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Abstract

Latent prediction models, exemplified by multi-
layer networks, employ hidden variables that au-
tomate abstract feature discovery. They typically
pose nonconvex optimization problems and ef-
fective semi-definite programming (SDP) relax-
ations have been developed to enable global solu-
tions (Aslan et al., 2014). However, these models
rely on nonparametric training of layer-wise ker-
nel representations, and are therefore restricted to
transductive learning which slows down test pre-
diction. In this paper, we develop a new induc-
tive learning framework for parametric transfer
functions using matching losses. The result for
ReLU utilizes completely positive matrices, and
the inductive learner not only delivers superior
accuracy but also offers an order of magnitude
speedup over SDP with constant approximation
guarantees.

1. Introduction

The past decade has witnessed advances of deep learning
in a broad range of application areas such as game playing
(Silver et al., 2016), natural language processing (Sutskever
et al., 2014), image processing and computer vision (He
etal., 2016). Its effectiveness is often attributed to the auto-
mated learning of latent representations, in that salient and
discriminative features are highly beneficial for the over-
all learning task. With abstract and semantic features syn-
thesized, the predictive relations between observations can
be captured with more ease despite the possible compli-
cations in the correlation. In unsupervised learning, la-
tent models have been widely used for clustering (Banerjee
et al., 2005), dimensionality reduction (Lawrence, 2005),
and transformation-invariant visual data analysis (Ranzato
etal., 2012).
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The focus of this paper is conditional modeling for super-
vised learning, where latent variables are learned in the
context of output information, so that accurate reconstruc-
tion of outputs can be facilitated through predictive inter-
vening features. Such features can characterize latent clus-
ters (Tishby et al., 1999), sparse coding (Elad & Aharon,
2006), invariant representation (Rifai et al., 2011), amongst
others.

Despite their advantages in modeling and success in ap-
plications, latent models remain hard to train. The key
challenge originates from the coupling of model param-
eter learning and latent variable inference, which in gen-
eral leads to a nonconvex optimization problem. Although
empirical performance has been the major focus of deep
learning, recently substantial progress has been made to-
wards the analysis of global training and the structure of the
optimization problem. For example, Choromanska et al.
(2014) and Dauphin et al. (2014) showed that the lowest
critical values of the random loss function are close to the
global minimum, and Kawaguchi (2016) showed, under
certain assumptions, that every local minimum is a global
minimum for an expected loss function of a deep nonlin-
ear neural network. Similar global trainability results have
been derived for gradient descent on two-node ReLU net-
works (Tian, 2017), quadratic activations (Soltanolkotabi
et al., 2017), and one-hidden-layer non-overlapping con-
volution nets (Brutzkus & Globerson, 2017). The global
minima in over-parameterized settings were characterized
on deep and wide nets and convolutional nets (Nguyen &
Hein, 2017a;b). However most analyses are still limited,
especially with assumptions on the model and data distri-
bution that are hard to verify in practice.

Along a different line of methodology, reformulations of la-
tent models have been studied which admit tractable global
solutions. Examples include boosting (Bengio et al., 2005),
spectral methods (Anandkumar et al., 2014; Zhong et al.,
2017), kernel methods (Zhang et al., 2016; 2017), poly-
nomial networks and sum-product networks (Livni et al.,
2014; Gens & Domingos, 2012), and semidefinite relax-
ations (Fogel et al., 2015). Unfortunately, they either im-
pose restrictions on the model space (e.g. polynomial net-
work, recursive inverse kernels), or require tractability of
underlying oracles, or rely on realizability assumptions.
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A framework based on reformulation that accommodates
more general latent variable structures was proposed by
Aslan et al. (2013; 2014), where each pair of adjacent
layers are conjoined through a prediction loss that favors
nonlinear connections. A similar approach was designed
by Carreira-Perpinnan & Wang (2014), which introduced
“auxiliary coordinates” to allow deviation from layer-wise
outputs with a penalty. In order to achieve a convex model,
Aslan et al. (2013; 2014) further represent each layer’s out-
put as a kernel matrix, and the loss over adjacent kernels
is relaxed in a jointly convex fashion, retaining nonlinear
transformations that allow a rich set of salient latent fea-
tures to be captured.

However, these models assume that all latent layers be-
have as a multi-label classifier, and the latent kernels are
learned nonparametrically, i.e. there is no explicit para-
metric transfer function and nonlinear relations are intro-
duced only through the loss functions between layers. This
is more restrictive than state-of-the-art deep learners where
the activation functions are parametric and continuously
valued, with popular choices such as ReLU. As a result the
model is restricted to a transductive setting, in that train-
ing examples are required to establish the data-dependent
context of nonparametric kernel learning. This restriction
significantly slows down predictions at test time, which is
more important than the training cost.

Such a challenge in efficiency is exacerbated as the kernel-
based learning leads to an expensive semi-definite pro-
gramming (SDP), whose computational cost limited their
experiments to only 200 examples.

The goal of this paper, therefore, is to develop an induc-
tive and efficient learning strategy for two-layer conditional
models with global optimality guarantees. This allows pre-
dictions to be made as efficiently as a feedforward neu-
ral network (FFNN) does, obviating retraining at test time.
It is achieved by directly constructing a convex relaxation
based on a parametric transfer function (e.g. ReLU) spec-
ified a priori. In particular, we first make a new observa-
tion that no inter-layer loss satisfying nonlinear recovery
and grounding can be jointly convex (§2). However by us-
ing the matching loss, the non-convexity can be encapsu-
lated entirely by a bilinear term, facilitating a convex relax-
ation for ReLU based on completely positive (CP) cones
(§3). The result provides a direct initialization of FFNN
for finer tuning, which yields, inductively, more accurate
predictions than baseline training methods (§5).

