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Abstract

We document various notions of compactness, with some of their useful properties. Our main reference
is [Engelking, 1989]. For counterexamples, refer to [Steen and Seebach Jr., 1995] while for background,
see the excellent textbooks [Willard, 2004] or [Munkres, 2000]. Some of the proofs are taken freely from
the internet. The writer expresses his gratitude to all sources.

1 Definitions

Our domain in this note will always be some topological space (X , τ). Recall the usual definition of com-
pactness:

Definition 1 (Compact) K ⊆ X is compact if every open cover of it has a finite subcover1.

As usual we may have “countable” versions2:

Definition 2 (Countably Compact) K ⊆ X is countably compact3 if every countable open cover of it
has a finite subcover.

Definition 3 (Lindelöf) K ⊆ X is Lindelöf if every open cover of it has a countable subcover.

Of course one immediately sees that K is compact iff K is countably compact and Lindelöf. The contrapos-
itive of the definition also tells us that K is (countably) compact iff any (countable) collection of closed sets
with finite intersection property has nonempty intersection.

Definition 4 (Limit point Compact) K ⊆ X is limit point compact if every infinite subset of it has a
limit point.

Recall that x ∈ X is a limit point of the set K if every neighbourhood of x intersects K − {x}. For a net
{xλ}λ∈Λ we define x as its cluster point4 if for every neighbourhood O of x, the index set {λ : xλ ∈ O} is
cofinal in Λ. It can be shown that x is a cluster point of the net {xλ}λ∈Λ iff some subnet {xλγ}γ∈Γ converges
to x. Similarly x is a limit point of the set K iff there exists some net x 6∈ {xλ}λ∈Λ ⊆ K that converges to
x. We will also need the notion of ω-limit point. A point x ∈ X is an ω-limit point of the set K if every
neighbourhood of x intersects K at infinitely many points5. Apparently ω-limit point is bona fide a limit
point while the converse is true only in T1 space. Note that there is no need to define ω-cluster point (it
coincides with cluster point).

1Whenever we say “a” (or “an”) we mean at least one; if it is exactly one, we will say so explicitly.
2By countable we mean finite or countably infinite.
3While it is tempting to call countably compact as σ-compact, the latter has been used in the literature with a different

meaning: countable union of compact sets.
4We have deliberately used limit point for sets and cluster point for nets, to distinguish the two notions a bit.
5One can further subdivide “infinity” in this definition to derive more refined notions.
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Theorem 1 K ⊆ X is countably compact iff every infinite subset of it has an ω-limit point iff every sequence
in it has a cluster point.

Proof: Suppose every sequence has a cluster point and let A be an infinite set, then we can find a sequence
(with distinct elemets) in A whose cluster point clearly is an ω-limit point of A. On the other hand, suppose
every infinite subset has an ω-limit point. Consider any sequence {xn}, let its distinct elements be {xnm},
which we assume is an infinite set (otherwise we are done). Apparently any ω-limit point of {xnm} is a
cluster point of {xn}.

Suppose X is countably compact, let {xn} be a sequence in X . Denote Bn := cl({xi}∞i=n), hence
∃x ∈ ∩∞n=1Bn. Any neighbourhoodO 3 xmust intersect infinitely many elements of the sequence {xn} (again
we omit the uninteresting case where the sequence only has finitely many distinct elements) since otherwise it
would imply that ∩∞n=1Bn = ∅. We have used the fact that for any open set O, O∩A = ∅ ⇐⇒ O∩cl(A) = ∅.
On the other hand, suppose every sequence has a cluster point, and let Bn be a sequence of closed sets that
satisfy the finite intersection property. We can choose xn ∈ B1 ∩ . . .∩Bn. Any cluster point of {xn}, say x,
must belong to ∩∞n=1Bn.

It is apparent from the above theorem that countably compact implies limit point compact. The converse
is true only in T1 space. On the other hand, this theorem also tell us that countably compact is implied by
the next notion of compactness.

Definition 5 (Sequentially Compact) K ⊆ X is sequentially compact if every sequence of it has a con-
vergent subsequence.

As the name suggests, sequential compactness is a sequence version of compactness, since the latter can be
equivalently defined as every net has a convergent subnet.

Definition 6 (Pseudo-Compact) K ⊆ X is pseudo-compact if every real-valued continuous function de-
fined on it is bounded.

Pseudo-compactness is an important notion due to the next theorem.

Theorem 2 Pseudo-compact sets are exactly those on which all real-valued functions attain their supremum
and infimum.

Proof: Let f : X 7→ R be bounded, and assume its supremum s := sup f is not attained. Define the
continuous function g : R − {s} 7→ R as g(x) = 1

x−s . Note that since s is not attained, f : X 7→ R − {s}
remains continuous, hence g ◦ f : X 7→ R is again continuous, but it is not bounded.

