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Abstract

It is a common practice to approximate “complicated” functions with more
friendly ones. In large-scale machine learning applications, nonsmooth
losses/regularizers that entail great computational challenges are usually approxi-
mated by smooth functions. We re-examine this powerful methodology and point
out a nonsmooth approximation which simply pretends the linearity of the proxi-
mal map. The new approximation is justified using a recent convex analysis tool—
proximal average, and yields a novel proximal gradient algorithm that is strictly
better than the one based on smoothing, without incurring any extra overhead. Nu-
merical experiments conducted on two important applications, overlapping group
lasso and graph-guided fused lasso, corroborate the theoretical claims.

1 Introduction

In many scientific areas, an important methodology that has withstood the test of time is the ap-
proximation of “complicated” functions by those that are easier to handle. For instance, Taylor’s
expansion in calculus [1], essentially a polynomial approximation of differentiable functions, has
fundamentally changed analysis, and mathematics more broadly. Approximations are also ubiq-
uitous in optimization algorithms, e.g. various gradient-type algorithms approximate the objective
function with a quadratic upper bound. In some (if not all) cases, there are multiple ways to make
the approximation, and one usually has this freedom of choice. It is perhaps not hard to convince
oneself that there is no approximation that would work best in all scenarios. And one would prob-
ably also agree that a specific form of approximation should be favored if it well suits our ultimate
goal. Despite of all these common-sense, in optimization algorithms, the smooth approximations are
still dominating, bypassing some recent advances on optimizing nonsmooth functions [2, 3]. Part of
the reason, we believe, is the lack of new technical tools.

We consider the composite minimization problem where the objective consists of a smooth loss func-
tion and a sum of nonsmooth functions. Such problems have received increasing attention due to the
arise of structured sparsity [4], notably the overlapping group lasso [5], the graph-guided fused lasso
[6] and some others. These structured regularizers, although greatly enhance our modeling capabil-
ity, introduce significant new computational challenges as well. Popular gradient-type algorithms
dealing with such composite problems include the generic subgradient method [7], (accelerated)
proximal gradient (APG) [2, 3], and the smoothed accelerated proximal gradient (S-APG) [8]. The
subgradient method is applicable to any nonsmooth function, although the convergence rate is rather
slow. APG, being a recent advance, can handle simple functions [9] but for more complicated struc-
tured regularizers, an inner iterative procedure is needed, resulting in an overall convergence rate
that could be as slow as the subgradient method [10]. Lastly, S-APG simply runs APG on a smooth
approximation of the original objective, resulting in a much improved convergence rate.

Our work is inspired by the recent advance on nonsmooth optimization [2, 3], of which the building
block is the proximal map of the nonsmooth function. This proximal map is available in closed-form
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for simple functions but can be quite expensive for more complicated functions such as a sum of
nonsmooth functions we consider here. A key observation we make is that oftentimes the proximal
map for each individual summand can be easily computed, therefore a bold idea is to simply use the
sum of proximal maps, pretending that the proximal map is a linear operator. Somewhat surprisingly,
this naive choice, when combined with APG, results in a novel proximal algorithm that is strictly
better than S-APG, while keeping per-step complexity unchanged. We justify our method via a
new tool from convex analysis—the proximal average [11]. In essence, instead of smoothing the
nonsmooth function, we use a nonsmooth approximation whose proximal map is cheap to evaluate,
after all this is all we need to run APG.

We formally state our problem in Section 2, along with the proposed algorithm. After recalling
the relevant tools from convex analysis in Section 3 we provide the theoretical justification of our
method in Section 4. Related works are discussed in Section 5. We test the proposed algorithm in
Section 6 and conclude in Section 7.

