dataset (Krizhevsky 2009) (50k training
and 10k testing images). For contrastive learning pre-training,
we use CIFAR-10 and ImageNet 1K (Deng et al. 2009) for
fine-tuning and transfer learning respectively.

Feature Extractors: Following the standard contrastive learn-
ing pre-training architectures, we examine the ResNet-18 (He
et al. 2016) model with a feature dimension of size 512 for
pre-training on CIFAR-10, following the common recipe of
changing the convolution kernel size from 7 x 7 to 3 x 3. The
model weights are obtained by training on SimCLR (Chen et al.
2020a) for 800 epochs with a batch size of 512. For clean linear
evaluation, we acquire an accuracy of 89.71% with 100 epochs.
For ImageNet pre-training we apply the ResNet-50 architecture
using MoCo V3 (Chen et al. 2021) with a feature dimension
of size 2048 and a batch size of 4096, trained for 1000 epochs.
We directly utilize the pre-trained weights provided in the



Table 1

FINE-TUNING RESULTS: COMPARISON BETWEEN INPUT SPACE ATTACKS (TGDA AND GC INPUT SPACE ATTACKS WITH/WITHOUT CONSTRAINTS ON

POISONED SAMPLES) AND FEATURE TARGETED ATTACKS (DECODER INVERSION AND FEATURE MATCHING WITH DIFFERENT [3) W.R.T. DIFFERENT €4. THE
WHITE BACKGROUND INDICATES METHODS THAT GENERATE TARGET PARAMETERS OR FEATURES; BLUE INDICATES INPUT SPACE ATTACKS AND PINK

INDICATES FEATURE TARGETED ATTACKS.

eq = 0.1 (5000)

eq = 0.5 (25000)

eq = 1 (50000)

53.15% / -36.56%
84.26% / - 5.45%
87.45% [ - 2.26%
53.65% / -36.06%
87.05% I - 2.66%

53.15% / -36.56%
76.55% [ -13.16%
83.67% / - 6.04%
53.15% / -36.56%
80.30% / - 9.41%

53.15% / -36.56%
70.38% / -19.33%
78.66% / -11.05%
53.15% / -36.56%
75.33% [ -14.38%

Attack method Clean eq = 0.03 (1500)
GradPC (input space) 89.71%  53.15% / -36.56%
TGDA-input (no constraints) 89.71%  85.43% / - 4.28%
TGDA-input (with constraints)  89.71%  87.52% / - 2.19%
GC-input (no constraints) 89.71%  60.17% / -29.54%
GC-input (with constraints) 89.71% 87.21% / - 2.50%
GradPC (feature space) 89.71%  53.00% / -36.71%
GC-feature space 89.71%  53.10% / -36.61%
Decoder inversion 89.71%  85.49% / - 4.22%
Feature matching (3 = 0.25) 89.71% 83.41% / - 6.30%
Feature matching (3 = 0.1) 89.71%  77.24% [ -12.44%
Feature matching (8 = 0.05) 89.71%  75.34% / -14.37%

53.00% / -36.71%
53.03% / -36.68%
84.61% / - 5.10%
82.33% / - 7.38%
76.56% [/ -13.15%
74.29% [ -15.42%

53.00% / -36.71%
54.09% [/ -35.62%
78.65% / -11.06%
76.15% [ -13.56%
73.24% [ -15.47%
71.99% [ -17.72%

53.00% / -36.71%
52.15% 1 -37.56%
72.25% [ -17.46%
69.17% [ -20.54%
65.14% [/ -24.57%
63.19% / -26.52%

MoCo V3 Github Repo®. Upon transfer learning, we follow
the general recipe to resize the CIFAR-10 training sample from
32 x 32 to 224 x 224 and acquire an accuracy of 93.03% by
training the linear head for 100 epochs.