Different from the SDP used by Aslan et al. (2013; 2014),
our CP-based model allowed us to develop a new efficient
algorithm using low-rank approximation, scaling up the
size of solvable problems by an order of magnitude (§4).
A new constant approximation guarantee is also proved.

2. Matching Loss for Transfer Functions

Two-layer neural networks are composed of two nonlinear
conditional models. The latent layer is characterized by
a nonlinear transfer function f : R* — R", which con-
verts the linear transformation Wx into ¢ = f(1Wx). Here
x € R” is the raw input feature, and W € R"*" is the
hidden layer weights. We use regular lowercase letters for
scalar, bold lowercase letters for vector, and capital letters
for matrix. The resulting ¢ is further multiplied with the
output layer weights U € R"*™ and the product is mea-
sured against the given label y € R™ via a loss function
L(U'¢p,y). Here U’ is the transpose of U. Typical losses
include binary hinge loss £(z,y) = [1 — yz]4 withm =1,
where y € {—1,1} and [z]4+ := max{0, z}. For multi-
class problems with C' classes, y encodes a class ¢ with
the canonical vector e.. Then m = C and the hinge loss
l(z,y) = max{1l —y + z — (y'z)1}, where 1 is a vector
of all one’s. The logistic loss is —z"y +log ) . exp(z.).

There are several popularly used transfer functions.
The simplest options are elementwise, ie. f(z) =
(f(z1),...,f(z1))’, where all z; are applied separately
to the same function f: R — R. ReLU uses f,.(z) =
[2]+, and variants include the leaky rectifier which uses
fi(2) = max{z,az} where a > 0 is a small positive
number, and the bounded hard tanh which uses f(z) =
max{—1,min{z,1}}. Transfers that are not piecewise
linear are also available, e.g. the sigmoid fs(z) = (1 +
e~#)~1. These transfers are illustrated in Figure 1. Non-
elementwise transfers are also available, e.g. the soft-max
function with f(z) = (e**,...,e*")’/ 22:1 ek,

A major source of non-convexity in neural network is the
nonlinear transfer function. To cope with it, a natural ap-
proach is to replace the exact connection of ¢ = f(z) by
a loss function that penalizes the deviation between ¢ and
f(z). Formally, it attempts to construct a loss L(¢, z) that
would (ideally) satisfy three conditions:

o Unique recovery: argming L(¢,z) = f(z) for all z,
with the arg min attained uniquely.

e Joint convexity: L is jointly convex over ¢ and z. This
is required if we choose to build a jointly convex deep
model by directly using L to connect the input and output
of adjacent layers.

o Grounding: ming L(¢,z) = 0 for all z, so that there is
no bias towards any value of z.

Unfortunately, it can be shown that such a loss does not

exist, unless f is affine (see the proof in Appendix A):

Theorem 1. There exists a loss L that satisfies all the three
conditions if, and only if, f is affine.

This result motivates us to resort to weaker versions of loss.
Interestingly, the matching loss (Auer et al., 1996) meets
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Figure 1. Four examples of transfer function f and the corresponding potential function F'

the first and third conditions, and satisfies a weakened ver-
sion of convexity by imposing a very mild condition on f.
In particular, we assume that the transfer function is the
gradient of a strictly convex function F' : f = VF, with
F : RM — R. If f is elementwise, this just means the
constituent f is continuous and strictly increasing. As a re-
sult, the inverse of f also exists, and it is well known that
f~1 = VF*, where F'* is the Fenchel conjugate of F.

Although the ReLU f,(z) is not strictly increasing in
the negative hallf line, it can be approximated arbitrarily
closely via max{ez, z} for infinitesimally small ¢ > 0.
Similar alterations can be applied to hard tanh f,(z) by
allowing a tiny slope € for |z| > 1. The F' corresponding to
the abovementioned transfers f are also shown in Figure 1.

In the case that f is not elementwise, this assumption of
F implies: 1) f is strictly increasing in the vector sense:
(x —y)'(f(x) — f(y)) > 0, and 2) The Jabobian of f is
symmetric (as the Hessian of F): Jf = (Jf)', provided
f is differentiable. Under this assumption, we adopt the
following loss function based on Bregman divergence:
L(¢,z) = Dp-(,f(2)) = F*(¢) + F(2) — ¢z, (1)
where Dp~ is the Bregman divergence induced by F'*. Ob-
viously L meets the conditions of recovery and grounding,
but is not jointly convex. However, the only nonconvex part
is the bilinear term ¢’z, while both F* and F are convex.
Such a decoupling of nonconvex terms from the transfer
functions is the key enabler for our convex reformulation.

3. Convex Two-layer Modeling

Suppose we have ¢ training pairs {(x;,y;)}}_;, stacked
in two matrices X = (x1,...,%;) € R*™** and Y =
(y1,-..,y:) €R™*t The corresponding set of latent layer
outputs are stacked into ® = (¢y,..., ¢;) € R"**. The
regularized risk minimization objective can be written as

t
. W 2 U 2
nin E Dp-(¢;,£(Wx;)) +£(U’¢j+b7yj)+%

Ub j=1 ¢
= Wi, 27 @) - W + V) @)
=

+0;(U'; +b)h+ 2 IW* + LU,

where ¢;(U'¢; + b) := L(U'¢p; + b,y;). We introduced
regularizations via Frobenius norms. The weight of both
regularization terms can be tuned by any model selection
method, e.g. cross validation, and here we put 1 to simplify
the presentation. We also assume that dom ¢; is the en-
tire space. To keep our notation neat we write vector-input
functions on matrices, representing the sum of the function
values applied to each column, e.g. F*(®) = >_, F*(¢;).
Now we can rewrite the objective compactly as

min F*(®) — tr(PWX) + F(WX) + £U'® + bl’)
> W,Ub

+3IwWIR+ LU, 3)