2 Problem Formulation

We are interested in solving the following composite minimization problem:

min
x∈Rd

`(x) + f̄(x), where f̄(x) =

K∑
k=1

αkfk(x). (1)

Here ` is convex with L0-Lipschitz continuous gradient w.r.t. the Euclidean norm ‖ · ‖, and αk ≥
0,
∑
k αk = 1. The usual regularization constant that balances the two terms in (1) is absorbed into

the loss `. For the functions fk, we assume
Assumption 1. Each fk is convex and Mk-Lipschitz continuous w.r.t. the Euclidean norm ‖ · ‖.

The abbreviation M2 =
∑K
k=1 αkM

2
k is adopted throughout.

We are interested in the general case where the functions fk need not be differentiable. As men-
tioned in the introduction, a generic scheme that solves (1) is the subgradient method [7], of which
each step requires merely an arbitrary subgradient of the objective. With a suitable stepsize, the sub-
gradient method converges1 in at most O(1/ε2) steps where ε > 0 is the desired accuracy. Although
being general, the subgradient method is exceedingly slow, making it unsuitable for many practical
applications.

Another recent algorithm for solving (1) is the (accelerated) proximal gradient (APG) [2, 3], of
which each iteration needs to compute the proximal map of the nonsmooth part f̄ in (1):

P
1/L0

f̄
(x) = argmin

y

L0

2 ‖x− y‖
2 + f̄(y).

(Recall that L0 is the Lipschitz constant of the gradient of the smooth part ` in (1).) Provided that
the proximal map can be computed in constant time, it can be shown that APG converges within
O(1/

√
ε) complexity, significantly better than the subgradient method. For some simple functions,

the proximal map indeed is available in closed-form, see [9] for a nice survey. However, for more
complicated functions such as the one we consider here, the proximal map itself is expensive to
compute and an inner iterative subroutine is required. Somewhat disappointingly, recent analysis
has shown that such a two-loop procedure can be as slow as the subgradient method [10].

Yet another approach, popularized by Nesterov [8], is to approximate each nonsmooth component
fk with a smooth function and then run APG. By carefully balancing the approximation and the
convergence requirement of APG, the smoothed accelerated proximal gradient (S-APG) proposed
in [8] converges in at most O(

√
1/ε2 + 1/ε) steps, again much better than the subgradient method.

The main point of this paper is to further improve S-APG, in perhaps a surprisingly simple way.

The key assumption that we will exploit is the following:
Assumption 2. Each proximal map Pµfk can be computed “easily” for any µ > 0.

1In this paper we satisfy ourselves with convergence in terms of function values, although with additional
assumptions/efforts it is possible to argue for convergence in terms of the iterates.
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Algorithm 1: PA-APG.
1: Initialize x0 = y1, µ, η1 = 1.
2: for t = 1, 2, . . . do
3: zt = yt − µ∇`(yt),
4: xt =

∑
k αk · P

µ
fk

(zt),

5: ηt+1 =
1+
√

1+4η2t
2 ,

6: yt+1 = xt + ηt−1
ηt+1

(xt − xt−1).
7: end for

Algorithm 2: PA-PG.

1: Initialize x0, µ.

2: for t = 1, 2, . . . do

3: zt = xt−1 − µ∇`(xt−1),

4: xt =
∑
k αk · P

µ
fk

(zt).

5: end for

We prefer to leave the exact meaning of “easily” unspecified, but roughly speaking, the proximal
map should be no more expensive than computing the gradient of the smooth part ` so that it does
not become the bottleneck. Both Assumption 1 and Assumption 2 are satisfied in many important
applications (examples will follow). As it will also become clear later, these assumptions are exactly
those needed by S-APG.