Attacks implementations: We specify the implementations of
all attacks we apply in this paper:

(1) TGDA input space attack: we follow and modify the
implementation of Lu et al. (2022)° while fixing the feature
extractor of the follower (defender) and train for 200 epochs
for all tasks;

(2) GC input space/feature space attack: we follow and modify
the official code of Lu et al. (2023a)” and perform 2000 epochs
or early stop upon reaching stopping criteria (loss smaller than
1). Note that for acquiring target parameters, we run GradPC®
for one single attack step and set €, = 1;

(3) UE input space attacks: we follow and modify the
implementation of Huang et al. (2021)° for sample-wise error
minimizing noise generation;

(4) Decoder inversion: for the architectural design on the
decoder, we use the implementation of this Github repo'’
as a key reference. For image reconstruction, we apply a
combination of the multi-scale structural similarity index (MS-
SSIM) loss (Wang et al. 2003) and L; loss following the
analysis of Khare et al. 2021;

(5) Feature matching: finally, we follow Algorithm 1 and set
k =1, t =2000. We set the learning rate as 0.1 with a cosine
scheduler. Unless specified, v = 1, 5 = 0.25 across all tasks.
Label Information: During optimizations of indiscriminate
attacks, we only modify the input x and generate clean-
label poisoned samples. Specifically, we assign the label
corresponding to the clean images during the initialization
stage of every attack. Note that for feature matching, as we

Shttps://dl.fbaipublicfiles.com/moco-v3/r-50- 1000ep/r- 50- 1000ep.pth.tar
Ohttps://github.com/watml/TGDA- Attack
7https://github.com/watml/plim
8https://github.com/TobiasLee/ParamCorruption
%https://github.com/HanxunH/Unlearnable-Examples
10https://github.com/mkisantal/backboned-unet

perform ranking after the GC feature space attack, we reassign
the labels as that of clean base samples to every (, thus the
output v.

Evaluation Protocol: To evaluate the performance of each
attack, we first acquire the poisoning dataset v and retrain the
model (initialized with the same random seed across all attacks)
on both clean and poisoned data p + v until convergence (we
train for 100 epochs across all tasks). Our evaluation metric is
the test accuracy drop, compared with clean accuracy (obtained
by training on clean data only).

B. Fine-tuning

We report our main results for poisoning the fine-tuning
downstream task in Table I. We expand discussions and our
key observations in the following paragraphs for input space
attacks and feature-targeted attacks, respectively.

1) Input space attacks: Recall in Section III, we introduce
the TGDA input space attack and the GC input space attack.
We first examine the two attacks without considering any
constraints, such that the poisoned points v could be randomly
large and do not need to resemble the real distribution p.
Although under this setting the poisoned samples can be easily
detected, it is still valuable to study as it reveals the security
threats without any data sanitization process, which is not
uncommon in practice. From Table I (upper part, row 1,2,4),
we observe that compared to TGDA, GC is very effective,
where it can almost reach the target parameter generated by
GradPC when €45 = 0.1.

However, GC generates poisoned samples that have a much
larger magnitude than the clean samples, especially when ¢,
is small (e.g., 100x larger for ¢4 = 0.03 and decreases to
5x larger for 5 = 1). This also matches the observations in
Lu et al. (2023a): a higher ¢, is desired for an attacker as
it not only increases the attack effectiveness but also brings
the poisoned points closer to the clean distribution, at least
magnitude-wise.

Additionally, Lu et al. (2023a) (Figure 10) shows that the
GC attack does not change the semantics of the clean samples



Figure 5. Here we visualize clean images (first row), and poisoned samples returned by the feature matching algorithm with 8 = 0.25,0.1, 0.05 respectively

from the second to the fourth row.

much, even without explicit constraints for end-to-end training.
However, we show it is not the case for a fixed feature extractor
in Figure 2. Instead, GC input space attack returns noisy
samples that lose all information of the input sample.

