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Abstract

We focus on detecting complex events in uncon-
strained Internet videos. While most existing works
rely on the abundance of labeled training data, we
consider a more difficult zero-shot setting where
no training data is supplied. We first pre-train a
number of concept classifiers using data from other
sources. Then we evaluate the semantic correla-
tion of each concept w.r.t. the event of interest. Af-
ter further refinement to take prediction inaccuracy
and discriminative power into account, we apply
the discovered concept classifiers on all test videos
and obtain multiple score vectors. These distinct
score vectors are converted into pairwise compari-
son matrices and the nuclear norm rank aggregation
framework is adopted to seek consensus. To ad-
dress the challenging optimization formulation, we
propose an efficient, highly scalable algorithm that
is an order of magnitude faster than existing alter-
natives. Experiments on recent TRECVID datasets
verify the superiority of the proposed approach.

1 Introduction

In multimedia event detection (MED), an event (class) of
interest is specified and we must rank the (unlabeled) test
videos so that positive examples (those containing the inter-
ested event) are ranked above the negative ones. As the first
important step towards automatic categorization, recognition,
search, indexing, and retrieval, video event detection has at-
tracted more and more research attention in the computer vi-
sion and machine learning community [TRECVID, 2013].
With enough training data, a decent feature extraction module
(e.g., [Xuetal., 2015; Laptev, 2005; Wang and Schmid, 2013;
Sénchez et al., 2013]) and a powerful statistical classifi-
cation machine (e.g., [Yan et al., 2014; Wu et al., 2009;
Vahdat et al., 2013]), one can achieve a reasonably good
performance for event detection. However, MED faces the
severe data-scarcity challenge: only very few, perhaps even
none, positive training samples are available for some events,
and the performance degrades dramatically once the number
of positive training samples falls short. In some applications
there is also the need to detect events that do not appear in the
training phase at all.

Zero-shot learning [Lampert er al., 2009; Larochelle et al.,
2008; Farhadi et al., 2009; Palatucci et al., 2009] is a recent
remedy to the data-scarcity problem. Zero-shot event detec-
tion can be also interpreted as cross-media retrieval [Yang et
al., 2009] from text to videos. Without any training data,
sample-based statistical approaches do not apply any more
and we have to roll back to rule-based learning. The key ob-
servation is that many object classes can be relatively eas-
ily described as a composition of multiple middle-level at-
tributes (concepts). For example, the marriage proposal
event can be attributed to several concepts, such as ring (ob-
ject), kissing (action) and kneeling down (action). Crucially,
these concepts can be trained on other data sources and can
be shared among many different events, including unseen
ones. Based on this idea, events can be detected by inspect-
ing the individual concept responses, even without any la-
beled training data [Dalton e al., 2013; Habibian et al., 2013;
Wu et al., 2014; Mensink et al., 2014]. However, not all con-
cepts are equally informative for detecting a certain event.
We must also account for the inaccuracy of the concept clas-
sifiers, particularly when they are trained across different
domains. Moreover, concept responses may have different
scales and a naive way to aggregate them may not be the best
strategy, potentially leading to the loss of precision. To the
best of our knowledge, these issues have not been addressed
in a principled manner for zero-shot event detection, and we
intend to fill in this gap in this work.

The main building blocks of the proposed approach is illus-
trated in Figure 1. We begin with some background on zero-
shot learning in §3.1, and then in §3.2 we learn a skip-gram
language model [Mikolov et al., 2013] to assess the semantic
correlation of the event description and the pre-trained vocab-
ulary of concepts. This step is carried out without any visual
training data at all. Concepts are then ranked according to this
semantic correlation. To further account for concept inaccu-
racy and discriminative power, in §3.3 we refine the concepts
using either validation data or side information such as human
knowledge. A highly selective subset of concepts are created
for each event of interest, and we apply each of them to the
(unseen) test videos, yielding a collection of confidence score
vectors. These score vectors induce distinct rankings of the
test videos hence we need to aggregate them effectively and
efficiently, ideally also taking concept inaccuracy and score
heterogeneity into account.
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Figure 1: The proposed approach for large-scale zero-shot event detection (§3.1), illustrated on the particular “Dog Show”
event. Discriminative concept classifiers are selected using the skip-gram language model (§3.2), followed by some further
refinements (§3.3). The concept score vectors are combined through the rank aggregation framework (§3.4) and solved using

the efficient GCG algorithm (§3.5).