Unfortunately, in general, there is no known efficient way that reduces the proximal map of the
average f̄ to the proximal maps of its individual components fk, therefore the fast scheme APG is
not readily applicable. The main difficulty, of course, is due to the nonlinearity of the proximal map
Pµf , when treated as an operator on the function f . Despite of this fact, we will “naively” pretend
that the proximal map is linear and use

Pµ
f̄

?
≈

K∑
k=1

αkP
µ
fk
. (2)

Under this approximation, the fast scheme APG can be applied. We give one particular realization
(PA-APG) in Algorithm 1 based on the FISTA in [2]. A simpler (though slower) version (PA-PG)
based on ISTA [2] is also provided in Algorithm 2. Clearly both algorithms are easily parallelizable
if K is large. We remark that any other variation of APG, e.g. [8], is equally well applicable. Of
course, when K = 1, our algorithm reduces to the corresponding APG scheme.

At this point, one might be suspicious about the usefulness of the “naive” approximation in (2).
Before addressing this well-deserved question, let us first point out two important applications where
Assumption 1 and Assumption 2 are naturally satisfied.
Example 1 (Overlapping group lasso, [5]). In this example, fk(x) = ‖xgk‖ where gk is a group
(subset) of variables and xg denotes a copy of x with all variables not contained in the group g
set to 0. This group regularizer has been proven quite useful in high-dimensional statistics with the
capability of selecting meaningful groups of features [5]. In the general case where the groups could
overlap as needed, Pµ

f̄
cannot be computed easily.

Clearly each fk is convex and 1-Lipschitz continuous w.r.t. ‖ · ‖, i.e., Mk = 1 in Assumption 1.
Moreover, the proximal map Pµfk is simply a re-scaling of the variables in group gk, that is

[Pµfk(x)]j =

{
xj , j 6∈ gk
(1− µ/‖xgk‖)+xj , j ∈ gk

, (3)

where (λ)+ = max{λ, 0}. Therefore, both of our assumptions are met.

Example 2 (Graph-guided fused lasso, [6]). This example is an enhanced version of the fused lasso
[12], with some graph structure exploited to improve feature selection in biostatistic applications
[6]. Specifically, given some graph whose nodes correspond to the feature variables, we let fij(x) =
|xi − xj | for every edge (i, j) ∈ E. For a general graph, the proximal map of the regularizer
f̄ =

∑
(i,j)∈E αijfij , with αij ≥ 0,

∑
(i,j)∈E αij = 1, is not easily computable.

Similar as above, each fij is 1-Lipschitz continuous w.r.t. the Euclidean norm. Moreover, the
proximal map Pµfij is easy to compute:

[Pµfij (x)]s =

{
xs, s 6∈ {i, j}
xs − sign(xi − xj) min{µ, |xi − xj |/2}, s ∈ {i, j} . (4)

Again, both our assumptions are satisfied.
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Note that in both examples we could have incorporated weights into the component functions fk
or fij , which amounts to changing αk or αij accordingly. We also remark that there are other
applications that fall into our consideration, but for illustration purposes we shall contend ourselves
with the above two examples. More conveniently, both examples have been tried with S-APG [13],
thus constitute a natural benchmark for our new algorithm.

3 Technical Tools

To justify our new algorithm, we need a few technical tools from convex analysis [14]. Let our
domainH be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. Denote Γ0

as the set of all lower semicontinuous proper convex functions f : H → R∪{∞}. It is well-known
that the Fenchel conjugation

f∗(y) = sup
x
〈x, y〉 − f(x)

is a bijection and involution on Γ0 (i.e. (f∗)∗ = f ). For convenience, throughout we let q = 1
2‖ · ‖

2

(q for “quadratic”). Note that q is the only function which coincides with its Fenchel conjugate.
Another convention that we borrow from convex analysis is to write (fµ)(x) = µf(µ−1x) for
µ > 0. We easily verify (µf)∗ = f∗µ and also (fµ)∗ = µf∗.

For any f ∈ Γ0, we define its Moreau envelop (with parameter µ > 0) [14, 15]

Mµ
f (x) = min

y

1
2µ‖x− y‖

2 + f(y), (5)

and correspondingly the proximal map

Pµf (x) = argmin
y

1
2µ‖x− y‖

2 + f(y). (6)

Since f is closed convex and ‖ · ‖2 is strongly convex, the proximal map is well-defined and single-
valued. As mentioned before, the proximal map is the key component of fast schemes such as APG.