2 Properties

The following properties are interesting to us:

(a) closed subspace of * is *;

(b) * as a subspace of some T2 space is closed;

(c) product of * is *;

(d) continuous image of * is *;

(e) lower(upper)-semicontinuous functions on * attains their lower(upper) bound, and the minimizers
constitute a *.

As we will see, the last property (e), holds for countably compact sets, which, in fact, amazed the writer
and caused him to write this note.

Our first theorem can be found in any good general topology book (for instance, [Willard, 2004]):

Theorem 3 Compact satisfies (a)-(e) (where in (c) the products can be arbitrary).
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Theorem 4 Countably compact satisfies (a), (d), (e) but does not satisfy (b), or (c) even for finite products.

Proof: We only prove the validity of (e). Let f : X 7→ R be l.s.c and X be countably compact. We first show
that c := infx∈X f(x) is finite. Suppose not, then the countable collection of closed sets {x ∈ X : f(x) ≤ −n}
satisfies the finite intersection property hence has nonempty intersection, i.e. ∃x ∈ X , s.t. f(x) = −∞, con-
tradiction. Next consider the countable collection of closed sets {x ∈ X : f(x) ≤ c + 1/n} which again
satisfies the finite intersection property hence has nonempty intersection, call it M := {x ∈ X : f(x) = c}.
Apparently, M is closed hence countably compact.

Note that the product of a countably compact space and a countably compact k-space is countably com-
pact [Engelking, 1989, Theorem 3.10.13]. Also the product of a countably compact space and a sequentially
compact space is countably compact [Engelking, 1989, Theorem 3.10.36].

Theorem 5 Sequentially compact satisfies (a), (d), (e) and (c) for countably infinite products (but fails for
ℵ1 products), but does not satisfy (b).

Proof: For (c), see [Engelking, 1989, Theorem 3.10.35].
To show (b) is invalid, consider the ordered space [0,ℵ1), which is easily seen to be Hausdorff and first

countable (local basis for b < ℵ1: (a, b],∀a < b). For any infinite subset A of [0,ℵ1), extract a countable
subset, say B ⊆ A, then define s = supB which we know exists. The interval [0, s] is compact hence limit
point compact, which proves that B ⊆ [0, s] has a limit point in [0, s] hence A ⊇ B also has a limit point
in [0,ℵ1). Combining everything we know [0,ℵ1) is sequentially compact (but not compact). [0,ℵ1) as a
subspace of the compact Hausdorff space [0,ℵ1] is clearly not closed (on the opposite, open).

Theorem 6 Limit point compact satisfies (a) but does not satisfy (b), (c) (even for finite products), (d) or
(e).

Proof: (a) is easy hence omitted.
To show why (d) is invalid, Take R with its usual topology and {0, 1} with the trivial topology. Then

R×{0, 1} is easily seen to be limit point compact but the projection (which is continuous) to R is not limit
point compact (R with its usual topology is not limit point compact, take, say N as the infinite set).

For (c), see [Steen and Seebach Jr., 1995, Example 112].
For (e), we show that limit point compactness does not even imply pseudo-compactness. Take the natural

numbers N equipped with the discrete topology, and consider the product space {0, 1} ×N where the space
{0, 1} is equipped with the trivial topology. It is easy to see every non-empty subset of the product space
has a limit point (for (0, n) is a limit point of (1, n),∀n ∈ N). The projection π : {0, 1} × N 7→ N is clearly
continuous but N with discrete topology is not pseudo-compact, hence {0, 1}×N cannot be pseudo-compact
either (see the next theorem).

Theorem 7 Pseudo-compact satisfies (d) but does not satisfy (a), (b), (c) (even for finite products) or (e).

Proof: We only show why (e) is false. Consider the natural numbers N equipped with the particular point
topology6, where the particular point is, say, 0. Any function f : (N, τp) 7→ R is continuous iff f is constant
while f is l.s.c. iff f(x) ≤ f(0),∀x. Hence (N, τp) is pseudo-compact but apparently does not satisfy (e).

Note however that the product of a pseudo-compact space and a pseudo-compact k-space is pseudo-
compact [Engelking, 1989, Theorem 3.10.26]. Also the product of a pseudo-compact space and a sequentially
compact space is pseudo-compact [Engelking, 1989, Theorem 3.10.37].

Theorem 8 Lindelöf satisfies (a) and (d) but does not satisfy (b), (c) (even for finite products), or (e).

Proof: For (b), it is enough to observe that even second countable subspace of a Hausdorff space need not
be closed. (Take (0,1) as a subspace of R.)