It is bi-convex in two groups of variables (®,b) and
(W,U), i.e. fixing one group it is convex in the other.
In order to derive a jointly convex reformulation, we first
note that £(U'® + bl’) = maxgp{tr(R'(U'® 4+ bl’)) —
¢*(R)}, where ¢* is the Fenchel conjugate of ¢, and
R € R™*'_ For binary hinge loss, £*(r) = yr over
r € [min{0, —y}, max{0, —y}], and oo else. For multi-
class hinge loss, ¢*(r) = y'rifr+y € A™ := {x €
R : 1'x = 1}, and oo else. For multiclass logistic loss,
e (r) = >_;(ri +yi)log(r; +y;) ifr +'y € A™, and oo
else. Similarly, F(WX) = maxp{tr(AWX) — F*(A)}.
So we can rewrite (2) into

min max F*(®) — tr(®WX) + tr(AWX)
W,Ub,® R,A

* * w||? U|I?
— F*(A) +tr(R'(U'® +bl')) — ¢ (R)+%

= minmax min F*(®) — tr(®WX) + tr(AWX)
® R.A W,Ub

* * w2 U|I?
— F*(A) + tr(R'(U'® +bl’)) — ¢ (R)+%

_ . * _l _ /2_1 /2
= min max  F(@) - 4@ - A)X|* -} R

— F*(A) — ¢*(R). 4

The optimal W and U for the last equality is W = (® +
A)X’ and U = —®R’. The first equality swaps minyy, 7
with maxpg A. Such a strong duality is indeed not trivial
because the celebrated Sion’s minimax lemma requires that
the domain of (W, U) be compact, which is not assumed
here. So the above “derivation” is not rigorous. However
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the conclusion is still correct thanks to the strong convexity
of squared Frobenius norm (see the proof in Appendix A):

Theorem 2. For any W,U, b, denote L(®, R) = F*(®) —
tr(@'WX) + tr(R(U'® + bl')) — £*(R). Then
minmax £(®, R) = maxmin £(®, R).
® R R %

3.1. Convex relaxation

We now derive a convex relaxation for (4). To be concrete,

consider the ReLU transfer with F,.(Z) = 1 ||[Z] 1%, TIts

Fenchel dual is F (®) = 1 |®]|? for ® > 0 (elementwise),

and +oo otherwise. Therefore (4) can be specialized into

Flel® =5 i@ - p)x')? (5

min max
>0 R1=0,A>0

2 *
— IR = 3 A" - €(R).

Notice that both ¢ and A are constrained to the positive or-
thant, and they are both sized A x t. Since ¢ > h in general,
their ranks are h and their column spaces have full rank. As
a result, we may perform change of variable via A = ® A,
where A € R’rt and is not necessarily symmetric. So we
can rewrite (5) as

310l = 5 (@21 - AX'X(I - A))

min max
>0 R1=0,A>0

— %tr((l)’(I)R’R) — %tr(@’@AA’) —0*(R).
Although this is still not convex, all occurrences of ¢ are
now in the form of ®'®, leading to the natural idea of opti-
mizing over ®'® directly. Denote T' := &'® € R**¢, and
then we finally arrive at

. 1 1 _ ! _ /
min o max_ 3 tr(T) — 5tr(T(I - A)X'X(I - A"))

— Ltx(TR'R) — 3 te(TAA) — ¢*(R),

where 7;, := {®'®: @ e R} C {T e RY" : T = 0}.
T > 0 means T is positive semi-definite (PSD). Now given
b and T, the maximization over R and A is concave be-
cause 7' = 0. Indeed A and R are decoupled, making the
inner optimization efficient. The objective function is also
convex in b and 7', because maximization over linear terms
gives a convex function. The only challenge left is the non-
convexity of 7p,.

The set 7}, is obviously a cone. In fact, if we relax the
fixed value of h, then T, is the well-known completely
positive (CP) matrix cone (Berman & Shaked-Monderer,
2003). More interestingly, it is not hard to show that 7, is
the tightest convex relaxation of 7y, i.e. the convex hull of
T, for any h. Letting 7 := T, yields our final objective

. 1 1 _ / o
min o max_ oz tr(T) — 5tr(T(I - A)X'X(I - A))

— 2 tr(TR'R) — L tr(TAA') — ¢*(R). (6)

It turns out that the convex relaxation does not require pre-
specifying the number of hidden nodes; h can be figured

out automatically through the rank of the optimal 7. We
will see in the sequel that the formulation does implic-
itly favor a low-rank solution through a gauge regularizer
(Lemma 1), although a manual assignment of h can always
be incorporated through truncation after optimization.

Generality of the convexification scheme. We note in
passing that the above technique is general, and can be ex-
tended beyond ReLU. For example, when using the hard
tanh transfer, we have F}/(®) = |[®]|® if the Lo, norm
|®] ., := max;; |®;;| <1, and oo otherwise. Then we get
the same objective function as in (6), only with 7, changed
into {®'® : ||®|| < 1} and the domain of A changed into

(A2 Ay <1, V)

Even more general extensions to non-elementwise transfer
functions can also be developed in our framework. The de-
tails on convexifying the soft-max transfer (and hard tanh)
are deferred to Appendix B, and the space saved will be de-
voted to the more important issue of efficiently optimizing
the model, hence overcoming the key bottleneck that has
much confined the applicability of (Aslan et al., 2014).

4. Optimization

Although the problem (6) is convex, the set 7 lacks a com-
pact characterization in terms of linear/quadratic, PSD, or
second-order conic constraints. Optimization over com-
pletely positive matrices is known hard (Berman & Shaked-
Monderer, 2003), and even projection to 7 is NP-hard
(Dickinson & Gijben, 2014)." Therefore we resort to con-
ditional gradient (Frank-Wolfe) methods that are free of
projection (CG, Jaggi, 2013; Harchaoui et al., 2015). The
key benefit of CG lies in the efficiency of optimizing a lin-
ear function over 7 (ak.a. the polar operator), robustness
in its inaccuracy (Freund & Grigas, 2016), and the low rank
of intermediate solutions due to its greedy and progressive
nature (hence efficient intermediate updates).