We summarize some nice properties of the Moreau envelop and the proximal map as:
Proposition 1. Let µ, λ > 0, f ∈ Γ0, and Id be the identity map, then

i). Mµ
f ∈ Γ0 and (Mµ

f )∗ = f∗ + µq;

ii). Mµ
f ≤ f , infxM

µ
f (x) = infx f(x), and argminxM

µ
f (x) = argminx f(x);

iii). Mµ
f is differentiable with∇Mµ

f = 1
µ (Id− Pµf );

iv). Mµ
λf = λMλµ

f and Pµλf = Pλµf = (Pµfλ−1)λ;

v). Mλ
Mµf

= Mλ+µ
f and PλMµf

= µ
λ+µ Id + λ

λ+µP
λ+µ
f ;

vi). µMµ
f + (M

1/µ
f∗ )µ = q and Pµf + (P

1/µ
f∗ )µ = Id.

i) is the well-known duality between infimal convolution and summation. ii), albeit being trivial,
is the driving force behind the proximal point algorithm [16, 17]. iii) justifies the “niceness” of
the Moreau envelop and connects it with the proximal map. iv) and v) follow from simple algebra.
And lastly vi), known as Moreau’s identity [15], plays an important role in the early development of
convex analysis. We remind that (Mµ

f )∗ in general is different from Mµ
f∗ .

Fix µ > 0. Let SCµ ⊆ Γ0 denote the class of µ-strongly convex functions, that is, functions f
such that f − µq is convex. Similarly, let SSµ ⊆ Γ0 denote the class of finite-valued functions
whose gradient is µ-Lipschitz continuous (w.r.t. the norm ‖ · ‖). A well-known duality between
strong convexity and smoothness is that for f ∈ Γ0, we have f ∈ SCµ iff f∗ ∈ SS1/µ, cf. [18,
Theorem 18.15]. Based on this duality, we have the next result which turns out to be critical. (Proof
in Appendix A)
Proposition 2. Fix µ > 0. The Moreau envelop map Mµ : Γ0 → SS1/µ that sends f ∈ Γ0 to Mµ

f is
bijective, increasing, and concave on any convex subset of Γ0 (under the pointwise order).
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It is clear that SS1/µ is a convex subset of Γ0, which motivates the definition of the proximal
average—the key object to us. Fix constants αk ≥ 0 with

∑K
k=1 αk = 1. Recall that f̄ =

∑
k αkfk

with each fk ∈ Γ0, i.e. f̄ is the convex combination of the component functions {fk} under the
weight {αk}. Note that we always assume f̄ ∈ Γ0 (the exception f̄ ≡ ∞ is clearly uninteresting).
Definition 1 (Proximal Average, [11, 15]). Denote f = (f1, . . . , fK) and f∗ = (f∗1 , . . . , f

∗
K). The

proximal average Aµf ,α, or simply Aµ when the component functions and weights are clear from

context, is the unique function h ∈ Γ0 such that Mµ
h =

∑K
k=1 αkM

µ
fk

.

Indeed, the existence of the proximal average follows from the surjectivity of Mµ while the unique-
ness follows from the injectivity of Mµ, both proven in Proposition 2. The main property of the
proximal average, as seen from its definition, is that its Moreau envelop is the convex combination
of the Moreau envelops of the component functions. By iii) of Proposition 1 we immediately obtain

PµAµ =

K∑
k=1

αkP
µ
fk
. (7)

Recall that the right-hand side is exactly the approximation we employed in Section 2.