For (c), see [Munkres, 2000, Examples 4 and 5, § 30].
For (e), use the same counterexample as that for limit point compact.

Finally, we summarize this section in Table 1.

6The particular point topology on a set X is defined with respect to a particular point p ∈ X such that A ⊆ X is open iff
A 3 p or A = ∅.
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````````````Notions
Properties

(a) (b) (c) (d) (e)

Compact � � � � �
Sequentially Compact � × � � �
Countably Compact � × × � �
Limit Point Compact � × × × ×

Pseudo Compact × × × � ×
Lindelöf � × × � ×

Table 1: Properties owned by different notions of compactness.

3 Relations

We discuss in this section the relations between various notions of compactness.

Theorem 9 Limit point compactness implies sequential compactness in first countable spaces.

Proof: Consider a sequence {xn} (w.l.o.g., with distinct elements), which by assumption has a limit point
x. We now construct a subsequence that converges to x. Since the space is first countable, let {Nn} be the
collection of local countable bases at x. Choose (arbitrarily) xn1

∈ N1, and choose xnm ∈ ∩mi=1Ni. We have
xnm → x.

The previous theorem can be strengthened a bit:

Theorem 10 Every sequential space that is limit point compact is sequentially compact.

Proof: Let {xn} be a sequence (w.l.o.g. with distinct elements) in the limit point compact sequential space
X . Let x be a limit point of the (infinite) set A := {xn}, therefore x ∈ cl(A−{x}). It follows that A−{x} is
not closed hence not sequentially closed either, so ∃{yn} ⊂ A−{x} that converges to some point y 6∈ A−{x}.
Rearranging the sequence {yn} we get a convergent subsequence of {xn}.

Theorem 11 Every pseudo-compact normal space is countably compact.

Proof: Suppose not, then ∃{xn} := S which does not have a limit point, hence S is closed and discrete (for
if {x} ⊆ S is not open then x is a limit point of S). Therefore the function f : S 7→ N defined as f(xn) = n
is continuous hence by the Tietze extension theorem it can be extended to the whole space (which is normal
by assumption). But the continuous extension is not bounded, contradicting pseudo-compactness.

Theorem 12 Every sequentially compact metric space is totally bounded hence second countable.

Proof: Let X be a sequentially compact metric space, which we suppose is not totally bounded, then
∃ ε > 0 s.t. X cannot be covered by finite many balls with radius smaller than ε. Construct a sequence as
follows: choose x1 ∈ X arbirrarily, and choose xn ∈ X − ∪n−1

i=1 B(xi, ε), where B(xi, ε) is the ball centred at
xi with radius ε. Since X by assumption is sequentially compact, ∃ subsequence {xni} 7→ x ∈ X , which is
impossible since the tails of {xi} by construction are at least ε apart.

It is obvious that every totally bounded metric space is second countable: take the basis as ∪n∈N ∪i∈In
B(xi,

1
n ), where for a fixed n ∈ N, the index set In can be chosen to be finite since the space is by assumption

totally bounded.

Again, we summarize our findings in Figure 1. Note that locally compact separable space need not be
σ-compact: take X := Y − y, where y is any point in Y := {0, 1}R. As an open subspace of the compact
separable space Y, X is also separable and locally compact. Suppose X is σ-compact, then y would be a
Gδ: X = Y − y = ∪nKn, where {Kn} is a compact covering of X (also note that Y is Hausdorff so that Kn

is closed). Therefore y = ∩nOn, where On are basic open sets in Y. For a fixed n ∈ N, On =
∏
i∈ROn,i,

where only finitely many On,i has cardinality 1 (i.e. On,i = {0} or On,i = {1}), index these by In (hence
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Figure 1: Relations between various notions of compactness

|In| < ∞). Let j ∈ R − ∪n∈NIn, and consider the point x satisfying xi = yi,∀i ∈ R − {j} and xj 6= yj . By
construction, x ∈ ∩nOn, contradiction.

Lastly we mention that we apparently have not covered all notions of compactness which have been
developed in the literature, such as paracompactness, realcompactness, metacompactness, etc. One should
consult [Engelking, 1989] or [Steen and Seebach Jr., 1995] in case s/he hasn’t had enough fun.

Appendix: Sequential Space and k-space

We recall the definitions of sequential space and k-space. The maim aim of this appendix is solely for the
sake of the writer, as he is not yet familiar with sequential spaces and k-spaces at the time of writing.

