
University of Waterloo CS480/680 2024 Spring

CS480/680: Introduction to Machine Learning
Homework 1

Due: 11:59 pm, May 29, 2024, submit on LEARN.
NAME

student number

Submit your writeup in pdf and all source code in a zip file (with proper documentation). Write a script for each
programming exercise so that the TA can easily run and verify your results. Make sure your code runs!

[Text in square brackets are hints that can be ignored.]

Exercise 1: Perceptron (8 pts)

Convention: All algebraic operations, when applied to a vector or matrix, are understood to be element-wise
(unless otherwise stated).

Algorithm 1: The perceptron.

Input: X ∈ Rd×n, y ∈ {−1, 1}n, w = 0d, b = 0, max pass ∈ N
Output: w, b,mistake

1 for t = 1, 2, . . . ,max pass do
2 mistake(t)← 0
3 for i = 1, 2, . . . , n do
4 if yi(⟨xi,w⟩+ b) ≤ 0 then
5 w← w + yixi // xi is the i-th column of X
6 b← b+ yi
7 mistake(t)← mistake(t) + 1

1. (1 pt) Implement the perceptron in Algorithm 1. Your implementation should take input as X =
[x1, . . . ,xn] ∈ Rd×n, y ∈ {−1, 1}n, an initialization of the hyperplane parameters w ∈ Rd and b ∈ R,
and the maximum number of passes of the training set [suggested max pass = 500]. Run your perceptron
algorithm on the spambase dataset (available on course website), and plot the number of mistakes (y-axis)
w.r.t. the number of passes (x-axis).

Ans:

A
2. (1 pt) Using the one-vs-all reduction to implement a multiclass perceptron. You may call your binary

implementation. Test your algorithm on the activity dataset (available on course website), and report your
final errors on the training and test sets.

Ans:

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2024

https://archive.ics.uci.edu/ml/datasets/spambase
https://cs.uwaterloo.ca/~y328yu/mycourses/480/assignment.html
https://archive-beta.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://cs.uwaterloo.ca/~y328yu/mycourses/480/assignment.html

University of Waterloo CS480/680 2024 Spring

3. (1 pt) Using the one-vs-one reduction to implement a multiclass perceptron. You may call your binary
implementation. Test your algorithm on the activity dataset (available on course website), and report your
final errors on the training and test sets.

Ans:

4. (2 pts) Consider the (continuous) piece-wise function

f(w) := max
k

fk(w), (1)

where each fk is continuously differentiable. We define the derivative of f at any w as follows: first find (any)
k such that f(w) = fk(w), i.e., fk(w) achieves the maximum among all pieces; then we let f ′(w) = f ′

k(w).
[Clearly, the index k that achieves maximum may depend on w, the point we evaluate the derivative at.]
Now consider the following problem [padding applied, yi ∈ {±1}]:

min
w

n∑
i=1

max{0,−yi(⟨xi,w⟩)}. (2)

Prove that in each iteration, the (binary) perceptron algorithm essentially picks a term from the above
summation, computes the corresponding derivative (say g), and performs a gradient update:

w← w − g. (3)

[You may ignore the degenerate case when ⟨xi,w⟩ = 0, and you can use the usual chain rule for our derivative.]

Ans:

5. (1 pt) Consider the following problem, where yi ∈ {1, 2, . . . , c}:

min
w1,...,wc

n∑
i=1

max
k=1,...,c

[
⟨xi,wk⟩ − ⟨xi,wyi⟩

]
. (4)

Show that when c = 2, we reduce to the binary perceptron problem in (2). [Try to identify the weights w,
using some transformation.]

Ans:

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2024

https://archive-beta.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphoness
https://cs.uwaterloo.ca/~y328yu/mycourses/480/assignment.html
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Subderivative
https://en.wikipedia.org/wiki/Chain_rule

University of Waterloo CS480/680 2024 Spring

6. (2 pts) Based on the analogy to the binary case, develop and implement a multiclass perceptron algorithm
to solve (4) directly. Run your implementation on the activity dataset (available on course website) and
report the final errors on the training and test sets. [Hint: obviously, we want to predict as follows: ŷ =
argmax
k=1,...,c

⟨x,wk⟩, i.e., the class k whose corresponding wk maximizes the inner product. Explain your algorithm

(e.g., through pseudo-code).]

Ans:

Exercise 2: Generalized linear models (6 pts)

Recall that in logistic regression we assumed the binary label Yi ∈ {0, 1} follows the Bernoulli distribution:
Pr(Yi = 1|Xi) = pi, where pi also happens to be the mean. Under the independence assumption we derived the
(conditional) negative log-likelihood function:

−
n∑

i=1

(1− yi) log(1− pi) + yi log(pi). (5)

Then, we parameterized the mean parameter pi through the logit transform:

log
pi

1− pi
= ⟨xi,w⟩+ b, or equivalently pi =

1

1 + exp(−⟨xi,w⟩ − b)
. (6)

Lastly, we found the weight vector w and b by minimizing the negative log-likelihood function.
In the following we generalize the above idea significantly. Let the (conditional) density of Y (given X = x) be

p(y|x) = exp
[
µ(x) · y − λ(x)

]
· q(y), (7)

where µ : Rd → R is a function of x and λ(x) = log
∫
y
exp

(
µ(x) · y

)
q(y)dy so that p(y|x) is properly normalized

wrt y (i.e., integrate to 1). For discrete y (such as in logistic regression), replace the density with the probability
mass function and the integral with sum.