We leverage on the well-established rank aggregation
framework [Dwork et al., 2001; Gleich and Lim, 2011;
Ye et al., 2012]. Specifically, in §3.4 we first convert each
score vector into a pairwise comparison matrix. Variations
of the discriminative power of each concept in a certain fea-
ture space usually produce incomparable score vectors at dif-
ferent numeric scales, however, by removing the magnitude
of the comparison matrix (e.g. taking its sign) we effectively
enforce scale invariance. Besides, these comparison matri-
ces are at best noisy perturbations of some groundtruth so
we aim at finding their consensus under the robust Huber’s
loss [Huber, 1964]. Since the true pairwise comparison ma-
trix is of low rank, the trace norm regularization is employed
as a computational convenient proxy [Gleich and Lim, 2011;
Chandrasekaran er al., 2012]. Upon recovering the pairwise
comparison matrix that is in consensus with the majority of
those generated by individual concepts, we can easily recover
a total ordering of all test videos, thus achieving zero-shot
event detection. Lastly, since we have a large amount of
test videos, in §3.5 we develop an efficient generalized condi-
tional gradient algorithm [Zhang et al., 2012, GCG] to solve
our rank aggregation problem. The specialized algorithm is
an order of magnitude faster than existing alternatives and
works very well in our experiments (§4).

We summarize our main contributions as follows: 1). We
apply data-driven word embeddings to correlate the middle-
level concept classifiers with high-level event descriptions;
2). We fuse the concept score vectors through the framework
of rank aggregation; 3). We develop the GCG algorithm to
handle very large-scale test sets; 4). We conduct experiments
on large-scale real-world video dataset, confirming the effec-
tiveness of the proposed method for zero-shot event detection.

2 Related Works

A lot of past work in MED has been devoted to feature
engineering and aggregating, e.g. [Natarajan et al., 2012;
Wang and Schmid, 2013; Li et al., 2013; Oneati ef al., 2013].
More recent works have begun to explore the possibility of
using middle-level semantic concept representations for event
detection, e.g. [Ma et al., 2013; Merler er al., 2012; Habibian

et al., 2013]. Partial success along this vein has also been
achieved in the zero-shot setting, e.g. [Habibian et al., 2014;
Wu er al., 20141, but the concept score vectors are aggregated
in a very limited way. Similar to us, [Dalton er al., 2013;
Mazloom et al., 2013] also considered selecting more rel-
evant concepts, albeit using explicit labeled training data.
[Mensink et al., 2014] exploited label co-occurrence for zero-
shot learning.

Rank aggregation has a long history in social choice theory
and we mention the influential work of [Dwork et al., 2001].
Our work is inspired by the pairwise comparison framework
of [Gleich and Lim, 2011] and the follow-up application in
computer vision [Ye et al., 2012]. However, both works did
not consider event detection nor zero-shot learning. Besides,
their algorithms cannot scale to the large datasets we are in-
terested in here, see §3 and §4 for comparison.

3 The Proposed Method

Figure 1 illustrates the main building blocks of our proposed
approach for zero-shot event detection. In a nutshell, we are
given a large amount of unseen test videos and also the event
description (such as a name), but without any labeled training
data whatsoever (§3.1). Nonetheless, we need to rank the test
videos so that positives (those contain the event of interest)
are above negatives. With this goal in mind, we first associate
a query event with some semantic concepts (attributes) that
are pre-trained independently using other data sources (§3.2).
After further pruning and refining (§3.3), we fuse the individ-
ual concept scores (on the unseen test data) by resorting to
the well-established rank aggregation framework (§3.4). Fi-
nally, to handle a large amount of test data, we develop a very
efficient optimization algorithm (§3.5).