Recall that O ⊆ X is called open if every net in X converging to some point in O is eventually in O;
while C ⊆ X is called closed if every converging net in C converges to some point in C. It is easy to show that
the complement of a closed set C is open: suppose not, then there exists some net {xλ}λ∈Λ ⊆ X converging
to x ∈ X − C but not eventually in X − C, hence we can extract a subnet {xλγ}γ∈Γ ⊆ C that converges to x
too. Since C is closed we arrive at the contradiction that C ∩ X − C = {x}. Similarly the complement of an
open set is closed.

By changing nets to sequences we get the definition for sequentially open (closed) sets. Again, the
complement of a sequentially open (closed) set O is closed (open): suppose not, then there exists some
sequence {xn} ⊆ X −O converging to x ∈ O; since O is open we arrive at the contradiction that the tail of
the sequence {xn} is both in O and X −O. Trivially, open (closed) sets are sequentially open (closed) while
the converse in general is not true hence motivates the next definition:

Definition 7 (Sequential space) Topological space (X , τ) is a sequential space iff every sequentially open
(closed) set is open (closed).

For a given set A, we define its sequential closure as

scl(A) := {x ∈ X : x← {an} ⊆ A}.

Obviously scl(∅) = ∅, A ⊆ scl(A) ⊆ clA. Moreover scl(A ∪ B) = scl(A) ∪ scl(B), hence in general (even in
sequential spaces) scl(scl(A)) 6= scl(A) as otherwise it would imply scl(·) = cl(·). Topological spaces that do
satisfy scl(·) = cl(·) are called Fréchet-Urysohn. Sequential closure is inherited by subspaces in the sense
that if S is a subspace of X , then ∀A ⊆ S, sclS(A) = S ∩ sclX (A), hence it follows that Fréchet-Urysohn
spaces are exactly those whose subspaces are all sequential. Easily we know that every first-countable space

5



is Fréchet-Urysohn hence sequential: fix x ∈ cl(A), take xi ∈ A∩O1 ∩ . . .∩Oi, where {Oi} denotes the local
basis at x, hence xi → x and x ∈ scl(A).

Theorem 13 Let X be sequential and Y be topological, then f : X 7→ Y is continuous iff xi → x =⇒
f(xi)→ f(x).

Proof: Take any closed subset B ⊆ Y, let x ∈ scl(f−1(B)), then ∃xi ∈ f−1(B) s.t. xi → x. By assumption
B 3 f(xi)→ f(x) hence x ∈ f−1(B), implying that f−1(B) = scl(f−1(B)) is closed.

It follows easily from the above proposition that any map from one sequential space into another sequential
space is continuous iff its inverse image of any sequentially closed (open) set is sequentially closed (open).

Proposition 1 If every sequence in a topological space X converges to at most one point, then X is T1.
Moreover, if X is first-countable, then X is actually T2.

Proof: Let y ∈ cl({x}), then the (constant) sequence {x}i converges to both y and x, hence x = y follows
that {x} is closed.

Proposition 2 Every quotient space of a sequential spaces is also sequential.

Proof: Let f : X 7→ Y be a quotient map and X be sequential. Let A ⊆ Y be sequentially closed. To show
A is closed, it is enough to show f−1(A) is closed since f is a quotient map. Let {xn} ⊆ f−1(A) converge
to x, then f(xn)→ f(x) since f is continuou, hence f(x) ∈ A, i.e. x ∈ f−1(A).

We mention a few other properties of sequential space without proof. Open (closed) subspace of a
sequential space is sequential, while continuous image or product of sequential spaces is not sequential. It
can be shown that X is sequential iff it is a quotient space of some metric space iff it is a quotient space of
some first countable space. For examples and counterexmaples, refer to [Engelking, 1989].

Definition 8 (k-space) X is called a k-space if any A ⊆ X is open (closed) iff A ∩ K is open (closed) in
K, for all compacta K ⊆ X .

Note that sequential spaces are k-spaces: suppose A ⊆ X is not closed (hence not sequentially closed since X
is sequential), then ∃{xn} ⊆ A such that xn → x 6∈ A. The set K := {xn}∪{x} is compact but K∩A = {xn}
is not closed. Similarly, subspaces of a k-space need not be a k-space, but quotient spaces of a k-space are
k-spaces, in fact X is a k-space iff X is a quotient space of some locally compact space7.

Continuous image of a second-countable, first-countable, Fréchet-Urysohn, sequential, k-space need not
be a second-countable, first-countable, Fréchet-Urysohn, sequential, k-space, respectively. There exists
counterexample that shows the product of a first countable space and a Fréchet-Urysohn space need not
be a k-space, whence (finite) products of k-spaces, sequential spaces, Fréchet-Urysohn spaces are not k-
spaces, sequential spaces, Fréchet-Urysohn spaces, respectively. Countable products of second-countable,
first-countable spaces are second-countable, first-countable, respectively.
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