
Federated Learning Meets Multi-Objective
Optimization

Zeou Hu , Kiarash Shaloudegi, Guojun Zhang , and Yaoliang Yu

Abstract—Federated learning has emerged as a promising,
massively distributed way to train a joint deep model over large
amounts of edgedevices while keeping private user data strictly
on device. In this work, motivated from ensuring fairness among
users and robustness against malicious adversaries, we formulate
federated learning as multi-objective optimization and propose a
new algorithm FedMGDA+ that is guaranteed to converge to
Pareto stationary solutions. FedMGDA+ is simple to implement,
has fewer hyperparameters to tune, and refrains from sacrificing
the performance of any participating user. We establish the
convergence properties of FedMGDA+ and point out its
connections to existing approaches. Extensive experiments on a
variety of datasets confirm that FedMGDA+ compares favorably
against state-of-the-art.

Index Terms—Pareto optimization, Distributed algorithms,
Federated learning, Edge computing, Machine learning, Neural
networks.

I. INTRODUCTION

DEEP learning has achieved impressive successes on a num-

ber of domain applications, thanks largely to innovations

on algorithmic and architectural design, and equally importantly

to the tremendous amount of computational power one can har-

ness through GPUs, computer clusters and dedicated software

and hardware. Edge devices, such as smart phones, tablets,

routers, car devices, home sensors, etc., due to their ubiquity and

moderate computational power, impose new opportunities and

challenges for deep learning. On the one hand, edge devices

have direct access to privacy sensitive data that users may be

reluctant to share (with say data centers), and they are much

more powerful than their predecessors, capable of conducting a

significant amount of on-device computations. On the other

hand, edge devices are largely heterogeneous in terms of

capacity, power, data, availability, communication, memory,

etc., posing new challenges beyond conventional in-house train-

ing of machine learning models. Thus, a new paradigm, known

as federated learning (FL) [1] that aims at harvesting the pros-

pects of edge devices, has recently emerged. Developing new

FL algorithms and systems on edge devices has since become a

hot research topic in machine learning.

From the beginning of its birth, FL has close ties to conven-

tional distributed optimization. However, FL emerged from

the pressing need to address news challenges in the mobile era

that existing distributed optimization algorithms were not

designed for per se. We mention the following characteristics

of FL that are most relevant to our work, and refer to the

excellent surveys [2]–[4] and the references therein for more

challenges and applications in FL.

� Non-IID: Each user’s data can be distinctively different

from every other user’s, violating the standard iid

assumption in statistical learning and posing significant

difficulty in formulating the goal in precise mathemati-

cal terms [5]. The distribution of user data is often

severely unbalanced.

� Limited communication: Communication between each

user and a central server is constrained by network

bandwidth, device status, user participation incentive,

etc., demanding a thoughtful balance between computa-

tion (on each user device) and communication.

� Privacy: Protecting user (data) privacy is of uttermost

importance in FL. It is thus not possible to share user data

(even to a cloud arbitrator), which adds another layer of

difficulty in addressing the previous two challenges.

� Fairness: As argued forcibly in recent works (e.g., [5],

[6]), ensuring fairness among users has become another

serious goal in FL, as it largely determines users’ will-

ingness to participate and ensures some degree of

robustness against malicious user manipulations.

� Robustness: FL algorithms are eventually deployed in

the wild hence subject to malicious attacks. Indeed,

adversarial attacks (e.g., [7]–[9]) have been constructed

recently to reveal vulnerabilities of FL systems against

malicious manipulations at the user side.

In this work, motivated from the last two challenges above,

i.e., fairness and robustness, we propose a new algorithm

FedMGDA+ that complements and improves existing FL sys-

tems. FedMGDA+ is based on multi-objective optimization and

is guaranteed to converge to Pareto stationary solutions.

FedMGDA+ is simple to implement, has fewer hyperparameters

Manuscript received November 1, 2020; revised March 18, 2022; accepted
April 13, 2022. Date of publication April 22, 2022; date of current version
June 27, 2022. This work was done at Huawei Noah Ark’s Lab, Montreal, QC,
H3N 1X9, Canada. This work was supported in part by NSERC, in part by
CIFAR AI Chairs Program, and in part by Waterloo-Huawei Joint Innovation
Lab. Recommended for acceptance by Prof. Xiaowen Chu. (Corresponding
author: Zeou Hu.)

Zeou Hu and Yaoliang Yu are with the Cheriton School of Computer
Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
z97hu@uwaterloo.ca; yaoliang.yu@uwaterloo.ca).

Kiarash Shaloudegi is with Amazon Advertising, Amazon Canada, Toronto,
ON M5H 4A9, Canada (e-mail: kiarash.shaloudegi@huawei.com).

Guojun Zhang is with Huawei Noah Ark’s Lab, Montreal, QC H3N 1X9,
Canada (e-mail: g39zhang@uwaterloo.ca).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TNSE.2022.3169117, provided by the authors.

Digital Object Identifier 10.1109/TNSE.2022.3169117

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022 2039

2327-4697 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5978-539X
https://orcid.org/0000-0001-5978-539X
https://orcid.org/0000-0001-5978-539X
https://orcid.org/0000-0001-5978-539X
https://orcid.org/0000-0001-5978-539X
https://orcid.org/0000-0003-2607-9274
https://orcid.org/0000-0003-2607-9274
https://orcid.org/0000-0003-2607-9274
https://orcid.org/0000-0003-2607-9274
https://orcid.org/0000-0003-2607-9274
mailto:
mailto:
mailto:
mailto:
https://doi.org/10.1109/TNSE.2022.3169117
https://doi.org/10.1109/TNSE.2022.3169117

to tune, and most importantly refrains from sacrificing the per-

formance of any participating user. We demonstrate the superior

performance of FedMGDA+ under a variety of metrics including

accuracy, fairness, and robustness.

We summarize our contributions as follows:

� In Section III, based on the proximal average we pro-

vide a novel, unifying and revealing interpretation of

existing FL practices.

� In Section IV, we summarize some background on

multi-objective optimization and point out its connec-

tions to existing FL algorithms. We believe this new

perspective will yield more fruitful exchanges between

the two fields in the future.

� In Section V, we propose FedMGDA+ that complements

existing FL systems while taking robustness and fair-

ness explicitly into its algorithmic design. We prove

that FedMGDA+ converges to a Pareto stationary solu-

tion under mild assumptions.

� In Section VI, we perform extensive experiments to val-

idate the competitiveness of FedMGDA+ under a variety

of desirable metrics, and to illustrate the respective pros

and cons of our and alternative algorithms.

We discuss more related works in Section II and we con-
clude in Section VII with some future directions.

To facilitate reproducibility, we have released our code at:

https://github.com/watml/Fed-MGDA.

II. RELATED WORKS

In this section we give a brief review of some recent works

that are directly related to ours and put our contributions in

context. To start with, [1] proposed the first FL algorithm

known as “Federated Averaging” (a.k.a., FedAvg), which is

a synchronous update scheme that proceeds in several rounds.

At each round, the central server sends the current global

model to a subset of users, each of which then uses its respec-

tive local data to update the received model. Upon receiving

the updated local models from users, the server performs

aggregation, such as simple averaging, to update the global

model. For more discussion on different averaging schemes,

see [10]. [11] extended FedAvg to better deal with non-i.i.d.

distribution of data, by adding a “proximal regularizer” to the

local loss functions and minimizing the Moreau envelope

function for each user. The resulting algorithm FedProx, as

pointed out in Section III, is a randomized version of the prox-

imal average algorithm in [12] and reduces to FedAvg when

regularization diminishes.

Analysing FedAvg has been a challenging task due to its

flexible updating scheme, partial user participation, and non-

iid distribution of client data [11]. The first theoretical analysis

of FedAvg for strongly convex and smooth problems with iid

and non-iid data appeared in [13] and [10], respectively, where

the effect of different sampling and averaging schemes on the

convergence rate of FedAvg was also investigated, leading to

the conclusion that such effect becomes particularly important

when the dataset is unbalanced and non-iid distributed. In

[14], FedAvg was analyzed for non-convex problems, where

FedAvg was formulated as a stochastic gradient-based algo-

rithm with biased gradients, and the convergence of FedAvg

with decaying step sizes to stationary points was proved.