3.1 Zero-shot learning

We first briefly recall the zero-shot learning problem, to pro-
vide context for the rest of the paper. Unlike traditional super-
vised learning tasks, zero-shot learning [Farhadi et al., 2009;
Lampert er al., 2009; Larochelle et al., 2008; Palatucci et al.,
2009] refers to the challenging scenario where we want to dis-
criminate new classes that have no training data at all. Zero-



shot learning appears frequently in practice because of the
enormous amount of real-world object classes that are still
constantly changing: it would be too time-consuming and
expensive to get human annotated labels for each of them.
Nevertheless, the crucial observation is that each object class
can be semantically described as the composition of a set of
concepts, i.e. middle-level interpretable attributes. For in-
stance, the event birthday party can be described as the com-
position of “blowing candle”, “birthday cake” and “applaud-
ing”. Since concepts are shared among many different classes
(events) and each concept classifier can be trained indepen-
dently on datasets from other sources, zero-shot event detec-
tion can be achieved by combining the relevant concept clas-
sification sores, even in the absence of event labeled training
data. In their pioneer work [Lampert et al., 2009] largely re-
lied on human knowledge to decompose classes (events) into
attributes (concepts). Instead, we seek below an automated
way to measure the similarity of an event of interest to the
individual concepts.

3.2 Semantic correlation

Events come with textual side information, e.g. an event name
or a short description. With the availability of a pre-trained
vocabulary of concept (attribute) classifiers (see §4.2 for de-
tails) we can measure the semantic correlation between the
query event and each individual concept. Since concept clas-
sifiers can be trained without any event label information, the
semantic correlation makes it possible to share information
between the concept space and the event space.

More precisely, we learn a skip-gram model [Mikolov et
al., 2013] using the English Wikipedia dump'. The skip-
gram model infers a D-dimensional vector space represen-
tation of words by fitting the joint probability of the co-
occurrence of surrounding contexts on large unstructured text
data, and places semantically similar words near each other
in the embedding vector space. Thus it is able to capture
a large number of precise syntactic and semantic word rela-
tionships. For short phases consisting of multiple words (e.g.
event descriptions), we simply average its word-vector repre-
sentations. After properly normalizing the respective word-
vectors, we compute the cosine distance of the event descrip-
tion and all individual concepts, resulting in a correlation vec-
tor w € [0,1]™, where wj, measures the a priori correlation
of the k-th concept and the event of interest. We further adjust
the weight vector w below, taking their accuracy and predic-
tive power into account.

3.3 Concept pruning and refining

In the previous section we have attached a weight w € [0, 1]
to each concept, indicating its similarity with the event of
interest. These weights are further discounted (by a factor
of say two) for a set of reasons: 1). Some concept classi-
fiers may not be very reliable (low accuracy on test videos);
2) Some concepts, although relevant, may not be very dis-
criminative (low predictive power); 3). Concepts trained on
completely different domains (e.g. images) may be less use-
ful for video event detection. If validation data is available
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(such is the case for TRECVID datasets), we can evaluate the
above concerns about the concepts by computing their av-
erage precision on the validation data. Concepts with low
precision (below a certain threshold) are then dropped. Non-
discriminative concepts (such as “people”) that appear almost
in every video are also deleted. An added flexibility here is
that we can easily incorporate human knowledge (if easily
accessible), for instance, the concept “bike” will certainly be
very useful for detecting the event attempting a bike trick,
hence its weight w should be increased (by a factor of say
two).

3.4 Rank aggregation

After constructing an appropriate subset of concepts for each
event of interest, we use a rank aggregation strategy to con-
duct the detection. More precisely, suppose for event e
we have selected m, concepts, each with a weight wy €
[0,1],k = 1,...,me, to indicate its importance. Then, for
n given (unseen) test videos, each concept classifier, say the
k-th, generates a confidence score vector s*) € R™, which
in turn induces a total ordering among the test videos:

(k)

i

> s
Different concepts usually generate distinct score vectors that
induce different orderings on the test videos. However, as
long as the majority of concepts are correct in ranking any
pair of test videos, by aggregating the ranks to reach con-
sensus among concepts it is still possible to recover the true
ordering, as illustrated below.