In practice, however, CG still suffers from slow conver-
gence, and its linearly-converging variants are typically
subject to a large condition number (Lacoste-Julien &
Jaggi, 2015). This is partly because at each step only the
weights on the existing bases are optimized, while the bases
themselves are not. To alleviate this problem, Zhang et al.
(2012) proposed the Generalized Conditional Gradient al-
gorithm (GCG) which simultaneously optimizes the bases.
Despite the lack of theoretical proof, it is much faster in
practice. Furthermore, GCG is robust to inexactness in po-
lar operators, and one of our key contributions below is to
show that it can efficiently solve (6) with a multiplicative
approximation bound of i.

'In spite of the “convexity”, a convex function may itself be
NP-hard to evaluate, or it can be NP-hard to project to a convex
set, or optimize a linear function over it.
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Since GCG operates on gauge regularized objectives, our
first step is to take a nontrivial path of rewriting (6). Recall
that given a convex bounded set C' containing the origin,
the gauge function induced by C' evaluated at T is defined
as yo(T) ;== min{y > 0: vX =T, X € C}. If no such
(v, X) meets the condition, then vo(T') := co. Since (6)
does not contain a gauge function induced by a bounded set
(7T is unbounded), we first recast it into this framework.

The simplest way to add bound to T is via the trace norm,
which is exactly tr(7") since T = 0:

S=Tn{T:tx(T) <1} 7
=convTy N {T :tx(T) <1} )
= conv {xx': x € RY,[|x[| < 1}. 9)

Our key observation is the following lemma which allows
us to rewrite the problem in terms of gauge regularized ob-
jective. In particular, the domain of the gauge implicitly
enforces the constraint on 7'

Lemma 1. S is convex, bounded, and closed. In addition

o(T) = {tr(T) TeT

. (10)
+00  otherwise

The proof is relegated to Appendix A. In fact, it is easy
to show that for any convex cone C, the gauge function
of its intersection with a half-space tr(A’T") < 1 is exactly
tr(A'T) over C. The significance of Lemma 1 is that it pro-
vides the cornerstone for solving the problem (6) by GCG.
Indeed, (6) can be equivalently rewritten as

min J(T) := 37s(T) + g(T) where (11)
g(T) := oA —1tr(T(I - AX'X(I - A)) (12)

— 2 tr(TR'R) — 1 tr(TAA') — *(R).

This objective finally falls into the framework of GCG
sketched in Algorithm 1 (Zhang et al., 2012; Harchaoui
et al., 2015). GCG proceeds in iterations and at each step
it seeks the steepest descent extreme point 7" (a.k.a. ba-
sis) of the set S with respect to the objective gradient (steps
3-4). After finding the optimal conic combination with the
existing solution (step 5), it directly optimizes the underly-
ing factor P, initialized by the value that corresponds to the
current solution 7' (step 6). Although this last step is not
convex (hence called “local optimization”), it offers signif-
icant practical efficiency because it allows all existing bases
to be optimized along with their weights.

We next provide details on the efficient computational
strategies for the above operations in our problem.
4.1. Polar operator and constant multiplicative

approximation guarantee

Given the negative gradient G = —Vg(T}) € R'*?, the
polar operator of S tries to solve the following optimization

Algorithm 1: General GCG algorithm

1 Randomly sample ®; € [0, 1], and set T} = &/ ®;.
2 whilek =1,2,...do

3 Find Vg(T},) with T}, = ®} @}, by solving the inner
maximization problem in g(7}) of (12).

4 Polar operator: find a new basis via

T = arg maxres (T, —Vg(T%)).

5 Compute the optimal combination weight

(o, B) := argming>o, g>0 J (T} + BT"V).

6 Locally optimize T": ®1 =argming>o J(®'P)
with & initialized by the value corresponding to
O'P = aT}, + STV (see Section 4.1).

7 Return T},

problem by using the characterization of S in (9):
maxtr(G'T) <<= max  tr(x’Gx). (13)
TeS x€RY, |Ix|I<1

Unfortunately, this problem is NP-hard. If this were solv-

able for any G, then we could use it to answer whether

ming>ox'(—G)x > 0. But the latter is to check the
copositivity of —G, which is known to be co-NP-complete

(Murty & Kabadi, 1987). Usually problems like (13) are

approached by semi-definite relaxations (SDP), and Ne-

mirovski et al. (1999) showed that it can be approximately
solved with a multiplicative bound of O(log ).

As one of our major contributions, we next show that when
G = 0, this bound can be tightened into constant for (13)
with a computational procedure that is much more efficient
than SDP. Furthermore, our problem does satisfy G >~ 0.

Before proceeding, we first recall the definition of a multi-
plicative a-approximate solution.

Definition 1. Let o € (0,1] and assume an optimiza-
tion problem maxyc x f(X) has nonnegative optimal value.
A solution x* € X is called a-approximate if f(x*)
> amaxxey f(x) > 0. Similarly, the condition becomes
0< f(x*) < éminxexf(x) for minimization problems.

Theorem 3. Assume G = 0. Then a %-approximate solu-
tion to (13) can be found in O(t?) time.