Moreover, [14] proposed FedMom, a server-side acceleration

based on Nesterov’s momentum, and proved again its conver-

gence to stationary points. Lately, [15] proposed and analyzed

federated versions of several popular adaptive optimizers (e.g.

ADAM). They generalize the framework of FedAvg by decou-

pling the FL update scheme into server optimizer and client

optimizer. Interestingly, same as us, [15] also observed the

importance of learning rate decays on both clients and server.

Recently, an interesting work by [16] demonstrated theoret-

ically that fixed points reached by FedAvg and FedProx (if

exist) need not be stationary points of the original optimiza-

tion problem, even in convex settings and with deterministic

updates. To address this issue, they proposed FedSplit to

restore the correct fixed points. It still remains open, though, if

FedSplit can still converge to the correct fixed points under

asynchronous and stochastic user updates, both of which are

widely adopted in practice and studied here.

Ensuring fairness among users has become a serious goal in

FL since it largely determines users’ willingness to participate

in the training process. [5] argued that existing FL algorithms

can lead to federated models that are biased toward different

users. To solve this issue, [5] proposed agnostic federated

learning (AFL) to improve fairness among users. AFL consid-

ers the target distribution as a weighted combination of the

user distributions and optimizes the centralized model for the

worse-case realization, leading to a saddle-point optimization

problem which was solved by a fast stochastic optimization

algorithm. On the other hand, based on fair resource allocation

in wireless networks, [6] proposed q-fair federated learning

(q-FFL) to achieve more uniform test accuracy across users.

[6] further proposed q-FedAvg as a communication efficient

algorithm to solve q-FFL. However, both AFL and q-

FedAvg do not explicitly encourage user participation and

they suffer from adversarial attacks while our algorithm

FedMGDA+ is designed to be fair among participants and

robust against both additive and multiplicative attacks.

FedAvg relies on a coordinate-wise averaging of local

models to update the global model. According to [17], in neu-

ral network (NN) based models, such coordinate-wise averag-

ing might lead to sub-optimal results due to the permutation

invariance of NN parameters. To address this issue, [18] pro-

posed probabilistic federated neural matching (PFNM), which

is only applicable to fully connected feed-forward networks.

The recent work [17] proposed federated matched averaging

(FedMA) as a layer-wise extension of PFNM to accommodate

CNNs and LSTMs. However, the Bayesian non-parametric

mechanism in PFNM and FedMA may be vulnerable to model

poisoning attack [7], [9], [19], while some simple defences,

such as norm thresholding and differential privacy, were dis-

cussed in [8]. We note that these ideas are complementary to

FedMGDA+ and we plan to investigate possible integrations

of them in future work.

Lastly, we note that there is significant interest in standard-

izing the benchmarks, protocols and evaluations in FL, see for

2040 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

https://github.com/watml/Fed-MGDA

instance [20], [21]. We have spent significant efforts in adher-

ing to the suggested rules there, by reporting on common data-

sets, open sourcing our code and including all experimental

details.

III. PROBLEM SETUP

We recall the federated learning (FL) framework of [1] and

point out a simple interpretation that seemingly unifies differ-

ent implementations. We consider FL with m users (edge

devices), where the i-th user is interested in minimizing a

function fi : R
d ! R; i ¼ 1; . . . ;m, defined on a shared

model parameter w 2 Rd. Typically, each user function fi
also depends on the respective user’s local (private) data Di.

The main goal in FL is to collectively and efficiently optimize

individual objectives ffig while meeting challenges such as

those mentioned in the Introduction (Section I): non-iid distri-

bution of user data, limited communication, user privacy, fair-

ness, robustness, etc.

McMahan et al. [1] proposed FedAvg to optimize the

arithmetic average of individual user functions:

min
w2Rd

A0
f;��ðwÞ; where A0

f;��ðwÞ :¼
Xm
i¼1

�ifiðwÞ: (1)

The weights �i need to be specified beforehand. Typical

choices include the dataset size at each user, the “importance”

of each user, or simply uniform, i.e., �i � 1=m. FedAvg

works as follows: At each round, a (random) subset of users is

selected, each of which performs k epochs of local (full or

minibatch) gradient descent:

for all i in parallel; wi wi � hrfiðwiÞ; (2)

and then the weights are averaged at the server side:

w
X
i

�iw
i; (3)

which is finally broadcast to the users in the next round. The

number of local epochs k turns out to be a key factor. Setting

k ¼ 1 amounts to solving (1) by the usual gradient descent

algorithm, while setting k ¼ 1 (and assuming convergence

for each local function fi) amounts to (repeatedly) averaging

the respective minimizers of fi’s. We now give a new inter-

pretation of FedAvg that yields insights on what it optimizes

with an intermediate k.
Our interpretation is based on the proximal average [22].

Recall that the Moreau envelope and proximal map of a con-

vex1 function f is defined respectively as:

Mh
fðwÞ ¼ min

x

1

2h
kx�wk22 þ fðxÞ; (4)

Ph
fðwÞ ¼ argmin

x

1

2h
kx�wk22 þ fðxÞ: (5)

Given a set of convex functions f ¼ ðf1; . . . ; fmÞ and positive

weights �� ¼ ð�1; . . . ; �mÞ that sum to 1, we define the proxi-

mal average as the unique function Ah
f;�� such that Ph

A
h
f;��

¼P
i �iP

h
fi
: In other words, the proximal map of the proximal

average is the average of proximal maps. More concretely,

[22] gave the following explicit, albeit complicated, formula

for the proximal average:

Ah
f;��ðwÞ ¼ min

w1;...;wm

Xm
i¼1

�i fiðwiÞþ 1

2h
kwik22

� �
� 1

2h
kwk22 (6)

s:t:
Xm
i¼1

�iwi ¼ w: (7)

From the above formula we can easily derive that

A0
f;��ðwÞ :¼ lim

h!0þ
Ah
f;��ðwÞ ¼

X
i
�ifiðwÞ;

A1f;��ðwÞ :¼ lim
h!1Ah

f;��ðwÞ ¼ minP
i
�iwi¼w

X
i
�ifiðwiÞ:

Interestingly, we can now interpret FedAvg in two extreme

settings as minimizing the proximal average:

� FedAvg with k ¼ 1 local step is exactly the same as

minimizing the proximal average A0
f;��ðwÞ with h ¼ 0.

This is clear from the objective (1) of FedAvg (as our

notation already suggests).

� FedAvg with k ¼ 1 local steps is exactly the same as

minimizing the proximal average A1f;��ðwÞ with h ¼ 1.

Indeed,

min
w

A1f;��ðwÞ
n o

¼ min
w1;...;wm

X
i

�ifiðwiÞ; (8)

where the right-hand side decouples and hence wi at

optimality is a minimizer of fi (recall that �� � 0).
Therefore, we may interpret FedAvg with an intermediate

k as minimizing Ah
f;�� with an intermediate h. More interest-

ingly, if we apply the PA-PG algorithm in [12, Algo. 2] to

minimize Ah
f;��, we obtain the simple update rule

w
X

i
�iP

h
fi
ðwÞ; (9)

where the proximal maps are computed in parallel at the user’s

side. We note that the recent FedProx algorithm [11] is

essentially a randomized version of (9). Crucially, we do not

need to evaluate the complicated formula (6) as the update (9)

only requires its proximal map, which by definition is the

average of the individual proximal maps (computed by each

user separately). Moreover, the difference between the proxi-

mal average Ah
f;�� and the arithmetic average A0

f;�� can be uni-

formly bounded using the Lipschitz constant of each function

fi [12]. Thus, for small step size h, FedAvg (with any finite

k) and FedProx all minimize some approximate form of the

arithmetic average in (1).