A very straightforward approach is to use the weighted
score vector

video ¢ ranked above video j <= s

s = Zwks(k) 2)
k=1

and its induced ordering as in (1). The weight vector w is
incorporated to take into account the concept relevance. This
is essentially the Borda count that is widely studied in social
choice theory. As we show in the experiment, this approach
does work reasonably well, but it suffers from the following
drawbacks: 1). Each concept score vector is only a crude
approximation of the groundtruth hence likely will make a
few errors on some test videos, which the naive averaging
strategy may not be able to correct; 2). Score vectors may not
be on the same scale hence cannot be simply averaged. For
instance, s*) and 10 - s(*) both induce the same ordering but
their influence to the average in (2) are completely different.
To address the above issues, we adopt the pairwise com-
parison framework in [Gleich and Lim, 2011]. Specifically,
we convert the score vector s(*) € R”™ into a pairwise rela-
tionship matrix 7(*) € R™*™ in the following manner:

TF —gk) . 1T _q. (S(k'))T7 (3)

where 1 is the vector of all 1’s (with appropriate dimension).
Clearly, video ¢ is ranked above video j according to the k-

th concept classifier iff s\’ > s\*) iff T.) > 0. By sim-
ply taking the sign of the matrix 7*) we can enforce scale-
invariance [Ye et al., 2012].



Algorithm 1: The GCG algorithm for the rank aggregation problem (4)

1 SetTy =0, sg=0.
2 fort=0,1,...do

(ag,by) < argmingp 35,2 Hyyjy(a- T+ b (v
Tys1 < ag - Ty + by(wpv) —viuf);
St41 ¢ ag - S¢ + %(HuH% +1Ivl3) ;

N N AW

compute the gradient G = Y}, VrH,, o(T; — T™) ;
find (u;, —vy) as the leading singular vector pair of G — G'" ;
—viu]) —=T®E) 4+ Na-si+b) st. a>0,b>0;

// Equation (10)

// combining the old and new atoms
// Upper bound on trace norm

Now, given a collection of these pairwise comparison ma-

trices T, ..., T(™<) each corresponding to a relevant con-
cept, we want to find the groundtruth 7' such that T' ~
TH) k= 1,...,me, Le. a consensus among the concepts.

The key observation is that the matrix 7" constructed in (3) is
a low-rank real asymmetric matrix (in fact rank 2, the lowest
rank for a nonzero asymmetric matrix). This motivates us to
consider the following optimization problem:

min Y “wi|T + E® — TWR + v E® ||y 4+ \||T|ox
7B £

Me

= o kz_lek,w(T—T(k)HAHTIIm @

where || - ||, || - [[1, ]| - ||t are the Frobenius norm, ¢; norm
(sum of absolute values), and trace norm (sum of singular
values), respectively. The error matrix £ is introduced to
accommodate possible errors made by the k-th concept and
we penalize its ¢; norm because hopefully the errors are few
hence sparse. Other penalties, e.g. [Pan er al., 2013], can also
be easily adapted. As mentioned above, the consensus matrix
T is of low rank hence we penalize its trace norm [Gleich and
Lim, 2011], see also §3.5. Finally, the weight vector w is also
incorporated to reflect the relevance of each concept with the
event of interest. Interestingly, we can analytically eliminate
the error matrices F*) from (4), resulting in essentially the
Huber’s loss function [Huber, 1964]:

wt?,
P (f) = {w 22 (dw),

which is well-known to be robust against gross outliers.
After solving the consensus matrix 7" in (4), we can recover

the underlying ranking using a two-step procedure. First, we

recover its score vector s by solving the least squares problem

min ||s17 —1s" — T2, (6)
S

if [t] < v/(2w)
otherwise

)

whose closed-form solution (up to a constant) is
_17-TT4 _ 1

Then, we recover the rank of each test video via (1).

The optimization problem (4) is convex and can be solved
using a variety of ways. For similar problems, [Gleich and
Lim, 2011] used the proximal gradient while [Ye et al.,
2012] employed the alternating direction method of multi-
pliers (ADMM). However, both methods require a full sin-
gular value decomposition (SVD) on the matrix 7" in each

iteration, leading to an O(n?®) per-step complexity. For our
application this is unbearable: The TRECVID 2013 dataset
has n = 23,954 on the full set and n = 12, 388 on the kin-
dred set. Note that the matrix 7" is dense, therefore we cannot
hope to reduce the cubic complexity by exploiting sparsity.
We propose a different algorithm in the next section to bring
down the time complexity to O(n?).