Proof. Since G = 0, it can be decomposed into G = H'H
and the problem (13) becomes maxycpt |x||<1 | Hx|?.
Let v be top eigenvector of G that corresponds to the great-
est eigenvalue. Then v maximizes ||Hx|| over ||x|| < 1.
Decompose v. = v, — v_, where vy = [v]; collects
the nonnegative components, and v_ collects the negative
components. Apparently we have ||[v | < land |[v_]| <
1. Without loss of generality assume |Hv||s > ||[Hv_||2
and consequently let us use v as an approximate mini-
mizer, which we demonstrate is i-approximate:

2 2 2
maxyer x| <t [ HX[" < [[Hv][" = |[Hv, — Hv_|

< 2|Hv+ |+ Hv-|*) <4|Hv |
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Obviously Hzﬁ is an even better solution, which can also
be used as an initializer for further local optimization. The

computational bottleneck lies in the top eigenvector v of
G, which costs O(£2). O

In the case that G is not PSD, it turns out very hard to ex-
tend this technique while retaining a constant bound. How-
ever the SDP-based technique in (Nemirovski et al., 1999)
still applies, and the bound remains 1/ log¢. In hindsight,
our choice of the adding Frobenius norm constraint on ®
when defining S in (7) is not arbitrary. It constitutes the
most straightforward path that allows the polar operator
to be approximated in a tractable fashion. Other choices,
such as structured Frobenius norms, could be possible if
we would like to enforce structured decompositions in the
hidden representation. We leave the extension of tractable
approximation for future exploration.

Finally, although our algorithm for the polar operator re-
quires G be positive semi-definite—which is not satisfied
in general—it happens to be fulfilled by our particular prob-
lem (11). Notice the gradient of g is simply

—1I-AX'X(I-A)-iRR-1A4, (19
where the R and A are the optimal solution to the inner
maximization. This is obviously negative semi-definite,
providing the key cornerstone for the constant approxima-

tion bound of our approach.

Optimality of GCG and rates of convergence We fi-
nally translate the bound on the polar operator to that of
the original objective (11). As shown by Theorem 1 of
(Cheng et al., 2016), any a-approximate polar operator al-
lows GCG to converge to an «-approximate solution to
the original problem, and the convergence rate is O(1/¢).
Hence we are guaranteed to find a %-approximate solution
to (11). The overall method is summarized in Algorithm 2.

4.2. Accelerating local optimization by converting
min-max into min-min

The computational bottleneck of applying GCG to
our problem (11) is the step of local optimization:
ming J(®'®) over & € R"*'. Owing to the ' term,
this objective is not convex. However, it is often observed
in practice that the overall optimization can be much accel-
erated if we solve it just locally (e.g. by BEGS), with ® ini-
tialized based on the value of the convex optimization vari-
able T (step 6 of Algorithm 1 or step 11 of Algorithm 2).

Unfortunately, since g defined in (12) employs a nested
maximization, we are now faced with a min-max problem.
Different from min-min optimizations min, min, f(x,y)

which can be solved very efficiently by alternating be-
tween optimizing x and y, a min-max problem like
min, max, f(x,y) cannot be solved by alternating: fixing

Algorithm 2: Solve (6) for T' by the GCG algorithm

1 Randomly sample ®; € [0, 1]*, and set T} = @ ®;.
2 whilek =1,2,...do
3 if £ = 1 then
(Uk, by,) = optimal U and b in (15) for ®;.
My, = optimal M in (15) for ®;.
Recover the optimal R: Ry, =V{(U, ®r+bgl’).
Recover the optimal A by (17).
Compute the gradient G}, of g, at Tj, = @) Py, via
(14), with R and A served by Ry and Ay, resp
9 Compute a new basis xj, by approximately solving
arg Maxxep?, x| <1 x'(—Gj)x (c.f. Theorem 3).

LN A

10 Line search:

(v, B) := argming>o g>0 J (T} + BxEx},).
1 Set Oy, = (Va®, v/ Bxy)'.

12 Local search: (®yy1,Ugy1, bry1, Miy1) =
Local _Opt(®mp, Uk, b, M}) by Algorithm 3.
13 Return 7}

Algorithm 3: Local optimization used by GCG

1 Require (®yp, Uy, by, M},) from the current step

2 Initialize : ® = @y, U = Uy, b = by, M = M.
3fort=1,2,...do /1 till the change is small
4 | (U,b)=argmingp{¢(U'®+bl') + L|U|*}.
5 M = argminps>o h(M, D).

6 | ®=argmingso {{(U'®+bl’)+ h(M,d)}.

7 Return (®,U, b, M).

x solve y, and fixing y solve x. Instead, one needs to treat
the objective as a function of z, and for each x solve the in-
ner maximization in y exactly, before obtaining a gradient
in z that is supplied to standard solvers such as BFGS. This
is often much slower than alternating.

To enable an efficient solution by alternating, we next de-
velop a novel reformulation of g as a minimization, such
that minimizing g becomes a min-min problem:

9(@'®) = max {1 oR'|* - ¢ (R) |

2 2
+max {3 @(1 - A)X|° - § @A) |

. . / _ ¥ _ _ / / _”U”2
—mgxmbm{b R1-¢*(R) max tr(U'®R") -5 }

12
+ mjLX 1{?;% {_ ”(P(I*;)X ” _ H‘I’124H2 + tI"(M/A)}

_ . / / 1 2 .
= min {ev'e+p1)+ U] }+AI?12% h(M, ®),(15)
where h(M,®) := mjx{ ~ Lo - x> (6

~ LloAl + tr(ar'a) ).
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As the key advantage achieved here, the local optimization
ming>o J(®'®) = ming>o 3 [P > + g(®'®) can now
be solved by alternating between (U, b), M, and . The
details are shown in Algorithm 3. The optimization over
(U,b) is the standard supervised learning. However, the
optimization over M and @ is trickier because they require
evaluating ~ which in turn involves a nested optimization
on A. Fortunately h is quadratic in A, which allows us to
design an efficient closed-form scheme by leveraging the
celebrated Woodbury formula (Woodbury, 1950).