As always, you need to supply sufficient derivation details to justify your final answer.

1. (1 pt) Given a dataset {(xi, yi)}ni=1, derive the (conditional) negative log-likelihood function of y1, . . . , yn,
assuming independence and the density form in (7).

Ans: We have

TBD (8)

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2024

https://archive-beta.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://cs.uwaterloo.ca/~y328yu/mycourses/480/assignment.html
https://en.wikipedia.org/wiki/Probability_mass_function
https://en.wikipedia.org/wiki/Probability_mass_function

University of Waterloo CS480/680 2024 Spring

2. (1 pt) Plug the usual linear parameterization

µ(x) = ⟨x,w⟩+ b = ⟨x,w⟩ (9)

into your (conditional) negative log-likelihood and compute the gradient of the resulting function. [Hint: you
may swap differentiation with integral and your gradient may involve implicitly defined terms.]

Ans: We have

ℓn(w) = (10)

and hence

∇ℓn(w) = (11)

3. (1 pt) Let us revisit linear regression, where

p(y|x) = 1√
2π

exp
(
− (y−ν(x))2

2

)
(12)

Identify the functions µ(x), λ(x) and q(y) for the above specialization. Based on the linear parameterization
in Ex 2.2, derive the negative log-likelihood and gradient. [Hint: you may simply plug into the more general
result in Ex 2.2. Compare with what you already learned about linear regression to make sure both Ex 2.2
and Ex 2.3 are correct.]

Ans: We have

µ(x) = (13)

λ(x) = (14)

q(y) = (15)

ℓn(w) = (16)

∇ℓn(w) = (17)

4. (1 pt) Let us revisit logistic regression, where

Pr(Y = y|x) = [ν(x)]y[1− ν(x)]1−y, where y ∈ {0, 1}. (18)

Identify the functions µ(x), λ(x) and q(y) for the above specialization. Based on the linear parameterization
in Ex 2.2, derive the negative log-likelihood and gradient. [Hint: Compare with what you already learned
about logistic regression.]

Ans: We have

µ(x) = (19)

λ(x) = (20)

q(y) = (21)

ℓn(w) = (22)

∇ℓn(w) = (23)

5. (2 pts) Now let us tackle something new. Let

Pr(Y = y|x) = [ν(x)]y

y!
exp(−ν(x)), where y = 0, 1, 2, (24)

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2024

https://en.wikipedia.org/wiki/Leibniz_integral_rule

University of Waterloo CS480/680 2024 Spring

Identify the functions µ(x), λ(x) and q(y) for the above specialization. Based on the linear parameterization
in Ex 2.2, derive the negative log-likelihood and gradient. [Hint: Y here follows the Poisson distribution,
which is useful for modeling integer-valued events, e.g., the number of customers at a given time.]

Ans: We have

µ(x) = (25)

λ(x) = (26)

q(y) = (27)

ℓn(w) = (28)

∇ℓn(w) = (29)

Exercise 3: Ordinal regression (4 pts)

In many applications, the “labels” have an inherent order. For example, the letter grade A is preferred to B, which
is preferred to C, etc. More generally, consider c ordinal labels 1, 2, . . . , c, where we prefer label k than k + 1, for
each k = 1, . . . , c− 1. [The preference is transitive, i.e., any “smaller” label is preferred over a “larger” label.]

1. (2 pts) Let us consider c− 1 parallel hyperplanes Hk := {x : ⟨x,w⟩+ bk = 0}, which partition our space into
c rectangular regions. We define our prediction as

ŷ ≤ k ⇐⇒ ⟨x,w⟩+ bk > 0, (30)

or more explicitly,

ŷ = k ⇐⇒ [⟨x,w⟩+ bk > 0 and ⟨x,w⟩+ bk−1 ≤ 0], (31)

where b0 := −∞ and bc :=∞.

b1 b2 b3
· · ·

bc−1
w

1 2 3 c− 1 c

The ordering in the labels is now respected, if we constrain b1 ≤ b2 ≤ · · · ≤ bc−1:

ŷ ≤ k =⇒ ŷ ≤ l, ∀ l ≥ k. (32)

We learn the weights w and b1, . . . , bc−1 by reducing to a sequence of (coupled) binary classifications:

min
w,b1≤b2≤···≤bc−1

λ
2 ∥w∥

2
2 +

c−1∑
k=1

n∑
i=1

max{0, 1− ([[yi = k]]− [[yi = k + 1]])(⟨xi,w⟩+ bk)}, (33)

where recall that [[A]] is 1 if A is true and 0 otherwise. It is clear that when c = 2, the above reduces to the
familiar soft-margin SVM. Derive the Lagrangian dual of (33). [If it helps, you may ignore the constraint
b1 ≤ . . . ≤ bc−1.]

Ans:

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2024

https://en.wikipedia.org/wiki/Poisson_distribution

University of Waterloo CS480/680 2024 Spring

2. (2 pts) In the previous formulation, to learn bk, essentially we take class k as positive and class k + 1 as
negative. Can you find a “better” alternative? Write down the formulation. [Hint: it would be similar to
(33).]

Ans:

Yao-Liang Yu (yaoliang.yu@uwaterloo.ca) ©2024