How to set the weights �� in FedAvg has been a major chal-

lenge. In FL, data is distributed in a highly non-iid and unbal-

anced fashion, so it is not clear if some chosen arithmetic

1 For nonconvex functions, similar results hold once we address multi-val-
uedness of the proximal map, see [23].

HU et al.: FEDERATED LEARNING MEETS MULTI-OBJECTIVE OPTIMIZATION 2041

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

average in (1) would really satisfy one’s actual intention. A

second issue with the arithmetic average in (1) is its well-

known non-robustness against malicious manipulations, which

has been exploited in recent adversarial attacks [9]. Instead,

Agnostic FL (AFL [5]) aims to optimize the worst-case loss:

min
w

max
��2L

A0
f;��ðwÞ; (10)

where the set L might cover reality better than any specific ��
and provide some minimum guarantee for all users (hence

achieving mild fairness). On the other hand, the worst-case

loss in (10) is perhaps even more non-robust against adversar-

ial attacks. For instance, adding a positive constant to some

loss fi can make it dominate the entire optimization process.

The recent work q-FedAvg [6] proposes an ‘q norm interpo-

lation between FedAvg (essentially ‘1 norm) and AFL (essen-

tially ‘1 norm). By tuning q, q-FedAvg can achieve better

compromise than FedAvg or AFL.

IV. MULTI-OBJECTIVE MINIMIZATION (MOM)

Multi-objective minimization (MoM) refers to the setting

where multiple scalar objective functions, possibly incompati-

ble with each other, need to be minimized simultaneously. It is

also called vector optimization [24] because the objective

functions can be combined into a single vector-valued func-

tion. In mathematical terms, MoM can be written as

min
w2Rd

fðwÞ :¼ f1ðwÞ; f2ðwÞ; . . . ; fmðwÞð Þ; (11)

where the minimum is defined wrt the partial ordering:

fðwÞ � fðzÞ,8i ¼ 1; . . . ;m; fiðwÞ � fiðzÞ: (12)

(We remind that algebraic operations such as � and þ, when
applied to a vector with another vector or scalar, are always

performed component-wise.) Unlike single objective optimi-

zation, with multiple objectives it is possible that

fðwÞ 6� fðzÞ and fðzÞ 6� fðwÞ; (13)

in which case we sayw and z are not comparable.

We call w� a Pareto optimal solution of (11) if its objective

value fðw�Þ is a minimum element (wrt the partial ordering in

(12)), or equivalently for any w, fðwÞ � fðw�Þ implies

fðwÞ ¼ fðw�Þ. In other words, it is not possible to improve

any component objective in fðw�Þ without compromising

some other objective. Similarly, we call w� a weakly Pareto

optimal solution if there does not exist any w such that

fðwÞ < fðw�Þ, i.e., it is not possible to improve all compo-

nent objectives in fðw�Þ. Clearly, any Pareto optimal solution

is also weakly Pareto optimal but the converse may not hold.

We point out that the optimal solutions in MoM are usually a

set (in general of infinite cardinality) [25], and without addi-

tional subjective preference information, all Pareto optimal

solutions are considered equally good (as they are not compa-

rable against each other). This is fundamentally different from

the single objective case.

From now on, for simplicity we assume all objective func-

tions are continuously differentiable but not necessarily con-

vex (to accommodate deep models). Finding a (weakly)

Pareto optimal solution in this setting is quite challenging

(already so in the single objective case). Instead, we will con-

tend with Pareto stationary solutions, namely those that satisfy

an intuitive first order necessary condition:

Definition 1 (Pareto-stationarity [25]): We call w� Pareto-
stationary iff some convex combination of the gradients

frfiðw�Þg vanishes, i.e., there exists some �� � 0 such thatP
i �i ¼ 1 and

P
i �irfiðw�Þ ¼ 0.

Lemma 1 ([25]): Any Pareto optimal solution is Pareto sta-

tionary. Conversely, if all functions are convex, then any Par-

eto stationary solution is weakly Pareto optimal.

Needless to say, the above results reduce to the familiar

ones for the single objective case (m ¼ 1).
There exist many algorithms for finding Pareto stationary

solutions. We briefly review three popular ones that are rele-

vant for us, and refer the reader to the excellent monograph

[26] for more details.

Weighted approach. Let �� 2 D (the simplex) and consider

the following single, weighted objective:

min
w

Xm
i¼1

�ifiðwÞ: (14)

This is essentially the approach taken by FedAvg, with any

(global) minimizer of (14) being weakly Pareto optimal (in

fact, Pareto optimal if all weights �i are positive). From Defi-

nition 1 it is clear that any stationary solution of the weighted

scalar problem (14) is a Pareto stationary solution of the origi-

nal MoM (11). Note that the scalarization weights ��, once cho-
sen, are fixed throughout. Different �� leads to different Pareto

stationary solutions.

�-constraint. Let �� 2 Rm�1, i 2 f1; . . . ;mg and consider

the following constrained scalar problem:

min
w

fiðwÞ (15)

s:t: fiðwÞ � �i; 8i 6¼ i: (16)

Assuming the constraints are satisfiable, then any (global)

minimizer of (15) is again weakly Pareto optimal. The �-con-
straint approach is closely related to the weighted approach

above, through the usual Lagrangian reformulation. Both

require fixing an m� 1 dimensional parameter in advance

(�� vs.��), though.
Chebyshev approach. Let s 2 Rm and consider the mini-

max problem (where recall that D is the simplex constraint):

min
w

max
��2D

��>ðfðwÞ � sÞ: (17)

Again, any (global) minimizer is weakly Pareto optimal. Here

s is a fixed vector that ideally lower bounds f. This is essen-
tially the approach taken by AFL [5] with s ¼ 0.

V. FL AS MULTI-OBJECTIVE MINIMIZATION

Having introduced both FL and MoM, and observed some

connections between the two, it is very natural to treat each

2042 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

user function fi in FL as a separate objective in MoM and aim

to optimize them simultaneously as in (11). This will be the

main approach we follow below, which, to the best of our

knowledge, has not been formally explored before (despite of

the apparent connections that we saw in the previous section,

perhaps retrospectively). In particular, we will extend the mul-

tiple gradient descent algorithm [25] in MoM to FL, draw con-

nections to existing FL algorithms, and prove convergence

properties of our extended algorithm FedMGDA+. Very

importantly, the notion of Pareto optimality and stationarity

immediately enforces fairness among users, as we are discour-

aged from improving certain users by sacrificing others.

To further motivate our development, let us compare to the

objective in AFL [5]:

min
w

max
��2D

��>fðwÞ � min
w

max
i¼1;...;m

fiðwÞ; (18)

where D denotes the simplex2. By optimizing the worst loss

than the average loss in FedAvg, AFL provides some guaran-

tee to all users hence achieving some form of fairness. How-

ever, note that AFL’s objective (18) is not robust against

adversarial attacks. In fact, if a malicious user artificially

“inflates” its loss fi (e.g., even by adding/multiplying a con-

stant), it can completely dominate and mislead AFL to solely

focus on optimizing its performance. The same issue applies to

q-FedAvg [6], albeit with a less dramatic effect if q is small.

AFL’s objective (18) is very similar to the Chebyshev

approach in MoM (see Section IV), which inspires us to pro-

pose the following iterative algorithm for solving (11):

~wtþ1 ¼ argmin
w

max
��2D

��>ðfðwÞ � fð ~wtÞÞ; (19)

where we adaptively “center” the user functions using func-

tion values from the previous iteration. When the functions fi
are smooth, we apply the quadratic bound to obtain:

wtþ1 ¼ argmin
w

max
��2D

��>J>f ðwtÞðw�wtÞ þ 1

2h
kw�wtk2;

(20)

where Jf ¼ ½rf1; . . . ;rfm� 2 Rd	m is the Jacobian and h >
0 is the step size. Crucially, note that fðwtÞ does not appear in
the above bound (20) since we subtracted it off in (19). Since

(20) is convex in w and concave in �� we can swap min with

max and obtain the dual:

max
��2D

min
w

��>J>f ðwtÞðw�wtÞ þ 1

2h
kw�wtk2: (21)

Solvingw by setting its derivative to 0 we arrive at:

wtþ1 ¼ wt � hdt; dt ¼ JfðwtÞ���t ; (22)

where ���t ¼ argmin
��2D

kJfðwtÞ��k2: (23)

Note that dt is precisely the minimum-norm element in the

convex hull of the columns (i.e., gradients) in the Jacobian Jf,
and finding ���t amounts to solving a simple quadratic program.