Based on the above two observations, we further add two
constraints to the two attacks to make them less vulnerable
to possible defenses: (1) clipping the poisoned samples to
the range of clean samples; (2) adding a term on measuring
the (squared) Lo distance between input (clean sample as
initialization) and output (poisoned points) specified in Sec-
tion III. In Table I (upper part, row 3.,5), we find the attacks
are much less effective, especially the GC attack, and may
not be considered a strong threat. Compared with poisoning
end-to-end training in Lu et al. (2023a), our poisoned samples
on fixed feature extractors are much weaker with constraints,
e.g., Lu et al. (2023a) report the test accuracy drop decreases
~ 10% for ¢4 = 0.03, which is significantly less than ours
(29.54% (no constraints) - 2.50% (with constraints) = 27.04%).
This confirms that with a fixed feature extractor, it is much
more difficult to construct feasible poisoning samples than
end-to-end training for input space attacks, which motivates
us to design and examine stronger attacks.

2) Feature targeted attacks: Next, we discuss two feature
targeted (FT) attacks introduced in Section IV, namely the
decoder inversion and the feature matching attack. Both of
the FT attacks involve three stages: (1) GradPC feature space
attack for acquiring the target parameters w, where we achieve
roughly the same performance as that in input space; (2) GC
feature space attack for obtaining the target feature (; (3) taking
¢ as the input, we either invert the feature back directly using
a decoder or perform feature matching.

Note that we do not treat GC feature space attack as a viable
attack (as injecting poisoned features may not be realistic),
but as an essential building block and intermediate step for
decoder inversion and feature matching. Additionally, our
following results for GC feature space attack provide important
information on how good a poisoned feature { can be (in terms
of attack performance) and the difficulty of inverting them
back to the input space.

In Table I (lower part, rows 1-2), we report GradPC (feature
space) for stage 1 and GC-feature space for stage 2. We
observe that the GC feature space attack is very successful
in reproducing the target parameters w, even when €4 = 0.03.
Additionally, comparing with the GC input space attack,
we observe that GC feature space induces a much smaller
perturbation in terms of magnitude, e.g., the poisoned features
are 4 x larger than the normal ones for ¢; = 0.03 and lie within
the same range for ¢; > 0.2.

Surprisingly, although GC feature space attack obtains the
target feature ¢ with relatively small perturbations, it is difficult
to invert it back to the input space. For decoder inversion (row
3), although we observe that the images are in the normal range
and visually benign (see Figure 4), it is much less effective than
the target poisoned features. In practice, we find the poisoned
samples are largely dominated by the skip connections of the
encoder architecture, and thus the constraint on the input space
could be too strong and cannot be easily controlled.

In comparison, the feature matching algorithm (rows 4-6) is
more effective than decoder inversion, i.e., for § = 0.25, we
observe a further accuracy drop ~ 2% for every choice of eg.
Moreover, by controlling the hyperparameter 3, we can easily
tune the constraints on the input similarity, where a smaller 3



Table 11
TRANSFER LEARNING RESULTS: COMPARISON BETWEEN INPUT SPACE ATTACKS (TGDA AND GC INPUT SPACE ATTACKS WITH/WITHOUT CONSTRAINTS ON
POISONED SAMPLES) AND FEATURE TARGETED ATTACKS (DECODER INVERSION AND FEATURE MATCHING WITH DIFFERENT [3) W.R.T. DIFFERENT €4. THE
WHITE BACKGROUND INDICATES METHODS THAT GENERATE TARGET PARAMETERS OR FEATURES; BLUE INDICATES INPUT SPACE ATTACKS AND PINK

INDICATES FEATURE TARGETED ATTACKS.