Interestingly, using the properties we summarized in Proposition 1, one can show that the Fenchel
conjugate of the proximal average, denoted as (Aµ)∗, enjoys a similar property [11]:[

M
1/µ
(Aµ)∗

]
µ = q− µMµ

Aµ = q− µ
K∑
k=1

αkM
µ
fk

=

K∑
k=1

αk(q− µMµ
fk

)

=

K∑
k=1

αk[(M
1/µ
f∗
k

)µ] =

[
K∑
k=1

αkM
1/µ
f∗
k

]
µ,

that is, M1/µ

(Aµf,α)∗
=
∑K
k=1 αkM

1/µ
f∗
k

= M
1/µ

A
1/µ

f∗,α
, therefore by the injective property established in

Proposition 2:

(Aµf ,α)∗ = A
1/µ
f∗,α. (8)

From its definition it is also possible to derive an explicit formula for the proximal average (although
for our purpose only the existence is needed):

Aµf ,α =

(( K∑
k=1

αkM
µ
fk

)∗
− µq

)∗
=
( K∑
k=1

αkM
1/µ
f∗
k

)∗
− qµ, (9)

where the second equality is obtained by conjugating (8) and applying the first equality to the con-
jugate. By the concavity and monotonicity of Mµ, we have the inequality

Mµ

f̄
≥

K∑
k=1

αkM
µ
fk

= Mµ
Aµ ⇐⇒ f̄ ≥ Aµ. (10)

The above results (after Definition 1) are due to [11], although our treatment is slightly different.

It is well-known that as µ → 0, Mµ
f → f pointwise [14], which, under the Lipschitz assumption,

can be strengthened to uniform convergence (Proof in Appendix B):

Proposition 3. Under Assumption 1 we have 0 ≤ f̄ −Mµ
Aµ ≤

µM2

2 .

For the proximal average, [11] showed that Aµ → f̄ pointwise, which again can be strengthened to
uniform convergence (proof follows from (10) and Proposition 3 since Aµ ≥ Mµ

Aµ ):

Proposition 4. Under Assumption 1 we have 0 ≤ f̄ − Aµ ≤ µM2

2 .

As it turns out, S-APG approximates the nonsmooth function f̄ with the smooth function Mµ
Aµ while

our algorithm operates on the nonsmooth approximation Aµ (note that it can be shown that Aµ is
smooth iff some component fi is smooth). By (10) and ii) in Proposition 1 we have

Mµ
Aµ ≤ Aµ ≤ f̄ , (11)
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Figure 1: See Example 3 for context. As predicted Mµ
Aµ ≤ Aµ ≤ f̄ . Observe that the proximal

average Aµ remains nondifferentiable at 0 while Mµ
Aµ is smooth everywhere. For x ≥ 0, f1 = f2 =

f̄ = Aµ (the red circled line), thus the proximal average Aµ is a strictly tighter approximation than
smoothing. When µ is small (right panel), f̄ ≈ Mµ

Aµ ≈ Aµ.

meaning that the proximal average Aµ is a better under-approximation of f̄ than Mµ
Aµ .

Let us compare the proximal average Aµ with the smooth approximation Mµ
Aµ on a 1-D example.

Example 3. Let f1(x) = |x|, f2(x) = max{x, 0}. Clearly both are 1-Lipschitz continuous. More-
over, Pµf1(x) = sign(x)(|x| − µ)+, Pµf2(x) = (x− µ)+ + x− (x)+,

Mµ
f1

(x) =

{
x2

2µ , |x| ≤ µ
|x| − µ/2, otherwise

, and Mµ
f2

(x) =


0, x ≤ 0
x2

2µ , 0 ≤ x ≤ µ
x− µ/2, otherwise

.

Finally, using (9) we obtain (with α1 = α, α2 = 1− α)

Aµ(x) =


x, x ≥ 0
α

1−α
x2

2µ , (α− 1)µ ≤ x ≤ 0

−αx− (1− α)αµ2 , x ≤ (α− 1)µ

.

Figure 1 depicts the case α = 0.5 with different values of the smoothing parameter µ.