The resulting iterative algorithm in (22) is known as multiple

gradient descent algorithm (MGDA), which has been (re)dis-

covered in [25], [27], [28] and recently applied to multitask

learning in [29], [30] and to training GANs in [31]. Our con-

cise derivation here reveals some new insights about MGDA,

in particular its connection to AFL.

To adapt MGDA to the federated learning setting, we pro-

pose the following extensions.

Balancing user average performance and fairness. We

observe that the MGDA update in (22) resembles FedAvg,

with the crucial difference that MGDA automatically tunes

the dual weighting variable �� in each step while FedAvg pre-

sets �� based on a priori information about the user functions

(or simply uniform in lack of such information). Importantly,

the direction dt found in MGDA is a common descent direc-

tion for all participating objectives:

fðwtþ1Þ � fðwtÞ þ J>f ðwtÞðwtþ1 �wtÞ þ 1

2h
kwtþ1 �wtk2

� fðwtÞ; (24)

where the first inequality follows from familiar smoothness

assumption on f while the second inequality follows simply

from plugging w ¼ wt in (20) and noting that wtþ1 by defini-

tion can only decrease (20) even more. It is clear that equality

is attained iff dt ¼ JfðwtÞ���t ¼ 0, i.e., wt is Pareto-stationary

(see Section IV). In other words, MGDA never sacrifices any

participating objective to trade for more sizable improvements

over some other objective, something FedAvg with a fixed

weighting �� might attempt to do. On the other hand, FedAvg

with a fixed weighting �� may achieve higher average perfor-

mance under the weighting ��. It is natural to introduce the fol-
lowing trade-off between average performance and fairness:

update (22) with ���t ¼ argmin
��2D;k�����0k1��

kJfðwtÞ��k2: (25)

Clearly, setting � ¼ 0 recovers FedAvg with a priori weight-

ing ��0 while setting � ¼ 1 recovers MGDA where the weight-

ing variable �� is tuned without any restriction to achieve

maximal fairness. In practice, with an intermediate � 2 ð0; 1Þ
we may strike a desirable balance between the two (some-

times) conflicting goals. Moreover, even with the uninforma-

tive weighting ��0 ¼ 1=m, using an intermediate � allows us to
upper bound the contribution of each user function to the com-

mon direction dt hence achieve some form of robustness

against malicious manipulations.

Robustness against malicious users through normalization.

Existing works (e.g., [9], [32]) have demonstrated that the aver-

age gradient in FedAvg can be easily manipulated by even a

single malicious user. While more robust aggregation strategies

are studied recently (see e.g., [33]–[35]), they do not necessar-

ily maintain the convergence properties of FedMGDA+ (e.g.

finding a common descent direction and converging to a Pareto

stationary solution). Instead, we propose to simply normalize

2 To be precise, AFL restricted �� to a subset L
 D. We simply set L ¼ D
to ease the discussion.

HU et al.: FEDERATED LEARNING MEETS MULTI-OBJECTIVE OPTIMIZATION 2043

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

the gradients from each user to unit length, based on the follow-

ing considerations: (a) Normalizing the (sub)gradient is com-

mon for specialists in nonsmooth and stochastic optimization

[36] and sometimes eases step size tuning. (b) Solving the

weights ���t in (22) with normalized gradients still guarantees

fairness, i.e., the resulting direction dt is descending for all par-

ticipating objectives (by a completely similar reasoning as the

remark after (24)). (c) Normalization restores robustness

against multiplicative “inflation” from any malicious user,

which, combined with MGDA’s built-in robustness against

additive “inflation” (see (19)), offers reasonable robustness

guarantees against adversarial attacks.

Balancing communication and on-device computation.

Communication between user devices and the central server is

heavily constrained in FL, due to a variety of reasons men-

tioned in Section III. On the other hand, modern edge devices

are capable of performing reasonable amount of on-device

computations. Thus, we allow each user device to perform

multiple local updates before communicating its update g ¼
w0 �w&, namely the difference between the initial w0 and

the final w&, to the central server. The server then calls the

(extended) MGDA to perform a global update, which will be

broadcast to the next round of user devices. We note that simi-

lar strategy was already adopted in many existing FL systems

(e.g., [1], [6], [11]).

Subsampling to alleviate non-iid and enhance throughput.

Due to the massive number of edge devices in FL, it is not real-

istic to expect most devices to participate at each or even most

rounds. Consequently, the current practice in FL is to select a

(different) subset of user devices to participate in each round

[1]. Moreover, randomly subsampling user devices can also

help combat the non-iid distribution of user-specific data (e.g.,

[1], [10]). Here we point out an important advantage of our

MGDA-based algorithm: its update is along a common

descending direction (see (24)), meaning that the objective of

any participating user can only decrease. We believe this

unique property of MGDA provides strong incentive for users

to participate in FL. To our best knowledge, existing FL

algorithms do not provide similar algorithmic incentives. Last

but not the least, subsampling also solves a degeneracy issue in

MGDA: when the number of participating users exceeds the

dimension d, the Jacobian Jf has full row-rank hence (22)

achieves Pareto-stationarity in a single iteration and stops mak-

ing progress. Subsampling removes this undesirable effect and

allows different subsets of users to be continuously optimized.

With the above extensions, we summarize our extended

algorithm FedMGDA+ in Algorithm 1, and we prove the fol-

lowing convergence guarantees (precise statements and proofs

can be found in the supplementary material, Section A):

Theorem 1a: Let each user function fi be L-Lipschitz
smooth andM-Lipschitz continuous, and choose step size ht so

that
P

t ht ¼ 1 and
P

t stht < 1, where s2
t :¼ Ekdt � d̂tk2

with

dt :¼ JfðwtÞ��t; ��t ¼ argmin
��2D

kJfðwtÞ��k; (26)

d̂t :¼ ĴfðwtÞ�̂�t; �̂�t ¼ argmin
��2D

kĴfðwtÞ��k: (27)

Then, with k ¼ r ¼ 1 we have:

min
t¼0;...;T

EkJfðwtÞ��tk2 ! 0: (28)

Here k is the number of local updates and r is the number of

minibatches in each local update. The convergence rate

depends on how quickly the “variance” term st of the stochas-

tic common descent direction d̂t diminishes (if at all), which

in turn depends on how aggressively we subsample users or

how heterogeneous the users are.

For deterministic gradient updates, we can prove conver-

gence even with more local updates (i.e., k > 1):
Theorem 1b: Let each user function fi be L-Lipschitz

smooth and M-Lipschitz continuous. For any number of local

updates k, if the global step size ht ! 0 with
P

t ht ¼ 1,

local learning rate hlt ! 0 and "t :¼ k��t � �̂�tk ! 0, then we

have:

min
t¼0;...;T

kJfðwtÞ��tk2 ! 0: (29)

Please refer to the supplementary material, Section A, for

the precise statement of the theorem and its proof. We note

that one natural approach to bound the deviation "t is by

applying the �-constrained version of FedMGDA. For example,

if k��� ��0k1 � �t, and �t is bounded, then "t � 2
ffiffiffiffiffi
m
p

�t is also
bounded. Thus, "t ! 0 when �t ! 0. Moreover, when k ¼ 1,
we do not need the local learning rate hlt to decay for conver-

gence; in addition, if "t � 0 (e.g. in FedAvg), then our con-

vergence guarantee reduces to the usual one for gradient

descent, which is expected since we know FedAvg with k ¼
1; r ¼ 1 is the same as centralized gradient descent. Lastly,

we note that when k > 1, local learning rate hlt must vanish in

order to obtain convergence. This importance of local learning

rate decay is also pointed out in [15].

When the functions fi are convex, we can derive a finer

result:

Algorithm 1: FedMGDA+.