Given (M, ®), the optimal A can be found by setting its
gradient to zero: ®'PA(X'X +1) =M + ®’dX’'X. Un-
fortunately, the rank of ®'® A (hence the left-hand side) is
atmost h < t. Sono A can satisfy the equality if the rank of
the right-hand side is greater than h, and hence h(M, ®) is
finite only if the column space of (M + ®'dX'X)(X'X +
I)~!is contained in that of ®’. Such an implicit constraint
between variables precludes the application of alternating.

To address this problem, we introduce a small strongly con-
vex regularizer on A in the definition of h(M, ®) in (16),
akin to the standard smoothing technique (Nesterov, 2005):

T (M, ®) = max { — 5 |®(I — A)X'|” - 5 |®4]”
+tr(M'A) — L tr(AX'X + 1A},

where 11 > 0 is small. The new term § tr(A(X'X +1)A’)
also needs to be added to the definition of g in (12), which
we will denote as g,,. Then the optimal A can be found by
setting the gradient to zero:

A= (O +ul) M (M + X' X)(X'X + 1) (17)
To efficiently compute A, we apply the Woodbury formula:
pA=(M+ X' X)(X'X +1)7*

— &' (ul + @) ' O(M + P'OX'X) (X' X+1)7"

Computational complexity Here (uI+®®')~1 € R"*"
can be computed efficiently as h is not large (it is exactly
the iteration index &k in GCG Algorithm 2). Then the sec-
ond line can be computed in O(ht?) time as we can pre-
compute (X’X + I)~1. So the only challenge in comput-
ing A is the term M (X’X +I)~!, which costs O(¢?) time.
However, if n < ¢, then we may again save computations
by applying the Woodbury formula: M(X'X + )~ =
M — MX'(I + XX'")~1X, which costs O(nt?) time.

Overall, the complexity is % -nt? multiplied with: i) #round
of alternating in Algorithm 3, and ii) #iteration of LBFGS
in steps 4-6. In practice, with warm start these two numbers
are about 10 before the relative change becomes small.

5. Experiment

We evaluated the proposed inductive training of convexi-
fied two-layer model (CVX-IN) by comparing the general-

ization accuracy with 4 other baselines: FFNN: a two-layer
feedforward neural network; Ker-CVX: the kernel-based
convex model proposed by Aslan et al. (2014); LOCAL:
a model obtained by alternative minimization of the two-
layer objective (3); and CVX-TR: our model learned trans-
ductively (see below). SVM was not included since it was
already shown inferior to Ker-CVX by Aslan et al. (2014).

Inductive learning. A key advantage of our method is
the purely inductive setting, which obviates any retraining
during test time, as opposed to a transductive setting. Af-
ter completing the GCG optimization, CVX-IN directly ob-
tains the optimal U and b thanks to the local minimization
in Algorithm 3. The optimal W can be recovered by solv-
ing (3) with fixed (®, U, b), and it is a simple convex prob-
lem. With this initialization, we finely tuned all parameters
by backpropagation.

Transductive learning. As Ker-CVX is transductive, we
also considered the following transductive variant of CVX-
IN. The objective (11) was first trained with X being the
combination of (X¢yain, Xtest), and accordingly the inter-
mediate representation ® (along with the corresponding 7")
also consisted of the combination of (®yqin, Prest ). Since
only Yi.qin Was available for training, the loss function
L(U'® + bl’) was applied only to the training data. As
a result, ®;.; was learned largely from the matching loss
in the latent layer given by (16). After recovering the opti-
mal U and b by local minimization (same as in CVX-IN),
test data were labeled by Yiest = U'®post + b1, Although
CVX-TR bypasses the recovery of W, optimization has to
be redone from scratch when new test data arrives.

Comparison on smaller datasets. To enable comparison
with Ker-CVX which is highly expensive in computation,
we first used smaller datasets including a synthetic XOR
dataset and three “real world” datasets for binary classifica-
tion: Letter (Lichman, 2013), CIFAR-SM, a binary classi-
fication dataset from (Aslan et al., 2013) based on CIFAR-
100 (Krizhevsky & Hinton, 2009), and G241N (Chapelle).

All methods were applied to two different sizes of training
and test data (Xy;pqin and Xyese): 100/100 and 200/200,
and the resulting test error, averaged over 10 trials, were
presented in Table 1 and 2 respectively. CVX-IN outper-
forms FFNN on G241N, Letter, and CIFAR-SM, and they
both delivered perfect classification on XOR. This corrob-
orates the advantage of convex models, suggesting that pre-
dictive structures are preserved by the relaxation. CVX-IN
also marginally outperforms or is comparable to CVX-TR
on all the datasets, confirming that inductive learning saves
computation at test time without sacrificing the accuracy.
Consistently poor performance is observed on the LOCAL
method (used in a transductive fashion), and it does not
work even for XOR. This implies that it does suffer seri-
ously from local optimality. Ker-CVX (transductive only)
performs competitively on 200 examples especially on the
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Letter G241IN XOR  CIFAR-SM Letter G241IN XOR CIFAR-10
CVX-IN | 4.8+0.8 24.2+1.6 0 21.2+1.2 CVX-IN | 2.7+0.8 13.0+0.8 0 27.6+1.4
CVX-TR | 4.9+1.3 23.1+0.7 0 22.4+0.8 CVX-TR | 2.7+0.9 15.1+0.9 0 27.9+42.3
FFNN | 7.9+0.8 31.9+0.9 0 31.0+1.1 FFNN 3.54+0.7 24.5+1.0 0 30.4+0.9
LOCAL | 8.0+1.2 34.0x0.9 27.0+15 25.0+0.8 LOCAL | 5.8+0.7 21.4411 26.7+0.5 32.3+0.7
Ker-CVX | 5.7+2.9 N/A 0 27.7+5.5

Table 1. Mean test error for 100 training and 100 test examples

Letter  G241IN XOR  CIFAR-SM
CVX-IN | 5.1+1.3 21.6+0.9 0 22.6+1.5
CVX-TR | 5.3t0.8 22.0+0.8 0 23.4+1.5
FFNN 5.5+0.8 29.940.4 0 32.941.0
LOCAL | 10.5+0.8 33.0+0.6 25.0+1.2  29.5+0.5
Ker-CVX | 4.5+0.9 N/A 0 23.3+3.5

Table 2. Mean test error for 200 training and 200 test examples

Letter dataset, but its error on 100 examples is significantly
higher than CVX-IN and CVX-TR. It ran into computa-
tional issues on G241N, hence marked by N/A.