4 Theoretical Justification
Given our development in the previous section, it is now clear that our proposed algorithm aims at
solving the approximation

min
x
`(x) + Aµ(x). (12)

The next important piece is to show how a careful choice of µ would lead to a strictly better conver-
gence rate than S-APG.

Recall that using APG to slove (12) requires computing the following proximal map in each iteration:

P
1/L0

Aµ (x) = argmin
y

L0

2 ‖x− y‖
2 + Aµ(y),

which, unfortunately, is not yet amenable to efficient computation, due to the mismatch of the con-
stants 1/L0 and µ (recall that in the decomposition (7) the superscript and subscript must both be µ).
In general, there is no known explicit formula that would reduce P

1/L0

f to Pµf for different positive
constants L0 and µ [18, p. 338], see also iv) in Proposition 1. Our fix is almost trivial: If necessary,
we use a bigger Lipschitz constant L0 = 1/µ so that we can compute the proximal map easily. This
is indeed legitimate since L0-Lipschitz implies L-Lipschitz for any L ≥ L0. Said differently, all we
need is to tune down the stepsize a little bit in APG. We state formally the convergence property of
our algorithm as (Proof in Appendix C):

Theorem 1. Fix the accuracy ε > 0. Under Assumption 1 and the choice µ = min{1/L0, 2ε/M2},
after at most

√
2
µε‖x0 − x‖ steps, the output of Algorithm 1, say x̃, satisfies

`(x̃) + f̄(x̃) ≤ `(x) + f̄(x) + 2ε.

The same guarantee holds for Algorithm 2 after at most 1
2µε‖x0 − x‖2 steps.

6



Note that if we could reduce P
1/L0

Aµ efficiently to PµAµ , we would end up with the optimal (overall)
rate O(

√
1/ε), even though we approximate the nonsmooth function f̄ by the proximal average

Aµ. In other words, approximation itself does not lead to an inferior rate. It is our incapability to
(efficiently) relate proximal maps that leads to the sacrifice in convergence rates.

5 Discussions

To ease our discussion with related works, let us first point out a fact that is not always explicitly
recognized, that is, S-APG essentially relies on approximating the nonsmooth function f̄ with Mµ

Aµ .
Indeed, consider first the case K = 1. The smoothing idea introduced in [8] purports the superficial
max-structure assumption, that is, f(x) = maxy∈C 〈x, y〉−h(y) where C is some bounded convex
set and h ∈ Γ0. As it is well-known (also easily verified from definition), f ∈ Γ0 is M -Lipschitz
continuous (w.r.t. the norm ‖ · ‖) iff dom f∗ ⊆ B‖·‖(0,M), the ball centered at the origin with
radius M . Thus the function f ∈ Γ0 admits the max-structure iff it is Lipschitz continuous, i.e.,
satisfying our Assumption 1, in which case h = f∗ and C = dom f∗. [8] proceeded to add some
“distance” function d to obtain the approximation fµ(x) = maxy∈C 〈x, y〉 − f∗(y) − µd(y). For
simplicity, we will only consider d = q, thus fµ = (f∗ + µq)∗ = Mµ

f . The other assumption of
S-APG [8] is that fµ and the maximizer in its expression can be easily computed, which is precisely
our Assumption 2. Finally for the general case where f̄ is an average ofK nonsmooth functions, the
smoothing technique is applied in a component by component way, i.e., approximate f̄ with Mµ

Aµ .

For comparison, let us recall that S-APG finds a 2ε accurate solution in at most

O(

√
L0 +M2/(2ε)

√
1/ε) steps since the Lipschitz constant of the gradient of ` + Mµ

Aµ is up-

per bounded by L0 +M2/(2ε) (under the choice of µ in Theorem 1). This is strictly worse than the

complexity O(

√
max{L0,M2/(2ε)}

√
1/ε) of our approach. In other words, we have managed to

remove the secondary term in the complexity bound of S-APG. We should emphasize that this strict
improvement is obtained under exactly the same assumptions and with an algorithm as simple (if not
simpler) as S-APG. In some sense it is quite remarkable that the seemingly “naive” approximation
that pretends the linearity of the proximal map not only can be justified but also leads to a strictly
better result.