1 for t ¼ 1; 2; . . . do
2 choose a subset It of dpme clients/users
3 for i 2 It do
4 gi Client Update ði;wtÞ
5 �gi :¼ gi=kgik // normalize
6 ��� argmin��2D;k�����0k1�� k

P
i �i�gik2

7 dt
P

i �
�
i �gi // common direction

8 choose (global) step size ht

9 wtþ1 wt � htdt

10 Function Client Update (i;w):

11 w0 w
12 Repeat (k epochs)

// split local data into r batches
13 Di ! Di;1 [� � � [Di;r

14 for j 2 f1; . . . ; rg do
15 w w� hrfiðw;Di;jÞ
16 return g :¼ w0 �w to server

2044 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

Theorem 2: Suppose each user function fi is convex and

M-Lipschitz continuous. Suppose at each round FedMGDA+

includes a strongly convex user function whose weight is

bounded away from 0. Then, with the choice ht ¼ 2
cðtþ2Þ and

k ¼ r ¼ 1, we have

Ekwt �w�t k2 �
4M2

c2ðtþ 3Þ ; (30)

and wt �w�t ! 0 almost surely, where w�t is the nearest Par-
eto stationary solution towt and c is some constant.

A slightly stronger result where we also allow some user

functions to be nonconvex can be found in the supplementary

material, Section A. The same results hold if the gradient nor-

malization is bounded away from 0 (otherwise we are already

close to Pareto stationarity). For r; k > 1, using a similar

argument as in Section III, we expect FedMGDA+ to optimize

some proxy problem (such as the proximal average), and we

leave the thorough theoretical analysis for future work.

We remark that convergence rate for MGDA, even when

restricted to the deterministic case, was only derived recently

in [37]. The stochastic case (that we consider here) is much

more challenging and our theorems provide one of the first

convergence guarantees for FedMGDA+. We wish to empha-

size that FedMGDA+ is not just an alternative algorithm for

FL practitioners; it can be used as a post-processing step to

enhance existing FL systems or combined with existing FL

algorithms (such as FedProx or q-FedAvg). This is partic-

ularly appealing with nonconvex user functions as MGDA is

capable of converging to all Pareto stationary points while

approaches such as FedAvg do not necessarily enjoy this

property even when we enumerate the weighting ��0 [26]. Fur-

thermore, it is possible to find multiple or even enumerate all

Pareto optimal solutions (i.e. the Pareto front). For instance,

we may run FedMGDA+ multiple times with different random

seeds or initializations. As shown by [30], we could also incor-

porate additional linear constraints in (22) to encode one’s

preference and encourage more diverse solutions. However,

these techniques become less effective in higher dimensions

(i.e., when the number of users is large) and in communication

limited settings. Practically, the server may dynamically

adjust the linear constraints in (22) to steer the algorithm to a

more desirable Pareto stationary solution.

Lastly, we mention that finding the common descent direc-

tion (i.e., Line 6 of Algorithm 1) is a standard quadratic pro-

gramming (QP) problem that is solved only at the server side.

For moderate number of (sampled) users, it suffices to employ

a generic QP solver while for large number of users we could

also solve � efficiently using for instance the conditional

gradient algorithm [29], with per-step complexity proportional

to the model dimension and the number of participating users.

For our experiments below, we used a generic QP sovler and

we observed that this overhead is negligible, resulting almost

the same overall running time for FedAvg and FedMGDA.

VI. EXPERIMENTS

A. Experimental Setups

In this subsection we provide experimental details including

dataset descriptions, sampling schemes, model configurations

and hyper-parameter settings. A quick summary of the data-

sets that we use can be found in Table I. We have two parame-

ters in FedMGDA+ to control the total number of local updates

in each communication round: k, the number of local epochs,

and r ¼ n=b, the number of updates in each local epoch. Here

n is the number of samples at each user (assumed the same for

simplicity) while b is the minibatch size for each local update.

As observed by [1, e.g. Table 2], having a larger k is similar

as having a smaller b (or equivalently a larger r), in terms of

total number of local updates. Moreover, k ¼ 1 with a suitable

b usually leads to satisfying performance while very large k
can result in plateau or divergence. Thus, in our experiments

we fix k ¼ 1 while vary b to reduce the total number of hyper-

parameters. This corresponds to a single pass of the local data

at each user in every communication round.

1) CIFAR-10 [38] and Fashion MNIST [39] Datasets: In

order to create a non-i.i.d. dataset, we follow a similar sam-

pling procedure as in [1]: first we sort all data points according

to their classes. Then, they are split into 500 shards, and each

user is randomly assigned 5 shards of data. By considering

100 users, this procedure guarantees that no user receives data

from more than 5 classes and the data distribution of each user

is different from each other. The local datasets are balanced–

all users have the same amount of training samples. The local

data is split into train, validation, and test sets with percentage

of 80%, 10%, and 10%, respectively. In this way, each user

has 400 data points for training, 50 for test, and 50 for valida-

tion. We use a CNN model which resembles the one in [1],

with two convolutional layers followed by three fully con-

nected layers. The details are included in Table II for CIFAR-

10 and in Table III for Fashin MNIST. To update the local

models at each user using its local data, we apply stochastic

gradient descent (SGD) with local batch size b ¼ 10, local
epoch k ¼ 1, and local learning rate h ¼ 0:01, or b ¼ 400, k ¼
1, and h ¼ 0:1. To model the fact that not all users may partic-

ipate in each communication round, we employ a parameter p
to control the fraction of participating users: p ¼ 0:1 is the

TABLE I
DATASET SUMMARY

HU et al.: FEDERATED LEARNING MEETS MULTI-OBJECTIVE OPTIMIZATION 2045

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

default setting which means that only 10% of users participate

in each communication round.

2) Federated EMNIST Dataset [20]: For this experimental

setup, we use the same dataset, model, and hyper-parameters

as [15]. We use the federated EMNIST dataset of [20]. The

dataset consists of images of digits, and English characters—

both lower and upper cases, with 62 classes in total. The

images are partitioned by their authors in a way that naturally

makes the dataset heterogeneous and unbalanced. We use the

model described in Table IV and the following hyper-parame-

ters: local learning rate h ¼ 0:1 and selecting 10 clients per

communication round as recommended. The only difference

between our setup and the one in [15] is that we use local

epoch k ¼ 1 for all algorithms.

3) Shakespeare Dataset [11]: For experiments on the

Shakespeare dataset, we use the same model, data pre-process-

ing and sampling procedure as in q-FedAvg paper [6]. The

dataset is built from The Complete Works of William Shake-

speare, where each role in the play represents one user. Fol-

lowing [11], we subsample 31 users to train a neural language

model for next character prediction. Each character is embed-

ded in an 8-dimensional space and the sequence length is 80

characters. The model we use is a two-layer LSTM (with hid-

den size 256) followed by one dense layer [1], [11]. Joint

hyper-parameters that are shared by all algorithms include:

total communication rounds T ¼ 200, local batch size b ¼ 10,
local epoch k ¼ 1, and local optimizer being SGD, unless oth-

erwise stated.

TABLE II
CIFAR-10 MODEL

TABLE III
FASHION MNIST MODEL

TABLE IV
FEDERATED EMNIST MODEL [15]

2046 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

4) Adult Dataset [40]: Following the setting in AFL [5],

we split the Adult dataset into two non-overlapping domains

based on the education attribute—phd domain and non-phd

domain. The resulting FL setting consists of two users each of

which has data from one of the two domains. Further, data is

pre-processed as in [6] to have 99 binary features. We use a

logistic regression model for all FL algorithms mentioned in

the main paper. Local data is split into train, validation, and

test sets with percentage of 80%, 10%, and 10%, respectively.

In each round, both users participate and the server aggregates

their losses and gradients (or weights). Joint hyper-parameters

that are shared by all algorithms include: total communication

rounds T ¼ 500, local batch size b ¼ 10, local epoch k ¼ 1,
local learning rate h ¼ 0:01, and local optimizer being SGD

without momentum, unless otherwise stated. Algorithm-spe-

cific hyper-parameters will be mentioned in the appropriate

places below. One important note is that the phd domain has

only 413 samples while the non-phd domain has 32,148

samples, so the split is very unbalanced while training only on

the phd domain yields inferior performance on all domains

due to the insufficient sample size.