€q = 0.1 (5000)

g = 0.5 (25000)

g = 1 (50000)

49.39% [ -43.64%
86.97% / - 6.06%
89.44% / - 3.59%
52.84% / -40.19%
87.44% [ - 5.59%

49.39% / -43.64%
78.74% [ -14.29%
85.25% / - 1.78%
50.04% / -42.99%
79.52% [ - 13.51%

49.39% [ -43.64%
72.93% / -20.10%
79.97% [ -13.06%
49.48% [/ -43.55%
76.05% / -16.98%

49.53% [ -43.50%
50.01% / -43.02%
86.96% / - 6.07%
65.04% / -27.99%
57.74% [ -35.29%

49.53% / -43.50%
50.01% / -43.02%
79.27% [ -13.76%
57.93% / -35.10%
50.74% [ -42.29%

49.53% / -43.50%
50.01% / -43.02%
74.06% / -18.97%
50.69% / -42.34%
49.63% / -43.40%

Attack method Clean €q = 0.03 (1500)
GradPC (input space) 93.03%  49.39% / -43.64%
TGDA-input (no constraints) 93.03%  87.84% / - 5.19%
TGDA-input (with constraints)  93.03%  89.71% / - 3.32%
GC-input (no constraints) 93.03%  53.68% / -39.35%
GC-input (with constraints) 93.03%  88.63% / - 4.40%
GradPC (feature space) 93.03%  49.53% [/ -43.50%
GC-feature space 93.03%  50.01% / -43.02%
Decoder inversion 93.03% 87.92% / - 5.11%
Feature matching (8 = 0.25) 93.03%  71.50% / -21.53%
Feature matching (8 = 0.1) 93.03%  59.58% [/ -33.45%
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Figure 6. The histogram of the (L) magnitude of 1500 (¢4 = 0.03) poisoned points generated by feature matching feature matching on transfer learning
(red) and fine-tuning (blue) with ¢ = 0.03 for 5 = 0.25 (left), 5 = 0.1 (right). The plot shows that while for fine-tuning the poisoned points are roughly in
the same range, for transfer learning, ~ 10% of the poisoned samples are anomalies.

indicates less power of constraints. In Table I, we observe that
a smaller 8 generally returns a much stronger attack. However,
tuning § also involves a trade-off: in Figure 5, we visualize the
poisoned images generated by feature matching attacks with
different 8 and observe that a smaller 5 generally introduce
more noise, and poisoned images generated by g = 0.1,0.05
can be easily discriminated by human eyes. Additionally,
smaller 8 induce poisoned images with a larger magnitude,
ie., for § = 0.25,0.1,0.05, we observe the magnitude of
1x,3x,5.5x the normal range, respectively.

Moreover, we compare the best-performing input space
attack (GC-input) and feature targeted attack (feature matching).
Recall that both of these methods aim to solve the same
constrained problem in Equation (9), where GC-input directly
the constrained gradient canceling problem while the latter
approach mitigates the difficulty of the constrained problem
with the staged strategy in Equation (12). We observe that
the feature matching attack indeed helps with the optimization
procedure and improves the attack effectiveness by a big margin
(range from 3.80% to 6.16% for different €;).

In summary, we find both of the feature targeted attacks
consistently outperform input space attacks across all choices
of ¢;. However, for indiscriminate attacks in general, inverting
poisoned features back to the input space attack is rather

difficult, and cannot be achieved exactly with our existing
attacks.

C. Transfer Learning

Next, we present our experimental results for the task of
transfer learning. Recall that for transfer learning, we take the
feature extractor (ResNet-50) pre-trained on ImageNet without
labels and perform a linear evaluation on the CIFAR-10 dataset
with labels. We report our main results in Table II and expand
our discussions as follows.