Let us further explain how the improvement is possible. As mentioned, S-APG approximates f̄ with
the smooth function Mµ

Aµ . This smooth approximation is beneficial if our capability is limited to
smooth functions. Put differently, S-APG implicitly treats applying the fast gradient algorithms as
the ultimate goal. However, the recent advances on nonsmooth optimization have broadened the
range of fast schemes: It is not smoothness but the proximal map that allows fast convergence. Just
as how APG improves upon the subgradient method, our approach, with the ultimate goal to enable
efficient computation of the proximal map, improves upon S-APG. Another lesson we wish to point
out is that unnecessary “over-smoothing”, as in S-APG, does hurt the performance since it always
increases the Lipschitz constant. To summarize, smoothing is not free and it should be used when
truly needed.

Lastly, we note that our algorithm shares some similarity with forward-backward splitting proce-
dures and alternating direction methods [9, 19, 20], although a detailed examination will not be
given here. Due to space limits, we refer further extensions and improvements to [21, Chapter 3].

6 Experiments

We compare the proposed algorithm with S-APG on two important problems: overlapping group
lasso and graph-guided fused lasso. See Example 1 and Example 2 for details about the nonsmooth
function f̄ . We note that S-APG has been demonstrated with superior performance on both problems
in [13], therefore we will only concentrate on comparing with it. Bear in mind that the purpose of our
experiment is to verify the theoretical improvement as discussed in Section 5. We are not interested
in fine tuning parameters here (despite its practical importance), thus for a fair comparison, we use
the same desired accuracy ε, Lipschitz constant L0 and other parameters for all methods. Since both
our method and S-APG have the same per-step complexity, we will simply run them for a maximum
number of iterations (after which saturation is observed) and report all the intermediate objective
values.
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Figure 2: Objective value vs. iteration on overlapping group lasso.
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Figure 3: Objective value vs. iteration on graph-guided fused lasso.

Overlapping Group Lasso: Following [13] we generate the data as follows: We set `(x) =
1

2λK ‖Ax − b‖2 where A ∈ Rn×d whose entries are sampled from i.i.d. normal distributions,
xj = (−1)j exp(−(j− 1)/100), and b = Ax+ ξ with the noise ξ sampled from zero mean and unit
variance normal distribution. Finally, the groups in the regularizer f̄ are defined as

{{1, . . . , 100}, {91, . . . , 190}, . . . , {d− 99, . . . , d}},
where d = 90K + 10. That is, there are K groups, each containing 100 variables, and the groups
overlap by 10 consecutive variables. We adopt the uniform weight αk = 1/K and set λ = K/5.

Figure 2 shows the results for n = 5000 and K = 50, with three different accuracy parameters.
For completeness, we also include the results for the non-accelerated versions (PA-PG and S-PG).
Clearly, accelerated algorithms are much faster than their non-accelerated cousins. Observe that our
algorithms (PA-APG and PA-PG) converge consistently faster than S-APG and S-PG, respectively,
with a big margin in the favorable case (middle panel). Again we emphasize that this improvement
is achieved without any overhead.

Graph-guided Fused Lasso: We generate ` similarly as above. Following [13], the graph edges E
are obtained by thresholding the correlation matrix. The case n = 5000, d = 1000, λ = 15 is shown
in Figure 3, under three different desired accuracies. Again, we observe that accelerated algorithms
are faster than non-accelerated versions and our algorithms consistently converge faster.