On the CIFAR-SM dataset all methods produced a slightly
higher error with 200 training examples than 100 examples,
probably due to the small size of training set and high vari-
ance. However the comparative results between algorithms
remain similar to other datasets.

Comparison on larger datasets. Thanks to the fast lo-
cal optimization enabled by the new min-min alternating
(§4.2), our model enjoys significant speedup compared
with Aslan et al. (2013; 2014). To demonstrate this, we ap-
plied CVX-IN to Letter, XOR, and CIFAR-10 (Krizhevsky
& Hinton, 2009) with 1000/1000 and 2000/2000 train/test
examples, and to G241N with 1000/500 examples (the en-
tire dataset only has 1500 examples). Details on data pre-
processing are available in Appendix C.

As Table 3 and 4 show, CVX-IN again achieves signifi-
cantly lower test error on these larger datasets over FFNN,
CVX-TR, and LOCAL. The training time of CVX-IN is
summarized in Table 5, and it took 2.5 hours on CIFAR-10
with 2000 examples and 256 features. Although still ex-
pensive, it is substantially faster than Ker-CVX which is
completely incapable of scaling here (hence omitted). In
contrast, the run time of FFNN and LOCAL is much lower
(not shown). Overall CVX-IN scales quadratically in #ex-
amples (¢), which is consistent with our analysis in §4.2.

Intermediate representation. One of the key merits of
our two-layer model is that the relaxation retains the nec-
essary structure in the input data to make accurate pre-
dictions. To test this feature, we tried to visualize the
latent representation learned by our CVX-IN. Figure 2
demonstrates the original features in the input data Xy,.4in
and the learned intermediate representation ®;,.4;,,, for two

Table 3. Mean test error for 1000 training and 1000 test examples

Letter XOR  CIFAR-10
CVX-IN | 1.0+o0.5 0 26.8+1.6
CVX-TR | 1.2+0.7 0 27.0+1.9
FENN 1.7+0.3 0 30.0+1.8
LOCAL | 2.3404 27.2403 33.0+1.5

Table 4. Mean test error for 2000 training and 2000 test examples

100 200 1000 2000
Letter 0.45 1.1 17.1 90.6
G241IN 0.68 1.5 273 N/A
XOR 0.45 1.0 42.0 144.2
CIFAR-10 | 0.63 1.5 50.6 153.6

Table 5. Training times (in minutes) for CVX-IN on 100, 200,
1000, and 2000 training examples

- - ) e
L
e L ’ i sndaee
(a) BOX (b) XOR
o 1 .\" <
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. N - ~
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Figure 2. BOX and XOR datasets (subplots a and b) and their in-
termediate representations (Rdatset in subplots ¢ and d). The rep-
resentations were reduced to 2-D by using the standard PCA.

datasets Box and XOR which both employ a rich latent
structure. Clearly the convex relaxation was able to sep-
arate the two classes and preserve sufficient structures that
allows it to outperform single-layer models.

6. Conclusions and Future Work

We developed a convex relaxation for parametric transfer
functions such as ReLU based on matching loss. An effi-
cient optimization method was designed with a constant ap-
proximation bound. For future work we will explore other
transfer functions and their influence. To the best of our
knowledge, no nontrivial recovery properties are known
about nonlinear CP or SDP relaxation. Although our em-
pirical results demonstrate compelling promise, it will be
interesting to rigorously establish its theoretical guarantees.
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A. Proofs
Proof for Theorem 1

Restatement of Theorem 1: There exists a loss L that satisfies all the three conditions if, and only if, f is affine.

Proof. The “if” part is trivial as we just need to set L(¢,z) = ||¢p — £(z)||?. To see the “only if” part, consider the sublevel
setof Lat0: S = {(¢,2z) : L(¢,z) < 0}. By grounding and unique recovery, S = {(f(z),z) : z}. And by the joint
convexity of L, S is convex. So for any z1, 22, (5(f(21) + £(22)), 3 (21 + 22)) is in S. But (£(3(z1 + 22)), 5 (21 + 22))
is the only element in S with the second component being 1 (z1 + z2). So 2 (f(z1) + f(22)) = f(3(z1 + 22)). So f is
affine. O

Proof for Theorem 2
Restatement of Theorem 2: For any W, U, b, denote £(®, R) = F*(®) — tr(®'WX) + tr (R (U'®+bl’)) — £*(R). Then

(LHS) mq}nm}%xﬁ(q),R) = m}z%xmqlnﬁ(q),R) (RHS).