5) Hyper-Parameters: We evaluate the performance of

different algorithms with a wide range of hyper-parameters,

summarized in Table V. In particular, following [36] we

tried sublinear Oð1=tÞ and exponential decay OðbtÞ learning
rates h on the server, and a fixed local learning rate h for

client updates. Eventually we settled on decaying ht by a

factor of b every 100 steps: ht ¼ b½
t

100�, where b ¼
decay100=T and T is the total number of communication

rounds (with e.g. decay = 1=10). We note that [15] also

found exponential decay to be most effective in their

experiments. We use grid search to choose suitable local

learning rates for all algorithms.

We evaluate our algorithm FedMGDA+ on several public

datasets: CIFAR-10 [38], F-MNIST [39], Federated EMNIST

[20], Shakespeare [11] and Adult [40], and compare to exist-

ing FL systems including FedAvg [1], FedProx [11],

q-FedAvg [6], and AFL
3 [5]. In addition, from the discus-

sions in Section V, one can envision several potential exten-

sions of existing algorithms to improve their performance. So,

we also compare to the following extensions: FedAvg-n

which is FedAvg with gradient normalization, and MGDA-

Prox which is FedMGDA+ with a proximal regularizer added

to each user’s loss function.4 We distinguish between

FedMGDA+ and FedMGDA which is a vanilla extension of

MGDA to FL.

We point out that FL algorithms are to be deployed on

smart devices with moderate computational capabilities. Thus,

the models we chose to experiment on are medium-sized (see

Tables II to IV for details), with similar complexity to the

ones in FedAvg, q-FedAvg and AFL. We only report some

representative results in the main paper, and defer the full set

of experiments to the supplementary material, Section B.

B. Experimental Results

In this subsection we report experimental results about our

proposed algorithm FedMGDA+ and compare it with state-of-

the-art (SOTA) alternatives under a variety of performance

metrics, including accuracy, robustness and fairness. We

remind that the accuracy metric is exactly what FedAvg aims

to optimize during training, and hence it has some advantage

in this metric over other alternative algorithms such as

FedMGDA+, AFL, and q-FedAvg, which all aim to bring

some fairness among users, perhaps at some occasional, and

hopefully small, loss of accuracy.

1) Recovering FedAvg: As mentioned in Section V, we

can control the balance between the user average performance

and fairness by tuning the �-constraint in (25). Setting � ¼ 0
recovers FedAvg while setting � ¼ 1 recovers FedMGDA. To

verify this empirically, we run (25) with different �, and report
results on CIFAR-10 in Fig. 1 for both iid and non-iid distribu-

tions of data (for results on F-MNIST, see supplementary

material, Section B1). These results confirm that changing � from
0 to 1 yields an interpolation between FedAvg and FedMGDA,

as expected. SinceFedAvg essentially optimizes the (uniformly)

averaged training loss, it naturally performs the best under this

metric (Fig. 1(c) and (d)). Nevertheless, it is interesting to note

that some intermediate � values actually lead to better user accu-
racy than FedAvg in the non-iid setting (Fig. 1(a)).

2) Robustness: We discussed earlier in Section V that the

gradient normalization and MGDA’s built-in robustness allow

TABLE V
HYPERPARAMETERS USED IN OUR EXPERIMENTS.

3 Experiments of AFL in the original work [5] and later works that com-
pare with it (e.g. [6]) were reported on datasets with very few clients (2 or 3),
possibly due to applicability reasons. We followed this convention in our
work.

4 One can also apply the gradient normalization idea to q-FedAvg; how-
ever, we observed from our experiments that the resulting algorithm is unsta-
ble particularly for large q values.

HU et al.: FEDERATED LEARNING MEETS MULTI-OBJECTIVE OPTIMIZATION 2047

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

FedMGDA+ to combat against certain adversarial attacks in

practical FL deployment. We now empirically evaluate the

robustness of FedMGDA+ against these attacks. We run vari-

ous FL algorithms in the presence of a single malicious user

who aims to manipulate the system by inflating its loss. We

consider an adversarial setting where the attacker participates

in each communication round and inflates its loss function by

(i) adding a bias to it, or (ii) multiplying it by a scaling factor,

termed the bias and scaling attack, respectively. In the first

experiment, we simulate a bias attack on the Adult dataset by

adding a constant bias to the underrepresented user, i.e. the

PhD domain, since it’s more natural to expect an attacker to

be consisted of a small number of users. In this setup, the

worst performance we can get is bounded by training the

model using PhD data only. Results under the bias attack are

presented in Fig. 2 (Left); also see the supplementary material,

Section B2, for more results. We observe that AFL and q-

FedAvg perform slightly better than FedMGDA+ without the

attack; however, their performances deteriorate to a level close

to the worst case scenario under the attack. In contrast,

FedMGDA+ is not affected by the attack with any bias, which

empirically supports our claim in Section V. Note that we did

not include FedAvg in this comparison since from its defini-

tion it is clear that FedAvg, like FedMGDA+, is not affected

by the bias attack. Fig. 2 (Right) shows the results of different

algorithms on CIFAR-10 with and without an adversarial scal-

ing. As mentioned earlier, q-FedAvg with gradient normali-

zation is highly unstable particularly under the scaling attack,

so we did not include its result here. From Fig. 2 (Right) it is

immediate to see that (i) the scaling attack affects all algo-

rithms that do not employ gradient normalization; (ii) q-

FedAvg is the most affected under this attack; (iii) surpris-

ingly, FedMGDA+ and, to a lesser extent, MGDA-Prox actu-

ally converge to slightly better Pareto solutions, compared to

their own results under no scaling attack. The above results

empirically verify the robustness of FedMGDA+ under per-

haps the most common bias and scaling attacks.

3) Fairness: Lastly, we compare FedMGDA+ with existing

FL algorithms using different notions of fairness on CIFAR-10.

For the first experiment, we adopt the same fairness metric as [6],

and measure fairness by calculating the variance of users’ test

error. We run each algorithm with different hyperparameters, and

among the results, we pick the best ones in terms of average accu-

racy to be shown in Fig. 3; full table of results can be found in the

supplementary material, Section B3. From this figure, we observe

that (i) FedMGDA+ achieves the best average accuracy while its

standard deviation is comparable with that of q-FedAvg; (ii)

FedMGDA+ significantly outperforms FedMGDA, which clearly

justifies our proposed modifications in Algorithm 1 to the vanilla

MGDA; and (iii) FedMGDA+ outperforms FedAvg-n, which

uses the same normalization step as FedMGDA+, in terms of aver-

age accuracy and standard deviation. These observations confirm

the effectiveness of FedMGDA+ in inducing fairness. We perform

the same experiment on the Federated EMNIST dataset, and

observed similar results, which can be found in Table VI and in

the supplementarymaterial, Section B4.

In the next experiment, we show that FedMGDA+ not only

yields a fair final solution but also maintains fairness during

Fig. 1. Interpolation betweenFedAvg andFedMGDA onCIFAR-10. x-axis is the number of communication rounds. From left to right: (a) and (b) Average user accu-
racy in non-iid/iid setting resp. (c) and (d) Uniformly averaged training loss in non-iid/iid setting resp. Results are averaged over 5 runs with different random seeds.

Fig. 2. (Left) Test accuracy of SOTA algorithms on Adult dataset with adversarial biases added to the loss of PhD domain; and compared to the baseline of
training only on PhD domain. The scales of biases for AFL and q-FedAvg are different because AFL uses averaged loss while q-FedAvg uses (non-averaged)
total loss. (Right) Test accuracy of different algorithms on CIFAR-10 in the presence of a malicious user who scales its loss function with a constant factor. All
algorithms are run for 500 rounds on Adult and 1500 rounds on CIFAR-10. The reported results are averaged across 5 runs with different random seeds. For
detailed hyperparameter setting, see supplementary material, Section B2.