7 Conclusions

We have considered the composite minimization problem which consists of a smooth loss and a sum
of nonsmooth regularizers. Different from smoothing, we considered a seemingly naive nonsmooth
approximation which simply pretends the linearity of the proximal map. Based on the proximal
average, a new tool from convex analysis, we proved that the new approximation leads to a novel al-
gorithm that strictly improves the state-of-the-art. Experiments on both overlapping group lasso and
graph-guided fused lasso verified the superiority of the proposed method. An interesting question
arose from this work, also under our current investigation, is in what sense certain approximation is
optimal? We also plan to apply our algorithm to other practical problems.
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A Proof of Proposition 2

Proof. Fix f, g ∈ Γ0. First note that the Fenchel conjugation enjoys (and is characterized by) the
order reversing property:

f ≥ g ⇐⇒ f∗ ≤ g∗.

Since (Mµ
f )∗ = f∗ + µq ∈ SCµ we have Mµ

f ∈ SS1/µ. On the other hand, let h ∈ SS1/µ. Then
g = h∗ − µq ∈ Γ0, hence h∗ = g + µq and h = (g + µq)∗ = Mµ

g∗ . Therefore Mµ is onto.

It should be clear that Mµ : Γ0 → SS1/µ is increasing w.r.t. the pointwise order, i.e., f ≥ g =⇒
Mµ
f ≥ Mµ

g . On the other hand, Mµ
f ≥ Mµ

g =⇒ (Mµ
f )∗ ≤ (Mµ

g )∗, which, by i) in Proposition 1,
means f∗ + µq ≤ g∗ + µq =⇒ f∗ ≤ g∗ =⇒ f = f∗∗ ≥ g∗∗ = g. Hence Mµ is an injection.

Let α ∈]0, 1[, then

Mµ
αf+(1−α)g(x) = min

y

1
2µ‖x− y‖

2 + αf(y) + (1− α)g(y)

= min
y

α
2µ‖x− y‖

2 + αf(y) + 1−α
2µ ‖x− y‖

2 + (1− α)g(y)

≥ min
y

α
2µ‖x− y‖

2 + αf(y) + min
y

1−α
2µ ‖x− y‖

2 + (1− α)g(y)

= αMµ
f (x) + (1− α)Mµ

g (x),

verifying the concavity of Mµ.

B Proof of Proposition 3

Proof. First observe that by the definition of the proximal average

f̄ −Mµ
Aµ =

∑
k

αk(fk −Mµ
fk

) ≥ 0,

since f ≥ Mµ
f for any f ∈ Γ0. On the other hand

sup
x
fk(x)−Mµ

fk
(x) = sup

x
fk(x)−min

y

1
2µ‖x− y‖

2 + fk(y)

= sup
x,y

fk(x)− fk(y)− 1
2µ‖x− y‖

2

≤ sup
x,y

Mk‖x− y‖ − 1
2µ‖x− y‖

2

≤ µM2
k

2 ,

where the first inequality is due to the Lipschitz assumption on fk. Therefore

sup
x
f̄(x)−Mµ

Aµ(x) ≤
∑
k

αk

[
sup
x
fk(x)−Mµ

fk
(x)

]
≤ µM2

2 .

C Proof of Theorem 1

Proof. Clearly, under our choice of µ, the gradient of ` is 1/µ-Lipschitz continuous (since 1/µ ≥
L0). Therefore after at most

√
2
µε‖x0 − x‖ steps the output of Algorithm 1, say x̃, satisfies [2]

`(x̃) + Aµ(x̃) ≤ `(x) + Aµ(x) + ε.

Then by Proposition 4
[`(x̃) + f̄(x̃)]− [`(x) + f̄(x)] = [`(x̃) + Aµ(x̃)]− [`(x) + Aµ(x)]

+ [f̄(x̃)− Aµ(x̃)]− [f̄(x)− Aµ(x)]

≤ ε+ ε+ 0 = 2ε.

The proof for Algorithm 2 is similar.
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