3.5 Optimization using GCG

We first motivate the trace norm regularizer in (4) under the
atomic norm framework of [Chandrasekaran et al., 2012].
Then we present a faster O(n?) time algorithm, known as
generalized conditional gradient [Zhang et al., 2012, GCG],
for solving our main optimization problem (4).

Atomic norm For real asymmetric matrices, we define the
atomic set as:

A={uv’ —vu' :|uls <1,|v|]2 <1} (8)

These are the real asymmetric matrices of the lowest possible
rank (0 or 2). Then, the induced atomic norm is given by

| T|[a :=inf{p > 0,7 € p- convA}, )

i.e., we seek to decompose the asymmetric matrix 7" as a
convex combination of low-rank “atoms”. The atomic norm
IT'||a, as argued in [Chandrasekaran et al., 2012], serves as a
computational convenient proxy of the rank function. In fact,
its dual norm is given by:

|G][a = sup(T’, G)
TeA

uT(G — G v, (10)

= max
ull2<1,[[v]l2<1
i.e., the spectral norm of the asymmetric matrix G — G ". Du-

alizing again we immediately know the atomic norm || T||a =
5|17 [|¢x, hence justifying the trace norm regularization in (4).

Generalized conditional gradient (GCG) The GCG algo-
rithm in [Zhang et al., 2012] is suited for atomic norm regu-
larization problems. We specialize it to our setting here. In
each iteration, we first compute the gradient of the Huber loss

G = ZVme(T — 17",
k=1

1D
and find the “new atom” (u, —v) in (10). Then we augment
the previous atoms with the new atom:

T+a-T+b-(uv' —vu'), (12)



MEDTest KindredTest
Prim [ Selec | Bi | OR [ SCD | SCD; [ Our [ Our, [ EventID | ~Prim | Selec [ Bi [ OR [ SCD [ SCD; [ Our [ Our
5.3 4.9 4.7 7.6 6.4 8.3 [ 12.5 [ 16.3 E006 6.5 4.8 6.4 9.6 7.8 10.3 [ 11.2 | 13.4
1.0 1.1 0.8 1.8 1.4 1.6 2.1 3.5 E007 1.2 1.2 1.3 1.1 1.1 1.4 1.7 2.1
18.4 | 23.0 9.0 | 31.9 | 28.1 33.1 | 37.8 | 43.4 E008 15.8 | 13.7 | 11.6 | 22.5 | 18.6 | 23.6 | 24.2 | 26.3
3.6 3.4 3.1 595 4.6 6.3 7.8 9.6 E009 1.5 1.5 2.6 2.2 2.1 2.4 2.6 3.1
0.9 0.9 0.8 0.9 0.7 0.9 1.1 1.5 EO10 17.1 17.1 | 10.9 | 17.1 | 15.8 17.6 | 18.4 | 19.3
7.4 7.7 7.4 7.9 6.5 7.3 8.1 9.6 EOI11 64.2 | 62.6 | 64.2 | 66.9 | 61.2 | 684 | 71.2 | 79.4
19.8 | 21.9 | 19.3 | 22.4 | 18.4 | 24.3 | 33.2 | 35.9 E012 5.9 7.4 6.0 6.3 6.1 6.9 7.7 8.5
0.6 0.5 0.9 2.1 1.6 2.8 3.5 4.5 E013 1.0 0.8 1.1 4.3 3.8 4.5 5.9 6.8
1.1 1.2 0.9 2.5 1.7 3.4 4.1 5.8 E014 10.8 | 12.3 5.9 | 40.1 | 38.7 | 41.6 | 46.2 | 51.8
1.3 1.4 1.4 1.5 0.4 0.5 0.9 1.2 E015 24.6 | 30.0 [ 30.9 | 27.3 | 25.4 | 29.5 | 32.5 | 35.4
1.1 1.1 0.6 2.0 0.9 1.3 2.5 3.3 E021 1.3 1.3 5.9 2.8 1.2 3.6 6.4 9.8
0.5 0.5 0.5 0.6 0.3 0.8 1.1 1.5 E022 10.2 7.6 | 10.2 | 23.9 | 21.6 | 25.1 | 28.4 | 31.7
0.1 0.1 0.3 0.1 0.4 0.3 0.5 0.8 E023 0.6 0.7 0.3 0.7 0.5 0.8 1.1 1.3
0.8 0.8 0.5 2.5 2.1 2.6 3.3 4.1 E024 0.3 0.2 0.2 0.5 0.3 0.6 0.6 0.9
0.1 0.1 0.2 0.2 0.2 0.4 0.6 0.7 E025 0.9 0.8 0.3 1.5 1.3 1.6 1.8 2.4
0.6 0.6 0.6 2.3 1.8 2.6 3.8 4.5 E026 4.2 6.7 4.9 6.7 5.8 7.1 7.4 8.8
14.0 | 14.2 | 13.9 | 14.6 | 12.3 16.5 | 19.9 | 21.3 E027 30.8 | 30.7 | 26.6 | 34.9 | 21.4 | 24.5 | 28.6 | 31.2
0.5 1.0 0.6 1.5 1.3 1.8 2.2 3.4 E028 0.7 1.6 0.6 0.4 0.3 0.7 1.2 1.9
2.7 3.1 3.1 | 11.0 | 10.2 124 | 16.4 | 19.8 E029 4.2 5.7 9.1 | 15.4 | 14.2 16.3 | 17.2 | 18.7
0.4 0.4 0.5 0.6 0.3 0.6 0.8 1.2 E030 7.4 7.4 9.6 9.9 4.3 6.3 7.8 9.2