2048 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

the entire training process in the sense that, in each round, it

refrains from sacrificing the performance of any participating

user for the sake of improving the overall performance. To the

best of our knowledge, “fairness during training” has not been

investigated before, in spite of having great practical implica-

tions—it encourages user participation. To examine this fair-

ness, we run several experiments on CIFAR-10 and measure

the percentage of improved participants in each communica-

tion round. Specifically, we measure the training loss before

and after each round for all participating users, and report the

percentage of those improved or stay unchanged.5 Fig. 4

shows the percentage of improved participating users in each

communication round in terms of training loss for two

representative cases; see supplementary material, Section B5,

for full results with different hyperparameters.

We can see that FedMGDA+ consistently outperforms other

algorithms in terms of percentage of improved users, which

means that by using FedMGDA+, fewer users’ performances

get worse after each participation. Furthermore, we notice

from Fig. 4 (Left) that, with local batch size b ¼ 10, the per-

centage of improved users is less than 100%, which can be

explained as follows: for small batch sizes (i.e., b < jDj
where D represents a local dataset), the received updates from

users are not the true gradients of users’ losses given the

global model (i.e., gi 6¼ rfiðwÞ); they are noisy estimates of

the true gradients. Consequently, the common descent direc-

tion calculated by MGDA is noisy and may not always work

for all participating users. To remove the effect of this noise,

we set b ¼ jDj which allows us to recover the true gradients

from the users. The results are presented in Fig. 4 (Right),

which confirms that, when step size decays (less overshoot-

ing), the percentage of improved users for FedMGDA+ reaches

towards 100% during training, as is expected.

VII. CONCLUSION

We have proposed a novel algorithm FedMGDA+ for feder-

ated learning. FedMGDA+ is based on multi-objective optimi-

zation and aims to converge to Pareto stationary solutions.

FedMGDA+ is simple to implement, has fewer hyperparameters

to tune, and complements existing FL systems nicely. Most

importantly, FedMGDA+ is robust against additive and

Fig. 4. The percentage of improved users in terms of training loss vs communication rounds on the CIFAR-10 dataset. Two representative cases are shown:
(Left) the local batch size b ¼ 10, and (Right) the local batch size b ¼ 400. The results are averaged across 4 runs with different random seeds.

Fig. 3. Distribution of the user test accuracy on CIFAR-10: (Left) the algorithms are run for 2000 communication rounds and b ¼ 10. The hyperparameters are:
m ¼ 0:01 for FedProx; h ¼ 1:5 and decay ¼ 1=10 for FedMGDA+ and FedAvg; h ¼ 1:0 and decay ¼ 1=10 for MGDA-Prox; q ¼ 0:5 and L ¼ 1:0 for
q-FedAvg . (Right) the algorithms are run for 3000 communication rounds and b ¼ 400. The hyperparameters are: m ¼ 0:5 for FedProx; h ¼ 1:0 and decay ¼
1=40 for FedMGDA+, MGDA-Prox, and FedAvg; q ¼ 0:1 and L ¼ 0:1 for q-FedAvg . The reported statistics are averaged across 4 runs with different random
seeds.

TABLE VI
TEST ACCURACY OF USERS ON FEDERATED EMNIST WITH FULL BATCH, 10
USERS PER ROUNDS, LOCAL LEARNING RATE h ¼ 0:1, TOTAL COMMUNICA-

TION ROUNDS 1500. THE REPORTED STATISTICS ARE AVERAGED ACROSS 4
RUNS WITH DIFFERENT RANDOM SEEDS

5 The percentage of improved users at time t is defined asP
i2It Iffiðwtþ1Þ � fiðwtÞg=jItj; where It is the selected users at time t, and

IfAg is the indicator function of an event A.

HU et al.: FEDERATED LEARNING MEETS MULTI-OBJECTIVE OPTIMIZATION 2049

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

multiplicative adversarial manipulations and ensures fairness

among all participating users. We established preliminary con-

vergence guarantees for FedMGDA+, pointed out its connec-

tions to recent FL algorithms, and conducted extensive

experiments to verify its effectiveness. In the future we plan to

formally quantify the tradeoff induced bymultiple local updates

and to establish some privacy guarantee for FedMGDA+.

ACKNOWLEDGMENT

We thank the anonymous reviewers and the managing editor for

their critical comments. Resources used in preparing this research

were provided, in part, by the Province of Ontario, the Govern-

ment of Canada through CIFAR, and companies sponsoring the

Vector Institute. We thank NVIDIA Corporation (the data science

grant) for donating two Titan V GPUs that enabled in part the

computation in this work. We gratefully acknowledge funding

support from NSERC, the Canada CIFAR AI Chairs Program,

and Waterloo-Huawei Joint Innovation Lab.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273–1282. [Online]. Available: http://proceedings.mlr.press/v54/
mcmahan17a/mcmahan17a.pdf

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Chal-
lenges, methods, and future directions,” in Proc. IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60,May 2020, doi: 10.1109/MSP.2020.2975749.

[3] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 1–19, 2019, doi: 10.1145/3298981.

[4] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations Trends Mach. Learn., vol. 14, no. 1–2, pp. 1–210,
2021.

[5] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in
Proc. Int. Conf. Mach. Learn., 2019, vol. 97, pp. 4615–4625. [Online].
Available: http://proceedings.mlr.press/v97/mohri19a.html

[6] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in fed-
erated learning,” in Proc. Int. Conf. Learn. Representations, 2020. [Online].
Available: https://openreview.net/forum?id=ByexElSYDr

[7] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.,
2020, pp. 2938–2948.

[8] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?,” 2019, arXiv:1911.07963.

[9] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing feder-
ated learning through an adversarial lens,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 634–643. [Online]. Available: http://proceedings.mlr.
press/v97/bhagoji19a.html

[10] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the conver-
gence of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Represen-
tations, 2020. [Online]. Available: https://openreview.net/forum?id=
HJxNAnVtDS

[11] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., 2020, pp. 429–450. [Online]. Available: https://proceedings.
mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.
pdf

[12] Y. Yu, “Better approximation and faster algorithm using the proximal
average,” in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 458–466.
[Online]. Available: https://proceedings.neurips.cc/paper/2013/hash/
49182f81e6a13cf5eaa496d51fea6406-Abstract.html

[13] S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. Int. Conf. Learn. Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=S1g2JnRcFX

[14] Z. Huo, Q. Yang, B. Gu, L. Carin, and H. Huang, “Faster on-device
training using new federated momentum algorithm,” 2020, arXiv:
2002.02090.

[15] S. J. Reddi et al., “Adaptive federated optimization,”Int. Conf. Learn.
Representations, 2021. [Online]. Available: https://openreview.net/
forum?id=LkFG3lB13U5

[16] R. Pathak and M. J. Wainwright, “FedSplit: An algorithmic framework
for fast federated optimization,” in Proc. Adv. Neural Inf. Process. Syst.,
2020, pp. 7057–7066. [Online]. Available: https://proceedings.neurips.
cc//paper/2020/hash/4ebd440d99504722d80de606ea8507da-Abstract.
html

[17] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in Proc. Int. Conf. Learn.
Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=BkluqlSFDS

[18] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and
Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 7252–7261.
[Online]. Available: http://proceedings.mlr.press/v97/yurochkin19a.html

[19] H. Wang et al., “Attack of the tails: Yes, you really can backdoor feder-
ated learning,” in Proc. Adv. Neural Inf. Process. Syst., 2020, vol. 33,
pp. 16070–16084. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/file/b8ffa41d4e492f0fad2f13e29e1762eb-Paper.pdf

[20] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2019,
arXiv:1812.01097.

[21] C. He et al., “FedML: A research library and benchmark for federated
machine learning,” 2020, arXiv:2007.13518.