1) Input space attacks: Firstly we perform the same input
space attacks on the transfer learning task. In Table II (upper
part), we observe: (1) In general, input space attacks are more
effective (an increased accuracy drop ~ 2%-10%) on transfer
learning than on fine-tuning tasks. A large factor could be that
transfer learning involves a distribution shift, such that the linear
evaluation process is more vulnerable to poisoning attacks; (2)
without any constraints, GC input space still outperforms TGDA
input space. Meanwhile, GC generates poisoned samples that
have a larger magnitude than that of fine-tuning, i.e., about
290x larger for ¢4 = 0.03 (fine-tuning: 100X larger) than
clean samples, and reduces to 14x larger for ¢4 = 1 (fine-
tuning: 5x larger). As for poisoned samples, TGDA and GC
input space attacks still generate noisy images that have no
semantic meanings (analogous to that in Figure 2); (3) again
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Figure 7. We plot poisoned images generated by feature matching on transfer learning for €4 = 0.03. We show clean images and poisoned images for
B =0.25 and B = 0.1 on rows 1,2,3 respectively. Columns 1-4 are images within the normal range, and columns 5-8 are abnormal poisoned images with a

bigger magnitude.

Table I
COMPARISON BETWEEN FEATURE MATCHING AND FEATURE MATCHING
AFTER REMOVING ANOMALY POINTS (FEATURE MATCHING—R).

Table IV
COMPARISON BETWEEN UE (EMN) IN THE CONTEXT OF POISONING A
FIXED FEATURE EXTRACTOR WITH LINEAR HEAD AND TRAINING
END-TO-END (WITH THE SAME INITIALIZATION). WE REPORT THE RESULTS
ON BOTH FINE-TUNING AND TRANSFER LEARNING.

Attack method Clean eq = 0.03
Feature matching (8 =0.25) 93.03% 71.50% / -21.53% Task Attack Clean €4 = 00
Feature matching-r (8 = 0.25) 93.03% 85.82% /- 7.21% Original 9477%  19.93% / -74.84%
Feature matching (8 =0.10) 93.03%  59.58% / -33.45% Fine-tuning End-to-end  95.22%  68.79% / -26.43%
Feature matching-r (3 = 0.10)  93.03%  86.38% / - 6.65% Input space  89.71%  82.16% / - 7.55%
Original 94.42%  18.89% / -75.53%
. . . L Transfer Learning End-to-end  95.09%  66.05% / -29.04%
we add the same constraints on magnitude and visual similarity g put space  93.03%  85.15% / - 7.88%

with the input images and observe that the attack performance
significantly drops.

2) Feature targeted attacks: We perform the same feature
targeted attacks and report the results in Table II (lower part).
For the feature matching attacks, we omit the results for 5 =
0.05 as it does not show a substantial improvement over § =
0.1. We observe that in general, similar to input space attacks,
the attacks are more effective on transfer learning tasks than
on fine-tuning. Additionally, decoder inversion and feature
matching still outperform all input space attacks considering
constraints across all choices of ¢ .

Notably, upon further exploration, we observe that feature
matching behaves differently in transfer learning. Recall that
for fine-tuning when we choose 5 = 0.25, the magnitude of
poisoned samples is within the normal range, and for 5 = 0.1,
the magnitude is generally 3x. However, for transfer learning,
the algorithm returns several abnormal images with a larger
magnitude and more noise. In Figure 6, we randomly select
100 poisoned samples (out of 1500 for ¢; = 0.03) and plot
their L., magnitude. For the entire poisoned set, we observe
that for 8 = 0.25 and 8 = 0.1, there are 181 (12.1%) and
274 (18.2%) anomalies, respectively. Additionally, when g is
smaller, while most of the poisoned points are in the normal
range, the anomalies have a much bigger magnitude, due to
the power of the constraint being weakened. In Figure 7, we
compare poisoned images within the normal range (columns 1-

4) and abnormal ones (columns 5-9). We observe that abnormal
poisoned images also contain more noise, especially when S is
smaller. To examine the real effect of feature matching attacks,
we perform a simple data sanitization process by removing
all of the abnormal points before evaluation. We report the
results in Table III and observe the attack becomes much less
effective after the defense. Nevertheless, feature matching-r
(B = 0.25) still outperforms other baseline attacks.