40 | 44 ] 35 ] 59 49 ] 64 ] 81 ] 9.6 [ mean

| 105 [ 107 | 104 | 147 | 12.6 | 14.6 | 159 | 18.1

Table 1: Experimental comparisons for zero-shot event detection on TRECVID 2013. Mean average precision (mAP) is used
as evaluation metric. Results are presented in percentage. Larger mAP indicates better performance. The proposed approach
(4) outperforms related alternatives on both splits (Left: MEDTest. Right: Kindred.). Prim: Primitive, Selec: Selection, Bi:
Bi-Concepts, OR: OR-Composite, SCD: Semantic concept discovery with (2), SCD;: Refined concepts with (2), Our: The
proposed approach, semantic concept discovery with (4), Our,: The proposed approach, refined concepts with (4).

where a,b > 0 are found by line search. To avoid evaluating
the trace norm (cubic time complexity) when performing line
search, we use a similar variational upper bound as in [Zhang
et al., 2012]. Algorithm 1 summarizes the entire procedure.
Following the argument in [Zhang er al., 2012] we can prove
that Algorithm 1 converges to an e-optimal solution in at most
O(1/e) steps. The time complexity is reduced to O(n?) since
the most time-consuming step is line 4, i.e., computing the
leading singular vector pair. Unlike full SVD which computes
all n singular vector pairs, the leading singular vector pair
costs only O(n?), an order of magnitude cheaper.

4 Experiments

In this section we conduct experimental evaluations of the
proposed zero-shot event detection algorithm.

4.1 Synthetic

We first verify the efficiency of our GCG implementation
against the ADMM algorithm in [Ye ef al., 2012]. We ran-
domly generate a ground-truth pairwise comparison matrix 7'
and corrupt it with i.i.d. Gaussian noise to generate m = 5
noisy TF). We vary the size of T from n = 1,000 to
n = 10,000 and terminate the rank aggregation algorithm
when the difference between the estimated 7" and 7" falls be-
low a threshold. As can be seen from Figure 2, the running
time of [Ye er al., 2012] increased sharply when the input size
increases, due to its cubic per-step complexity. In compari-
son, the running time of our GCG implementation increased
only modestly with the input size.

4.2 Experiment setup on TRECVID 2013

Vocabulary of concept classifiers: We pre-trained 1534
concept classifiers, using TRECVID SIN dataset (346
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Figure 2: Efficiency comparison between GCG and ADMM.

classes), Google sports (478 classes) [Karpathy et al., 2014],
ucf101 dataset (101 classes) [Soomro et al., 2012] and YFCC
dataset (609 classes) [YFC, 2014]. None of these datasets
contains event label information. We extract the improved
dense trajectory features (including HOG, HOF and MBH)
and encode them with the fisher vector representation. Fol-
lowing [Wang and Schmid, 2013], we first reduce the dimen-
sion of each descriptor by a factor of 2 and then use 256 com-
ponents to generate the Fisher vectors. On top of these fea-
tures we trained the cascade SVM for each concept classifier.