Proof. Trivially LHS > RHS (weak duality). Define h(Z) := ming F*(®) — tr(®’WX) +£(U'® + b1’ + Z). Since F*
is strongly convex, h(Z) > —oo for all Z. Since {(U'® + b1’ + Z) is jointly convex in ® and Z, h(Z) is convex in Z
(after minimizing out ®). Suppose R € 9h(0), then

h(0) < h(Z) —tr(R'Z) < F*(®) — tr(®'WX) + £(U'® + bl + Z) — tr(R'Z) (18)
= {F*(®) — tr(®WX) + tr(®'UR)} (19)
+{{(U'®+bl" + Z) —tr(R(Z+U'®+ bl'))} + tr(R'bl’). (20)

Take infimum over Z for the second group of terms, and then take infimum over ® for the first group of terms. We finally
arrive at

h(0) < —F(WX —UR) — £*(R) + tr(R'b1’) < max —F(WX —UR) — {*(R) + tr(R'b1").
That is LHS < RHS. So in summary LHS = RHS. O

Proof for Lemma 1

Restatement of Lemma 1: S is convex, bounded, and closed. In addition,

o(T) = {tr(T) TeT on

400 otherwise |

Proof. Since T is a convex cone, the right-hand side is a sublinear function. To show two sublinear functions f and g are
equal, it suffices to show that their “unit balls” are equal, i.e. {x : f(x) < 1} = {x : g(x) < 1}. The unit ball of the
left-hand side, by definition, is S. The unit ball of the right-hand side is: {T": T' € T, tr(T) < 1}. But this is exactly the
definition of S in (7). O

B. Extensions to hard tanh and non-elementwise transfers

Elementwise transfer. When using the hard tanh transfer, we have Fj;(®) = 1 |®||* if the Lo, norm 1P =
max;; |®;;] < 1, and oo otherwise. As a result, we get the same objective function as in (6), only with 7, changed into
{®'® : ||®||, < 1} and the domain of A changed into {A : ), |A;;| < 1, V j}. Given the negative gradient G = 0 of
the objective, the polar operator boils down to solving

max  tr(G'®®) = h max ¢'Gé = h max ||A¢|>, where A'A=G. (22)
PERMX L[| D <1 #€[0,1]¢ #<(0,1]

This problem is NP-hard, but an approximate solution with constant multiplicative guarantee can be found in O(¢?) time
(Steinberg, 2005). Note for computation we do not even need an expression of the convex hull of 7.
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Non-elementwise transfer. The Bregman divergence can be further leveraged to convexify transfer functions that are not
applied elementwise. For example, consider the soft-max function that is commonly used in machine learning and deep
learning:

-1

h
= (Z e””’“) (e, ..., e").
k=1
Clearly the range of f is S” = {z € R" : z > 0,1’z = 1}. The potential function F(x) is simply

h
= log Z ek, (23)
and its Fenchel dual is

h
> ¢rlogdy ifgp e S”
=1 :

F*(¢) = (24)
o0 otherwise
Therefore the objective in (4) can be instantiated into
min  max Z F*(¢;) — (q> NX) - H<I>R’|I2 — F*(A) = *(R). (25)

¢;€Sh R1=0,\;€S"

where ® = (¢1,...,¢¢) € R and A = (Aq,..., ;) € R Here S" is the closure of S": {z € R : 1’z = 1}, i.e.
the h dimensional probability simplex.

When h = 2, F*(¢) is the negative entropy function and it can be approximated by §[(¢1—0.5)*+(¢2—0.5)*]+c, where a
and c are chosen such that ¢ = F*(31) = log 3 and £(0.5%40.5%)+¢ = F*((0,1)") = 0. For general h, we can similarly
approximate F* () by % ||¢p — %1”2—!—0, with ¢ = F*(%l) =log 3 and 2[(1—+)*+ 25+ ¢ = F*((1,0,...,0)") = 0.
Since 1’¢p = 1, this approximation is in turn equal to a ||¢||> + d where d = ¢ — a/(2h). As a result, (25) can be
approximated by (setting a = 1 to ignore scaling)

/ 1 *
5 || I - ||(<I> NX' - H‘PR I” - 3 IA7 =€ (R). (26)

min max
¢;€SH R1=0,X,€Sh

Once more we can apply change of variable by A = ®A. Since ® > 0, A > 0, ®'1 = 1, and A'1 = 1, we easily derive
the domain of A as A’1 =1 and A > 0. So using T' = ®’®, we finally arrive at the convexified objective:

1 1 / ny o L iy L N g
Tnél71_1h S tr(T) — 3 tr(T(I - A)X'X(I—-A") 5 tr(TR'R) 5 tr(TAA") —¢*(R), (27)

where 7}, is the convex hull of {®'® : ¢ € ]R:L_Xt, ®’1 = 1}. So given the negative gradient G = 0 of the objective, the
polar operator aims to compute

h
max tr(G'®'®) = max Ay s.t. =1, where A’A=QG. (28)
PR t:p/1=1 ( ) D150, PnERY ’; e ” Z ¢

This problem is NP-hard (Steinberg, 2005), but an approximate solution with provable guarantee is still possible. For
example, in the case that h = 2, we have ¢po = 1 — ¢1, and the problem becomes

Api|P + AL - ¢0)|” = Ay - L1)| tant 29
s A+ 1AL = gn)” = max ][4 (61 - $1)] + constan 29)
—  max |A¢|® + constant. (30)

¢e[_%7%]t

This again admits an approximate solution with constant multiplicative guarantee that can be computed in O(t?) time
(Steinberg, 2005).

Note the 7}, in this case, as well as that in the hard tanh case above, is closely related to the completely positive matrix
cone, because ® € RZ”.



Inductive Two-Layer Modeling with Parametric Bregman Transfer

C. Dataset description

The experiments made use of 4 “real” world datasets - G241N (241 x 1500) from (Chapelle), Letter (vowel letters A-E
vs non vowel letters B-F) (16 x 20000) from (UCI, 1990), CIFAR-SM (bicycle and motorcycle vs lawn- mower and tank)
(256 x 1526) from (Aslan et al., 2013) and (Krizhevsky & Hinton, 2009) and CIFAR-10 (ship vs truck) (256 x 12000)
from (Krizhevsky & Hinton, 2009), where red channel features are preprocessed by averaging pixels in both the CIFAR
datasets.
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