Overall, compared to fine-tuning, we find transfer learning
easier to poison for every attack, with or without constraints in
the input space. However, inverting poisoned features back to
input space, either explicitly through feature targeted attacks
or implicitly through input space attacks, is still difficult in
the condition of considering poisoned points in a feasible
set. Specifically, we find that no existing attack can exactly
reproduce the target parameters (features) with a limited number
of visually benign poisoned samples.

D. Unlearnable Examples

Finally, we discuss the unlearnable examples of poisoning
fixed feature extractors (the EMN input space attack). We
apply the attack of Huang et al. (2021) and report the results
in Table IV. We compare three variants of EMN: (1) original:
we consider the original setting in Huang et al. (2021), where
during the attack and evaluation, the entire model is updated
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Figure 8. We plot poisoned images generated by EMN input space attack. We show clean images and poisoned images for fine-tuning (which incurs an
accuracy drop of 7.55%) and transfer learning (incurring an accuracy drop of 7.88%) on rows 1,2,3, respectively.

with random initialization on the unlearnable dataset!'; (2)
end-to-end: the model is initialized with the pre-trained feature
extractor, but all parameters can be updated; (3) input space: we
consider our setting where the feature extractor is fixed during
training and evaluation. We visualize the poisoned images
generated by EMN in Figure 8.

From Table IV we obtain several interesting observations: (1)
EMN is highly sensitive to weights initialization: by comparing
original and end-to-end, we show that random initialization
is much more vulnerable to EMN than a good initialization
(i.e., pre-trained weights by contrastive learning); (2) EMN
input space is not very effective: with a significantly larger
poisoning budget ¢; = oo, EMN only performs similar to
feature matching when €4 = 0.03. Compared with original and
end-to-end, EMN input space is also less than a magnitude
effective for both fine-tuning and transfer learning.

In summary, our observations reveal that training a neural
network architecture with a good feature extractor as initializa-
tion, especially when it is frozen, is much more robust to the
EMN attack.

VI. CONCLUSIONS AND LIMITATIONS

In this work, we study indiscriminate data poisoning attacks
on pre-trained feature extractors with different budgets, from
injecting a small amount of poisoned data to perturbing
the entire training set. Specifically, we consider the model
parameters acquired by contrastive learning methods and
poisoning the downstream task with a trainable linear head
and the fixed feature extractor. Based on the attack scheme,
we propose two types of indiscriminate attacks: (1) input
space attacks, including TGDA, GC, and UE input space
attacks, where the attacker perturbs the feature representations
indirectly through the input space, and (2) feature-targeted
attacks, including decoder inversion and feature matching

'The results are directly obtained from Table 1 in Huang et al. (2021),
CIFAR-10 ResNet-18/50.

attacks, where an adversary acquires poisoned features and
inverts them back to the input space.

We further examine our attacks on popular downstream
tasks of fine-tuning and transfer learning. Our experimental
results reveal that for injecting limited numbers of poisoned
samples, input space attacks generate out-of-distribution poi-
soned samples without constraints and become less effective
after projection. On the other hand, feature targeted attacks,
especially feature matching attacks exhibit an improvement
with a tunable trade-off between the legitimacy of the poisoned
samples and their effectiveness. Moreover, considering a more
challenging domain adaptation scenario, transfer learning is
more vulnerable than fine-tuning on these attacks in general.
Additionally, empirical results on unlearnable examples demon-
strate that EMN is much less effective than it performs on
end-to-end training with random initialization.