Dataset description: We conduct experiments on the
TRECVID Multimedia Event Detection (MED) 2013 cor-
pus, including around 51,000 unconstrained videos on 20
pre-specified events. This is the largest publicly available
unconstrained video corpus in the literature for event de-
tection. The experiments are performed on two partitions
of videos: MEDTest 2013 (around 27,000 videos) and Kin-
dredTest 2013 (around 14,000 videos). These two partitions



Flgure 3: Top ranked videos for the event Rock cltmbmg From top to below are retrieved Vldeos by selected concepts vocabu-
lary, bi-concepts vocabulary, OR-composite concept discovery and the proposed method in Equation (4). True/false labels are

marked in the lower-right of every frame.

are given with ground truth annotation (provided officially by
NIST) at video level for 20 event categories, such as “Clean-
ing appliance”, “Renovating home” and “Dog show”. We use
the official test split released by NIST, and following the stan-
dard in MED [TRECVID, 2013], we evaluate the classifica-
tion accuracy using the mean Average Precision (mAP).

Compared Algorithms: We compare the proposed algo-
rithm with the following baselines: 1). primitive concept vo-
cabulary [Habibian er al., 2014]. 2). bi-concepts vocabulary
[Rastegari et al., 2013]. 3). selected concepts vocabulary
[Mazloom et al., 2013], that is, a more informative subset of
primitive concepts. 4). OR-composite concept vocabulary
[Habibian er al., 20141, i.e. combinations of concepts using
Boolean logic operators. As we use the same data split, we
directly quote the performances reported in the above refer-
ences for fairness. We further compare against the simple
Borda aggregation strategy in Equation (2), using either the
discovered semantic concepts (SCD), or the refined semantic
concepts in §3.3 (SCD,).

4.3 Results on TRECVID 2013

The experimental results are shown in Table 1, from which
we observe that the proposed method significantly outper-
forms primitive vocabulary with mAP of 0.163 vs 0.053 on
MEDTest set and mAP of 0.134 vs 0.065 on KindredTest
set. The proposed approach significantly improves on some
events, such as Birthday party (E006), Flash mob gathering
(E008) and Rock climbing (E027). For these events, the de-
tection performance on MEDTest set is increased from 0.053
to 0.163, from 0.184 to 0.434 and from 0.140 to 0.213, re-
spectively. By analyzing the discovered concepts of the pro-
posed method, we find that their classifiers are very discrimi-
native and reliable. For instance, for the event Rock climbing
we discovered the concepts Sport climbing, Person climbing
vertically and Bouldering, which are the most discriminative
concepts for Rock climbing in the concept vocabulary. We
also observe that the proposed method get slightly inferior
performance on few events.

Our method is also comparable to bi-concepts vocabulary
[Rastegari et al., 2013], selected concepts vocabulary [Ma-

zloom et al., 2013] and OR-composite concept discovery
[Habibian et al., 2014]. As Table 1 shows, the proposed
method performs better than the second best method, which is
0.096 vs 0.059 of mAP on MEDTest set. These experimental
results indicate that the proposed method is capable of select-
ing the most reliable concepts and fusing the detection scores
of different concept classifiers. Figure 3 illustrates the top
retrieved results on the event Rock climbing. As we see, the
videos retrieved by the proposed method are more accurate
and visually coherent.

We also evaluate the performance of the simple Borda ag-
gregation in Equation (2), on the discovered semantic con-
cepts (SCD) and the refined concepts (SCD;), respectively.
The experimental results shown in Table 1 indicate that the
performance of discovered semantic concepts is comparable
to the baselines. SCD; generally performs better than SCD,
which confirms that the refining step is capable of removing
unreliable concepts and improving subsequent detection per-
formance.

To further validate the effectiveness of the proposed ap-
proach, we remove the refining step but retain all other steps.
From Table 1 it is clear that the performance becomes worse
but is still competitive with the baselines. This indicates that
unreliable concepts may deteriorate the detection accuracy,
demonstrating further that better performance cannot always
be guaranteed by more concepts.
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