[22] H. H. Bauschke, R. Goebel, Y. Lucet, and X. Wang, “The proximal
average: Basic theory,” SIAM J. Optim., vol. 19, no. 2, pp. 766–785,
2008. [Online]. Available: https://epubs.siam.org/doi/pdf/10.1137/
070687542

[23] Y. Yu, X. Zheng, M. Marchetti-Bowick, and E. P. Xing, “Minimizing
nonconvex non-separable functions,” in Proc. Artif. Intell. Statist.,
2015, pp. 1107–1115. [Online]. Available: http://proceedings.mlr.press/
v38/yu15.html

[24] J. Jahn, Vector Optimization. Berlin, Germany: Springer, 2009. [Online].
Available: https://link.springer.com/book/10.1007/978-3-642-17005-8

[25] H. Mukai, “Algorithms for multicriterion optimization,” IEEE Trans.
Autom. Control, vol. 25, no. 2, pp. 177–186, Apr. 1980. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/1102298

[26] K. M. Miettinen, Nonlinear Multiobjective Optimization. Berlin, Ger-
many: Springer, 1998. [Online]. Available: https://link.springer.com/
book/10.1007/978-1-4615-5563-6

[27] J. Fliege and B. F. Svaiter, “Steepest descent methods for multicriteria
optimization,” Math. Methods Operations Res., vol. 51, no. 3, pp. 479–
494, 2000. [Online]. Available: https://doi.org/10.1007/s001860000043

[28] J.-A. D�esid�eri, “Multiple-gradient descent algorithm (MGDA) for multi-
objective optimization,” Comptes Rendus Mathematique, vol. 350,
no. 5, pp. 313–318, 2012. [Online]. Available: https://doi.org/10.1016/j.
crma.2012.03.014

[29] O. Sener and V. Koltun, “Multi-task learning as multi-objective opti-
mization,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 525–536.
[Online]. Available: https://papers.nips.cc/paper/7334-multi-task-learning-
as-multi-objective-optimization.pdf

[30] X. Lin, H.-L. Zhen, Z. Li, Q.-F. Zhang, and S. Kwong, “Pareto multi-
task learning,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 12060–12070. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf

[31] I. Albuquerque, J. Monteiro, T. Doan, B. Considine, T. Falk, and
I. Mitliagkas, “Multi-objective training of generative adversarial net-
works with multiple discriminators,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 202–211. [Online]. Available: http://proceedings.mlr.press/
v97/albuquerque19a/albuquerque19a.pdf

[32] C. Xie, S. Koyejo, and I. Gupta, “Fall of empires: Breaking byzantine-
tolerant SGD by inner product manipulation,” in Proc. Uncertainty
Artif. Intell., 2019, pp. 261–270.

[33] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
Neural Inf. Process. Syst., 2017, pp. 118–128.

[34] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distrib-
uted learning: Towards optimal statistical rates,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 5650–5659.

[35] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and A. Stewart,
“Sever: A robust meta-algorithm for stochastic optimization,” in Proc.
Int. Conf. Mach. Learn., 2019, pp. 1596–1606.

[36] K. M. Anstreicher and L. A. Wolsey, “Two ‘well-known’ properties
of subgradient optimization,” Math. Program., vol. 120, no. 1, pp. 213–
220, 2009, doi: 10.1007/s10107-007-0148-y.

2050 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
https://dx.doi.org/10.1109/MSP.2020.2975749
https://dx.doi.org/10.1145/3298981
http://proceedings.mlr.press/v97/mohri19a.html
https://openreview.net/forum?id=ByexElSYDr
http://proceedings.mlr.press/v97/bhagoji19a.html
http://proceedings.mlr.press/v97/bhagoji19a.html
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=HJxNAnVtDS
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf
https://proceedings.neurips.cc/paper/2013/hash/49182f81e6a13cf5eaa496d51fea6406-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/49182f81e6a13cf5eaa496d51fea6406-Abstract.html
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://proceedings.neurips.cc//paper/2020/hash/4ebd440d99504722d80de606ea8507da-Abstract.html
https://proceedings.neurips.cc//paper/2020/hash/4ebd440d99504722d80de606ea8507da-Abstract.html
https://proceedings.neurips.cc//paper/2020/hash/4ebd440d99504722d80de606ea8507da-Abstract.html
https://openreview.net/forum?id=BkluqlSFDS
https://openreview.net/forum?id=BkluqlSFDS
http://proceedings.mlr.press/v97/yurochkin19a.html
https://proceedings.neurips.cc/paper/2020/file/b8ffa41d4e492f0fad2f13e29e1762eb-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b8ffa41d4e492f0fad2f13e29e1762eb-Paper.pdf
https://epubs.siam.org/doi/pdf/10.1137/070687542
https://epubs.siam.org/doi/pdf/10.1137/070687542
http://proceedings.mlr.press/v38/yu15.html
http://proceedings.mlr.press/v38/yu15.html
https://link.springer.com/book/10.1007/978-3-642-17005-8
https://ieeexplore.ieee.org/document/1102298
https://link.springer.com/book/10.1007/978-1-4615-5563-6
https://link.springer.com/book/10.1007/978-1-4615-5563-6
https://doi.org/10.1007/s001860000043
https://doi.org/10.1016/j.crma.2012.03.014
https://doi.org/10.1016/j.crma.2012.03.014
https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
http://proceedings.mlr.press/v97/albuquerque19a/albuquerque19a.pdf
http://proceedings.mlr.press/v97/albuquerque19a/albuquerque19a.pdf
https://dx.doi.org/10.1007/s10107-007-0148-y

[37] J. Fliege, A. I. F. Vaz, and L. N. Vicente, “Complexity of gradient descent
for multiobjective optimization,” Optim. Methods Softw., vol. 34, no. 5,
pp. 949–959, 2019, doi: 10.1080/10556788.2018.1510928.

[38] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009. [Online]. Available: https://
www.cs.toronto.edu/kriz/cifar.html

[39] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,” 2017. [Online].
Available: https://arxiv.org/abs/1708.07747

[40] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: https://archive.ics.uci.edu/ml/index.php

[41] Q. Mercier, F. Poirion, and J.-A. D�esid�eri, “A stochastic multiple gradi-
ent descent algorithm,” Eur. J. Oper. Res., vol. 271, no. 3, pp. 808–817,
2018, doi: 10.1016/j.ejor.2018.05.064.

Zeou Hu is currently working toward the Ph.D.
degree with David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, ON, Can-
ada. His main research interests include multi-objec-
tive optimization and federated learning.

Kiarash Shaloudegi received the Ph.D. degree from
Electrical and Electronic Engineering Department,
Imperial College London, London, U.K. He is cur-
rently a Senior Applied Scientist with Amazon
Advertising. Previously, he was a Senior Machine
Learning Researcher with Huawei Noah’s Ark Lab.
His main research interests include machine learning,
convex optimization, statistical learning, and distrib-
uted systems.

Guojun Zhang received the bachelor’s degree in
physics from the University of Science and Technol-
ogy of China, Hefei, China, where he was awarded
the Guomoruo Scholarship, master’s degree in phys-
ics from Perimeter Institute, University of Waterloo,
Waterloo, ON, Canada, and the Ph.D. degree from
David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, Waterloo, ON, Canada. He is
currently a Senior Researcher and the Tech Lead of
federated learning with Huawei Noah Ark’s Lab,
Montr�eal, QC, Canada. He was a Student Affiliate of

Vector Institute. He has authored or coauthored in several top ML journals or
conferences, including ICML, NeurIPS, ICLR, and JMLR, and regularly is a
reviewer for these conferences. His current research interests include federated
learning and transfer learning. During his Ph.D., he was the recipient of the
David R. Cheriton Scholarship.

Yaoliang Yu received the Ph.D. degree from Com-
puting Science Department, University of Alberta,
Edmonton, AB, Canada. He is currently an Associate
Professor with the David R. Cheriton School of Com-
puter Science, University of Waterloo, Waterloo,
ON, Canada, and a Faculty Member with Vector
Institute. His main research interests include robust
regression and classification, representation learning,
kernel methods, convex and nonconvex optimization,
distributed system, and applications in computer
vision and natural language.

HU et al.: FEDERATED LEARNING MEETS MULTI-OBJECTIVE OPTIMIZATION 2051

Authorized licensed use limited to: University of Waterloo. Downloaded on June 28,2022 at 23:50:40 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1080/10556788.2018.1510928
https://www.cs.toronto.edu/kriz/cifar.html
https://www.cs.toronto.edu/kriz/cifar.html
https://arxiv.org/abs/1708.07747
https://archive.ics.uci.edu/ml/index.php
https://dx.doi.org/10.1016/j.ejor.2018.05.064

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