Limitations and Future directions: In this paper, we set base-
lines on indiscriminate attacks on pre-trained feature extractors
and we believe it opens several interesting future directions: (1)
Understanding the difficulty of feature inversion: prior works
on adversarial examples show that small perturbation in the
input space could lead to dramatic changes in the feature
space for a neural network with large Lipschitz constant. In
this paper, we show that a relatively small perturbation in
the feature space cannot be easily inverted to the input space
with constraints. Such observations might be counterintuitive
and surprising, and deserve more study; (2) Possible defenses
against Unlearnable Examples: although UE, e.g., EMN poses
a strong indiscriminate attack, its countermeasure has not
been explored. Notably, data sanitization cannot be easily
performed as the entire training distribution is altered. In this
paper, we provide evidence that UE is fragile against fixed
feature extractors and a well-trained initialization. Based on
this, there might exist a natural defense mechanism against UE,
by carefully designing the architecture or the training schemes,
e.g., adding a fixed encoder for any task of interest.
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APPENDIX
A. Perturbations introduced by feature matching

Recall in Figure 5, we visualized the poisoned images
generated by feature matching attacks with different 5. Here
in Figure 9 we also visualize the difference between the clean
images and the poisoned images to show the perturbation.

Figure 9. Here we visualize perturbations introduced by the feature matching
algorithm with 8 = 0.25, 0.1, 0.05 respectively from the first to the third row.

B. Additional results on transfer learning

1) Vision transformer as encoder: Aside from the ResNet
architecture, another popular backbone architecture serving as
a feature extractor is the recently advanced vision transformers
(Dosovitskiy et al. 2020). Here we extend our experiments of
poisoning transfer learning on pre-trained vision transformers
(specifically, ViT-base) with MoCo V3 (Chen et al. 2021) on
ImageNet to CIFAR-10. We report our results in Table V and
observe that our conclusion still holds for the ViT architecture.

2) Image encoder trained with CLIP: In this paper, we
introduce contrastive learning methods with one modality,
i.e., images. Another popular approach to learning feature
extractors considers both images and texts, also known as
contrastive language-image pre-training (CLIP) (Radford et al.
2021). Instead of choosing different augmentations of the same
image as positive pairs and different images as negative pairs,
CLIP considers labeled image-text pairs as positive ones, and
unmatched pairs as negative ones. Specifically, CLIP trains an
image encoder and a text encoder simultaneously, which can
be used separately for downstream tasks. Here we examine
data poisoning attacks against the image encoder trained by
CLIP with a ResNet-50 architecture. We directly adopt the pre-
trained weights acquired by OpenAl '2. We report our result in
Table VI and observe that feature matching still outperforms
GC input space attack (with constraints), even after removing
anomaly points.

3) Transferring to CIFAR-100: In Table II, we show the
results of transferring a pre-trained feature extractor (trained
on ImageNet) to the CIFAR-10 dataset. As CIFAR-10 only
involves 10 classes, the classification problem is rather easy.
Here we extend the downstream task to a more difficult setting
with 100 classes, i.e. the CIFAR-100 dataset (Krizhevsky 2009).
Specifically, CIFAR-100 consists of 100 classes containing 600

1Zhttps://github.com/openai/CLIP

Figure 10. Example images from the PatchCamelyon dataset.

images each, with 500 training images and 100 testing images
respectively. Again for ImageNet pre-training we apply the
ResNet-50 architecture using MoCo V3 (Chen et al. 2021)
and examine the performance of data poisoning attacks against
transferring to CIFAR-100. We report the results in Table VII
and observe that: (1) transferring to CIFAR-100 is more
challenging than CIFAR-10 (79.90% clean accuracy compared
to CIFAR-10, 93.03%); (2) the attacks are generally weaker
under a fine-grained classification setup; (3) feature matching-r
still outperform GC input space (with constraints).

4) Transferring to PatchCamelyon: Next we consider a
dataset with a more drastic domain shift from the pre-training
dataset, i.e., ImageNet. Here we choose the PatchCamelyon
dataset (Bejnordi et al. 2017; Veeling et al. 2018), which
consists of 327680 (220025 training samples) color images of
size 96 x 96, extracted from histopathologic scans of lymph
node selection. Each image is annotated with a binary label
indicating the presence of metastatic tissue. In Figure 10, we
visualize some samples in the dataset. Again, we choose the
feature extractor pre-trained by MoCo V3 (Chen et al. 2021)
(ResNet-50) on ImageNet and examine the performance of
data poisoning attacks against transferring to PatchCamelyon.
Note that we follow (Truong et al. 2021) and randomly choose
5000 samples from the original dataset for the downstream
training. We report our results in Table VIII and observe that
transferring to PatchCamelyon is generally more vulnerable
to data poisoning attacks (higher accuracy drop) than CIFAR-
10/100, which may indicate that a drastic domain shift is more
fragile against such attacks.



Table V
TRANSFER LEARNING RESULTS ON VISION TRANSFORMERS: COMPARISON BETWEEN INPUT SPACE ATTACKS (GC INPUT SPACE ATTACKS WITH/WITHOUT
CONSTRAINTS ON POISONED SAMPLES) AND FEATURE MATCHING AFTER REMOVING ANOMALY POINTS (FEATURE MATCHING-R) W.R.T. DIFFERENT €4.

Attack method Clean €4 = 0.03 (1500) €4 =0.1(5000) €4 =0.5(25000) €4 =1 (50000)
GradPC (input space) 98.90% -46.53% -46.53% -46.53% -46.53%
GC-input (no constraints) 98.90% -40.12% -42.30% -44.66% -46.49%
GC-input (with constraints) 98.90% - 4.28% - 5.99% - 13.12% -17.66%
GradPC (feature space) 98.90% -46.53% -46.53% -46.53% -46.53%
GC-feature space 98.90% -46.51% -46.51% -46.51% -46.51%
Feature matching-r (8 = 0.25)  98.90% - 6.33% - 7.89% - 15.04% -19.27%
Table VI

TRANSFER LEARNING RESULTS ON CLIP IMAGE ENCODER: COMPARISON
BETWEEN INPUT SPACE ATTACKS (GC INPUT SPACE ATTACKS
WITH/WITHOUT CONSTRAINTS ON POISONED SAMPLES) AND FEATURE
MATCHING AFTER REMOVING ANOMALY POINTS (FEATURE MATCHING-R).

Attack method Clean €4 = 0.03 (1500)
GradPC (input space) 92.30% -44.55%
GC-input (no constraints) 92.30% -41.20%
GC-input (with constraints) 92.30% - 4.39%
GradPC (feature space) 92.30% -44.51%
GC-feature space 92.30% -42.99%
Feature matching-r (3 = 0.25)  92.30% - 7.05%
Table VII

TRANSFER LEARNING RESULTS ON CIFAR-100: COMPARISON BETWEEN
INPUT SPACE ATTACKS (GC INPUT SPACE ATTACKS WITH/WITHOUT
CONSTRAINTS ON POISONED SAMPLES) AND FEATURE MATCHING AFTER
REMOVING ANOMALY POINTS (FEATURE MATCHING-R).

Attack method Clean €4 = 0.03 (1500)
GradPC (input space) 79.90% -38.51%
GC-input (no constraints) 79.90% -36.78%
GC-input (with constraints) 79.90% - 3.29%
GradPC (feature space) 79.90% -38.50%
GC-feature space 79.90% -37.99%
Feature matching-r (3 = 0.25)  79.90% - 6.69%
Table VIII

TRANSFER LEARNING RESULTS ON PATCHCAMELYON: COMPARISON
BETWEEN INPUT SPACE ATTACKS (GC INPUT SPACE ATTACKS
WITH/WITHOUT CONSTRAINTS ON POISONED SAMPLES) AND FEATURE
MATCHING AFTER REMOVING ANOMALY POINTS (FEATURE MATCHING-R).

Attack method Clean ¢4 = 0.03 (150)
GradPC (input space) 79.12% -50.13%
GC-input (no constraints) 79.12% -49.05%
GC-input (with constraints) 79.12% -11.03%
GradPC (feature space) 79.12% -50.12%
GC-feature space 79.12% -50.00%

Feature matching-r (6 = 0.25)  79.12% -15.33%




